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Linear optics with photon counting is a prominent candidate for practical quantum computing. The
protocol by Knill, Laflamme, and Milburn �2001, Nature �London� 409, 46� explicitly demonstrates
that efficient scalable quantum computing with single photons, linear optical elements, and projective
measurements is possible. Subsequently, several improvements on this protocol have started to bridge
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improvements are reviewed, and a few examples of experimental two-qubit gates are given. The use
of realistic components, the errors they induce in the computation, and how these errors can be
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I. QUANTUM COMPUTING WITH LIGHT

Quantum computing has attracted much attention
over the last 10 to 15 years, partly because of its promise
of superfast factoring and its potential for the efficient
simulation of quantum dynamics. There are many differ-
ent architectures for quantum computers based on many
different physical systems. These include atom- and ion-
trap quantum computing, superconducting charge and
flux qubits, nuclear magnetic resonance, spin- and
charge-based quantum dots, nuclear spin quantum com-
puting, and optical quantum computing �for a recent
overview, see Spiller et al. �2006��. All these systems
have their own advantages in quantum information pro-
cessing. However, even though there may now be a few
front-runners, such as ion-trap and superconducting
quantum computing, no physical implementation seems
to have a clear edge over others at this point. This is an
indication that the technology is still in its infancy.

Optical quantum systems are prominent candidates
for quantum computing, since they provide a natural in-
tegration of quantum computation and quantum com-
munication. There are several proposals for building
quantum computers that manipulate the state of light,
ranging from cat-state logic to encoding a qubit in a
harmonic oscillator and optical continuous-variable
quantum computing. Cat states are states of the form
���± �−��, where ��� is a weak coherent state. The logical
qubits are determined by the sign ��� of the relative
phase �Ralph et al., 2003�. Gottesman, Kitaev, and
Preskil proposed quantum error correction codes for
harmonic oscillators that are used to encode qubit states
and showed that fault-tolerant quantum computing is
possible using quantum optics �Gottesman et al., 2001�.
Lloyd and Braunstein showed how the concept of quan-
tum computing can be extended to continuous variables
and how electromagnetic fields are a natural physical
representation of this formalism �Lloyd and Braunstein,
1999�. For a review article on optical quantum informa-
tion processing with continuous variables, see Braun-
stein and van Loock �2005�.

In this review, we focus on quantum computing with
linear quantum optics and single photons. It has the ad-
vantage that the smallest unit of quantum information,
the photon, is potentially free from decoherence: The
quantum information stored in a photon tends to stay
there. The downside is that photons do not naturally
interact with each other, and in order to apply two-qubit
quantum gates such interactions are essential. There-
fore, if we are to construct an optical quantum com-
puter, we have to introduce an effective interaction be-
tween photons in one way or another. In Sec. I.D, we
review the use of so-called large cross-Kerr nonlineari-
ties to induce a single-photon controlled-NOT operation.
However, naturally occurring nonlinearities of this sort
are many orders of magnitude too small for our pur-
poses. An alternative way to induce an effective interac-
tion between photons is to make projective measure-
ments with photodetectors. The difficulty with this
technique is that such optical quantum gates are proba-

bilistic: More often than not, the gate fails and destroys
the information in the quantum computation. This can
be circumvented by using an exponential number of op-
tical modes, but scalability requires only a polynomial
number of modes �see also Sec. I.D�. In 2001, Knill,
Laflamme, and Milburn �2001� �KLM� constructed a
protocol in which probabilistic two-photon gates are
teleported into a quantum circuit with high probability.
Subsequent error correction in the quantum circuit is
used to bring the error rate down to fault-tolerant levels.
We describe the KLM protocol in detail in Sec. II.

Initially, the KLM protocol was designed as a proof
that linear optics and projective measurements allow for
scalable quantum computing in principle. However, it
subsequently spurred new experiments in quantum op-
tics, demonstrating the operation of high-fidelity proba-
bilistic two-photon gates. On the theoretical front, sev-
eral improvements of the protocol were proposed,
leading to ever smaller overhead costs on the computa-
tion. A number of these improvements is based on
cluster-state quantum computing, or the one-way quan-
tum computer. Recently, a circuit-based model was
shown to have similar scaling properties as the best-
known cluster-state model. In Sec. III, we describe sev-
eral improvements to linear optical quantum informa-
tion processing in considerable detail, and in Sec. IV, we
describe the issues involved in the use of realistic com-
ponents such as photon detectors, photon sources, and
quantum memories. Given these realistic components,
we discuss loss tolerance and general error correction
for linear optical quantum computing �LOQC� in Sec. V.

We will restrict our discussion to the theory of single-
photon implementations of quantum information pro-
cessors, and assume some familiarity with the basic con-
cepts of quantum computing. For an introduction to
quantum computation and quantum information, see,
e.g., Nielsen and Chuang �2000�. In Sec. VI we conclude
with an outlook on other promising optical quantum in-
formation processing techniques, such as photonic band-
gap structures, weak cross-Kerr nonlinearities, and hy-
brid matter-photon systems. We start our review with a
short introduction to linear optics, N-port optical inter-
ferometers, and circuits, and define the different ver-
sions of the optical qubit.

A. Linear quantum optics

The basic building blocks of linear optics are beam
splitters, half- and quarter-wave plates, phase shifters,
etc. In this section we describe these devices mathemati-
cally and establish the convention that is used through-
out the rest of the paper.

The quantum-mechanical plane-wave expansion of
the electromagnetic vector potential is usually expressed
in terms of the annihilation operators âj�k� and their
adjoints, the creation operators:
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A��x,t� =� d3k

��2��32�k

	
j=1,2

�j
��k�âj�k�eikx−i�kt + H.c.,

where j denotes the polarization in the Coulomb gauge,
�j
� is the corresponding polarization vector, and � indi-

cates the components of the four-vector. For the mo-
ment we suppress the polarization degree of freedom
and consider general properties of the creation and an-
nihilation operators. They bear their names because
they act in a specific way on the Fock states �n�:

â�n� = �n�n − 1� and â†�n� = �n + 1�n + 1� , �1�

where we suppressed the k dependence. It is straightfor-
ward to show that n̂�k�
 â†�k�â�k� is the number opera-
tor n̂�n�=n�n� for a given mode with momentum k. The
canonical commutation relations between â and â† are
given by

�â�k�, â†�k��� = ��k − k�� ,
�2�

�â�k�, â�k��� = �â†�k�, â†�k��� = 0.

In the rest of this review, we denote information about
the spatial mode k by a subscript, since we will be con-
cerned not with the geometrical details of the interfer-
ometers we describe, but only with how the spatial
modes are connected. Also to avoid notational clutter
we will use operator carets only for nonunitary and non-
Hermitian operators, except in cases where omission of
the caret would lead to confusion.

An important optical component is the single-mode
phase shift. It changes the phase of the electromagnetic
field in a given mode:

âout
† = ei�âin

†
âin âin

† e−i�âin
†

âin = ei�âin
† , �3�

with the interaction Hamiltonian H	=�âin
† âin �here and

throughout this review we use the convention that 
=1
and time dependence is absorbed in ��. This Hamil-
tonian is proportional to the number operator, which
means that the photon number is conserved. Physically,
a phase shifter is a slab of transparent material with an
index of refraction that is different from that of free
space.

Another important component is the beam splitter
�see Fig. 1�. Physically, it consists of a semireflective mir-

ror: when light falls on this mirror, part will be reflected
and part will be transmitted �Leonhardt, 1997�. The
theory of the lossless beam splitter is central to LOQC
and was developed by Zeilinger �1981� and Fearn and
Loudon �1987�. Lossy beam splitters were studied by
Barnett et al. �1989�. The transmission and reflection
properties of general dielectric media were studied by
Dowling �1998�. Let the two incoming modes on either

side of the beam splitter be denoted by âin and b̂in and

the outgoing modes by âout and b̂out. When we param-
etrize the probability amplitudes of these possibilities as
cos � and sin � and the relative phase as 	, then the
beam splitter yields an evolution in operator form

âout
† = cos �âin

† + ie−i	 sin �b̂in
† ,

�4�

b̂out
† = iei	 sin �âin

† + cos �b̂in
† .

The reflection and transmission coefficients R and T of
the beam splitter are R=sin2 � and T=1−R=cos2 �. The
relative phase shift ie±i	 ensures that the transformation
is unitary. Typically, we choose either 	=0 or 	=� /2.
Mathematically, the two parameters � and 	 represent
the angles of a rotation about two orthogonal axes in the
Poincaré sphere. The physical beam splitter can be de-
scribed by any choice of � and 	, provided the correct
phase shifts are applied to the outgoing modes.

In general the Hamiltonian HBS of the beam-splitter
evolution in Eq. �4� is given by

HBS = �ei	âin
† b̂in + �e−i	âinb̂in

† . �5�

Since the operator HBS commutes with the total number
operator �HBS , n̂�=0, the photon number is conserved in
the lossless beam splitter, as one would expect.

The same mathematical description applies to the
evolution due to a polarization rotation, physically
implemented by quarter- and half-wave plates. Instead
of having two different spatial modes ain and bin, the two
incoming modes have different polarizations. We write

âin→ âx and b̂in→ ây for some orthogonal set of coordi-
nates x and y �i.e., �x �y�=0�. The parameters � and 	 are
now angles of rotation:

âx�

† = cos �âx
† + ie−i	 sin �ây

†,

�6�
ây�

† = iei	 sin �âx
† + cos �ây

†.

This evolution has the same Hamiltonian as the beam
splitter, and it formalizes the equivalence between the
so-called polarization and dual-rail logic. These transfor-
mations are sufficient to implement any photonic single-
qubit operation �Simon and Mukunda, 1990�.

The last linear optical element that we highlight here
is the polarizing beam splitter �PBS�. In circuit diagrams,
it is usually drawn as a box around a regular beam split-
ter �see Fig. 2�a��. If the PBS is cut to separate horizontal
and vertical polarization, the transformation of the in-
coming modes �ain and bin� yields the following outgoing
modes �aout and bout�:

FIG. 1. �Color online� The beam splitter with transmission am-
plitude cos �.

137Kok et al.: Linear optical quantum computing with …

Rev. Mod. Phys., Vol. 79, No. 1, January–March 2007



âin,H → âout,H and âin,V → b̂out,V,
�7�

b̂in,H → b̂out,H and b̂in,V → âout,V.

Using quarter-wave plates and polarizers, we can also
construct a PBS for different polarization directions
�e.g., L and R�, in which case we make the substitution
H↔L, V↔R. Diagrammatically a PBS with a different
polarization typically has a circle drawn inside the box
�Fig. 2�b��.

At this point, we should devote a few words to the
term “linear optics.” Typically this denotes the set of
optical elements whose interaction Hamiltonian is bilin-
ear in the creation and annihilation operators:

H = 	
jk

Ajkâj
†âk. �8�

An operator of this form commutes with the total num-
ber operator and has the property that a simple mode
transformation of creation operators into a linear com-
bination of other creation operators affects only the ma-
trix A, but does not introduce terms that are quadratic
�or higher� in the creation or annihilation operators.
However, from a field-theoretic point of view, the most
general linear transformation of creation and annihila-
tion operators is defined by the Bogoliubov transforma-
tion

âj → 	
k

ujkâk + vjkâk
† . �9�

Clearly, when such a transformation is substituted into
Eq. �8� this will give rise to terms such as âjâk and âj

†âk
†,

i.e., squeezing. The number of photons is not conserved
in such a process. For the purpose of this review, we
exclude squeezing as a resource other than as a method
for generating single photons.

With the linear optical elements introduced in this
section we can build large optical networks. In particu-
lar, we can make computational circuits by using known
states as the input and measuring the output states. Next
we will study these optical circuits in more detail.

B. N-port interferometers and optical circuits

An optical circuit can be thought of as a black box
with incoming and outgoing modes of the electromag-
netic field. The black box transforms a state of the in-

coming modes into a different state of outgoing modes.
The modes might be mixed by beam splitters, or they
might pick up a relative phase shift or polarization rota-
tion. These operations all belong to a class of optical
components that preserve the photon number, as de-
scribed in the previous section. In addition, the box may
include measurement devices, the outcomes of which
may modify optical components on the remaining
modes. This is called feedforward detection, and it is an
important technique that can increase the efficiency of a
device �Clausen et al., 2003; Lapaire et al., 2003�.

Optical circuits can also be thought of as a general
unitary transformation on N modes, followed by the de-
tection of a subset of these modes �followed by unitary
transformation on the remaining modes, detection, and
so on�. The interferometric part of this circuit is also
called an N-port interferometer. N-ports yield a unitary
transformation U of the spatial field modes ak, with j ,k
� �1, . . . ,N:

b̂k → 	
j=1

N

Ujkâj and b̂k
†
→ 	

j=1

N

Ujk
* âj

†, �10�

where the incoming modes of the N-port are denoted by
aj and the outgoing modes by bj. The explicit form of U
is given by the repeated application of transformations
like those given by Eqs. �3�, �4�, and �6�.

The two-mode operators L̂+= â†b̂, L̂−= âb̂†, and L̂0

= �â†â− b̂†b̂� /2 form an su�2� Lie algebra:

�L̂0,L̂±� = ± L̂± and �L̂+,L̂−� = 2L̂0. �11�

This means that any two-mode interferometer exhibits
U�2� symmetry.1 In general, an N-port interferometer
can be described by a transformation from the group
U�N�. Reck et al. �1994� demonstrated that the converse
is also true, i.e., that any unitary transformation of N
optical modes can be implemented efficiently with an
N-port interferometer. They showed how a general
U�N� element can be broken down into SU�2� elements,
for which we have a complete physical representation in
terms of beam splitters and phase shifters �see Fig. 3�.
The primitive element is a matrix Tpq defined on the
modes p and q, which corresponds to a beam splitter
and phase shifts. Implicit in this notation is the identity
operator on the rest of the optical modes, such that
Tpq
Tpq � 1rest. We then have

U�N� � TN,N−1 � ¯ � TN,1 = U�N − 1� � ei�, �12�

where � is a single-mode phase. Concatenating this pro-
cedure leads to a full decomposition of U�N� into T el-
ements, which in turn are part of SU�2�. The maximum

1Two remarks: Lie algebras are typically denoted in lower
case, while the group itself is denoted in upper case. Second,
single-mode phase shifts break the special symmetry �det U

=1�, which is why an interferometer is described by U�N�,
rather than SU�N�.

FIG. 2. �Color online� The polarizing beam splitter in different
polarization bases. �a� The horizontal-vertical basis. �b� The
diagonal basis.
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number of beam-splitter elements T that are needed is
N�N−1� /2. This procedure is thus manifestly scalable.

Subsequently, Jex et al. �1995� and Törmä et al. �1995,
1996� showed how to construct multimode Hamiltonians
that generate these unitary mode transformations, and a
three-path Mach-Zehnder interferometer was demon-
strated experimentally by Weihs et al. �1996�. A good
introduction to linear optical networks has been given
by Leonhardt �2003�, and a determination of effective
Hamiltonians has been given by Leonhardt and Neu-
maier �2004�. For a treatment of optical networks in
terms of their permanents, see Scheel �2004�. Optical
circuits in a �general� relativistic setting have been de-
scribed by Kok and Braunstein �2006�.

C. Qubits in linear optics

Formally, a qubit is a quantum system that is de-
scribed by the fundamental representation of the SU�2�
symmetry group. We saw above that two optical modes
form a natural implementation of this symmetry. In gen-
eral, two modes with fixed total photon number n fur-
nish natural irreducible representations of this group
with the dimension of the representation given by n+1
�Biedenharn and Louck, 1981�. It is at this point not
specified whether we should use spatial or polarization
modes. In linear optical quantum computing, the qubit
of choice is usually taken to be a single photon that has
the choice of two different modes �0�L= �1� � �0�
�1,0�
and �1�L= �0� � �1�
�0,1�. This is called a dual-rail qubit.
When the two modes represent the internal polarization
degree of freedom of the photon ��0�L= �H� and �1�L

= �V��, we speak of a polarization qubit. In this review we
will reserve the term “dual rail” for a qubit with two
spatial modes. As we showed earlier, these two repre-
sentations are mathematically equivalent and we can
physically switch between them using polarization beam
splitters. In addition, some practical applications �typi-
cally involving a dephasing channel such as a fiber� may
call for so-called time-bin qubits, in which the two com-
putational qubit values are “early” and “late” arrival
times in a detector. However, this degree of freedom
does not exhibit a natural internal SU�2� symmetry: Ar-
bitrary single-qubit operations are very difficult to

implement. In this review we will be concerned mainly
with polarization and dual-rail qubits.

In order to build a quantum computer, we need both
single-qubit and two-qubit operations. Single-qubit op-
erations are generated by the Pauli operators x, y, and
z, in the sense that the operator exp�i�j� is a rotation
about the j axis in the Bloch sphere with angle �. As we
have seen, these operations can be implemented with
phase shifters, beam splitters, and polarization rotations
on polarization and dual-rail qubits. In this review, we
will use the convention that x, y, and z denote physi-
cal processes, while we use X, Y, and Z for the corre-
sponding logical operations on the qubit. These two rep-
resentations become inequivalent when we deal with
logical qubits that are encoded in multiple physical qu-
bits.

Whereas single-qubit operations are straightforward
in the polarization and dual-rail representations, the
two-qubit gates are more problematic. Consider, for ex-
ample, the transformation from a state in the computa-
tional basis to a maximally entangled Bell state:

�H,H�ab →
1
�2

��H,V�cd + �V,H�cd� . �13�

This is the type of transformation that requires a two-
qubit gate. In terms of the creation operators �and ignor-
ing normalization�, the linear optical circuit that is sup-
posed to create Bell states out of computational basis
states is described by a Bogoliubov transformation of
both creation operators

âH
† b̂H

†
→ � 	

k=H,V

�kĉk
† + �kd̂k

†�� 	
k=H,V

�kĉk
† + �kd̂k

†�
� ĉH

† d̂V
† + ĉV

† d̂H
† . �14�

It is immediately clear that the right-hand sides in both
lines cannot be made the same for any choice of �k, �k,
�k, and �k: The top line is a separable expression in the
creation operators, while the bottom line is an entangled
expression in the creation operators. Therefore, linear
optics alone cannot create maximal polarization en-
tanglement from single polarized photons in a determin-
istic manner �Kok and Braunstein, 2000a�. Entangle-
ment that is generated by changing the definition of our
subsystems in terms of the global field modes is in-
equivalent to the entanglement that is generated by ap-
plying true two-qubit gates to single-photon polarization
or dual-rail qubits.

Note also that if we choose our representation of the
qubit differently, we can implement a two-qubit transfor-
mation. Consider the single-rail qubit encoding �0�L

= �0� and �1�L= �1�. That is, the qubit is given by the
vacuum and single-photon state. We can then implement
the following �unnormalized� transformation determinis-
tically:

�1,0� → �1,0� + �0,1� . �15�

This is a 50:50 beam-splitter transformation. However, in
this representation the single-qubit operations cannot be

FIG. 3. �Color online� Decomposing an N-port unitary U�N�
into SU�2� group elements, i.e., beam splitters and phase
shifters. Moreover, this is an efficient process: the maximum
number of beam splitters needed is N�N−1� /2.
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implemented deterministically with linear optical ele-
ments, since these transformations do not preserve the
photon number �Paris, 2000�. This implies that we can-
not implement single-qubit and two-qubit gates deter-
ministically for the same physical representation. For
linear optical quantum computing, we typically need the
ability to �dis�entangle field modes. We therefore have
to add a nonlinear component to our scheme. Two pos-
sible approaches are the use of Kerr nonlinearities,
which we briefly review in the next section, and the use
of projective measurements. In the rest of this review,
we concentrate mainly on linear optical quantum com-
puting with projective measurements, based on the work
by Knill, Laflamme, and Milburn.

