
LINEAR OPERATOR EQUATIONS

GUNTER LUMER AND MARVIN ROSENBLUM1

I. Introduction. Let Cl be a complex Banach algebra with identity

e, and let 03 be the Banach algebra of operators on Ct considered as

a Banach space.

Given u, i>GCt, let TE<& he defined by Tx = ux — xv. This operator

was studied in [4] where it was shown that if a(x, Ct) denotes the

spectrum of xE Ct, then

(1.1) <r(T, (B) C <r(u, Ct) - <x(v, ct)

and

(1.2) f(T)x = —. \  f(u - \e)x(Xe - v^dX,

where / is holomorphic on a(u, Ct) — a(v, Ct), and c is a suitable con-

tour.

In the present note we study the operator SG® defined by Sx

= 'YJi=iuixvi, {ui} and {vj} being commutative subsets of Ct; but

it is understood that {uj} need not commute with {vj}. In a generic

way, we shall refer to such an operator as an "elementary operator."2

Of course this is related to the problem of solving in Ct a general sys-

tem of linear equations. We generalize the analysis made in [4] cov-

ering the ux — xv case, and extend the following unpublished theorem

of D. C. Kleinecke:

(1.3) If Ct is the Banach algebra of all operators on a Banach space,

then "C" may be replaced by " = " in (1.1).

II. Mappings. A simplification of the theory developed in [4] is

achieved by introducing the mappings + and ~ from Ct into 03, that

associates with any wGtt, the operators w+G® defined by «+(x)
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2 Because of the type of linear equations in which we are interested, we consider

each elementary operator to be generated by a finite collection of {«} and {v}. The

theory could, however, be extended farther. For example, essentially the same results

would hold for Sx= £" UjXVj if £" ||u,-|| ||v,-|| < + «o.
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= ux, and w~£(B, defined by u~(x) =xu. Now, first of all let us point

out the simple and yet important fact that for any u, vE&, u+v~

= v~u+ as direct verification shows.

Furthermore, put ft+ = {«+: uEli.}; &~= {u~: uE&,} ■

Lemma 1. + is an isometric isomorphic mapping of the Banach alge-

bra Ct onto the Banach algebra ft+. ~~ is an isometric anti-isomorphism

of ft onto Qr.

Proof. Direct verification.

Lemma 2.

(2.1) <j(u, ft) = a(u+, <&),

(2.2) <j(u, ft) = o-(u~, <&).

Proof. Let us prove (2.1). Lemma 1 implies that a(u,d)

= <r(u+, a+)Z)a(u+, <B). Therefore it suffices to show that 0(£(r(tt+, (B)

implies 0Eff(u> &)• Suppose 0E°~(U+, ®)> then there exists W£(B

such that u+W= Wu+ = e+. Hence, uW(e) = W(u) =e. So u(e— W(e)u)

= u — uW(u) =0 and u+(e— W(e)u) = 0. Since u+ is regular, e— W(e)u

= 0, and uW(e) = W(e)u=e, so0$<r(«, 21).

It seems pertinent to make the following remark: /( ) being a

complex valued function, holomorphic in some domain D, its Banach-

algebraic extension in ft is defined in the usual way, at any point

oG ft such that <r(a, ft) CD, by

f(a) = — f f(\)R(\, a)d\
2m J c

where c is a suitable contour, and i?(X, a) =(ke—a)~1. It thus follows

from Lemma 2, that the extension of / in ft is defined at a£ft if,

and only if, the extension of / in (B is defined at a+ and a~. Further-

more, as an immediate consequence of Lemma 1, we have the follow-

ing remark, which for convenience of reference we state as

Lemma 3. / being a complex valued holomorphic function whose ex-

tension in ft is defined at aEGt, we have

(2.3) (/(a))+=/(a+),

(2.4) (f(a))-= f(a-).

