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Quantum number-path entanglement is a resource for supersensitive quantum metrology and in
particular provides for sub-shot-noise or even Heisenberg-limited sensitivity. However, such number-path
entanglement has been thought to be resource intensive to create in the first place—typically requiring
either very strong nonlinearities, or nondeterministic preparation schemes with feedforward, which are
difficult to implement. Very recently, arising from the study of quantum random walks with multiphoton
walkers, as well as the study of the computational complexity of passive linear optical interferometers fed
with single-photon inputs, it has been shown that such passive linear optical devices generate a
superexponentially large amount of number-path entanglement. A logical question to ask is whether this
entanglement may be exploited for quantum metrology. We answer that question here in the affirmative by
showing that a simple, passive, linear-optical interferometer—fed with only uncorrelated, single-photon
inputs, coupled with simple, single-mode, disjoint photodetection—is capable of significantly beating the
shot-noise limit. Our result implies a pathway forward to practical quantum metrology with readily
available technology.
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Ever since the early work of Yurke and Yuen it has been
understood that quantum number-path entanglement is a
resource for supersensitive quantum metrology, allowing
for sensors that beat the shot-noise limit [1,2]. Such devices
would then have applications to supersensitive gyroscopy
[3], gravimetry [4], optical coherence tomography [5],
ellipsometry [6], magnetometry [7], protein concentration
measurements [8], and microscopy [9,10]. This line of
work culminated in the analysis of the bosonic NOON
state, as defined as ðjN; 0i þ j0; NiÞ= ffiffiffi

2
p

, where N is the
total number of photons, which was shown to be optimal
for local phase estimation with a fixed, finite number of
photons, and in fact allows one to hit the Heisenberg limit
and the Quantum Cramér-Rao Bound [11–14].
Let us consider the NOON state as an example, where for

this state in a two-mode interferometer we have the condition
of all N particles in the first mode (and none in the second
mode) superimposed with all N particles in the second mode
(and none in the first mode). While such a state is known to
be optimal for sensing, its generation is also known to be
highly problematic and resource intensive. There are two
routes to preparing high-NOON states: the first is to deploy
very strong optical nonlinearities [15,16], and the second
is to prepare them using measurement and feedforward
[17–19]. In many ways then NOON-state generators have

had much in common with all-optical quantum computers
and therefore are just as difficult to build [20]. In addition to
the complicated state preparation, typically a complicated
measurement scheme, such as parity measurement at each
output port, also had to be deployed [21].
Recently two independent lines of research, the study

of quantum random walks with multiphoton walkers in
passive linear-optical interferometers [22–24], as well as
the quantum complexity analysis of the mathematical
sampling problem using such devices [25,26], has led to
a somewhat startling yet inescapable conclusion—passive,
multimode, linear-optical interferometers, fed with only
uncorrelated single photon inputs in each mode (Fig. 1),
produce quantummechanical states of the photon field with
path-number entanglement that grows superexponentially
fast in the two resources of mode and photon number [27].
What is remarkable is that this large degree of number-path
entanglement is not generated by strong optical nonlinear-
ities, nor by complicated measurement and feedforward
schemes, but by the natural evolution of the single photons
in the passive linear optical device. While such devices are
often described to have “noninteracting” photons in them,
there is a type of photon-photon interaction generated by the
demand of bosonic state symmetrization, which gives rise to
the superexponentially large number-path entanglement via
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multiple applications of the Hong-Ou-Mandel effect [24].
It is known that linear optical evolution of single photons,
followed by projective measurements, can give rise to
“effective” strong optical nonlinearities, and we conjecture
that there is indeed a hidden Kerr-like nonlinearity at
work also in these interferometers [28]. Like boson sampling
[25], and unlike universal quantum computing schemes
such as that by Knill, Laflamme, and Milburn [29], this
protocol is deterministic and does not require any ancillary
photons.
The advantage of such a setup for quantum metrology is

that resources for generating and detecting single photons
have become quite standardized and relatively straightfor-
ward to implement in the lab [30–36]. The community then
is moving towards single photons, linear interferometers,
and single-photon detectors all on a single, integrated,
photonic chip, which then facilitates a road map for scaling
up devices to large numbers of modes and photons. If all of
this work could be put to use for quantum metrology, then a
road to scalable metrology with number states would be
at hand.
It then becomes a natural question to ask—since num-