Finally, in order to make a quantum computer with
light that can outperform any classical computer, we
need to understand more about the criteria that make
quantum computers “quantum.” For example, some
simple schemes in quantum communication require only
superpositions of quantum states to distinguish them
from their corresponding classical ones. However, we
know that this is not sufficient for general computational
tasks.

First, we give two definitions. The Pauli group P is
the set of Pauli operators with coefficients �±1, ± i.
For instance, the Pauli group for one qubit is
�1 , ±X , ±Y , ±Z , ± i1± iX , ± iY , ± iZ , , where 1 is the
identity matrix. The Pauli group for n qubits consists of
elements that are products of n Pauli operators, includ-
ing the identity. In addition, we define the Clifford group
C of transformations that leave the Pauli group invari-
ant. In other words, for any element of the Clifford
group c and any element of the Pauli group p, we have

cpc† = p� with p� � P . �16�

Prominent members of the Clifford group are the
Hadamard, phase, and controlled-NOT �CNOT�
transformations.2 Note that the Pauli group is a sub-
group of the Clifford group.

The Gottesman-Knill theorem �1999� states that any
quantum algorithm that is initiated in the computational
basis and employs only transformations �gates� from the
Clifford group, along with projective measurements in
the computational basis, can be efficiently simulated on
a classical computer. This means that there is no compu-
tational advantage in restricting the quantum computer
to such circuits. A classical machine could simulate them
efficiently.

In discrete-variable quantum information processing,
the Gottesman-Knill theorem provides a valuable tool
for assessing the classical complexity of a given process.
�For a precise formulation and proof of this theorem,
see Nielsen and Chuang �2000�, p. 464.� Although the set
of gates in the Pauli and Clifford groups does not satisfy
the universality requirements, the addition of a single-
qubit � /8 gate U�/8
diag�1,ei�/4 will render the set

universal. In single-photon quantum information pro-
cessing we have easy access to such single-qubit opera-
tions.

D. Early optical quantum computers and nonlinearities

Before the work of Knill, Laflamme, and Milburn,
quantum information processing with linear optics was
among the topics studied in nonscalable architectures by
Cerf, Adami, and Kwiat �1998�. Their linear optical pro-
tocol can be considered a simulation of a quantum com-
puter: n qubits are represented by a single photon in 2n

different paths. In such an encoding, both single- and
two-qubit gates are easily implemented using �polariza-
tion� beam splitters and phase shifters. For example, let
a single qubit be given by a single photon in two optical
modes: �0�L= �1,0� and �1�L= �0,1�. The Hadamard gate
acting on this qubit can then be implemented with a
50:50 beam splitter given by Eq. �4�, with 	=0, and two
−� /2 phase shifters �see Fig. 4�a��:

�1,0� → �1,0� + i�0,1� → �1,0� + �0,1� ,

�0,1� → − i�i�1,0� + �0,1�� → �1,0� − �0,1�out,

where we suppressed the normalization.
The CNOT gate in the Cerf-Adami-Kwiat protocol is

even simpler: suppose that the two optical modes in Fig.
4�b� carry polarization. The spatial degree of freedom
carries the control qubit, and the polarization carries the
target. If the photon is in the vertical spatial mode, it will
undergo a polarization rotation, thus implementing a
CNOT operation. The control and target qubits can be
interchanged trivially using a polarization beam splitter.

Since this protocol requires an exponential number of
optical modes, this is a simulation rather than a fully
scalable quantum computer. Other proposals in the
same spirit include work by Clauser and Dowling �1996�,
Summhammer �1997�, Ekert �1998�, and Spreeuw �1998�.
Using this simulation, a classical version of Grover’s
search algorithm can be implemented �Kwiat et al.,
2000�. General quantum logic using polarized photons
was studied by Stenholm �1996�, Törmä and Stenholm
�1996�, and Franson and Pittman �1999�.

Prior to the work of KLM, it was widely believed that
scalable all-optical quantum computing needed a nonlin-2See Eq. �25b� for a definition of the CNOT operation.

FIG. 4. �Color online� Linear optical quantum computing
simulation according to Cerf, Adami, and Kwiat. �a� Had-
amard gate. �b� CNOT gate. The four two-qubit degrees of free-
dom are carried by which-path and polarization information.
The dashed line indicates that there is no interaction between
the crossing modes.
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ear component, such as a Kerr medium. These media
are typically characterized by a refractive index nKerr,
which has a nonlinear component:

nKerr = n0 + ��3�E2. �17�

Here n0 is the ordinary refractive index and E2 is the
optical intensity of a probe beam with proportionality
constant ��3�. A beam traversing a Kerr medium will
then experience a phase shift that is proportional to its
intensity.

A variation on this is the cross-Kerr medium, in which
the phase shift of a signal beam is proportional to the
intensity of a second probe beam. In the language of
quantum optics, we describe the cross-Kerr medium by
the Hamiltonian

HKerr = � n̂sn̂p, �18�

where n̂s and n̂p are the number operators for the signal
and probe modes, respectively. Compare HKerr with the
argument of the exponential in Eq. �3�: Transforming the
probe �signal� mode using this Hamiltonian induces a
phase shift that depends on the number of photons in
the signal �probe� mode. Indeed, the mode transforma-
tions of the signal and probe beams are

âs → âse
−i�n̂p and âp → âpe−i�n̂s, �19�

with �
�t. When the cross-Kerr medium is placed in
one arm of a balanced Mach-Zehnder interferometer, a
sufficiently strong phase shift � can switch the field from
one output mode to another �see Fig. 5�a��. For example,
if the probe beam is a �weak� optical field and the signal
mode may or may not be populated with a single pho-
ton, then the detection of the output ports of the Mach-
Zehnder interferometer reveals whether there was a
photon in the signal beam. Moreover, we obtain this in-
formation without destroying the signal photon. This is
called a quantum nondemolition measurement �Imoto et
al., 1985�.

It is not hard to see that we can use this mechanism to
create an all-optical controlled-phase �CZ� gate for pho-
tonic qubits �for the definition of a CZ gate, see Eq.
�25a��. Such a gate would give us the capability to build
an all-optical quantum computer. Let us assume that our
qubit states are single photons with horizontal or verti-
cal polarization. In Fig. 5�b�, we show how the cross-
Kerr medium should be placed. The mode transforma-
tions are3

âHb̂H → âH� b̂H� , âVb̂H → âV� b̂H� ,
�20�

âHb̂V → âH� b̂V� , âVb̂V → âV� b̂V� ei�,

which means that the strength of the Kerr nonlinearity
should be �=� in order to implement a CZ gate. It is
trivial to transform this gate into a CNOT gate. A Kerr-
based Fredkin gate was developed by Yamamoto et al.
�1988� and Milburn �1989�. Architectures based on these
or similar nonlinear optical gates were studied by
Chuang and Yamamoto �1995�, d’Ariano et al. �2000�,
and Howell and Yeazell �2000b, 2000c�. Nonlinear inter-
ferometers are treated by Sanders and Rice �2000�, while
state transformation using Kerr media is the subject of
Clausen et al. �2002�. Recently, Hutchinson and Milburn
�2004� proposed cross-Kerr nonlinearities to create
cluster-states for quantum computing. We will discuss
cluster state quantum computing in some detail in Sec.
III.A.

Unfortunately, even the largest natural cross-Kerr
nonlinearities are extremely weak ���3��10−22 m2 V−2�.
Operating in the optical single-photon regime with a
mode volume of approximately 0.1 cm3, the Kerr phase
shift is only ��10−18 �Kok et al., 2002�. This makes Kerr-

3Note that the phase factors in these operator transforma-
tions are evaluated for the vacuum state of modes a and b.

FIG. 5. �Color online� Using cross-Kerr nonlinearities ��� in
optical information processing. �a� Single-photon quantum
nondemolition measurement. The Mach-Zehnder interferom-
eter is balanced such that the presence of a photon in the
signal mode directs the probe field to the dark output port. �b�
Single-photon CZ gate. When both photons in modes a and b

are vertically polarized, the two-photon state acquires a rela-
tive phase. This results in an entangling gate that, together
with single-photon rotations, is sufficient for universal quan-
tum computing.
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based optical quantum computing extremely challeng-
ing, if not impossible: If such a material is used to create
long fibers for enhanced nonlinearities, photon losses in
the Kerr medium will prevent the gate from operating
properly. Furthermore, Kerr nonlinearities are typically
very noisy, since the effective interaction Hamiltonian

includes not only the term â†âb̂†b̂, but also all other
four-mode terms consisting of two creation and two an-

nihilation operators such as â†b̂ĉ†d̂ and â†2â2. Much
larger cross-Kerr nonlinearities of ��10−5 can be ob-
tained with electromagnetically induced transparent ma-
terials �Schmidt and Imamoğlu, 1996�. However, this
value of � is still much too small to implement the gates
we discussed above. Toward the end of this review we
will indicate how such small but not tiny cross-Kerr non-
linearities may be used for quantum computing.

Turchette et al. �1995� proposed a different method of
inducing a phase shift, when a signal mode s and probe
mode p of different frequency are both populated by a
single polarized photon. By sending both modes through
a cavity containing cesium atoms, they obtain a phase
shift that is dependent on the polarizations of the input
modes:

�L,L�sp → �L,L�sp,

�R,L�sp → ei�s�R,L�sp,
�21�

�L,R�sp → ei�p�L,R�sp,

�R,R�sp → ei��s+�p+���R,R�sp,

where �L�= �H�+ i�V� and �R�= �H�− i�V�. Using weak co-
herent pulses, Turchette et al. found �s=17.5° ±1°, �p

=12.5° ±1°, and �=16° ±3°. An improvement of this sys-
tem was proposed by Hofmann et al. �2003�. These au-
thors showed how a phase shift of � can be achieved
with a single two-level atom in a one-sided cavity. The
cavity effectively enhances the tiny nonlinearity of the
atom. The losses in this system are negligible.

In Sec. VI we will return to systems in which �small�
phase shifts can be generated using nonlinear optical in-
teractions, but the principal subject of this review is how
projective measurements can induce enough of a nonlin-
earity to make possible linear optical quantum comput-
ing.

II. A NEW PARADIGM FOR OPTICAL QUANTUM

COMPUTING

In 2000, Knill, Laflamme, and Milburn proved that
it is indeed possible to create universal quantum com-
puters with linear optics, single photons, and photon
detection �Knill et al., 2001�. They constructed an ex-
plicit protocol, involving off-line resources, quantum
teleportation, and error correction. In this section, we
will describe this new paradigm, which has become
known as the KLM scheme, starting from the descrip-
tion of linear optics that we developed in the previous
section. In Secs. II.A–II.C, we introduce some elemen-

tary probabilistic gates and their experimental realiza-
tions, followed by a characterization of gates in Sec. II.D
and a general discussion on nonlinear unitary gates with
projective measurements in Sec. II.E. We then describe
how to teleport these gates into an optical computa-
tional circuit in Secs. II.F and II.G, and the necessary
error correction is outlined in Sec. II.H. Recently, Myers
and Laflamme �2005� published a tutorial on the original
KLM theory.

A. Elementary gates

Physically, we cannot construct deterministic two-
qubit gates in the polarization and dual-rail representa-
tions because photons do not interact with each other.
The only way that photons can directly influence each
other is via the bosonic symmetry relation. Indeed, lin-
ear optical quantum computing exploits exactly this
property, i.e., the bosonic commutation relation �â , â†�
=1. To see what we mean by this statement, consider
two photons in separate spatial modes interacting on a
50:50 beam splitter. The transformation will be

�1,1�ab = â†b̂†�0�

→
1

2
�ĉ† + d̂†��ĉ† − d̂†��0�cd

=
1

2
�ĉ†2 − d̂†2��0�cd

=
1
�2

��2,0�cd − �0,2�cd� . �22�

It is clear �from the second and third lines� that the
bosonic nature of the electromagnetic field gives rise to
photon bunching: the incoming photons pair off to-
gether. This is a strictly quantum-mechanical effect,
since classically the two photons could equally well end
up in different output modes. In terms of quantum in-
terference, there are two paths leading from the input
state �1,1�in to the output state �1,1�out: Either both pho-
tons are transmitted or both photons are reflected. The
relative phases of these paths are determined by the
beam-splitter equation �4�:

�1,1�in→trans cos2 ��1,1�out,
�23�

�1,1�in→refl − sin2 �ei	e−i	�1,1�out.

For a 50:50 beam splitter, we have cos2 �=sin2 �=1/2
and the two paths cancel exactly, irrespective of the
value of 	.

The absence of the �1,1�cd term is called the Hong-
Ou-Mandel effect �Hong et al., 1987�, and it lies at the
heart of linear optical quantum computing. However, as
we have argued in Sec. I.C, this is not enough to make
deterministic linear optical quantum computing pos-
sible, and we have to turn our attention instead to
probabilistic gates.
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As was shown by Lloyd �1995�, almost any two-qubit
gate is universal for quantum computing �in addition to
single-qubit gates�, but in linear optics we usually con-
sider the controlled-phase gate �CZ, also sometimes
known as CPHASE or CSIGN� and the controlled-NOT gate
�CNOT�. In terms of a truth table, they induce the follow-
ing transformations:

Control Target CZ CNOT

�0� �0� �0,0� �0,0�
�0� �1� �0,1� �0,1�
�1� �0� �1,0� �1,1�
�1� �1� −�1,1� �1,0�

�24�
which is identical to

�q1,q2�→
CZ

�− 1�q1q2�q1,q2� , �25a�

�q1,q2� →
CNOT

�q1,q2 � q1� . �25b�

Here qk takes the qubit values 0 and 1, while q2 � q1 is
taken modulo 2.

A CZ gate can be constructed in linear optics using
two nonlinear sign �NS� gates. The NS gate acts on the
three lowest Fock states in the following manner:

��0� + ��1� + ��2� → ��0� + ��1� − ��2� . �26�

Its action on higher-number states is irrelevant, as long
as it does not change the amplitude of �0�, �1�, or �2�.
Consider the optical circuit drawn in Fig. 6, and suppose
the �separable� input state is given by ��1� � ��2�
= ���0,1�+��1,0�����0,1�+��1,0��. Subsequently, we ap-
ply the beam-splitter transformation to the first and
third modes and find the Hong-Ou-Mandel effect only
when both modes are populated by one photon. The NS

gates will then induce a phase shift of �. Applying a
second beam-splitter operation yields

��� = ���0,1,0,1� + ���0,1,1,0� + ���1,0,0,1�

− ���1,0,1,0� . �27�

This is no longer separable in general. In fact, when we
choose �=�=�=�=1/�2, the output state is a maxi-
mally entangled state. The overall probability of this CZ

gate pCZ=pNS
2 .

It is immediately clear that we cannot make the NS

gate with a regular phase shifter, because only the state
�2� picks up a phase. A linear optical phase shifter would
also induce a factor i �or −i� in the state �1�. However, it
is possible to perform the NS gate probabilistically using
projective measurements. The fact that two NS gates can
be used to create a CZ gate was first realized by Knill,
Laflamme, and Milburn �2001�. Their probabilistic NS

gate is a three-port device, including two ancillary
modes the output of which is measured with perfect
photon-number discriminating detectors �see Fig. 7�.
The input states for the ancillae are the vacuum and a
single photon, and the gate succeeds when the detectors
D1 and D2 measure zero and one photons, respectively.
For an arbitrary input state ��0�+��1�+��2�, this occurs
with probability pNS=1/4. The general upper bound for
such gates was found to be 1/2 �Knill, 2003�. Without
any feedforward mechanism, the success probability of
the NS gate cannot exceed 1/4. It was shown numerically
by Scheel and Lütkenhaus �2004� and proved analyti-
cally by Eisert �2005� that, in general, the NSN gate de-
fined by

	
k=0

N

ck�k�→NSN 	
k=0

N−1

ck�k� − cN�N� �28�

can be implemented with probability 1/N2 �see also
Scheel and Audenaert �2005��.

Several simplifications of the NS gate were reported
shortly after the original KLM proposal. First, a three-
port NS gate with only marginally lower success prob-
ability pNS� = �3−�2� /7 was proposed by Ralph, White, et
al. �2002�. This gate uses only two beam splitters �see
Fig. 8�. Second, similar schemes using two ancillary pho-
tons have been proposed �Zou et al., 2002; Scheel et al.,
2004�. These protocols have success probabilities of 20%
and 25%, respectively.

Finally, a scheme equivalent to the one by Ralph,
White, et al. was proposed by Rudolph and Pan �2001�,
in which the variable beam splitters are replaced with
polarization rotations. These might be more convenient
to implement experimentally, since the irrational trans-
mission and reflection coefficients of the beam splitters
are translated into polarization rotation angles �see Fig.
9�. For pedagogical purposes, we treat this gate in a little
more detail. Assume that the input mode is horizontally

FIG. 6. �Color online� The conditional phase gate �CZ�. This
gate uses two NS gates to change the relative phase of the two
qubits: when both qubits are in the �1� state, the two photons
interfere on the 50:50 beam splitter �cos2�� /4�=1/2�. The
Hong-Ou-Mandel effect then ensures that both photons exit
the same output mode and the NS gates induce a relative phase
�. Upon recombination on the second beam splitter, this phase
shows up only in the states where both qubits were in the �1�
state.

FIG. 7. �Color online� The nonlinear sign �NS� gate according
to Knill, Laflamme, and Milburn. The beam-splitter transmis-
sion amplitudes are �1=�3=1/ �4−2�2� and �2=3−2�2.
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polarized. The polarization rotation then gives âH

→cos âH+sin âV, and the input state transforms ac-
cording to

�� + �âH
† +

�

�2
âH

†2�b̂V
† �0�

→ �� + � cos âH + � sin âV +
�

�2
�cos2 âH

†2

+ sin 2âH
† âV

† + sin2 âV
†2��b̂V

† �0� .

Detecting no photons in the first output port yields

�� + � cos âH
† +

�

�2
cos2 âH

†2�b̂V
† �0� ,

after which we apply the second polarization rotation:
âH→cos �âH+sin �âV and âV→−sin �âH+cos �âV. This
gives the output state

�� + � cos �cos �âH
† + sin �âV

† �

+
�

�2
cos2 �cos �âH

† + sin �âV
† �2�

��− sin �âH
† + cos �âV

† ��0� .

After detecting a single vertically polarized photon in
the second output port, we have

��out� = � cos ��0� + � cos  cos 2��1�

+ � cos2  cos ��1 − sin2 3���2� .

When we choose �150.5° and ��61.5°, this yields the
NS gate with the same probability cos2�= �3−�2� /7. Fi-
nally, in Fig. 10, the circuit of the CZ gate by Knill �2002�
is shown. The success probability is 2 /27. This is the
most efficient CZ gate known to date.

Sometimes it might be sufficient to apply destructive
two-photon gates. For example, a Bell measurement in
teleportation does not need to be nondestructive in or-
der to successfully teleport a photon. In this case, we can
increase the probability of success of the gate consider-
ably. A CNOT gate that needs post-selection to make
sure there is one polarized photon in each output mode
was proposed by Ralph, Langford, et al. �2002�. It makes
use only of beam splitters with reflection coefficient of
1/3 and polarizing beam splitters. The success probabil-
ity is 1 /9. An identical gate was proposed independently
by Hofmann and Takeuchi �2002�. It was also shown that
the success probability of an array of n CZ gates of this
type can be made to operate with a probability of p

= �1/3�n+1, rather than p= �1/9�n �Ralph, 2004�.

B. Parity gates and entangled ancillae

A special optical gate that will become important in
Sec. III is the so-called parity check. It consists of a
single polarizing beam splitter, followed by photon de-
tection in the complementary basis of one output mode.
If the input modes are denoted by a and b and the out-
put modes are c and d, then the Bogoliubov transforma-
tion is given by Eq. �7�. For two input qubits in the com-
putational basis ��H� , �V� this gate induces the following
transformation:

�H,H�ab → �H,H�cd,

�H,V�ab → �HV,0�cd,
�29�

�V,H�ab → �0,HV�cd,

�V,V�ab → �V,V�cd,

where �HV ,0�cd denotes a vertically and horizontally po-
larized photon in mode c and nothing in mode d. Mak-
ing a projective measurement in mode c onto the

FIG. 8. �Color online� The two equivalent versions of the NS

gate by Ralph, White, et al. �2002�. Only two beam splitters are
used, while the other resources are identical to the NS gate by
Knill, Laflamme, and Milburn. The success probability of this
gate is �3−�2� /7.