Incidentally from this the well known relation eT(x) =euxe~v fol-

lows immediately, since eT(x) =eu+~"~(x) =eu+e~°~(x) — (eu)+(e~v)~x

= euxe~v.
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34 GUNTER LUMER AND MARVIN ROSENBLUM [February

III. The spectrum of 5. Here we generalize (1.1).

Theorem 4.

jV

(3.1) a(s, ©) C 2 »(«i. a)«K»i> a).
i-l

Proof. Let fl30 be the subalgebra generated by Mi+, • • • , wjy,

v~> • " • , vJi, e+- Since any two elements of G3o commute, it is easy

to show (see for instance [3, Lemma l]) that there exists a com-

mutative Banach algebra 03i, such that 03oC03iC03 and <r(w, G3i)

= a(w, 03) for any w in 630.

Let p he a multiplicative linear functional on 03i (see [l, p. 127]).

Since 5= 2>-i u*v7&®u p(S) = 2£-i p(ut)p(v/)- But the ranges of

values of p(uf~), p(v~), p(S) as p ranges over all multiplicative linear

functionals on 03i are a(uf, 03i), a(vj, 03i), a(S, (&i) respectively. Thus

N

*(S, <B) C 2 *(«/", ®iM«T, «0,
j-i

so

jV

»(5, ffi) c 2 °{*t, <bM«t,»).
J'-l

By Lemma 2 this implies Theorem 2.

If the w, as well as the »,- are functionally related we can prove a

stronger result.

Theorem 5. Suppose u,vEQ and thatfjQC), g,-(\), j = l, 2, ■ ■ ■ , N

are holomorphic in domains containing <j(u), a(v) respectively. Define

RE&by

N

Rx = zZfi(u)xgj(v), xE et.
y-i

Then c(R) C { 2f-i/>(«)g,-(0): aGcr(w) <*«<* /JGffW }.

Proof. We proceed as in Theorem 2. Here O30 is the subalgebra

generated by {u+, v~, e+}, and fx(R) = 2>-i P(fAu+))p(gi(v~))- By

[l.P- 127],

M(P) = 2/y(^(«+))gy(M(0).
j=i

Let m range over all multiplicative linear functionals on 03i. Then
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a(R, (Bi) C { E /»(«)&(0):« e <K«+> «0 and 0 G »(*". «i)} •

Finally, <r(w+, (Bi) =<t(m+, ffi) =<r(w, ft) and similarly <r(z;-, (B) = <r(fl, ft).

It is quite easily seen that equality, instead of inclusion in the rela-

tion (3.1) of Theorem 4 need not hold in general. And yet, since the

representation of an elementary operator in terms of ft+ and ft- is

generally not unique it is natural to ask what happens to the right

hand of relation (3.1), when we consider all possible representations

of an elementary operator.

It turns out that in general, we cannot say anything more than what

Theorem 4 already tells us.

Let us simply examine the case K = u++v~. It is trivial that

u++v~ = w++z~ if and only if w — u — c and z = v+c with c£6(ft);

where Q( ft) denotes the center of ft.

Consider more in particular the following situation: Let 3C be a

Hilbert space, 3 a nontrivial subspace, P the projection on 3, and Q

the projection on 3X. Let ft be the Banach algebra of operators on

X, and put fti= { WE&: WP = PW}; «2= { F<Eft: VP=PVP}.
Let us denote by (&x and <B2, the algebras of operators on fti, ft2. fti

and ft2 are Banach algebras with unit I. Consider the identity oper-

ator on fti, which can be written either P++Q~ or I+; and <r(P, fti)

+a(Q, fti)={0, 1, 2}^{l} =o-(/+, (Bi). In this case different sets

for the right hand side in relation (3.1) arise for different representa-

tions of the identity operator; but the intersection of these sets

equals the left hand side of the relation. This, however, is not a gen-

eral situation either. In fact, consider ft2, and the corresponding ele-

mentary operator defined by P+ + Q~ = K. It can be shown that

0Eo-(K, (&2)^a(P, a2)+a(Q, ft2). On the other hand, it is easy to

verify that the center of ft2 contains only scalar multiples of the

identity and thus no different sets arise from different representations

of x.
We now turn our attention to the operational calculus for ele-

mentary operators.