ber-path entanglement is known to be a resource for
quantum metrology—can a passive, multimode interfer-
ometer, fed only with easy-to-generate uncorrelated single
photons in each mode, followed by uncorrelated single-
photon measurements at each output, be constructed to
exploit this number-path entanglement for supersensitive
(sub-shot-noise) operation? The answer is indeed yes, as
we shall now show.
The phase sensitivity, Δφ, of a metrology device can

be defined in terms of the standard error propagation
formula as,

Δφ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hÔ2i − hÔi2

q
j ∂hÔi

∂φ j
; ð1Þ

where hÔi is the expectation of the observable being
measured and φ is the unknown phase we seek to estimate.
The photons evolve through a unitary network according

to Ua†i U
† ¼ P

jUija
†
j . In our protocol, we construct the

n-mode interferometer Û to be,

Û ¼ V̂ · Φ̂ · Θ̂ · V̂†; ð2Þ
which we call the quantum Fourier transform interferom-
eter (QuFTI) because V̂ is the n-mode quantum Fourier
transform matrix, with matrix elements given by,

VðnÞ
j;k ¼ 1ffiffiffi

n
p exp

�
−2ijkπ

n

�
: ð3Þ

Φ̂ and Θ̂ are both diagonal matrices with linearly increasing
phases along the diagonal represented by

Φj;k ¼ δj;k exp ½iðj − 1Þφ�;
Θj;k ¼ δj;k exp ½iðj − 1Þθ�; ð4Þ

where φ is the unknown phase one would like to measure
and θ is the control phase. Θ̂ is introduced as a reference,
which can calibrate the device by tuning θ appropriately.
To see this tuning we combine Φ̂ and Θ̂ into a single
diagonal matrix with a gradient given by

Φj;k · Θj;k ¼ δj;k exp ½iðj − 1Þðφþ θÞ�: ð5Þ

The control phase θ can shift this gradient to the optimal
measurement regime, which can be found by minimizing
Δφwith respect to n and φ. Since this is a shift according to
a known phase, we can for simplicity assume (and without
loss of generality) that φ is in the optimal regime for
measurements and θ ¼ 0. Thus, Θ̂ ¼ Î and is left out of our
analysis for simplicity.
In order to understand how such a linearly increasing

array of unknown phase shifts may be arranged in a
practical device, it is useful to consider a specific example.
Let us suppose that we are to use the QuFTI as an optical
magnetometer. We consider an interferometric magnetom-
eter of the type discussed in Ref. [37], where each of the
sensing modes of the QuFTI contains a gas cell of
Rubidium prepared in a state of electromagnetically
induced transparency manually designed to implement
the linear phase gradient. In this state, a photon passing
through the cell at the point of zero absorption in the
electromagnetically induced transparency spectrum
acquires a phase shift that is proportional to the product
of an applied uniform (but unknown) magnetic field and the
length of the cell. We assume that the field is uniform

FIG. 1. Architecture of the quantum Fourier transform inter-
ferometer (QuFTI) for metrology using single-photon states. The
input state comprises n single photons, j1i⊗n. The state evolves
via the passive linear optics unitary Û ¼ V̂ · Φ̂ · Θ̂ · V̂†, where V̂
is the quantum Fourier transform, Φ̂ is an unknown, linear phase
gradient, and Θ̂ is a reference phase gradient used for calibration.
At the output we perform a coincidence photodetection projecting
on exactly one photon per output mode, measuring the observable
Ô ¼ ðj1ih1jÞ⊗n, which, over many measurements, yields the
probability distributionPðφÞ that acts as a witness for the unknown
phase φ.