FIG. 9. �Color online� The NS gate by Rudolph and Pan. Based
on a vacuum detection of the first output port and a single
vertically polarized photon on the second output port, the in-
terferometer applies a NS gate to the input state. The success
probability is also �3−�2� /7, which is close to the optimal
value of 1/4.

FIG. 10. �Color online� The Knill CZ gate based on two ancilla
photons and two detected photons. The beam-splitter angles
are �=54.74° and �=17.63°, such that the transmission ampli-
tudes are given by cos � and cos �, respectively.
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complementary basis ��H�± �V�� /�2 then yields a parity
check: If we detect a single photon in mode c, we know
that the input qubits had the same logical value. This
value is transmitted into the output qubit in mode d �up
to a z transformation depending on the measurement
result�. On the other hand, if we detect zero or two pho-
tons in mode c, the input qubits were not identical. In
this case, the state of the output mode is no longer in the
single-qubit subspace.

This gate was used by Cerf, Adami, and Kwiat to con-
struct small optical quantum circuits �1998�. As we have
seen in Sec. I.D, however, their approach is not scalable
since n-qubit circuits involve 2n distinct paths. When two
parity gates in complementary bases are combined with
a maximally entangled ancilla state ��+�= ��H ,H�
+ �V ,V�� /�2, a CNOT gate with success probability 1/4 is
obtained �Koashi et al., 2001; Pittmann et al., 2001�. The
setup is shown in Fig. 11.

For a detailed analysis of several probabilistic gates,
see Lund and Ralph �2002�, Gilchrist et al. �2003�, and
Lund et al. �2003�. General two-qubit gates based on
Mach-Zehnder interferometry were proposed by Eng-
lert et al. �2001�. For a general discussion of entangle-
ment in quantum information processing see Paris et al.
�2003�.

All the gates that we have discussed so far are proba-
bilistic, and indeed all two-qubit gates based on projec-
tive measurements must be probabilistic. However, one
might think that feedforward protocols can increase this
probability to unity. As mentioned before, Knill �2003�
demonstrated that the highest possible success probabil-
ity for the NS gate �possibly using feedforward� is one-
half. He did not show that this bound is saturated. In-
deed, numerical evidence strongly suggests an upper
bound of one-third for infinite feedforward without en-
tangled ancillae �Scheel et al., 2006�. This indicates that
the benefit of feedforward might not outweigh its cost.

C. Experimental demonstrations of gates

A number of experimental groups have already
demonstrated all-optical probabilistic quantum gates.

Early experiments involved a parity check of two polar-
ization qubits on a polarizing beam splitter �Pittman et
al., 2002b� and a two-photon conditional phase switch
�Resch et al., 2002�. A destructive CNOT gate was dem-
onstrated by Franson et al. �2003� and O’Brien et al.
�2003�. In this section we will describe the experimental
demonstration of three CNOT gates.

First, we consider the three-photon CNOT gate per-
formed by Pittman et al. �2003�. The gate is shown in Fig.
12 and consists of three polarization-encoded single-
photon qubits and two polarizing beam splitters. Two of
the polarization qubits represent the control and target
qubits and are initially in an arbitrary two-qubit state
���in=�1�HH�ct+�2�HV�ct+�3�VH�ct+�4�VV�ct. The third
photon is used as an ancilla qubit and is initially pre-
pared in the state ��H�+ �V�� /�2. In the experiment of
Pittman et al. the control and ancillary qubits are created
using pulsed parametric down-conversion. The target
qubit is generated by an attenuated laser pulse where
the pulse is branched off the pump laser. The pulse is
converted by a frequency doubler to generate entangled
photon pairs at the same frequency as the photon con-
stituting the target qubit. The CNOT gate is then imple-
mented as follows: The action of the polarizing beam
splitters on the control, target, and ancilla qubits trans-
forms them according to

���out � �H�aUC���in + �V�aŨC���in + �6���act, �30�

where UC is the CNOT operator between the control and

target modes c and t and ŨC= �1�x�UC�1�x�. The
state ���act represents terms with zero, two, or three pho-
tons present in the modes a, c, and t. Depending on the
polarization of the measured ancillary photon in mode a
�and one photon in the control and target modes� a
CNOT gate up to a local transformation is applied to the
control and target qubits. For a horizontally measured
�H�a photon the CNOT gate is exactly implemented, while
for a vertically measured �V�a photon the control and
target qubits undergo a CNOT gate up to a bit flip on the
target qubit. In Fig. 13 the truth table is shown as a
function of the output qubit analyzers for all four com-
putational basis states HH, HV, VH, and VV in the in-

FIG. 11. �Color online� The CNOT gate by Pittman et al. �2001�.
The two boxes I and II are parity gates in two complementary
bases, where the detector measures in a complementary basis
with respect to the polarizing beam splitter. The gate makes
use of a maximally entangled ancillary state ��+�, which boosts
the success probability up to one-quarter. The target ��1�t and
control ��2�c input states will evolve into an entangled output
state conditioned on the required detector signature.

FIG. 12. �Color online� Schematic diagram of the experimental
setup of the three-photon CNOT gate of Pittman et al. �2003�.
The gate starts by preparing the qubits with polarization rota-
tions �i, followed by mixing the ancilla and control qubits on a
polarizing beam splitter. The ancilla qubit is then mixing with
the target qubit on the second polarizing beam splitter. The
gate is implemented upon a threefold detector coincidence in
the control, target, and ancilla modes. The polarization rota-
tions �i are used to select different polarization bases.
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put. The success probability for this gate is p=1/4 with
an experimental error of approximately 21%.

The second experiment we consider is the CNOT gate
of O’Brien et al., depicted in Fig. 14 �O’Brien et al.,
2003�, which is an implementation of the gate proposed
by Ralph, Langford, et al. �2002�. This is a postselected
two-photon gate where two polarized qubits are created
in a parametric down-conversion event. The polarization
qubits can be converted into which-path qubits via the
translation stage depicted in Fig. 14�b�. Both the control
and target qubits can be prepared in an arbitrary pure
superposition of the computational basis states.

The gate is most easily understood in terms of dual
spatial rails, Fig. 14�a�. The two spatial modes that sup-
port the target qubit are mixed on a 50:50 beam splitter
��1=� /4�. One of these output modes is mixed with a
spatial mode of the control qubit on a beam splitter with

cos �2=1/�3 �that is, a beam splitter with a reflectivity of
331

3%�. To balance the probability distribution of the
CNOT gate, two dump ports consisting of another beam
splitter with cos �2=1/�3 are introduced in one of the
control and target modes. The gate works as follows: If
the control qubit is in the state where the photon occu-
pies the top mode c0, there is no interaction between the
control and target qubits. On the other hand, when the
control photon is in the lower mode, the control and
target photons interfere nonclassically at the central
beam splitter with cos �2=1/�3. This two-photon quan-
tum interference causes a � phase shift in the upper arm
of the target interferometer t0, and as a result the target
photon is switched from one output mode to the other.
In other words, the target state experiences a bit flip.
The control qubit remains unaffected, hence the inter-
pretation of this experiment as a CNOT gate. We do not
always observe a single photon in each of the control
and target outputs. However, when a control and a tar-
get photon are detected we know that the CNOT opera-
tion has been correctly realized. The success probability
of such an event is 1 /9. The detection of the control and
target qubits could in principle be achieved by a quan-
tum nondemolition measurement �see Sec. IV.A� and
would not destroy the information encoded on the qu-
bits. Experimentally, beam displacers are used to spa-
tially separate the polarization modes and wave plates
are used for beam mixing.

In Fig. 15, we show the truth table for the CNOT op-
eration in the coincidence basis. The experimental fidel-
ity of the gate is approximately 84% with conditional
fringe visibilities exceeding 90% in nonorthogonal bases.
This indicates that entanglement has been generated in
the experiment: The gate can create entangled output
states from separable input states.

The last experiment we consider in some detail is the
realization of an optical CNOT gate by Gasparoni et al.

�2004�. The experiment is based on the four-photon logic
gate of Pittman et al. �2001� depicted in Fig. 11.

FIG. 13. �Color online� Experimental demonstration of the
CNOT gate by Pittman et al. �2003�. The probability of threefold
coincidences as a function of the output qubit analyzers for all
four computational basis states HH, HV, VH, and VV in the
input registers is shown. The experimental error in the gate is
approximately 21%.

FIG. 14. �Color online� Schematic diagram of the CNOT gate
demonstrated by O’Brien et al. �2003�. �a� Concept of the two-
qubit gate: The beam-splitter coefficients are �1=� /4 and �2

=arccos�1/�3�. �b� Translation circuit for converting polariza-
tion and dual-rail qubits. �c� Schematic of the experimental
setup. Simultaneous detection of a single photon at each de-
tector heralds the successful operation of the gate.

FIG. 15. �Color online� Experimental demonstration of the
CNOT gate by O’Brien et al. �2003� in the logical qubit basis.
The data are obtained by full state tomography of the output
states.
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The experiment of Gasparoni et al. employs a type-II
parametric down-conversion source operated in a
double-pass arrangement. The down-conversion process
naturally produces close to maximally entangled photon
pairs. This means that, depending on the input state for
the control and target qubits, we may have to destroy or
decrease any initial polarization entanglement. This is
achieved by letting photons pass through appropriate
polarization filters. After this, any two-qubit input state
can be prepared. The gate depicted in Fig. 16 works as
follows: The control qubit and one-half of the Bell state
are sent into a polarizing beam splitter, while the target
qubit with the second half of the Bell state is sent
through a second polarizing beam splitter. The detection
of ancilla photons heralds the operation of the CNOT

gate �up to a known bit or sign flip on the control and/or
target qubit�. The probability of success of this gate is
1 /4. Due to a lack of detectors that can resolve the dif-
ference between one and two photons and the rather
low source and detector efficiencies, fourfold coinci-
dence detection was employed to confirm the presence
of photons in the output control and target ports. In
principle, this postselection can be circumvented by us-
ing deterministic Bell pair sources and detectors that dif-
ferentiate between one and two incoming photons.

The CNOT truth table for this experiment, based on
fourfold coincidences, is shown in Fig. 17. This shows
the operation of the CNOT gate. In addition, Gasparoni
et al. showed that an equal superposition of H and V for
the control qubit and H for the target qubit generated
the maximally entangled state �HH�+ �VV� with an ex-
perimental fidelity of 81%. This clearly shows that the
gate is creating entanglement.

As experiments become more sophisticated, more
demonstrations of optical gates are reported. We cannot
describe all of them here, but other recent experiments
include the nonlinear sign shift �Sanaka et al., 2004�, a
nondestructive CNOT �Zhao et al., 2005�, another CNOT

gate �Fiorentino and Wong, 2004�, and three-qubit opti-
cal quantum circuits �Takeuchi, 2000b, 2001�. Four-qubit
cluster states, which we will encounter later in this re-
view, were demonstrated by Walther et al. �2005�.

D. Characterization of linear optics gates

In Sec. II.C, we showed the experimentally realized
CNOT truth table for three different experimentally real-
ized gates. However, the construction of the truth table
is in itself not sufficient to show that a CNOT operation
has been performed. It is essential to show the quantum
coherence of the gate. One of the simplest ways to show
coherence is to apply the gate to an initial separate state
and show that the gate creates an entangled state �or
vice versa�. For instance, the operation of a CNOT gate
on the initial state ��H�c− �V�c��V�t creates the maximally
entangled singlet state �H�c�V�t− �V�c�H�t. This is suffi-
cient to show the coherence properties of the gate. How-
ever, showing such coherences does not fully character-
ize the gate. To this end, we can perform state
tomography. We show an example of this for the CNOT

gate demonstrated by O’Brien et al. �2003� in Fig. 18.
The reconstructed density matrix clearly indicates that a
high-fidelity singlet state has been produced.

To fully understand the operation of a gate we need to
create a complete map Ê of all input states to output
states:

FIG. 16. �Color online� Schematic diagram of the four-photon
CNOT gate by Gasparoni et al. �2004�. A parametric down-
conversion source is used to create the control and target input
qubits in the spatial modes a1 and a2, as well as a maximally
entangled ancilla pair in the spatial modes a3 and a4. Polarizing
filters �Pol� can be used to destroy the initial entanglement in
a1 and a2 if necessary.

FIG. 17. �Color online� Experimental demonstration of the
CNOT gate by Gasparoni et al. �2004�. Fourfold coincidences for
all combinations of inputs and outputs are shown.

FIG. 18. Plot of the real part of the density matrix recon-
structed from quantum process tomography for the input state
��H�c− �V�c��V�t. This shows the highly entangled singlet state
of the form �H�c�V�t− �V�c�H�t
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Ê��� = 	
m,n=0

d−1

�mnÂm�Ân
† . �31�

This map represents the process acting on an arbitrary

input state �, where the operators Âm form a basis for
the operators acting on �. The matrix � describes com-

pletely the process Ê. Once this map has been con-
structed, we know everything about the process, includ-
ing the purity of the operation and the entangling power
of the gate. This information can then be used to fine-
tune the gate operation. Experimentally, the map is ob-
tained by performing quantum process tomography
�Chuang and Nielsen, 1997; Poyatos et al., 1997�. A set of
measurements is made on the output of the n-qubit
quantum gate, given a complete set of input states. The
input states and measurement projectors each form a
basis for the set of n-qubit density matrices. For the two-
qubit CNOT gate �d=16�, we require 256 different set-
tings of input states and measurement projectors.

In Fig. 19, we reproduce the reconstructed process
matrix � for the CNOT gate performed by O’Brien et al.
�2003�. The ideal CNOT can be written as a coherent sum

ÛCNOT= 1
2 �1� 1+1� X+Z � 1−Z � X� of tensor products

of Pauli operators �1 ,X ,Y ,Z acting on control and tar-

get qubits, respectively. The process matrix shows the
populations and coherences between the basis operators
making up the gate. The process fidelity for this gate
exceeds 90% �see also O’Brien et al. �2004��. For a gen-
eral review of quantum state tomography with an em-
phasis on quantum information processing, see Lvovsky
and Raymer �2005�.

E. General probabilistic nonlinear gates

The two-qubit gates described above are special cases
of N-ports acting on a set of input states, followed by a
projective measurement. For quantum computing appli-
cations, however, we usually want the resulting nonlin-
ear transformation M to be unitary. This is because non-
unitary operations will reveal information about qubits
in the projective measurement and hence corrupt the
computation. We can derive a simple criterion that the
N-ports and projective measurements must satisfy
�Lapaire et al., 2003�.

Suppose the qubits undergoing M span a Hilbert
space HQ and the auxiliary qubits span HA. Further-
more, let U be the unitary transformation of the N-port
in Eq. �10� and Pk the projector on the auxiliary states
denoting the measurement outcome labeled by k. Pk

must be a projector on the Hilbert space with dimension
dim HA for M to be unitary. Given an arbitrary input
state � of the qubits and a state  of the auxiliary sys-
tems, the output state can be written as

�out
�k� =

TrA�U�� � �U†Pk�

TrQA�U�� � �U†Pk�
. �32�

When we define d���
TrQA�U����U†Pk�, we find that
M is unitary if and only if d��� is independent of �. We

can then construct a test operator T̂=TrA�U†PkU�. The
induced operation on the qubits in HQ is then unitary if

and only if T̂ is proportional to the identity or

T̂ = TrA�U†PkU� � 1 ⇔ d��� = d . �33�

Given the auxiliary input state , the N-port transforma-
tion U, and the projective measurement Pk, it is straight-
forward to check whether this condition holds. The suc-
cess probability of the gate is given by d.

In Eq. �32�, the projective measurement was in fact a
projection operator �Pk

2 =Pk�. However, in general, we
might want to include generalized measurements, com-
monly known as positive operator-valued measures
�POVM’s�. These are particularly useful when we need
to distinguish between nonorthogonal states, and they
can be implemented with N-ports as well �Myers and
Brandt, 1997�. Other optical realizations of nonunitary
transformations were studied by Bergou et al. �2000�.

The inability to perform a deterministic two-qubit
gate such as the CNOT with linear optics alone is inti-
mately related to the impossibility of complete Bell
measurements with linear optics �Lütkenhaus et al.,
1999; Vaidman and Yoran, 1999; Calsamiglia, 2002�.
Since quantum computing can be cast into the shape of

FIG. 19. Plot of the �a� real and �b� imaginary parts of the
reconstructed process matrix of the CNOT gate by O’Brien et al.

�2003�. The ideal CNOT can be written as a coherent sum

ÛCNOT= 1
2 �1� 1+1� X+Z � 1−Z � X� of the tensor products of

Pauli operators �1 ,X ,Y ,Z acting on control and target qubits,
respectively. The input abscissae are �from left to right� II, IX,
IY, IZ, XI, XX, XY, XZ, YI, YX, YY, YZ, ZI, ZX, ZY, and
ZZ while the output abscissae are �from left to right� ZZ, ZY,
ZX, ZI, YZ, YY, YX, YI, XZ, XY, XX, XI, IZ, IY, IX, and II.
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single-qubit operations and two-qubit projections
�Nielsen, 2003; Leung, 2004�, we can approach the prob-
lem of making nonlinear gates via complete discrimina-
tion of multiqubit bases.

van Loock and Lütkenhaus gave straightforward cri-
teria for the implementation of complete projective
measurements with linear optics, photon counters, and
arbitrary auxiliary states without feedforward �van
Loock and Lütkenhaus, 2004�. Suppose the basis states
we want to identify without ambiguity are given by ��sk�
and the auxiliary state is given by ��aux�. Applying the
unitary N-port transformation yields the state ��k�. If the
outgoing optical modes are denoted by aj, with corre-
sponding annihilation operators âj, then the set of con-
ditions that have to be satisfied for ���k� to be com-
pletely distinguishable are

��k�âj
†âj��l� = 0 ∀ j ,

��k�âj
†âjâj�

†
âj�

��l� = 0 ∀ j,j�,

�34�
��k�âj

†âjâj�

†
âj�

âj�

†
âj�

��l� = 0 ∀ j,j�,j�,

. . . .

Furthermore, when we keep the specific optical imple-
mentation in mind, we can use intuitive physical prin-
ciples such as photon number conservation and group-
theoretical techniques with the decomposition of U�N�
into smaller groups. This gives us insight into the effects
of the auxiliary states and photon detection on the �un-
detected� signal state �Scheel et al., 2003�.

So far we have generally focused on the means neces-
sary to perform single-qubit rotations and CNOT gates. It
is well known that such gates are sufficient for universal
computation. However, it is not necessary to restrict our-
selves to such a limited set of operations. Instead, it is
possible to extend our operations to general circuits that
can be constructed from linear elements, single-photon
sources, and detectors. This is analogous to the shift in
classical computing from a reduced instruction set com-
puter �RISC� architecture to the complex instruction set
computer �CISC� architecture. The RISC-based archi-
tecture in quantum computing terms could be thought of
as a device built only from the minimum set of gates,
while a CISC-based machine would be built from a
much larger set: the natural set of gates allowed by the
fundamental resources. The quantum SWAP operation il-
lustrates this point. From fundamental gates, three
CNOT’s are required to build such an operation. How-
ever, from fundamental optical resources, only two
beam splitters and a phase shifter are necessary. Scheel
et al. �2003� focused their attention primarily on one-
and two-mode situations, though the approach is easily
extended to multimode situations. They differentiated
between operations that are easy and those that are po-
tentially difficult. For example, operations that cause a
change in the Fock layers �for instance, the Hadamard
operator� are generally difficult but not impossible.