IV. Cauchy formulas. We shall first derive a representation for-

mula for certain holomorphic functions of several commuting Banach

algebra elements and then apply that result to generalize (1.2).

Theorem 6. Let u, v, w be commuting elements of ft and let P(kx, X2, X3)

be a polynomial in the complex variables Xi, X2, X3. Suppose f(\) is holo-

morphic in a domain that contains P(a(u), o(v), a(w)). Then there

exists a Cauchy domain Dx~2>o(u), (see [6]), such that
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f(P(u, v, «,))=— f    f(P(X, v, w))(Xe - u)~H\
lirl J dDi

where dDi is the boundary of D\.

Proof. Since a(u+v)C<r(u)+a(v) and <t(u-v)Cow(u) -a(v)  it fol-

lows that a(P(u, v, w))CP(a(u), o~(v), a(w)). Let

DoDP(o-(u),a(v),o-(w))

be a Cauchy domain such that Do is contained in the domain of regu-

larity of/(X). Then, by definition

(*) f(P(u, v, w)) = — f   /({)(& - P(u, v, w))-W.
2-m J aD„

Choose the Cauchy domain DiZj<r(u) so that

DoDP(Dha(v),a(w)).

Suppose that £EdD0 and XGd77-  Then P(X, v, w) —P(u, v, w)

= (Xe—u)Q, and the partial fraction expansion

[(£e-P(\, v, w))~lQ + (\e - u)-l][te - P(u, v, w)]~>
(**)

= [& - P(\, v, w)]_1[Xe - m]-1

is valid. If £EdDo, then

— f    [«e - P(X, », w))-'e + (Xe - u)-*]d\
2-K% J 3D!

(***)

= —; j     (Xe — u)~ldX = e.
2lti J gDi

By use of (*), (**), (***) we see that

f(P(u, v, w)) = —— f     f   M) [{£e - P(X, v, w))-iQ
(1-KlY J dDaJ BDi

+ (Xe - u)-l}[& - P(u, v, w)}-ldldX

= —   f    f(P(X, v, w)(Xe - u)~ldX.
2wiJdDi

Theorem 7. Let «i, • • • , uN, v\, • ■ ■ , vN be commuting elements of

Ct and suppose /(X) is holomorphic in a domain that contains

2£.i o-(uj)(r(vj). Then there exist Cauchy domains ADirW, • • • ,

Dm~Do-(vn) such that
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f( E »flj) = -tt-^ f    ■■■   f   /( E My) II (Xye - "y)"1^/.
\ j-l / (Iti)" J BDx J dDN   \ j~l /i-l

Proof. Iterated use of Theorem 6. For a similar result see [5].

We now generalize (1.2).

Theorem 8. Let /(X) be holomorphic in a domain that contains

Ej-i a(ui)ff(vi)- Then there exist Cauchy domains DxZ)a(ux), ■ • ■ ,

DffZ)a(uN) such that for any x£ft,

^(x) = ~7T^ f     • • •   f    /( £ x**^ * II (Aye - •yJ-yXi.
(i^^^aDj •'«>»•   \ i-i        '     i-i

Proof. ux+, ■ • ■ , m#, vr, ■ ■ ■ , v^ are commuting elements of (B

and by Lemma 2 /(X) is holomorphic in a domain that contains

Ej^i ff(.ut)ff(.vT)- Hence we know from Theorem 7 that

f(S)(x) = —i- f f     [/( E XyM+) II (Xy*" - <T)-WL
(2«)JVJai)1 ^aDwL  \y_i / y-i J

We now use Lemma 3. (Xye- —fly")-1 = [(Xye — i>y)~]~1 = [(Xye — fy)-1]-;

and

'(SW)-['(S4
Thus

/    JV V .   AT /   N \        N

/( E XyMyM II (Xye- - fy")* = /( E XyMyjz ]1 (Xye - ry)"1,
\ y-i / y_i \ y_i /    y_i

and the proof is complete.