F. Scalable optical circuits and quantum teleportation

When the gates in a computational circuit succeed
only with a certain probability p, then the entire calcu-
lation that uses N such gates succeeds with probability
pN. For large N and small p, this probability is minus-
cule. As a consequence, we have to repeat the calcula-
tion on the order of p−N times or run p−N such systems in
parallel. Either way, the resources �time or circuits� scale
exponentially with the number of gates. Any advantage
that quantum algorithms might have over classical pro-
tocols is thus squandered on retrials or on the amount of
hardware we need. In order to do useful quantum com-
puting with probabilistic gates, we have to take the
probabilistic elements out of the running calculation.

In 1999, Gottesman and Chuang proposed a trick that
removes the probabilistic gate from the quantum circuit
and places it in the resources that can be prepared off-
line �Gottesman and Chuang, 1999�. It is commonly re-
ferred to as the teleportation trick, since it teleports the
gate into the quantum circuit.

Suppose we need to apply a probabilistic CZ gate to
two qubits with quantum states ��1� and ��2�, respec-
tively. If we apply the gate directly to the qubits, we are
very likely to destroy the qubits �see Fig. 20�. However,
suppose that we teleport both qubits from their initial
mode to a different mode. For one qubit, this is shown in
Fig. 21. Here x and z are binary variables, denoting the
outcome of the Bell measurement, which determine the
unitary transformation that we need to apply to the out-
put mode. If x=1, we need to apply the x Pauli opera-
tor �denoted by X�, and if z=1, we need to apply z

�denoted by Z�. If x ,z=0, we do not apply the respective
operator. For teleportation to work, we also need the
entangled resource ��+�, which can be prepared off-line.
If we have a suitable storage device, we do not have to
make ��+� on demand: we can create it with a probabi-
listic protocol using several trials and store the output of
a successful event in the storage device.

FIG. 20. The CZ applied to two qubits inside a quantum cir-
cuit. If it fails, then the two-qubit states are lost.

FIG. 21. The teleportation circuit. The state ��j� is teleported
via a Bell state ��+� and a Bell measurement B. The binary
variables x and z parametrize the outcome of the Bell mea-
surement and determine which Pauli operator is applied to the
output mode.
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When we apply the probabilistic CZ gate to the output
of the two teleportation circuits, we effectively have
again the situation depicted in Fig. 20, except that now
our circuit is much more complicated. Since the CZ gate
is part of the Clifford group, we can commute it through
the Pauli operators X and Z at the cost of more Pauli
operators. This is good news, because that means we can
move the CZ gate from the right to the left at the cost of
only the optically available single-qubit Pauli gates. In-
stead of preparing two entangled states ��+�, we now
have to prepare the resource 1� UCZ � 1��+� � ��+� �see
Fig. 22�. Again, with a suitable storage device, this can
be done off-line with a probabilistic protocol. There are
now no longer any probabilistic elements in the compu-
tational circuit.

G. The Knill-Laflamme-Milburn protocol

Unfortunately, there is a problem with the teleporta-
tion trick when applied to linear optics: In our qubit
representation the Bell measurement �which is essential
to quantum teleportation� is not complete and works at
best only half of the time �Lütkenhaus et al., 1999; Vaid-
man and Yoran, 1999�. It seems that we are back where
we started. This is one of the problems of linear optical
quantum computing that was solved by Knill, Laflamme,
and Milburn �2001�.

In the KLM scheme, the qubits are chosen from the
dual-rail representation. However, in the KLM protocol
the teleportation trick applies to the single-rail state
��0�+��1�, where �0� and �1� denote the vacuum and
single-photon Fock state, respectively, and � and � are
complex coefficients �this is because the CZ gate involves
only one optical mode of each qubit�. Linearity of quan-
tum mechanics ensures that, if we can teleport this state,
we can also teleport any coherent or incoherent super-
position of it.

Choose the entangled state for teleportation to be the
2n-mode state

�tn� =
1

�n + 1
	
j=0

n

�1�j�0�n−j�0�j�1�n−j, �35�

where �k�j
�k�1 � ¯ � �k�j. We can then teleport the
state ��0�+��1� by applying an �n+1�-point discrete
quantum Fourier transform �QFT� to the input mode
and the first n modes of �tn� and count the number of
photons m in the output mode. The input state will then
be teleported to mode n+m of the entangled state �tn�
�see Fig. 23�.

The discrete quantum Fourier transform Fn can be
written in matrix notation as

�Fn�jk =
1
�n

exp�2�i
�j − 1��k − 1�

n
� . �36�

It erases all path information of the incoming modes and
can be interpreted as the n-mode generalization of the
50:50 beam splitter. To see how this functions as a tele-
portation protocol, it is easiest to consider an example.

Suppose we choose n=5, such that the state �tn� de-
scribes ten optical modes, and assume further that we
count two photons �m=2�. This setup is given in Fig. 24.
The two rows of zeros and ones �the bit values� denote
two terms in the superposition �t5�. The five bit values on
the left are the logical complement of the five bit values
on the right �from which we will choose the outgoing
qubit mode�. It is clear from this diagram that when we
find two photons, there are only two ways this could
come about: either the input mode did not have a pho-
ton �associated with amplitude ��, in which case the two

FIG. 22. �Color online� The CZ gate using teleportation: here
���=UCZ��1�2�. By commuting the CZ gate through the Pauli
gates from the computational circuit to the teleportation re-
sources, we have taken the probabilistic part off-line. We can
prepare the teleportation channel �the shaded area, including
the CZ� in many trials, without disrupting the quantum compu-
tation.

FIG. 23. Near-deterministic teleportation according to Knill,
Laflamme, and Milburn. The input state ���=��0�+��1� is tele-
ported to the mth outgoing mode, where m is the number of
detected photons in the measurement of the �n+1�-point quan-
tum Fourier transform. Note that ��� is a single-rail state; 0 and
1 denote photon numbers here.

FIG. 24. The five-photon ancillary scheme for near-
deterministic teleportation. The two rows correspond to two
terms in the superposition state �t5� that can yield two detected
photons �including the unknown input state ��0�+��1��. The
first six columns are detected, while the last five columns cor-
respond to the freely propagating modes.
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photons originated from �t5�, or the input mode did have
a photon, in which case the state �t5� provided the second
photon. However, by construction of �t5�, the second
mode of the five remaining modes must have the same
number of photons as the input mode. And because we
erased the which-path information of measured photons
using the F6 transformation, the two possibilities are
added coherently. This means that we teleported the in-
put mode to mode 5+2=7. In order to keep the ampli-
tudes of the output state equal to those of the input
state, the relative amplitudes of the terms in �tn� must be
equal.

Sometimes this procedure fails, however. When we
count either zero or n+1 photons in the output of the
QFT, we collapse the input state onto zero or one pho-
ton, respectively. In those cases we have performed an
unintentional measurement of the qubit in the computa-
tional basis, which indicates that the teleportation failed.
The success rate of this protocol is n / �n+1� �where we
used that ���2+ ���2=1�. We can make the success prob-
ability of this protocol as large as we like by increasing
the number of modes n. The success probability for tele-
porting a two-qubit gate is then the square of this prob-
ability, n2 / �n+1�2, because we need to teleport two qu-
bits successfully. The quantum teleportation of a
superposition state of a single photon with the vacuum
was realized by Lombardi et al. �2002� using spontaneous
parametric down-conversion.

Now that we have a �near-�deterministic teleportation
protocol, we have to apply the probabilistic gates to the
auxiliary states �tn�. For the CZ gate, we need the auxil-
iary state

�czn� =
1

n + 1 	
i,j=0

n

�− 1��n−i��n−j��1�i�0�n−i

� �0�i�1�n−i�1�j�0�n−j�0�j�1�n−j. �37�

The cost of creating this state is quite high. In the next
section we will see how the addition of error-correcting
codes can alleviate this resource count somewhat.

At this point, we should resolve a paradox: Earlier
results have shown that it is impossible to perform a
deterministic Bell measurement with linear optics. How-
ever, teleportation relies critically on a Bell measure-
ment of some sort, and we have just shown that we can
perform near-deterministic teleportation with only lin-
ear optics and photon counting. The resolution in the
paradox lies in the fact that the impossibility proofs are
concerned with exact deterministic Bell measurements.
The KLM variant of the Bell measurement always has
an arbitrarily small error probability �. We can achieve
scalable quantum computing by making � smaller than
the fault-tolerant threshold.

One way to boost the probability of success of the
teleportation protocol is to minimize the amplitudes of
the j=0 and j=n terms in the superposition �tn� of Eq.
�35�. At the cost of changing the relative amplitudes
�and therefore introducing a small error in the tele-
ported output state�, the success probability of teleport-

ing a single qubit can then be boosted to 1−1/n2 �Fran-
son et al., 2002�. The downside of this proposal is that
the errors become less well behaved: Instead of perfect
teleportation of the state ��0�+��1� with an occasional
z measurement of the qubit, the Franson variation will
yield an output state cj��0�+cj−1��1�, where j is known
and cj are the amplitudes of the modified �tn�. There is
no simple two-mode unitary operator that transforms
this output state into the original input state without
knowledge about � and �. This makes error correction
much harder.

Another variation on the KLM scheme, due to Sped-
alieri et al. �2006�, redefines the teleported qubit ��0�
+��1� and Eq. �35�. The vacuum state is replaced with a
single horizontally polarized photon, �0�→ �H�, and the
one-photon state is replaced with a vertically polarized
photon, �1�→ �V�. There are now 2n rather than n pho-
tons in the state �tn�. The teleportation procedure re-
mains the same, except that we now count the total
number of vertically polarized photons. The advantage
of this approach is that we know that we should detect
exactly n photons. If we detect m�n photons, we know
that something went wrong, and this therefore provides
us with a level of error detection �see also
Sec. V�.

Of course, having a near-deterministic two-qubit gate
is all very well, but if we want to do arbitrarily long
quantum computations, the success probability of the
gates must be close to 1. Instead of making larger tele-
portation networks, it might be more cost effective or
easier to use a form of error correction to make the
gates deterministic. This is the subject of the next sec-
tion.

H. Error correction of the probabilistic gates

As we saw in the previous section the success prob-
ability of teleportation gates can be increased arbitrarily
by preparing larger entangled states. However, the
asymptotic approach to unit probability is quite slow as
a function of n. A more efficient procedure is to encode
against gate failure. This is possible because of the well-
defined failure mode of the teleporters. We noted in the
previous section that the teleporters fail if zero or n+1
photons are detected because we can then infer the logi-
cal state of the input qubit. In other words, the failure
mode of the teleporters is to measure the logical value
of the input qubit. If we can encode against accidental
measurements of this type, then our qubit will be able to
survive gate failures and the probability of eventually
succeeding in applying the gate will be increased.

KLM introduced the following logical encoding over
two polarization qubits:

�0�L = �HH� + �VV� ,
�38�

�1�L = �HV� + �VH� .

This is referred to as parity encoding as the logical 0
state is an equal superposition of the even-parity states
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and the logical 1 state is an equal superposition of the
odd-parity states. Consider an arbitrary logical qubit
��0�L+��1�L. Suppose a measurement is made on one of
the physical qubits, returning the result H. The effect on
the logical qubit is the projection

��0�L + ��1�L → ��H� + ��V� . �39�

That is, the qubit is not lost; the encoding is just reduced
from parity to polarization. Similarly, if the measure-
ment result is V, we have

��0�L + ��1�L → ��V� + ��H� . �40�

Again the superposition is preserved, but this time a bit
flip occurs. However, the bit flip is heralded by the mea-
surement result and can therefore be corrected.

Suppose we wish to teleport the logical value of a
parity qubit with the t1 teleporter. We attempt to tele-
port one of the polarization qubits. If we succeed, we
measure the value of the remaining polarization qubit
and apply any necessary correction to the teleported qu-
bit. If we fail, we can use the result of the teleporter
failure �did we find zero photon or two photons?� to
correct the remaining polarization qubit. We are then
able to try again. In this way the probability of success of
teleportation is increased from 1/2 to 3/4. At this point
we have lost our encoding in the process of teleporting.
However, this can be fixed by introducing the following
entanglement resource:

�H��0�L + �V��1�L. �41�

If teleportation is successful, the output state remains
encoded. The main observation is that the resources re-
quired to construct the entangled state of Eq. �41� are
much less than those required to construct �t3�. As a re-
sult, error encoding turns out to be a more efficient way
to scale up teleportation and hence gate success.

Parity encoding of an arbitrary polarization qubit can
be achieved by performing a CNOT gate between the
arbitrary qubit and an ancilla qubit prepared in the di-
agonal state, where the arbitrary qubit is the target and
the ancilla qubit is the control. This operation has been
demonstrated experimentally �O’Brien et al., 2005�. In
this experiment the projections given by Eqs. �39� and
�40� were confirmed up to fidelities of 96%. In a subse-
quent experiment by Pittman et al., the parity encoding
was prepared in a somewhat different manner and, in
order to correct the bit-flip errors, a feedforward mecha-
nism was implemented �Pittman et al., 2005�.

To boost the probability of success further, we need to
increase the size of the code. The approach adopted by
Knill, Laflamme, and Milburn �2001� was to concatenate
the code. At the first level of concatenation the parity
code states become

�0�L
�4� = �00�L + �11�L,

�42�
�1�L

�4� = �01�L + �10�L.

This is now a four-photon encoded state. At the second
level of concatenation we would obtain an eight-photon

state, etc. At each higher level of concatenation, corre-
sponding encoded teleportation circuits can be con-
structed that operate with higher and higher probabili-
ties of success.

If we are to use encoded qubits, we must consider a
universal set of gates on the logical qubits. An arbitrary
rotation about the x axis, defined by the operation X�

=cos�� /2�I− i sin�� /2�X, is implemented on a logical qu-
bit by simply implementing it on one of the constituent
polarization qubits. However, to achieve arbitrary
single-qubit rotations we also require a � /2 rotation
about the z axis, i.e., Z�/2= �1/�2��I− iZ�. This can be
implemented on the logical qubit by applying Z�/2 to
each constituent qubit and then applying a CZ gate be-
tween the constituent qubits. The CZ gate is of course
nondeterministic, and so the Z�/2 gate becomes nonde-
terministic for the logical qubit. Thus both the Z�/2 and
the logical CZ gate must be implemented with the tele-
portation gates in order to form a universal gate set for
the logical qubits. In Knill et al. �2000� it is reported that
the probability of successfully implementing a Z�/2 gate
on a parity qubit in this way is PZ=1−FZ, where

FZ =
f2�2 − f�

1 − f�1 − f�
�43�

and f is the probability of failure of the teleporters act-
ing on the constituent polarization qubits. One can ob-
tain the probability of success after concatenation itera-
tively. For example, the probability of success after one
concatenation is PZ1=1−FZ1, where FZ1=FZ

2 �2−FZ� / �1
−FZ�1−FZ��. The probability of success for a CZ gate
between two logical qubits is PCZ= �1−FZ�2. Notice that,
for this construction, an overall improvement in gate
success is not achieved unless f�1/2. Using these results
one finds that first level concatenation and t3 �f=1/4�
teleporters are required to achieve a CZ gate with better
than 95% probability of success. It can be estimated that
of order 104 operations would be required in order to
implement such a gate �Hayes et al., 2004�.

So the physical resources for the original KLM proto-
col, albeit scalable, are daunting. For linear optical
quantum computing to become a viable technology, we
need more efficient quantum gates. This is the subject of
the next section.

III. IMPROVEMENT ON THE KLM PROTOCOL

We have seen that the KLM protocol explicitly tells us
how to build scalable quantum computers with single-
photon sources, linear optics, and photon counting.
However, showing scalability and providing a practical
architecture are two different things. The overhead cost
of a two-qubit gate in the KLM proposal, albeit scalable,
is prohibitively large.

If linear optical quantum computing is to become a
practical technology, we need less resource-intensive
protocols. Consequently, there have been a number of
proposals that improve the scalability of the KLM
scheme. In this section we review these proposals. Sev-
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eral improvements are based on cluster-state techniques
�Yoran and Reznik, 2003; Nielsen, 2004; Browne and
Rudolph, 2005�, and recently a circuit-based model of
optical quantum computing was proposed that circum-
vents the need for the very costly KLM-type teleporta-
tion �Gilchrist et al., 2005�. After a brief introduction to
cluster-state quantum computing, we describe these dif-
ferent proposals.

A. Cluster states in optical quantum computing

In the traditional circuit-based approach to quantum
computing, quantum information is encoded in qubits,
which subsequently undergo single- and two-qubit op-
erations. There is, however, an alternative model, called
the cluster-state model of quantum computing �Raussen-
dorf and Briegel, 2001�, also known as one-way quantum
computing or graph-state quantum computing. In this
model, the quantum information encoded in a set of qu-
bits is teleported to a new set of qubits via entanglement
and single-qubit measurements. It uses a so-called clus-
ter state in which physical qubits are represented by
nodes and entanglement between the qubits is repre-
sented by connecting lines �see Fig. 25�. Suppose that the
qubits in the cluster state are arranged in a lattice. The
quantum computation then consists of performing
single-qubit measurements on a “column” of qubits, the
outcomes of which determine the basis for the measure-
ments on the next column. Single-qubit gates are imple-
mented by choosing a suitable basis for the single-qubit
measurement, while two-qubit gates are induced by lo-
cal measurements of two qubits exhibiting a vertical link
in the cluster state. The term graph state is often used to
denote cluster states that do not exhibit a rectangular
lattice structure. To avoid confusion, we will refer to all
clusters and graphs as cluster states in this review.

Two-dimensional cluster states, i.e., states with verti-
cal as well as horizontal links, are essential for quantum
computing, as linear cluster-state computing can be effi-
ciently simulated on classical computers �Nielsen,
2006b�. Since single-qubit measurements are relatively
easy to perform when the qubits are photons, this ap-
proach is potentially suitable for linear optical quantum

computing: Given the right cluster state, we need to per-
form only the photon detection and feedforward post-
processing. Verstraete and Cirac �2004� demonstrated
how the teleportation-based computing scheme of Got-
tesman and Chuang could be related to clusters. They
derived their results for generic implementations and
did not address the special demands of optics.

Before we discuss the various proposals for efficient
cluster-state generation, we present a few more proper-
ties of cluster states. Most importantly, a cluster such as
the one depicted in Fig. 25 does not correspond to a
unique quantum state: It represents a family of states
that are equivalent up to local unitary transformations
of the qubits. More precisely, a cluster state �C� is an
eigenstate of a set of commuting operators Si called the
stabilizer generators �Raussendorf et al., 2003�:

Si�C� = ± �C� ∀ i . �44�

Typically, we consider the cluster state that is a +1 eigen-
state for all Si. Given a graphical representation of a
cluster state, we can write down the stabilizer generators
by following a simple recipe: Every qubit i �node in the
cluster� generates an operator Si. Suppose that a qubit
labeled q is connected to k neighbors labeled from 1 to
k. The stabilizer generator Sq for qubit q is then given by

Sq = Xqkj = 1 � Zj. �45�

For example, a �simply connected� linear cluster chain of
five qubits labeled a, b, c, d, and e �Fig. 26�a�� is uniquely
determined by the following five stabilizer generators:
Sa=XaZb, Sb=ZaXbZc, Sc=ZbXcZd, Sd=ZcXdZe, and
Se=ZdXe. It is easily verified that these operators com-
mute. Note that this recipe applies to general cluster
states, where every node �i.e., a qubit� can have an arbi-
trary number of links with other nodes. The rectangular-
shaped cluster states are a subset of the set of cluster
states.

Consider the following important examples of
cluster states: The connected two-qubit cluster state
is locally equivalent to the Bell states �Fig. 26�b��, and
a linear three-qubit cluster state is locally equivalent
to a three-qubit Greenberger-Horne-Zeilinger �GHZ�
state. These are states that are locally equivalent to

FIG. 25. A typical cluster state. Every circle represents a logi-
cal qubit, and the vertices represent CZ operations. A quantum
computation proceeds by performing single-qubit measure-
ments on the left column of qubits, thus removing them from
the cluster and teleporting the quantum information through
the cluster state. The vertical links induce two-qubit opera-
tions.

FIG. 26. Different cluster and graph states. �a� A linear cluster
of five qubits. �b� A cluster representing the Bell states. �c� A
four-qubit GHZ state. This state can be obtained by an X mea-
surement of the central qubit in �a�. �d� A general GHZ state.
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�0, . . . ,0�+ �1, . . . ,1�. In general, GHZ states can be rep-
resented by a star-shaped cluster such as shown in Figs.
26�c� and 26�d�.

To build the cluster state that is needed for quantum
computation, we can transform one cluster state into an-
other using entangling operations, single-qubit opera-
tions, and single-qubit measurements. A Z measurement
removes a qubit from a cluster and severs all the bonds
that it had with the cluster �Raussendorf et al., 2003;
Hein et al., 2004�. An X measurement on a qubit in a
cluster removes that qubit from the cluster, and transfers
all the bonds of the original qubit to a neighbor. All the
other neighbors become single qubits connected to the
neighbor that inherited the bonds �Raussendorf et al.,
2003; Hein et al., 2004�.

There is a well-defined physical recipe for creating
cluster states, such as the one shown in Fig. 25. First of
all, we prepare all qubits in the state ��0�+ �1�� /�2. Sec-
ond, we apply a CZ gate to all qubits that are to be
linked with a horizontal or vertical line, the order of
which does not matter.

To make a quantum computer using the one-way
quantum computer, we need two-dimensional cluster
states �Nielsen, 2006b�. Computation on linear cluster
chains can be simulated efficiently on a classical com-
puter. Furthermore, two-dimensional cluster states can
be created with Clifford group gates. The Gottesman-
Knill theorem then implies that single-qubit measure-
ments implementing the quantum computation must in-
clude non-Pauli measurements.

It is the entangling operation that is problematic in
optics, since a linear optical CZ gate in our qubit repre-
sentation is inherently probabilistic. There have been,
however, several proposals for making cluster states with
linear optics and photon detection, and we discuss them
in chronological order.

B. The Yoran-Reznik protocol

The first proposal for linear optical quantum comput-
ing along these lines by Yoran and Reznik �2003� is not
strictly based on the cluster-state model, but it has many
attributes in common. Most notably, it uses “entangle-
ment chains” of photons in order to pass the quantum
information through the circuit via teleportation.

First of all, for this protocol to work, the nondeter-
ministic nature of optical teleportation must be circum-
vented. We have already remarked several times that
complete �deterministic� Bell measurements cannot be
performed in the dual-rail and polarization qubit repre-
sentations of linear optical quantum computing. How-
ever, in a different representation this is no longer the
case. Instead of the traditional dual-rail implementation
of qubits, we can encode the information of two qubits
in a single photon when we include both the polarization
and the spatial degree of freedom. Consider the device
depicted in Fig. 27. A single photon carrying specific
polarization and path information is then transformed as
�Popescu, 1995�

�H,1� →
1
�2

��V,3� + �H,4�� ,

�V,1� →
1
�2

��V,4� − �H,3�� ,

�46�

�H,2� →
1
�2

��H,4� − �V,3�� ,

�V,2� →
1
�2

��V,4� + �H,3�� .

These transformations look tantalizingly similar to the
transformation from the computational basis to the Bell
basis. However, there is only one photon in this system.
The second qubit is given by the which-path information
of the input modes. By performing a polarization mea-
surement of the output modes 3 and 4, we can project
the input modes onto a Bell state. This type of entangle-
ment is sometimes called hyperentanglement, since it in-
volves more than one observable of a single system
�Kwiat and Weinfurter, 1998; Barreiro et al., 2005; Cinelli
et al., 2005�. A teleportation experiment based on this
mechanism was performed by Boschi et al. �1998�.

It was shown by Yoran and Reznik how these trans-
formations can be used to cut down on the number of
resources: Suppose we want to implement the computa-
tional circuit given in Fig. 28. We will then create �highly
entangled� chain states of the form

FIG. 27. �Color online� Using the “hyperentanglement” of the
polarization and which-path observables, a single photon spans
a four-dimensional Hilbert space ��H ,1� , �H ,2� , �V ,1� , �V ,2�. A
simple 50:50 beam-splitter and polarization rotation then fur-
nishes a deterministic transformation from the computational
basis to the Bell basis.

FIG. 28. A typical three-qubit quantum computational circuit.
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���H�p1
+ ��V�p1

���1�p1
�H�p2

+ �2�p1
�V�p2

� � ¯

� ��2n − 1�pn
�H�pn+1

+ �2n�pn
�V�pn+1

��2n + 1�pn+1
,

�47�

where the individual photons are labeled by pj. This
state has the property that a Bell measurement of the
form of Eq. �46� on the first photon p1 will teleport the
input qubit ��H�+��V� to the next photon p2.

Let us assume that we have several of these chains
running in parallel and that, furthermore, there are ver-
tical “cross links” of entanglement between different
chains, just where we want to apply the two-qubit gates
U1, U2, and U3. This situation is sketched in Fig. 28. The
translation into optical chain states is given in Fig. 29.
The open circles represent polarization and dots repre-
sent the path degree of freedom. In Fig. 30, the circuit
that adds a link to the chain is shown. The unitary op-
erators U1, U2, and U3 are applied to the polarization
degree of freedom of photons.

Note that we still need to apply two probabilistic CZ

gates in order to add a qubit to a chain. However,
whereas the KLM scheme needs the teleportation pro-
tocol to succeed with very high probability �scaling as
n2 / �n+1�2� in the protocol proposed by Yoran and
Reznik the success probability of creating a link in the
chain must be larger than one-half. This way, the en-
tanglement chains grow on average. This is a very im-
portant observation and plays a key role in the protocols
discussed in this section. Similarly, a vertical link be-
tween entanglement chains can be established with a
two-qubit unitary operation on the polarization degree
of freedom of both photons �cf. the vertical lines be-
tween the open dots in Fig. 29�. If the gate fails, we can
grow longer chains and try again until the gate succeeds.

C. The Nielsen protocol

A more explicit use of cluster-state quantum comput-
ing was made by Nielsen �2004�. As Yoran and Reznik,
Nielsen recognized that in order to build cluster states,
the probability of adding a link to the cluster must be
larger than one-half, rather than arbitrarily close to 1.
Otherwise, the cluster will shrink on average. The KLM
teleportation protocol allows us to apply a two-qubit

gate with probability n2 / �n+1�2, depending on the num-
ber n of ancillary photons. Let us denote a CZ gate with
this success probability by CZn2/�n + 1�2. This gate can be
used to add qubits to a cluster chain. When the gate
fails, it removes a qubit from the cluster. This means
that, instead of using very large n to make the CZ gate
near deterministic, links can be added on average with a
modest CZ9/16 gate, or n=3. This leads to similarly re-
duced resource requirements as the Yoran-Reznik pro-
tocol, while still keeping �in principle� error-free quan-
tum computing. However, there is an extra gain in
resources available when we try to add a qubit to a chain
�Nielsen, 2004�.

Suppose that we wish to add a single qubit to a cluster
chain via the teleportation-based CZ gate. Instead of
teleporting the two qubits simultaneously, we first tele-
port the disconnected qubit and second teleport the qu-
bit at the end of the cluster. We know that a teleporta-
tion failure will remove the qubit from the cluster, so we
attempt the second teleportation protocol only after the
first has succeeded. The first teleportation protocol then
becomes part of the off-line resource preparation, and
the CZ gate effectively changes from CZn2/�n + 1�2 to
CZn/�n+1�. The growth requirement of the cluster state then
becomes n / �n+1��1/2, or n=2, and we make another
substantial saving in resources.

Apart from linear cluster states, we also need the abil-
ity to make the two-dimensional clusters depicted in Fig.
25. This is equivalent to linking a qubit to two cluster
chains and hence needs two successful CZ gates. Arguing
along the same lines as before, it is easily shown that the
success probability is 4 /9 for this procedure using two
ancillae per teleportation gate. Since this is smaller than
one-half, this procedure on average removes qubits from
the cluster. However, we can first add extra qubits with
the previous procedure, such that there is a buffer of
qubits in the cluster state. This way, the average shrink-
age of the cluster due to vertical links is absorbed by the
buffer region.

Finally, Nielsen introduces so-called microclusters
consisting of multiple qubits connected to the end point
of a cluster chain. Such a microcluster is depicted in Fig.
26�d�, where the central qubit is an end point of a cluster
chain. Having such a fan of qubits at the end of a chain,

FIG. 30. �Color online� How to add a link to the Yoran-Reznik
chain. This will create the state given in Eq. �47� with n+1=5.
The four vertically connected gray circles represent the proba-
bilistic CZ gate. Note that we need two of them.

FIG. 29. The computational circuit of Fig. 28 in terms of the
physical implementation by Yoran and Reznik �2003�. This is
reminiscent of the cluster-state model of quantum computing.
The open and solid dots represent the polarization and which-
path degrees of freedom, respectively.
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we can retry the entangling gate as many times as there
are “dangling” qubits. This removes the lower limit on
the success probability of the CZ gate at the cost of mak-
ing large GHZ states �Nielsen and Dawson, 2004�.
Therefore, any optical two-qubit gate with arbitrary suc-
cess probability p can be used to make cluster states
efficiently.

D. The Browne-Rudolph protocol

There is still a cheaper way to grow cluster states. In
order for a cluster chain to grow on average without
using expensive microclusters, the success probability of
adding a single qubit to the chain must be larger than
one-half. However, if we can add small chains of qubits
to the cluster, this requirement may be relaxed. Suppose
that the success probability of creating a link between
two cluster chains is p and that in each successful linking
of two chains we lose ds qubits from the chain. This
might happen when the entangling operation joining the
two clusters involves the detection of qubits in the clus-
ter. Similarly, in an unsuccessful attempt, we may lose df

qubits from the existing cluster chain �we do not count
the loss of qubits in the small chain that is to be added�.
If our existing cluster chain has length N and the chain
we wish to add has length m, then we can formulate the
following growth requirement �Barrett and Kok, 2005;
Browne and Rudolph, 2005�:

p�N + m − ds� + �1 − p��N − df� � N

⇔ m �
pds + �1 − p�df

p
. �48�

Given a specific strategy �ds ,df� and success probability
p, we need to create chains of length m off-line in order
to make large cluster chains efficiently. Note that, again,
there is no lower limit to the success probability p of the
entangling operation in principle. This allows us to
choose the optical gates with the most desirable physical
properties �other than high success probability�, and it
means that we do not have to use the expensive and
error-prone CZn/�n+1� gates.

Indeed, Browne and Rudolph introduced a protocol
for generating cluster states using the probabilistic parity
gates of Sec. II.B �Cerf et al., 1998; Pittmann et al., 2001;
Browne and Rudolph, 2005�. The notable advantage of
this gate is that it is relatively easy to implement in prac-
tice �Pittman et al., 2000b� and that it can be made ro-
bust against common experimental errors. Initially these
gates were called parity gates, but following Browne and
Rudolph we call these the type-I and type-II fusion gates
�see Fig. 31�.

Let us first consider the operation of the type-I fusion
gate in Fig. 31�a�. Given the detection of one and only
one photon with polarization H or V in the detector D,
the gate induces the following projection on the input
state:

“H ” :
1
�2

��H��H,H� − �V��V,V�� ,

�49�

“V ” :
1
�2

��H��H,H� + �V��V,V�� .

It is easily verified that the probability of success for this
gate is p=1/2. When the type-I fusion gate is applied to
two photons belonging to two different cluster states
containing n1 and n2 photons, respectively, a successful
operation will generate a cluster chain of n1+n2−1 pho-
tons. However, when the gate fails, it effectively per-
forms a z measurement on both photonic qubits and
the two cluster states both lose the qubit that was de-
tected. The type-I fusion gate is therefore a �1,1� strat-
egy, i.e., ds=df=1 �recall that we count only the loss of
qubits on one cluster to determine df�. The ideal growth
requirement is m�1/p=2.

Browne and Rudolph also introduced the type-II fu-
sion operator �see Fig. 31�b��. This operation involves
the photon detection of both output modes of a polar-
ization beam splitter, and a successful event is heralded
by a detector coincidence �i.e., one photon with a spe-
cific polarization in each detector�. When successful, this
gate projects the two incoming qubits onto one of two
polarization Bell states, depending on the detection out-
come:

“H,V ” or “ V,H ” :
1
�2

��H,H� + �V,V�� ,

�50�

“H,H ” or “ V,V ” :
1
�2

��H,V� + �V,H�� .

The success probability of this gate is p=1/2, and it is a
�2,1� strategy �i.e., ds=2 and df=1�. The ideal growth
requirement is thus m� �1+p� /p=3. The type-II fusion
gate is essentially a version of the incomplete optical
Bell measurement �Weinfurter, 1994; Braunstein and
Mann, 1996�.

FIG. 31. �Color online� Two types of fusion operator: �a� The
type-I fusion operator employs a polarization beam splitter
�PBS1� followed by the detection D of a single output mode in
the 45° rotated polarization basis. This operation determines
the parity of the input mode with probability 1/2. �b� The
type-II fusion operator uses a diagonal polarization beam split-
ter �PBS2�, detects both output modes, and projects the input
state onto a maximally entangled Bell state with probability
1/2.
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Note that in order to grow long chains, we must be
able to create chains of three qubits. Given a plentiful
supply of Bell pairs as our fundamental resource, we can
make three-qubit chains only with the type-I fusion gate,
since the type-II gate necessarily destroys two qubits.
This also indicates a significant difference between this
protocol and the previous ones: Using only single-
photon sources, the fusion gates alone cannot create
cluster states. We can, however, use any method to cre-
ate the necessary Bell pairs �such as the CZ gate in Sec.
II.A�, as they constitute an off-line resource.

Upon successful operation, both type-I and type-II fu-
sion gates project two qubits that are part of a cluster
onto a polarization Bell state. When we apply a Had-
amard operation to one of the qubits adjacent to the
detected qubit�s�, the result will again be a cluster state.
However, upon failure the characteristics of the fusion
gates are quite different from each other. When the
type-I gate fails, it performs a Z measurement on the
input qubits. When the type-II gate fails, it performs an
X measurement on the input qubits. Recall that there is
a fundamental difference between a Z and an X mea-
surement on qubits in cluster states: A Z measurement
will break all bonds with the qubit neighbors and re-
move it from the cluster. An X measurement will also
remove the qubit from the cluster, but it will join its
neighbors into a redundantly encoded qubit. In terms of
the clusters, this corresponds to a qubit with dangling
bonds called leaves or cherries �see also Fig. 26�c��.

When the measured qubits are both end points of
cluster states �i.e., they have only one link to the rest of
the cluster�, failing type-I and type-II fusion gates have
similar effects on the cluster states: They remove the
qubits from the cluster. However, when fusion gates are
applied to two qubits inside a cluster �i.e., the qubits
have two or more links to other qubits in the cluster�,
then the failure modes of the two fusion gates differ
dramatically: In particular, when we apply the fusion
gate to a qubit in a chain, a failed type-I gate will break
the chain, while a failed type-II gate will only shorten
the chain and create one redundantly encoded qubit
next to the measured qubit. Since it is costly to reattach
a broken chain, it is best to avoid the type-I gate for this
purpose. The redundancy induced by a failed type-II fu-
sion gate is closely related to the error correction model
in Sec. V. We will explore this behavior further in the
next section.

Again, we need at least two-dimensional cluster states
in order to achieve the level of quantum computing that
cannot be simulated efficiently on a classical computer.
Using the failure behavior of the type-II fusion gate, we
can construct an efficient way of creating vertical links
between linear cluster chains. We attempt a type-II fu-
sion between two qubits that are part of different chains.
If the gate succeeds, we have created a vertical link on
the neighboring qubits. If the gate fails, one neighboring
qubit to each detected qubit becomes redundantly en-
coded. The type-I fusion can now be attempted once

more on the redundantly encoded qubits. If the gate suc-
ceeds, we established a vertical link. If the gate fails, we
end up with two disconnected chains that are both two
qubits shorter. Given sufficiently long linear cluster
chains, we can repeat this protocol until we have suc-
ceeded in creating a vertical link. A proof-of-principle
experiment demonstrating optical cluster-state quantum
computing with four photons was performed in Vienna
�Walther et al., 2005�.

Apart from constructing optimal two-qubit entangling
gates, the classical strategies for creating cluster states
can also be optimized. Kieling, Gross, and Eisert �2006�
identified two possible global strategies called modesty
and greed. Modesty denotes the rule that we always at-
tempt a �type-I� fusion gate on the smallest available
pieces of cluster state, while greed denotes the rule that
we always attempt to fuse the largest available pieces.
For a globally optimal strategy, the size Q of the cluster
created with N Bell pairs is bounded by

Q�N� �
N

5
+ 2. �51�

It turns out that the modesty strategy is vastly superior
to the greed strategy and is in fact close to the globally
optimal strategy in Eq. �51�.

E. Circuit-based optical quantum computing revisited

After all this, one might conclude that the cluster-state
approach to linear optical quantum information process-
ing has completely replaced the circuit-based model.
However, such a conclusion would be premature. In fact,
in a slightly altered form, the redundancy that we en-
countered in the Browne-Rudolph protocol can be used
to make a scalable circuit-based optical quantum com-
puter �Hayes et al., 2004; Gilchrist et al., 2005�. We will
now show how this is done.

We can encode a logical qubit in n physical qubits
using the parity encoding we encountered earlier in Sec.
II.H:

�0��n� 

1
�2

�� + ��n + �− ��n� ,

�52�

�1��n� 

1
�2

�� + ��n − �− ��n� ,

where �± �= ��H�± �V�� /�2. The superscript �n� denotes
the level of encoding. This encoding has the attractive
property that a computational-basis measurement of
one of the physical qubits comprising the logical qubit
����n� will yield ����n−1�, up to a local unitary on a single
�arbitrary� physical qubit. In other words, no quantum
information has been lost �Gilchrist et al., 2005�.

One way to generate this encoding is to use the
type-II fusion operator without the two polarization
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rotations �half-wave plates� in the input ports of the po-
larizing beam splitter. This yields

fII����n��0��m�
→ �����n+m−2� �success�

����n−1��0��m−1� �failure� ,
� �53�

with ����n�
��0��n�+��1��n�. From this we can immedi-
ately deduce that, given a success probability p, the
growth requirement for the redundancy encoding is m

� �1+p� /p. This is exactly the same scaling behavior as
the Browne-Rudolph protocol when clusters are grown
with the type-II fusion gate.

In order to build circuits that are universal for quan-
tum computing, we need a set of single-qubit operations
and at least one two-qubit entangling gate at the level of
the parity-encoded quits. As we have seen in Sec. II.H,
we can perform the operations X� and Z deterministi-
cally: The operator X�
cos�� /2�1+ i sin�� /2�x can be
implemented by applying this single-qubit operator to
only one physical qubit of the encoding. The Z gate for
an encoded qubit corresponds to a z operation on all
the physical qubits.

To complete the universal set of gates, we also need
the single-qubit gate Z�/2 and the CNOT. These gates
cannot be implemented deterministically on parity-
encoded qubits. In Fig. 32 we show how to implement
these gates using the fusion operators. The thickness of
the lines denotes the level of encoding. In addition to
the fusion operators, we need to perform a parity mea-
surement on one of the qubits by measuring z on all the
physical qubits in a circuit line. Since this measurement
is performed on a subset of the physical qubits compris-
ing a logical qubit, no quantum information is lost in this
procedure. It should also be noted that we attempt the

probabilistic fusion gates before the destructive parity
measurement, so that in the case of a failed fusion op-
eration we still have sufficient redundancy to try the fu-
sion again. It has been estimated that universal gate op-
erations can be implemented with greater than 99%
probability of success with about 102 operations �Gil-
christ et al., 2005�.