V. Kleinecke's Theorem. It is of interest to study generalizations

of (1.3). If SE<& is defined by Sx = uxx+u2x, x£ft, then by Lemma

2, a(S)=a(ux+u2), which need not equal a(ux) +o-(u2) even though

«i, m2 commute. We shall therefore confine our attention to i?£(B,

as defined in Theorem 5.

Suppose \Ea(R). By Theorem 5 we know that there exists

aEa(u) and @Ea(v) such that X= E^i/y(a)gj'(/3)- In Theorem 9 we

list criteria that will allow us to infer from aEa(u) and fiEafy) that

X=EyV-i/y(«ky(«G<r(i?).
Suppose x£ft, and {x„} is a sequence of vectors in ft; we shall

say that {xn} left (right) zero-divides x if |]x„|| =1, n=0, 1, ■ • • , and

x„x—>0(xx„—>0).

Theorem 9. Suppose {zn}, is a sequence of unit vectors in ft and

(i) Xn left or right zero-divides u—ae;
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(ii) yn left or right zero-divides v—jie; and

(iii) x„znyn does not converge to 0.

Then \E<r(R).

Proof. Since {x„} left (right) zero-divides u—ae, {xn} left (right)

zero-divides fj(u)—fj(a)e, j = I, 2, • ■ ■ , N. (See [l, p. 123]). A simi-

lar statement holds for {yn} and gj(u) —gj(fi)e.

The proof of Theorem 9 is indirect. We therefore make the as-

sumption (*) Xr|ff(i?), and consider four cases:

Case 1. Suppose

(i)   {xn} right zero-divides u—ae, and

(ii)   {yn} right zero-divides v— /3e.

By (*) there exists a uniformly bounded sequence {pn} such that

(P — \e+)pn = xnzn. Since

(/;(«) ~fj(a)e)xn-^0,

(R - X«+)[(/-y(«) -Ma)e)pn] - (//(«) - fj(a)e)xnzn -» 0,

and by (*) this guarantees that (/,-(«) —fj(a)e)p„—*0. But then

jV

XnZnyn   =   [(R - Xe+)pn]y„  =   2   [fj{«)png,{v)yn   - fj(a)gj(f3)Pnyn]
y-i

tV

= 2 [(/;(«) -fi(cc)e)pngj(v)yn+fj(a)pn(gj(v) - gj(0)e)yn].

i-i

But each of these terms goes to 0 as n—*« , contradicting (iii). Thus

XGo-(P).
Case 2. Suppose

(i)   {xn} left zero-divides u—ae and

(ii)   {y„} left zero-divides v—fie.

By (*) there exists a uniformly bounded sequence {pn} such that

(P - Xe+)pn = z„y„. (P - \e+) [pn(gj(v) ~ giiff)e) ] = znyn(gi(v) - gi(0)e)

—>0, and by the continuity of (P— Xe+)~J, pn(gj(v)—gj((3)e)^>0. Now

XnZnVn =  tf*[(P — Xe+)/>]

= 2 k(/y(w) - fi(<*)e)pngj(v) + fA\)Xnpn(gi(v) - &G8)e)]-»0,
y-i

contradicting (iii). Thus XGffCR)-

Case 3. Suppose

(i)   {xn} left zero-divides u—ae and

(ii)   {y„} right zero-divides v— fie.

There   exists  a  uniformly   bounded   sequence   {pn}   such   that
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(R — \e+)pn = z„. Hence x„z„y„ = E* 1 xnfj(u)pn(gj(v) — gy(/3)e)y„

+ E£-i gi{fi)Xn(fi(u) -fj(a)e)pnyn-^0, contradicting (*).

Case 4. Suppose

(i)  {x„} right zero-divides u—ae, and

(ii)   {y„} left zero-divides v—fie.

Then

N

(R - \e+)(x„zny„) = E (M«) ~ fiW)e)xnznyngi(v)
i-l

N

+ E/y(«)*nZny„bW - gMe] -* 0.
y-i

So again X£<r(ic).