This circuit-based protocol for linear optical quantum
computation has many features in common with the
Browne-Rudolph protocol. Although the cluster-state
model is conceptually different from the circuit-based
model, they have similar resource requirements. The
reader might also be wondering whether these schemes
are tolerant to photon loss and other practical noise.
The errors that we discussed so far originate from the
probabilistic nature of linear optical photon manipula-
tion, but can we also correct errors that arise from, e.g.,
detection inefficiencies? We will discuss the realistic er-
rors of linear optical component in the next section and
the possible fault tolerance of LOQC in the presence of
these errors in Sec. V.

IV. REALISTIC OPTICAL COMPONENTS AND THEIR

ERRORS

In order to build a real quantum computer based on
linear optics, single-photon sources, and photon detec-
tion, our design must be able to deal with errors: The
unavoidable errors in practical implementations should
not erase the quantum information that is present in the
computation. We have already seen that the teleporta-
tion trick in the KLM scheme employs error correction
to turn the nondeterministic gates into near-
deterministic gates. However, this assumes that the pho-
ton sources, the mode matching of the optical circuits,
and the photon counting are all perfect. In the real
world, this is far from true.

What are the types of errors that can occur in the
different stages of the quantum computation? We can
group them according to the optical components: detec-
tion errors, source errors, and circuit errors �Takeuchi,
2000a�. In this section we will address these errors. In
addition, we will address an assumption that has re-
ceived little attention thus far: the need for quantum
memories.

A. Photon detectors

In linear quantum optics, the main method for gaining
information about quantum states is via photon detec-
tion. Theoretically, we can make a distinction between at
least two types of detectors: ones that tell us exactly how
many photons there are in an input state and ones that
give a binary output “nothing” or “many.” There are
many more possible distinctions between detectors, but
these two are the most important. The first type is called
a number-resolving detector or a detector with single-
photon resolution, while the second type is often called
a bucket or vacuum detector. The original KLM pro-
posal relies critically on the availability of number-

FIG. 32. The two probabilistic gates that complete a universal
set. �a� The Z�/2 gate uses a deterministic single-photon rota-
tion and a single type-II fusion gate. �b� The CNOT gate uses
one type-I and one type-II fusion gate. Both gates also need a
parity measurement, which is implemented by z measure-
ments on the individual physical qubits.
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resolving detectors. On the other hand, typical photon
detectors in LOQC experiments are bucket detectors. In
recent years there has been a great effort to bridge the
gap between the requirements of LOQC and available
photon detectors, leading to the development of
number-resolving detectors and LOQC protocols that
rely less on high-photon-number counting. In this sec-
tion, we state the common errors that arise in realistic
photon detection and review some of the progress in the
development of number-resolving detectors.

Real photon detectors of any kind can give rise to two
different types of errors.

�i� The detector counts fewer photons than were actu-
ally present in the input state. This is commonly known
as photon loss.

�ii� The detector counts more photons than were ac-
tually present in the input state. These are commonly
known as dark counts.

Observe that it is problematic to talk about the num-
ber of photons “that were actually present” in the input
state: When the input state is a superposition of differ-
ent photon number states, the photon number in the
state prior to detection is ill defined. However, we can
give a general meaning to the concepts of photon loss
and dark counts for arbitrary input states when we de-
fine the loss or dark counts as a property of the detector
�i.e., independent of the input state�. The detector effi-
ciency �� �0,1� can be defined operationally as the
probability that a single-photon input state will result in
a detector count, while dark counts can be defined as the
probability that a vacuum input state will result in a de-
tector count.4 Subsequently, these definitions can be
modified to take into account non-Poissonian errors.

Whereas perfect number-resolving detectors can be
modeled using projection operators onto the Fock states
�n��n�, realistic detectors give rise to POVM’s. A stan-
dard photon loss model is to have a perfect detector be
preceded by a beam splitter with transmission coefficient
� and reflection coefficient 1−�. The reflected mode is
considered lost �mathematically, this mode is traced
over�, so only a fraction � of the input reaches the de-
tector. In this model, every incoming photon has the
same probability of being lost, leading to Poissonian sta-
tistics. The POVM for a number-resolving photon detec-
tor corresponding to this model is �Scully and Lamb,
1969�

Ên = 	
k=n

� �k

n
��n�1 − ��k−n�k��k� . �54�

Using the same loss model, the POVM describing the
effect of a bucket detector is �Kok and Braunstein,
2000b�

Ê0 = 	
n=0

�

�1 − ��n�n��n� ,

�55�

Ê1 = 	
n=0

�

�1 − �1 − ��n��n��n� ,

where 1 and 0 denote a detector click and no detector
click, respectively. For an analysis including dark counts,
see Lee, Yurtsever, et al. �2004�.

Currently, the most common detectors in experiments
on LOQC are avalanche photodiodes �APD’s�. When a
photon hits the active semiconductor region of an APD,
it will induce the emission of an electron into the con-
ductance band. This electron is subsequently accelerated
in an electric potential, causing an avalanche of second-
ary electrons. The resulting current tells us that a photon
was detected. The avalanche must be stopped by revers-
ing the potential, which leads to a dead time of a few
nanoseconds in the detector. Any subsequent photon in
the input mode can therefore not be detected, and this
means that we have a bucket detector. A typical �unfil-
tered� detector efficiency for such a detector is 85% at a
wavelength of 660 nm. Dark counts can be made as low
as 6�103 Hz at room temperature and around 25 Hz at
cryogenic temperatures.

Several attempts have been made to create a number-
resolving detector using only bucket detectors and linear
optics, but no amount of linear optics and bucket detec-
tion can lead to perfect, albeit inefficient, single-photon
resolution �Kok, 2003�. On the other hand, we can cre-
ate approximate number-resolving detectors using only
bucket detectors via detector cascading. In this setup,
the incoming optical mode is distributed equally over N
output modes, followed by bucket detection. When the
number of modes in the cascade is large compared to
the average photon number in the input state and the
detector efficiencies of the bucket detectors are rela-
tively high, then good fidelities for the photon number
measurement can be obtained �Kok and Braunstein,
2001; Rohde, 2005�. Detector cascading in the time do-
main using increasingly long fiber delays is called time
multiplexing �Achilles et al., 2003; Banaszek and Walms-
ley, 2003; Fitch et al., 2003�. However, the fiber length
�and hence the detection time� must increase exponen-
tially for this technique to work. Nemoto and Braunstein
�2002� considered homodyne detection as a way to im-
prove the efficiency of communication near the single-
photon level, i.e., by simulating direct detection via ho-
modyne detection. They found that the simulated direct
detection strategy could provide limited improvement in
the classical information transfer. Branczyk et al. �2003�
proposed a photon number detector which uses an
n-photon auxiliary Fock state and high-efficiency homo-
dyne detection. The detector is nondeterministic, but,
when successful, it has high fidelity. By sacrificing prob-
ability of operation, an excellent approximation to a
photon number detector is achieved. When an �imper-
fect� quantum copier is available, extra information can

4In addition to this type of dark count, the detector can give a
signal that is too large due to amplification noise. This is a
multiplicative effect, rather than the additive effect we typi-
cally associate with dark counts, and it degrades the photon
resolution of the detector.
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be extracted from the qubits �Deuar and Munro, 2000a,
2000b�.

Fully fledged number-resolving photon detectors are
also being developed, such as the visible light photon
counter �VLPC� �Kim et al., 1999; Takeuchi et al., 1999�.
An excellent recent introduction to this technology has
been given by Waks et al. �2003�. The VLPC’s operate at
a temperature of a few kelvin in order to minimize dark
counts. They consist of an active area that is divided into
many separate active regions. When a photon triggers
such a region, it is detected while leaving the other re-
gions fully operational. Once a region has detected a
photon, it experiences a dead time in which no photon
detection can take place. Multiple photon detections in
different regions then generate a current that is propor-
tional to the number of photons. The VLPC is thus ef-
fectively a large detector cascade �N�104� with high de-
tection efficiency ��88% at 694 nm�. The dark count
rate of 2�104 Hz is about an order of magnitude higher
than the dark count rate for off-the-shelf APD’s.

An alternative technique uses a superconducting
transition-edge sensor that acts as a calorimeter. It mea-
sures the rise in temperature of an absorber, which is
quickly heated by incoming photons in the visible and
near infrared range �Rosenberg et al., 2005�. This device
operates at temperatures well below 100 mK and has a
measured detection efficiency greater than 88%. The
dark counts are negligible, but the repetition rate is
rather slow �of the order of 10 kHz� due to the cooling
mechanism after a photon has been detected. In addi-
tion to these experimental schemes, there are theoretical
proposals for number-resolving detectors involving
atomic vapors �James and Kwiat, 2002�, electromagneti-
cally induced transparency �Imamoğlu, 2002�, and reso-
nant nonlinear optics �Johnsson and Fleischhauer, 2003�.

Finally, we briefly mention quantum nondemolition
�QND� measurements. In the photon detectors that we
described so far, the state of the electromagnetic field is
invariably destroyed by the detector. However, in a
QND measurement there is a freely propagating field
mode after the measurement. In particular, the outcome
of the QND measurement faithfully represents the state
of the field after detection �Grangier et al., 1998�. Sev-
eral schemes for single-photon QND measurements
have been proposed, with either linear optics �Howell
and Yeazell, 2000a; Kok et al., 2002�, optical quantum
relays �Jacobs et al., 2002�, or other implementations
�Brune et al., 1990, 1992; Roch et al., 1997; Munro,
Nemoto, et al., 2005�. The experimental demonstration
of a single-photon QND was reported by Nogues et al.
�1999� using a cavity QED system, and a linear-optical
�nondeterministic� QND measurement was performed
by Pryde et al. �2004�. However, this last experiment has
led to a controversy about the nature of the fidelity mea-
sure that was used �see Kok and Munro �2005� and
Pryde et al. �2005��.

So far, we have considered only photon number de-
tection. However, in many implementations of LOQC
the qubit is encoded in a single polarized photon. A qu-
bit detector must therefore extract the polarization of

the photon, which may have had unwanted interactions
with the environment. A change in the polarization of
the photon will then induce an error in the computa-
tional circuit.

One mechanism that leads to errors in polarization is
inherent in any photon detector5 and deserves a special
mention here. In the Coulomb gauge, polarization is
perpendicular to the direction of propagation and the
plane of detection must therefore be perpendicular to

the Poynting vector k� . A complication arises when we
consider beams that are not perfectly collimated. We can

write the k� vector of the beam as

k� ��,�� = �sin � cos �,sin � sin �,cos �� . �56�

A realistic, reasonably well-collimated beam will have a
narrow distribution of � and � around �0 and �0. If we
model the active area of a detector as a flat surface per-

pendicular to k� ��0 ,�0�, some modes in the beam will hit
the detector at an angle. Fixing the gauge of the field in
the detection plane then causes a mixing of left- and
right-handed polarization. This introduces a detection
error that is fundamental, since the uncertainty principle
prevents the transverse momentum in a beam from be-
ing exactly zero �Peres and Terno, 2003�. At first sight
this effect might seem negligible, but later we will see
that concatenation of error-correcting codes will amplify
small errors. It is therefore important to identify all pos-
sible sources of errors.

B. Photon sources

The LOQC protocols described in this review all
make critical use of perfect single-photon sources. In
this section we wish to make more precise what is meant
by a single-photon source. We have thus far considered
interferometric properties of monochromatic plane
waves with exactly one field excitation. Such states,
while a useful heuristic, are not physical. Our first objec-
tive is to give a general description of a single-photon
state followed by a description of current experimental
realizations �see also Titulaer and Glauber �1966��.

The notion of a single photon conjures up an image of
a single-particle-like object localized in space and time.
However, it was conclusively demonstrated long ago by
Newton and Wigner �1949�, and also by Wightman
�1962�, that a single photon cannot be localized in the
same sense that a single massive particle can. Here we
are concerned only with temporal localization, which is
ultimately due to the fact that the energy spectrum of
the field is bounded from below. In this section we take
a simpler operational view. A photon refers to a single
detection event in a counting time window T. A single-
photon source leads to a periodic sequence of single de-
tection events with one, and only one, photon detected
in each counting window. Further refinement of this

5It can equally well be argued that this is an imperfection of
photon sources. This is a matter of convention.
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definition, via the output counting statistics of interfer-
ometers, is needed to specify the kind of single-photon
sources necessary for LOQC.

Consider a one-dimensional cavity of length L. The
allowed wave vectors for plane-wave modes form a de-
numerable set given by kn=n� /L, with corresponding
frequencies �n=ckn. If we measure time in units of
�L /c, the allowed frequencies may simply be denoted
by an integer �n=n�N. Similarly, if we measure length
in units of � /L, the allowed wave vectors are also inte-
gers. We are primarily interested in multimode fields
with an optical carrier frequency, ��1. We define the
positive-frequency field component as

â�t� = 	
n=1

�

âne−int. �57�

The bosonic annihilation and creation operators are
given by Eq. �2�. From this point on we assume the de-
tector is located at x=0 and thus evaluate all fields at the
spatial origin. Following the standard theory of photo-
detection, the probability per unit time for detecting a
single photon is given by

p1�t� = �n�t� , �58�

where

n�t� = �â†�t�â�t�� �59�

and the parameter � characterizes the detector.
A single-photon state may be defined as

�1;f� = 	
m=1

�

fmâm
† �0� , �60�

where �0�=�m�0�m is the multimode global vacuum state
and we require that the single-photon amplitude fm sat-
isfies

	
m=0

�

�fm�2 = 1. �61�

The counting probability is then determined by

n�t� = �	
k=1

�

fke−ikt�2

. �62�

This function is clearly periodic with a period 2�. As the
spectrum is bounded from below by n=1, it is not pos-
sible to choose the amplitudes fn so that the functions
n�t� have arbitrarily narrow support on t� �0,2��.

As an example we take

fm
N =

1

�1 − �1 − ��N
�N

m
�1/2

�m/2�1 − ���N−m�/2, �63�

where we have introduced a cutoff frequency N, making
infinite sums finite, and 0���0.5. For N�1 the nor-
malization is very close to unity, so we will drop it in the
following. The dominant frequency in this distribution is
�=�N, which we call the carrier frequency. In this case,

n�t� = �	
k=1

N

e−ikt�N

k
�1/2

�k/2�1 − ���N−k�/2�2

. �64�

This function is shown in Fig. 33 for various values of �.
The probability per unit time is thus a periodic function
of time, with period 2� and pulse width determined by �
when N is fixed. If we fix the carrier frequency �=�N

and let N become large, we must let � become small. In
the limit N→�, �→0 with � fixed we obtain a Poisson
distribution for the single-photon amplitude.

A second example is the Lorentzian

fn
N =

1

A

��
� + in

. �65�

In the limit N→�, the normalization constant is

A =
�e��

2 sinh����
−

1

2�
. �66�

While a field for which exactly one photon is counted in
one counting interval, and zero in all others, is no doubt
possible, it does not correspond to the more physical
situation in which a source is periodically producing
pulses with exactly one photon per pulse. To define such
a field state we now introduce time-bin operators. For
simplicity we assume that only field modes n�N are
excited and all others are in the vacuum state. It would
be more physical to assume that only field modes are
excited in some band, �−B�n��+B. Here � is the
carrier frequency and 2B is the bandwidth. However,
this adds very little to the discussion.

Define the operators

b̂ =
1

�N
	
m=1

N

e−i�m âm, �67�

where �=2� /N. This can be inverted to give

FIG. 33. The function n�t� in arbitrary units in the domain
−�� t�� for different values of � and N=100: �a� �=0.001,
�b� �=0.01, �c� �=0.05, and �d� �=0.49.
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âm =
1

�N
	
 =1

N

ei�m b̂ . �68�

The temporal evolution of the positive-frequency com-
ponents of the field modes then follows from Eq. �57�:

â�t� = 	
�=1

N

g��t�b̂�, �69�

where

g��t� =
1

�N
�1 − ei���−t��−1. �70�

The time-bin expansion functions g��t� are a function of
��− t alone and thus are simple translations of the func-
tions at t=0. The form of Eq. �69� is a special case of a
more sophisticated way to define time-bin modes. If we
were to regard â�t� as a classical signal, then the decom-
position in Eq. �69� could be generalized as a wavelet
transform where the integer � labels the translation in-
dex for wavelet functions. In that case the functions g��t�
could be made rather less singular. In an experimental
context, however, the form of the functions g��t� de-
pends upon the details of the generation process.

The linear relationship between the plane-wave
modes am and time-bin modes b is realized by a unitary
transformation that does not change particle number, so
the vacuum state for the time-bin modes is the same as
the vacuum state for the global plane wave modes. We
can then define a one-photon time-bin state as

�1�� = b̂�
† �0� . �71�

The mean photon number for this state is

n�t� = �g��t��2. �72�

This function is periodic with period 2� and corresponds
to a pulse localized in time at t=��. Thus the integer �
labels the temporal coordinate of the single-photon
pulse.

We are now in a position to define an N-photon state
with one photon per pulse. In addition to the mean pho-
ton number n�t� we can now compute two-time correla-
tion functions such as the second-order correlation func-
tion G�2����, defined by

G�2��T� = �â†�t�â†�t + T�â�t + T�â�t�� . �73�

The simplest example for N=2 is

�1�,1 � = b̂�
† b̂ 

†�0�, � �  . �74�

The corresponding mean photon number is

n�t� = �g��t��2 + �g �t��
2, �75�

as would be expected. The two-time correlation function
is

G�2��T� = �g��t�g �t + T� + g �t�g��t + T��2. �76�

Clearly this has a zero at T=0, reflecting the fact that the
probability of detecting a single photon immediately af-
ter a single-photon detection is zero, as the two pulses
are separated in time by ��− �. This is known as anti-
bunching and is the first essential diagnostic for a se-
quence of single-photon pulses with one and only one
photon per pulse. When T= ��− ��, however, there is a
peak in the two-time correlation function as expected. In
Fig. 34 we have reproduced the experimental results for
G�2��T� from Santori et al. �2002b�.

We now reconsider the Hong-Ou-Mandel interferom-
eter introduced in Sec. II.A with single-photon input
states. This example has been considered by Rohde and
Ralph �2005�. We label the two sets of modes by the
Latin symbols a and b, so, for example, the positive-
frequency parts of each field are simply a�t� and b�t�.
The coupling between the modes is described by a
beam-splitter matrix connecting the input and output
plane waves:

ân
out = �! ân + �1 − ! b̂n, �77�

b̂n
out = �! b̂n − �1 − ! ân, �78�

where 0�!�1. The probability per unit time to find a
coincidence detection of a single photon at each output
beam is proportional to

C = �â†�t�b̂†�t�b̂�t�â�t�� . �79�

The overbar represents a time average over a detector
response time that is long compared to the period of the
field carrier frequencies. In this example, we need only
consider the case of one photon in each of the two dis-
tinguished modes, so we take the input state to be

�1�a � �1�b = 	
m,n=1

�

�n�mân
†b̂m

† �0� , �80�

where �n and �n refer to the excitation probability am-
plitudes for modes an and bn, respectively. This state is
transformed by the unitary transformation U to give
���out=U��1�a � �1�b�. In the case of a 50:50 beam splitter,
for which !=0.5, this is given as �U�0�= �0��

FIG. 34. The G�2���� for the InAs quantum dot single-photon
source. Note that the variable T in the text is here replaced
with �. From Santori et al., 2002b.
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���out = 	
n,m=1

�

�n�m�Uan
†bm

† U†�U�0�

=
1

2 	
n,m=1

�

�n�m�an
† + bn

†��bm
† − am

† ��0�

=
1

2 	
n,m=1

�

�n�m��1�an
�1�bm

− �1�an
�1�am

�0�b

+ �1�bn
�1�bm

�0�a − �1�bn
�1�am

� .

Note that the second and third terms in this sum have no
photons in modes b and a, respectively. We then have
that

C =
1

2
−

1

2 	
n,m=1

�

�n�m
* �m�n

* . �81�

If the excitation probability amplitudes at each fre-
quency are identical �n=�n, this quantity is zero. In
other words, only if the two-single photon wave packets
are identical do we see a complete cancellation of the
coincidence probability. This is the second essential di-
agnostic for a single-photon source. Of course, in prac-
tice, complete cancellation is unlikely. The extent to
which the coincidence rate approaches zero is a measure
of the quality of a single-photon source as far as LOQC
is concerned. Whether or not this is the case depends on
the nature of the single-photon sources. In Fig. 35 we
have reproduced the experimental results for the Hong-
Ou-Mandel effect, shown with one of the InAs quantum
dot single-photon sources of Santori et al. �2002b�.

Broadly speaking, there are currently two main
schemes used to realize single-photon sources: �I� condi-
tional spontaneous parametric down-conversion and �II�
cavity-QED Raman schemes. As discussed by Rohde
and Ralph �2005�, type I corresponds to a Gaussian dis-
tribution of �n as a function of n and thus is the con-
tinuum analog of the binomial state defined by Eq. �63�.
The second scheme, type II, leads to a temporal pulse
structure that is the convolution of the excitation pulse
shape and the Lorentzian line shape of a cavity. If the
cavity decay time is the longest time in the dynamics, the
distribution �n takes the Lorentzian form given by Eq.
�65�. An early single-photon source based on an optical
emitter in a microcavity was proposed and demonstrated
by De Martini et al. �1996�.

Cavity-based single-photon sources are very compli-
cated experiments in their own right, and instead most

single-photon sources used in LOQC experiments are
based on parametric down-conversion �PDC�. In PDC a
short-wavelength pump laser generates photon pairs of
longer wavelength in a birefringent crystal. PDC can
yield extremely high fidelities �F�0.99� because the data
are usually obtained via postselection: we take only
those events into account that yield the right number of
detector coincidents. In addition, PDC facilitates good
mode matching due to energy and momentum conserva-
tion in the down-conversion process. The output of a
noncollinear type-I PDC can be written as

�"PDC� = �1 − ���2	
n=0

�

�n�n,n� , �82�

where �n� is the n-photon Fock state and � is a measure
for the amount of down-conversion. The probability for
creating n photon pairs is p�n�= �1− ���2����2n, which ex-
hibits pair bunching. When � is small, we can make a
probabilistic single-photon gun by detecting one of the
two modes. However, if we use only bucket detectors
without single-photon resolution, then increasing � will
also increase the amplitudes for a two-photon pair and
ultimately high-photon pairs in the output state. Conse-
quently, the single-photon source will deteriorate badly.
A detailed study of the mode structure of the condi-
tional photon pulse has been undertaken by Grice et al.
�2001�.

Another consideration regarding parametric down-
conversion is that photons in a pair are typically highly
entangled in frequency and momentum. When we use a
bucket detector that is sensitive over a broad frequency
range to herald a single photon in the freely propagating
mode, the lack of frequency information in the detector
readout will cause the single-photon state to be mixed.
In principle, this can be remedied by embedding the
down-converting material in a microcavity such that
only certain frequencies are allowed �Raymer et al.,
2005�. The source will then generate photon pairs with
frequencies that match the cavity, and a narrow-band
bucket detector can herald a pure single-photon state
with a small frequency linewidth.

Alternatively, we can use the following method of
making single-photon sources �Migdall et al., 2002; Pitt-
man et al., 2002c�. Consider an array of PDC’s with one
output mode incident on a photon detector and the
other entering the quantum circuit. We fire all PDC’s
simultaneously. Furthermore, all PDC’s have small �,
but if there are approximately ���−2 of them we still cre-
ate a single photon on average. Given that in current
PDC configurations ���2�10−4, this is quite an inefficient
process. Nevertheless, since it contributes a fixed over-
head per single photon to the computational resources,
this technique is strictly speaking scalable. For a detailed
description of parametric down-conversion as a photon
source, see U’Ren et al. �2003�.

To illustrate the experimental constraints on the gen-
eration of single-photon states, we now review an ex-
ample of a cavity-QED Raman scheme implemented by
Keller et al. �2004�. Photon antibunching from resonance

FIG. 35. The Hong-Ou-Mandel effect for the InAs quantum
dot single-photon source. From Santori et al., 2002b.
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fluorescence was demonstrated long ago. If an atom de-
cays spontaneously from an excited state to the ground
state, a single photon is emitted, and a second photon
cannot be emitted until the atom is reexcited. Unfortu-
nately the photon is emitted into a dipole radiation pat-
tern over a complete solid angle. Clearly we need to
engineer the electromagnetic environment with mirrors,
dielectrics, etc., to ensure a preferred mode for emission.
However, as pointed out by Kiraz et al. �2004�, this
comes at a price. For example, a carefully engineered
cavity around a single dipole emitter can change the
free-field spectral density around the emitter such that a
photon is indeed emitted in a preferred direction with an
increased rate compared to free-space emission.

However, single-photon sources based on spontane-
ous emission are necessarily compromised by the ran-
dom nature of spontaneous emission. As demonstrated
by Rohde, Ralph, and Nielsen �2005�, single-photon
sources that create Gaussian wave packets are much
more robust to mode mismatching than sources that cre-
ate Lorentzian wave packets. Spontaneous emission pro-
cesses fall in this last category. Clearly, we prefer a
stimulated emission process yielding a Gaussian wave
packet. To this end, a number of schemes based on
stimulated Raman emission into a cavity mode have
been proposed �Hennrich et al., 2004; Maurer et al.,
2004�. As an example, we discuss the experiment by
Keller et al. �2004� in some detail.

Consider the three-level atomic system in Fig. 36. The
ground state is coupled to the excited state via a two-
photon Raman process mediated by a well-detuned
third level. In the experiment by Keller et al. �2004�, a
calcium ion 40Ca+ was trapped in a cavity via a rf ion
trap. The cavity field is nearly resonant with the 4 2P1/2

→3 2D3/2 transition. Initially there is no photon in the
cavity. An external laser is directed onto the ion and is
nearly resonant with the 4 2S1/2→4 2P1/2 transition.
When this laser is switched on, the atom can be excited
to the 3 2D3/2 level by absorbing one pump photon and
emitting one photon in to the cavity. Since this is a
stimulated Raman process, the time of emission of the
photon into the cavity is completely controlled by the
temporal structure of the pump pulse. The photon in the
cavity then decays through the end mirror, again as a

Poisson process, at a rate given by the cavity decay rate.
This can be made very fast.

In principle one can now calculate the probability per
unit time to detect a single photon emitted from the
cavity. If we assume that every photon emitted is de-
tected, this probability is simply p1�t�=��â†�t�â�t��, where
� is the cavity decay rate, â and â† are the annihilation
and creation operators for the intracavity field, and

�â†�t�â�t�� = tr���t�â†â� , �83�

with ��t� the total density operator for the ion-plus-
cavity-field system. This may be obtained by solving a
master equation describing the interaction of electronic
states of the ion and two fields, one of which is the time-
dependent pump. Of course, for a general time-
dependent pump pulse shape this can only be done nu-
merically. Some typical examples are quoted by Keller et
al. Indeed by carefully controlling the pump pulse shape
considerable control over the temporal structure of the
single-photon detection probability may be achieved. In
the experiment the length of the pump pulse was con-
trolled to optimize the single-photon output rate. The
efficiency of emission was found to be about 8%, that is
to say, 92% of the pump pulses did not lead to a single-
photon detection event. This was in accordance with
theoretical simulations. These photons are probably lost
through the sides of the cavity. It is important to note
that this kind of loss does not affect the temporal mode
structure of the emitted �and detected� photons.

In a similar way we can compute the second-order
correlation function via

G�2��T� = �2tr�â†âeLT�â��t�â†� , �84�

where eLT is a formal specification of the solution to the
master equation for a time T after the “initial” condi-
tional state a��t�a†. Once again, due to the nonstationary
nature of the problem, this must be computed numeri-
cally. However, if the pump pulse duration is very short
compared to the cavity decay time and the cavity decay
time is the fastest decay constant in the system, the
probability amplitude to excite a single photon in a cav-
ity at frequency � is very close to Lorentzian. The ex-
periment revealed a clear suppression of the peak at T

=0 in the normalized correlation function g�2��T�, thus
passing the first test of a good single-photon source. Un-
fortunately, a Hong-Ou-Mandel interference experiment
was not reported.

For a practical linear optical quantum computer, how-
ever, we need good microscopic single-photon sources
that can be produced in large numbers. A recent review
on this topic by Lounis and Orrit �2005� identifies six
types of microscopic sources: �i� atoms and ions in the
gaseous phase;6 �ii� organic molecules at low tempera-
ture and room temperature;7 �iii� chromophoric

6Kuhn et al., 2002 and McKeefer et al., 2004.
7Brunel et al., 1999, Lounis and Moerner, 2000, Treussart et

al., 2002, and Hollars et al., 2003.

FIG. 36. The Raman process in a three-level atom. A classical
pump field drives the transition 4 2S1/2→4 2P1/2 off-resonantly,
thus generating a photon in the cavity mode. The level 4 2P1/2
is adiabatically eliminated and hence never populated.
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systems;8 �iv� color centers in diamond, such as nitrogen
vacancy9 or nickel nitrogen;10 �v� semiconductor
nanocrystals;11 and �vi� self-assembled quantum dots and
other heterostructures such as micropillars and
micromesa;12 quantum dots;13 and electrically driven
dots.14 The typical physical mechanisms that reduce the
indistinguishability of single-photon sources are dephas-
ing of the optical transition, spectral diffusion, and inco-
herent pumping. An earlier review on this topic has
been given by Greulich and Thiel �2001�. The subject of
single-photon sources using quantum dots was reviewed
by Santori et al. �2004�.

When single-photon sources are less than ideal, linear
optics might be employed in order to improve the out-
put state. For example, if the source succeeds with prob-
ability p, then the output of the source might be �

=p�1��1�+ �1−p��0��0�, where we assumed that the failure
output results in a vacuum state. Using multiple copies
of �, linear optics, and ideal photon detection, one may
increase the probability up to p=1/2, but not higher
�Berry et al., 2005�. A general discussion on improving
single-photon sources with linear optical postprocessing
has been given by Berry et al. �2004�.

Not only must single-photon sources create clean
single-photon states, in the sense described above, but
all sources must also generate identical states in order to
achieve good visibility in a Hong-Ou-Mandel test. Typi-
cal experiments demonstrating single-photon sources
create subsequent single-photon states in the same
source and employ a delay line to interfere the two pho-
tons. This way, two-photon quantum interference effects
are demonstrated without having to rely on identical
sources �Santori et al., 2002b�. de Riedmatten et al. dem-
onstrated quantum interference by using identical pulse
shapes triggering different photon sources �de Riedmat-
ten et al., 2003�. In applications other than LOQC, such
as cryptography, the requirement of indistinguishable
sources may be relaxed. This leads to the concept of the
suitability of a source for a particular application �Hock-
ney et al., 2003�.

A variation on single-photon sources is the entangled-
photon source. We define an ideal entangled-photon
source as a source that creates a two-photon polariza-
tion Bell state. This is an important resource in both the
Browne-Rudolph and Gilchrist-Hayes-Ralph protocols.
It is known that these states cannot be created determin-
istically from single-photon sources, linear optics, and
destructive photon detection �Kok and Braunstein,
2000a�. Nevertheless, such states are very desirable,

since they would dramatically reduce the cost of linear-
optical quantum computing. The same error models for
single-photon sources apply to entangled-photon
sources. Again, a great variety of proposals for
entangled-photon sources exist in the literature, using
quantum dots �Benson et al., 2000; Stace et al., 2003� or
parametric down-conversion �Śliwa and Banaszek,
2003�. Two-photon states without entanglement have
been created experimentally by Moreau et al. �2001�,
and Santori et al. �2002a�, as have entangled-photon
pairs �Kuzmich et al., 2003; Yamamoto et al., 2003�.

C. Circuit errors and quantum memories

In addition to detector errors and errors in the single-
photon sources, there is a possibility that the optical cir-
cuits themselves acquire errors. Probably the most im-
portant circuit error is mode mismatching. It occurs
when nonidentical wave packets are used in an inter-
ferometric setup �e.g., the coefficients �n and �n in Eq.
�81� are not identical�. There is a plethora of reasons
why the coefficients �n and �n might not be equal. For
example, the optical components might not do exactly
what they are supposed to do. More precisely, the inter-
action Hamiltonian of the components will differ from
its specifications. One manifestation of this is that there
is a finite accuracy in the parameters in the interaction
Hamiltonian of any optical component, leading to
changes in phases, beam-splitter transmission coeffi-
cients, and polarization rotation angles. In addition, un-
wanted birefringence in the dielectric media can cause
photoemission and squeezing. Inaccurate Hamiltonian
parameters generally reduce the level of mode match-
ing, leading, for example, to a reduced Hong-Ou-
Mandel effect and hence inaccurate CZ gates. Indeed,
mode matching is likely to be the main circuit error.
Most of this effect is due to nonidentical photon sources,
which we discussed in the previous section. The effect of
frequency and temporal mode mismatching was studied
by Rohde and Ralph �2005� and Rohde, Ralph, and
Nielsen �2005�.

A second error mechanism is that, typically, compo-
nents such as beam splitters, half- and quarter-wave
plates, etc., are made of dielectric media that have a
�small� absorption amplitude. Scheel �2005� showed that
there is a lower bound on the absorption amplitude in
physical beam splitters. In addition, imperfect imped-
ance matching of the boundaries will scatter photons
back to the source. This amounts to photon loss in the
optical circuit. In large circuits, these losses can become
substantial.

A third error mechanism is due to classical errors in
the feedforward process. This process consists of the
readout of a photon detector, classical postprocessing,
and conditional switching of the optical circuit. The de-
tection errors have been discussed in Sec. IV.A and clas-
sical computing is virtually error free due to robust clas-
sical error correction. Optical switches, however, are still
quite lossy �Thew et al., 2002�. In addition, when high-
voltage Pockels cells are used, the repetition rate is slow

8Lee, Kumar, et al., 2004.
9Kurtsiefer et al., 2000, Beveratos et al., 2002, and Jelezko et

al., 2002.
10Gaebel et al., 2004.
11Lounis and Moerner, 2000, Michler et al., 2000, and Messin

et al., 2001.
12Gérard et al., 2002, Pelton et al., 2002, Santori et al., 2002b,

and Vu~ković et al., 2003.
13Hours et al., 2003, Zwiller et al., 2003, and Ward et al., 2005.
14Yuan et al., 2002.
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�on the order of 10 kHz�. This may become too slow, as
photons need to be stored in a quantum memory �e.g., a
delay loop�, which itself may be lossy and needs feedfor-
ward processing. Feedforward control for LOQC was
demonstrated by Giacomini et al. �2002� and Pittman et

al. �2002a�.
An important component of linear optical quantum

computing that we have ignored so far is the quantum
memory. When the probability of a successful �tele-
ported� gate or addition to a cluster state becomes small,
photons that are part of the circuit must be stored for a
considerable time while the off-line preparation of en-
tangled photons is taking place. The use of mere fiber
loops then becomes problematic, as these induce photon
losses �0.17 dB km−1 in a standard telecom fiber at
1550 nm�. For example, storage of a photon for 100 �s
in a fiber has a loss probability of p�0.54. At present,
all linear optical quantum computer proposals need
some kind of quantum memory. This may be in the form
of delay lines with error correction, atomic vapors, solid-
state implementations, etc.

In general, the effect of a quantum memory error
boils down to the inequality of the input state �in and the
�time-translated� output state �out. A good figure of
merit is the fidelity Fqm:

Fqm = �Tr����in�out
��in��2. �85�

The absence of a photon in the output state is an obvi-
ous failure mechanism, but the memory can fail in other
ways, include qubit decoherence and mode mismatching
of the input/output modes. In this sense, the design
specifications of a solid-state-based quantum memory
are more stringent than those for solid-state single-
photon sources: Not only does it need to produce a
single photon with very high fidelity, it also needs the
ability to couple a photon into the device with very high
probability. Note that we do not have to couple a pho-
tonic qubit into a quantum memory: We can use two
photon memories to store one qubit, provided the
memory does not retain information about whether a
photon was stored or not.

A proof of principle for a free-space delay line was
given by Pittman and Franson �2002�, and quantum
memory delay lines using quantum error correction and
QND measurements were proposed by Gingrich et al.

�2003� and Ralph et al. �2005�. A storage time of 125 �s
for entangled photons in a telecom fiber was reported by
Li et al. �2005�, with subsequent fringe visibilities of
82%. Using the magnetic sublevels of the ground state
of an atomic ensemble, Julsgaard et al. �2004� stored a
weak coherent light pulse for up to 4 ms with a fidelity
of 70%. The classical limit is 50%, showing that a true
quantum memory was constructed. Other proposals in-
clude dark-state polaritons �Fleischhauer and Lukin,
2002�, and single-photon cavity QED �Maître et al.,
1997�.

V. GENERAL ERROR CORRECTION

To achieve quantum computing despite inevitable
physical errors in the quantum computer, we have to
employ error correction �EC�. Typically, an error-
correction protocol consists of a circuit that can correct
for one or more types of error. However, these circuits
will in turn introduce errors. For an EC protocol to be
useful, the error in the circuit after the EC protocol must
be smaller than the error before the EC protocol. Re-
peated nested application of the EC protocol �so-called
concatenation� can then reduce the errors to arbitrarily
small levels. In doing so, we must take care not to sac-
rifice the scaling behavior of the quantum computer.
This is captured in the notion of fault tolerance. The
magnitude of the errors for which fault tolerance breaks
down is called the fault-tolerant threshold. For more de-
tails, see Nielsen and Chuang �2000�.

General fault-tolerant thresholds for quantum com-
puting have been derived by Steane �2003� and Knill
�2005�, and here we address LOQC specific error-
correction and fault-tolerant thresholds. We have seen
that the KLM scheme employs a certain level of error
correction in order to turn high-probability teleported
gates into near-deterministic gates, even though all-
optical components are ideal. In this section, we discuss
how an LOQC architecture can be developed with ro-
bustness against component errors.

Different error models will typically lead to different
levels of robustness. For example, in the cluster-state
approach of Browne and Rudolph, we can relax the con-
dition of perfect photon counting given ideal photon
sources. The type-II fusion operation described in Sec.
III.D must give a coincidence count in the two detectors.
Any other detector signature heralds an error. So if the
photon detectors are lossy, the rate of coincidence
counts is reduced. Since the fusion operation is already
probabilistic, a reduced success rate translates into a
larger overhead in the cluster-state generation. How-
ever, if the photon sources are not ideal and if there is a
substantial number of dark counts in the detectors, then
we rapidly lose quantum information. This raises two
important questions: �i� Given a certain error model,
what is the error-correcting capability for a given LOQC
architecture? �ii� What is the realistic error model? This
last question depends on the available photon sources,
detectors, and memories, as well as the architecture of
the optical quantum computer. Currently, theoretical re-
search in LOQC is concentrating on these questions.

The three main errors that need to be coded against
are inefficient detectors, noisy photon sources, and un-
faithful quantum memories. There are other error
mechanisms as well �see Sec. IV�, and these will become
important in concatenated error correction. In order to
find the fault-tolerant level for a given architecture,
these other errors must be taken into account. In the
next section, we discuss how photon loss can be cor-
rected in both the cluster-state model and the circuit-
based model. In Sec. V.B we discuss fault-tolerant quan-
tum computing in the cluster-state model.
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A. Correcting for photon loss

We first consider photon loss. Its effect on the original
teleportation component in the KLM protocol �Eq. �37��
was studied by Glancy et al. �2002�, who found that in
the KLM scheme a gate teleportation fidelity better than
99% requires detectors with an efficiency ��0.999 987.
Using the seven-qubit CSS quantum code, the photon
loss � in the KLM scheme is allowed to be as large as
1.78% ���11.5%, depending on the construction of
the entangling gates �Silva et al., 2005�. Using type-I and
type-II fusion gates in creating entanglement, the pho-
ton loss can be much higher: In the Browne-Rudolph
protocol, a low detection efficiency merely reduces the
rate with which the cluster state is created, whereas in
the circuit-based model a low detection efficiency re-
quires a higher level of encoding.