Next we generalize Kleinecke's theorem.

Theorem 10. Suppose Ct, is the Banach algebra of endomorphisms

on a Banach space Q. Then

*(R) =  { E/y(«)&03): otEa(u) and PEo-(v)\ .

Proof. Suppose a£er(M), /3£<r(t/). Since u, v, are operators on a

Banach space, it follows that there exist sequences x„, yn that zero-

divide u—ae and v—t3e respectively. Choose {7™} CC and {5*} QQ*

such that ||x„(7n)||=l and ||y*(5*)|| =1. Put (-, d*)yn=znECt, and

note that x„z„;yB = (-, y*8*)x„(7n) does not converge to 0. Hence by

Theorem 9, X£(r(i?), and by Theorem 5 the proof is complete.

VI. Linear equation. We shall relate our theory to some results

concerning the general linear matrix equation E*i Ujxv]=w, where

Mi, • ■ ■ , M^, vx, ■ ■ ■ , vn, w are elements in a complex full matrix

algebra ft. The operator T= yjl, ut-vT can be written T

= E>-i Uj®Vj, where Uj®Vj is the direct product of My and Vj. If

My and Vj separately commute and 0(£ E>.i a{n])a(v]), then Theorem

8 gives us an integral representation for J1-1. Theorem 10 is a gen-

eralization of the following theorem of Stephanos [2, p. 83]:

The characteristic roots of E«-i c,-yM*®»f are the numbers

E«.y caap0q, where {aP}, {/3„} are the characteristic roots of u and v

respectively.

Finally, consider the result of Sylvester [2, p. 90 ].

The matrix equation ux=xv, u, vE ft has a non-null solution xE ft

if and only if m and v have a common characteristic root.

This is an immediate consequence of Theorem 10, which shows

that if Tx = ux — xv, then a(u) —a(v) =a(T).
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VII. Systems of linear equations. We will only consider here the

explicit system of n equations with n unknowns whose general form

is now

(7.1) zZlZ Uij(k)xjVij(k) = y{ (i = 1, ■ • ■ , n).
i     *

In absence of commutativity the usual theory of linear equations

breaks down. However, if we make a partial commutativity assump-

tion, that is if we assume as before that all {u} commute, and all

{v} commute, but separately, the system (7.1) can be written in the

form

(7.2) 2 SnXj = yt (i = 1, • • • , n)
i

where the 5,-y are elementary operators. We now generalize the suffi-

cient condition for the existence of a solution of (7.2) in terms of the

coefficients in Ct. Denote by det [a.y] the nXn determinant whose

generic entry is a,-,-. If a,j are sets of complex numbers we put det [a,,]

= {det [X.y]: XiyGa.y} •

Theorem 11. Under the assumption that {u} and {v} commute

separately, a sufficient condition for the system (7.1) to have a solution

linear and continuous in (yi, yt, ■ ■ ■ , yn) is that

0 E det     2 <r(uij(k), a)c(va(k), Ct)   .

Proof. Consider the system of linear equations in 03:

(7.3) zZSuX^yt (i=l, •••,»).
j

Here the Stj act as simple coefficients, and form a commutative subset

of 03. The general theory of matrices and determinants is applicable

here provided the yf are always kept to the right of the 5,-*. Thus

(7.3) has a solution (linear and continuous in the y~f) if det 5,-y is

invertible as an element of 03. Suppose this is so, then we obtain a

solution of the original equations (7.1) (which is again linear and

continuous) by applying eE Ct to both sides of the system (7.3) and

setting Xi = Xi(e). It thus remains only to show that 0G°"(det [5,-y], 03).

But the same multiplicative functionals argument of Theorem 4

shows that

<r(det [5,y], 03) C det [o-(S{i, 03)]

and from 3.1

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1959] LINEAR OPERATOR EQUATIONS 41

tr(det [Sn], <&) C det    E "•(«<;(*) i Q)o-(vij(k), ft)   .

Thus 0£<r(det[S,-y], (B) would contradict the hypothesis.
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