However, we need not only the ability to grow the
cluster or the parity encoding efficiently, we also need to
do the single-qubit measurements. Since in LOQC the
single-qubit measurements amount to photon detection,
we have a problem: Failing to measure a photon is also a
single-qubit failure. Therefore, every logical qubit must
be constructed with multiple photons, such that photon
loss can be recovered from. In particular, this means that
we can no longer straightforwardly remove redundant
qubits in the cluster-state model if they are not properly
encoded. In this section, we show how cluster states can
be protected from photon loss by “planting trees” in the
cluster �Varnava et al., 2005�, and we describe how an
extra layer of encoding protects the circuit model of
Ralph, Hayes, and Gilchrist �2005� from detection inef-
ficiency, probabilistic sources, and memory loss.

Varnava, Browne, and Rudolph �2005� introduced a
code exploiting the property that a cluster state is an
eigenstate of every stabilizer generator and that the ei-
genvalue of each is known beforehand �we will assume
that all eigenvalues are +1�. This allows us to measure
the value of a lost qubit as follows: Suppose we wish to
measure a qubit in the computational basis; that is, we
require a Z measurement. If that qubit is no longer
present, we can choose Si=Xi�j�n�i�Zj such that our lost
qubit is in the neighborhood n�i� of the ith qubit. If we
successfully measure Xi and all Zj except for the lost
qubit, we can multiply the eigenvalues to find either +1
or −1. Since the stabilizer generator has eigenvalue +1,
this determines the Z eigenvalue, and therefore the Z
eigenstate of our lost qubit. In Fig. 37�a�, we show how
an X measurement can be performed on a lost qubit by
Z measurements on the adjacent qubits.

In cluster-state quantum computing, we need the abil-
ity to do single-qubit measurements in an arbitrary basis:
A=cos �X+sin �Y. To this end, we use the cluster-state
property that two adjacent X measurements remove the
qubits from the cluster and transfer the bonds. This way,
we can plant the qubit labeled A into the cluster �see
Fig. 37�b��. Instead of doing the A measurement on the
in-line qubit, we perform the measurement on a qubit in
the third �horizontal� level. When this measurement suc-

ceeds, we have to break the bonds with all other qubits
in the tree. Therefore, we measure all remaining qubits
in the third level as well as the qubits in the fourth level
that are connected to the A qubit in the Z basis.

Sometimes the photon detection that constitutes the
qubit measurement A will fail due to the detector inef-
ficiency. In that case, we can attempt the A measure-
ment on a second qubit in the third level. Again, the
remaining qubits and the fourth-level qubits connected
to the A qubit must be measured in the Z basis. When-
ever such a Z measurement fails �as is the case for the
qubit that failed the A measurement�, we need to do an
indirect Z measurement according to the method out-
lined above: When a photonic qubit is lost, we need to
choose a stabilizer generator for which that photon was
represented by a Z operator. The tree structure ensures
that such an operator can always be found. We then
measure all photons in this stabilizer generator to estab-
lish the Z eigenvalue for the lost photon. In the case of
additional photon loss, we repeat this process until we
succeed.

When the success probability of the measurement of a
logical qubit is given by p, then the number of qubits in
a tree n is given by

n = polylog� 1

1 − p
� . �86�

Numerical simulations indicate that a detector loss of up
to 50% can be corrected �Varnava et al., 2005�. More-
over, if more than 50% of photons were allowed to be
lost, then we can imagine that all lost photons are col-
lected by a third party who can perform a measurement
complementary to A on the same qubit. Since this would
violate various no-cloning bounds, such a strategy must
be ruled out. Hence, a detection efficiency of 50% is the
absolute minimum �Barrett, 2005�.

In the circuit-based model by Gilchrist, Hayes, and
Ralph, the lowest level of encoding consists of a polar-
ized photon such that �0�
�H� and �1�
�V�. The second
level of encoding is the parity code ��0��n� , �1��n� of Eq.
�52�, which allows us to use the probabilistic fusion gates
in a deterministic manner. The third level of encoding is

FIG. 37. Photon-loss-tolerant cluster states. �a� We can mea-
sure the Pauli operator X on the shaded �lost� qubit by mea-
suring all the adjacent qubits in the Z basis. �b� Planting a
cluster tree using two adjacent X measurements in order to do
a single-qubit measurement in the basis A.
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redundant encoding such that a logical qubit is encoded
in a GHZ state of parity-encoded qubits �Ralph et al.,
2005�:

���L 
 ��0�1
�n�

¯ �0�q
�n� + ��1�1

�n�
¯ �1�q

�n�. �87�

To demonstrate that this code protects quantum infor-
mation from photon loss, we show that heralded photon
loss merely yields a recoverable error and that we can
perform a universal set of deterministic quantum gates
on these logical qubits.

First of all, we note that every pair of optical modes
that constitutes the lowest-level qubit encoding must
contain exactly one photon and no high number count-
ing is required �contrary to the KLM scheme�. This is
also true for the Browne-Rudolph protocol. We there-
fore assume that we have bucket detectors with a certain
detection efficiency � and a negligible dark count rate.
The type-I and type-II fusion gates are then no longer
�1,1� and �2,1� strategies, respectively. The type-I fusion
gate ceases to yield pure output states, while the type-II
gate yields a pure output state only if a detector coinci-
dence is found �we assume perfect sources�. Not only
does failure remove the mode that was involved with the
PBS, but we should also measure one mode in order to
purify the cluster. Hence, the type-II fusion gate with
bucket detectors is a �2,2� strategy and the growth re-
quirement is m�2/p.

Suppose we wish to measure the value of the logical
qubit ���L in the computational basis �as we discuss be-
low, any other measurement can be performed by first
applying a single-qubit rotation to ���L�. Since the logi-
cal qubit is a GHZ state, it is sufficient to measure only
one parity qubit, e.g., the first one. Physically, this mea-
surement constitutes a counting of horizontally and ver-
tically polarized photons: if the number of vertically po-
larized photons is even, then the value of the parity
qubit is �0�1

�n�, and if it is odd, then its value is �1�1
�n�. In

order to successfully establish the parity, we therefore
need to detect all n photons.

When we include photon loss in this measurement,
there are three possible measurement outcomes for ev-
ery optical mode: “horizontal,” “vertical,” or “detector
failure.” In the language of POVM’s, this can be written
as

Ê�H� = ��H��H� ,

Ê�V� = ��V��V� , �88�

Ê�0� = �1 − ����H��H� + �V��V�� .

These POVM’s add up to unity in the subspace spanned
by �H� and �V�, as required. A particular measurement
outcome on n modes can then be written as a string of n

outcomes s= �s1 , . . . ,sn�, where every si� �H ,V ,0. The
optical state after finding a particular measurement out-
come s is then

�2,. . .,q = Tr1�Ê1
�s����L���� . �89�

When all photons are detected, the qubit is projected
onto its logical value. However, when one or more qu-
bits are lost it is no longer possible to establish the par-
ity. Therefore, as soon as a photon is lost the next pho-
ton is measured in a diagonal basis, thus disentangling
the parity qubit from the other parity qubits. A few lines
of algebra show that the remaining q−1 parity qubits are
in the state

���L� = ��0�2
�n�

¯ �0�q
�n� + ��1�2

�n�
¯ �1�q

�n�. �90�

In other words, the encoding has become smaller but the
quantum information has not been erased. We can
therefore retry the measurement of the qubit q times.

Next, we have to show that we can perform determin-
istic one- and two-qubit gates using this redundant en-
coding. To this end, recall how deterministic gates were
implemented in the parity encoding: A universal set of
gates is �X�

�p� ,Z�p� ,Z
�/2
�p� ,CNOT�p�. We added a superscript

�p� to indicate that these gates act on the parity qubit.
As we have seen, the gates Z

�/2
�p� and CNOT�p� cannot be

implemented deterministically, and have to be built us-
ing fusion gates.

How can these gates be used to form a universal set
on the redundantly encoded �logical� qubit? First, the
single-qubit gate Z is still implemented deterministically:
Z=Z�p�=nz. Therefore, in order to apply a Z gate, a z

operation must be applied to all n photons in one and
only one parity qubit. Second, the gate Z�/2 is diagonal
in the computational basis and can therefore be imple-
mented using one Z

�/2
�p� . Third, the X� gate on the redun-

dantly encoded qubit is somewhat problematic, since the
gate transforms separable states of parity qubits into
highly entangled GHZ states. However, if we apply q

−1 CNOT�p� gates, we can decode the qubit such that its
state is ���0�1

�n�+��1�1
�n�� � �0�2

�n�
¯ �0�

q

�n�. We can then ap-
ply the deterministic gate X�

�p� to the first parity qubit
and use another set of q−1 CNOT�p� gates to reencode the
qubit. Therefore, the gate X� “costs” 2�q−1� CNOT�p�

gates. Finally, the CNOT gate on the redundantly en-
coded qubit can be implemented using q CNOT�p� gates.

Since every single-qubit operation can be constructed
from X� and Z�/2, we can perform arbitrary single-qubit
measurements. We now have a universal set of gates on
our logical qubit, together with computational-basis
readout and an efficient encoding mechanism. Numeri-
cal simulations indicate that this method allows for de-
tector, source, and memory efficiencies of ��82%
�Ralph et al., 2005�.

Note that there seem to be conflicting requirements in
this code: In order to execute successful fusion gates, we
want n to be reasonably large. On the other hand, we
want n to be as small as possible such that the probabil-
ity of measuring all n photons p=�n is not too small. We
assumed that every parity qubit is encoded with the
same number of photons n, but this is not necessary. In
principle, this method works when different parity qu-

168 Kok et al.: Linear optical quantum computing with …

Rev. Mod. Phys., Vol. 79, No. 1, January–March 2007



bits have different-sized encodings. However, some care
should be taken to choose every ni as close to the opti-
mal value as possible.

B. General error correction in LOQC

As we mentioned before, photon loss is not the only
error in LOQC, and creating large cluster trees or a siz-
able redundant encoding in the circuit model will actu-
ally amplify other errors, such as dephasing. A truly
fault-tolerant quantum computer architecture must
therefore be able to handle the actual physical noise that
will be present. Given a certain noise model and error-
correcting codes, we can derive fault-tolerant thresholds:
The errors must be smaller than the threshold value for
concatenated error correction to eliminate them all.
Knill et al. �2000� considered a combination of photon
loss and dephasing in their original proposal and found
that the accuracy threshold for optical components in
that scheme was higher than 99%.

Dawson, Haselgrove, and Nielsen �2005, 2006� per-
formed an extensive numerical study of fault-tolerant
thresholds for linear optical cluster-state quantum
computing. The computational model they adopted is
Nielsen’s microcluster approach, described in Sec. III.C,
with type-I fusion gates instead of KLM-type CZ gates.
The physical operations in this model are Bell-state
preparation, single-photon gates and memories, type-I
fusion gates, and photon measurements. The computa-
tion proceeds in time steps, with exactly one operation
at each step. Furthermore, it is assumed that any two
single-photon qubits in the computation can serve as in-
puts of the fusion gate. In other words, we have a direct
interaction between qubits. In addition, parallel opera-
tions are allowed to speed up the computation and mini-
mize the use of quantum memories. Finally, the classical
computation needed to control the cluster-state comput-
ing is taken to be sufficiently fast.

The noise model adopted by Dawson et al. consists of
the inherent probabilistic nature of the fusion gates, as
well as photon loss and depolarization at every time step
in the computation. The photon loss is characterized by
a uniform loss probability �, and the depolarization
comes in two flavors: Single-qubit operations have a
probability � /3 of undergoing a Pauli operation X, Y, or
Z. After the Bell-state preparation and before the fusion
gate input, the two photons undergo a correlated depo-
larizing noise: With probability 1−� nothing happens to
the qubits, while with probability � /15 any of the re-
maining 15 two-qubit Pauli operators are applied. This is
a completely general model for the noise that can affect
optical cluster-state quantum computing, and the result-
ing fault-tolerance simulation gives an accuracy thresh-
old region on � and �. Thresholds were obtained for
both a seven-qubit CSS error correction code and a 23-
qubit Golay error correction code. The study shows that
scalable quantum computing with the 23-qubit code is
possible for a maximum loss probability of ��3�10−3

and a maximum depolarizing probability of ��10−4.

Even though this noise model accounts for general
noise and the fault-tolerant threshold puts a bound on
its magnitude, it is clearly a simplification of the physical
noise that is expected in cluster-state LOQC. It is argued
that the difference between correlated two-qubit noise
and independent noise does not change the threshold
much. Similarly, using one parameter to describe both
photon absorption and detector efficiency will not have
a dramatic effect on the threshold �Nielsen, 2006a�. The
next milestone for establishing fault-tolerance thresh-
olds is to adopt a noise model in which the parameters
are measurable quantities, such as the visibility in a
Hong-Ou-Mandel experiment and photon loss prob-
abilities.

When various parameters in a noise model differ sig-
nificantly, it might be beneficial to diversify the error
correction codes. EC codes that correct specific errors
such as photon loss or depolarization may be smaller
than generic EC codes and therefore introduce less
noise. A round of special error correction might be used
to reduce large errors, and subsequent generic error cor-
rection will further reduce the errors below the fault-
tolerant threshold.

In addition, certain types of errors or noise might be
naturally suppressed by a suitable alteration in the archi-
tecture. For example, there is a way to create high-
fidelity four-photon GHZ states with lossy bucket detec-
tors and inefficient sources �Gilchrist, 2005�. Assume
that the Bell-pair source creates a state of the form
ps�0��0�+ �1−ps��"

−��"−�, where �"−� is the two-photon
polarization singlet state. This is a reasonable error
model when the source obeys selection rules that pre-
vent single-photon components to contribute to the out-
put state �cf. Benson et al., 2000�. In order to make a
three-photon GHZ state using these sources we use a
type-I fusion gate and postselect on a single detector
click. The detector click indicates that at least one
source created a photon pair. However, if only one pho-
ton pair was created, the output mode of the type-I fu-
sion gate must necessarily be empty. By taking the out-
put modes of two type-I fusion gates in two separate
three-photon GHZ creation attempts and leading them
into a type-II fusion gate, we can postselect on finding
two detector clicks. As a result, high-fidelity four-photon
GHZ states are produced.

Several other specialized circuits have been proposed
that either detect errors or correct them. For example,
Ralph �2003� proposed a simple demonstration circuit
that detects and corrects bit-flip errors on a single qubit
using the encoded qubit state ��0��0�+��1��1� and an an-
cilla qubit �0�. However, since this is a probabilistic pro-
tocol, this circuit cannot naively be inserted in a quan-
tum computing circuit. If we assume the availability of
perfectly efficient detectors �not necessarily photon-
number resolving�, deterministic polarization-flip detec-
tion for distributing entanglement can be achieved
�Kalamidas, 2004�. In a similar fashion, a single-qubit
error-correction circuit can be constructed with polariz-
ing beam splitters, half-wave plates, and Pockels cells
�Kalamidas, 2005�. Here we assume that these passive
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optical elements do not induce additional noise. A full
analysis would have to take this noise into account.

VI. OUTLOOK: BEYOND LINEAR OPTICS

We have seen in this review that it is possible to con-
struct a quantum computer with linear optics, single-
photon sources, and photon detection alone. Knill,
Laflamme, and Milburn �2001� overturned the conven-
tional wisdom that a lack of direct photon-photon inter-
actions prohibits scalability. Since the work of KLM,
several groups have proposed modifications to building
a linear optical quantum computer with reduced re-
sources and realistic �noisy� components.

The basic principles of LOQC have all been demon-
strated experimentally, predominantly using parametric
down-conversion and bucket photon detection. Due to
the small efficiency of PDC photon sources, however,
these techniques cannot be considered scalable in a
practical sense. Currently, there is a concerted effort to
build the necessary single-photon sources, photon detec-
tors, and quantum memories for a scalable linear optical
quantum computer. On the theoretical front, there is an
ongoing effort to design more efficient architectures and
effective error correction codes tailored to the noise
model that is relevant to LOQC.

Nevertheless, constructing the necessary components
and using fault-tolerant encoding is hard, and several
extensions to LOQC have been proposed. In this last
section we sketch a few additions to the linear optical
toolbox that can make quantum computing a little bit
easier.

First, we have seen in Sec. I.D that cross-Kerr nonlin-
earity can be used to induce a photon-photon interac-
tion and how two-qubit quantum gates can be con-
structed using such a nonlinearity. Unfortunately,
natural Kerr nonlinearities are extremely small, and this
is not a practical method for creating optical gates. How-
ever, recently it was suggested that a small nonlinearity
might still be used for quantum computing. It was shown
by Munro, Nemoto, et al. �2005� how such nonlinearities
can make a number-resolving QND detector, and Bar-
rett et al. �2005� showed how a small cross-Kerr nonlin-
earity can be used to perform complete Bell measure-
ments without destroying photons. Subsequently, it was
realized by Nemoto and Munro �2004� that this tech-
nique can also be used to create a deterministic CNOT

gate on photonic qubits �see also Munro, Nemoto, and
Spiller �2005��. Recent work in electromagnetically in-
duced transparencies by Lukin and Imamoğlu �2000,
2001� suggests that the small but not tiny nonlinearities
needed for this method are on the threshold of becom-
ing practical. Alternatively, relatively large nonlineari-
ties can be obtained in photonic band-gap materials
�Friedler et al., 2004�.

Second, if we have high-fidelity single-photon sources
and memories, it might become beneficial to engineer
these systems such that they support coherent single-
qubit operations. This way, we can redefine our qubits as
isolated static systems, and we have circumvented the

problem of qubit loss. When these matter qubits emit a
qubit-dependent photon, they can in turn be entangled
using techniques from linear optical quantum comput-
ing. It was shown by Barrett and Kok �2005� that such an
architecture can support scalable quantum computing,
even with current realistic components. Independently,
Lim et al. �2005a, 2005b� showed how a similar setup can
be used to implement deterministic two-qubit quantum
gates. Recently, these two methods were combined in a
fault-tolerant, near-deterministic quantum computer ar-
chitecture �Lim et al., 2005a�.

Third, Franson, Jacobs, and Pittman proposed the
implementation of a two-qubit �SWAP gate using the
quantum Zeno effect: Two optical fibers are fused and
split again, such that the input modes overlap in a small
section of the fiber. This acts as a beam splitter on the
modes in the input and output fibers. At regular inter-
vals inside the joint fiber we place atoms with a two-
photon transition. This transition acts as a two-photon
measurement, while single-photon wave packets propa-
gate through the fiber undisturbed. Furthermore, the
single-photon wave packets maintain coherence. This re-
peated two-photon measurement effectively suppresses
the Hong-Ou-Mandel effect via the quantum Zeno ef-
fect. In this way, two single-photon qubits in the input
modes are transformed into two single-photon qubits in
the output modes and undergo a �SWAP gate.

Finally, an alternative approach to linear optical quan-
tum computing involves encoding qubits in squeezed or
coherent states of light �Gottesman et al., 2001; Ralph et
al., 2003�. Linear elements take on a new capability in
these implementations. For example, Bell measurements
and fan-out gates become deterministic elements �Jeong
et al., 2001; van Enk and Hirota, 2002�. The downside is
that it is difficult to produce the superposition states that
are required as resources in such schemes, although con-
siderable theoretical and experimental progress has
been made recently �Lund et al., 2004; Wenger et al.,
2004�. If this problem is solved, considerable savings in
resources could result from adopting such implementa-
tions.

Whatever the ultimate architecture of quantum com-
puters will be, there will always remain a task for �linear�
optical quantum information processing: In order to dis-
tribute quantum information over a network of quantum
computers, the qubit of choice will most likely be opti-
cal. We therefore believe that the techniques reviewed
here are an important step toward full-scale distributed
quantum computing—the quantum internet.
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