PRL 114, 170802 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending
1 MAY 2015

170802-2



across the QuFTI, as would be the case if the entire
interferometer was constructed on an all optical chip and
the field gradient across the chip were negligible. Since we
are carrying out local phase measurements (not global) we
are not interested in the magnitude of the magnetic field but
wish to know if the field changes and if so by how much.
(Often we are interested in if the field is oscillating and with
what frequency.) Neglecting other sources of noise then in
an ordinary Mach-Zehnder interferometer, this limit would
be set by the photon shot-noise limit. To construct a QuFTI
with the linear cascade of phase shifters, as shown in Fig. 1,
we simply increase the length of the cell by integer amounts
in each mode. The first cell has length L, the second length
2L, and so forth. This will then give us the linearly
increasing configuration of unknown phase shifts required
for the QuFTI to beat the shot-noise limit.
One might question why one would employ a phase

gradient rather than just a single phase. Investigation into
using a single phase in Φ̂ indicates that this yields no benefit.
We conjecture that this is because the number of paths
interrogating a phase in a single mode is not superexpo-
nential as is the case when a phase gradient is employed.
The interferometer may always be constructed efficiently

following the protocol of Reck et al. [38], who showed that
an n × n linear optics interferometer may be constructed
fromOðn2Þ linear optical elements (beam splitters and phase
shifters), and the algorithm for determining the circuit has
run time polynomial in n. Thus, an experimental imple-
mentation of our protocol may always be efficiently realized.
The input state to the device is j1i⊗n, i.e., single photons

inputted in each mode. If φ ¼ 0 then Φ̂ ¼ Î and thus
Û ¼ V̂ · Î · V̂† ¼ Î. In this instance, the output state is
exactly equal to the input state, j1i⊗n. Thus, if we define P
as the coincidence probability of measuring one photon in
each mode at the output, then P ¼ 1 when φ ¼ 0. When
φ ≠ 0, in general P < 1. Thus, intuitively, we anticipate
that PðφÞ will act as a witness for φ.
In the protocol, assuming a lossless device, no meas-

urement events are discarded. Upon repeating the protocol
many times, let x be the number of measurement outcomes
with exactly one photon per mode, and y be the number of
measurement outcomes without exactly one photon per
mode. Then P is calculated as P ¼ x=ðxþ yÞ. Thus, all
measurement outcomes contribute to the signal and none
are discarded. Note that, due to preservation of the photon
number and the fact that we are considering the anti-
bunched outcome, PðφÞmay be experimentally determined
using non-number-resolving detectors if the device is
lossless. If the device is assumed to be lossy, then
number-resolving detectors would be necessary to distin-
guish between an error outcome and one in which more
than one photon exits the same mode. The circuit for the
architecture is shown in Fig. 1.
The state at the output to the device is a highly path-

entangled superposition of ð2n−1n Þ terms, which grows

superexponentially with n. This corresponds to the number
of ways to add n non-negative integers whose sum is n, or
equivalently, the number of ways to put n indistinguishable
balls into n distinguishable boxes. We conjecture that this
superexponential path-entanglement yields improved phase
sensitivity as the paths query the phases a superexponential
number of times.
The observable being measured is the projection onto

the state with exactly one photon per output mode,
Ô ¼ ðj1ih1jÞ⊗n. Thus, hÔi ¼ hÔ2i ¼ P. And, the phase-
sensitivity estimator reduces to,

Δφ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P − P2

p

j ∂P∂φ j
: ð6Þ

Following the result of Ref. [39], P is related to the
permanent of Û as,

P ¼ jPerðUÞj2: ð7Þ
Here the permanent of the full n × n matrix is computed,
since exactly one photon is going into and out of every
mode. This is unlike the boson-sampling protocol [25]
where permanents of submatrices are computed.
We will now examine the structure of this permanent.

The matrix form for the n-mode unitary ÛðnÞ is given by

UðnÞ
j;k ¼ 1 − einφ

nðe2iπðj−kÞ=n − eiφÞ ; ð8Þ

as derived in Ref. [40]. Taking the permanent of this matrix
is challenging as calculating permanents are in general P-
hard. However, based on calculating PerðÛðnÞÞ for small n,
we observe the empirical pattern,

PerðÛðnÞÞ ¼ 1

nn−1
Yn−1
j¼1

½jeinφ þ n − j�; ð9Þ

as conjectured in Ref. [40]. This analytic pattern we
observe is not a proof of the permanent, but an empirical
pattern—a conjecture—that has been verified by brute
force to be correct up to n ¼ 25. Although we don’t have
a proof beyond that point, n ¼ 25 is well beyond what will
be experimentally viable in the near future, and thus the
pattern we observe is sufficient for experimentally enabling
supersensitive metrology with technology available in the
foreseeable future.
Following as a corollary to the previous conjecture, the

coincidence probability of measuring one photon in each
mode is

P ¼ jPerðÛðnÞÞj2

¼ 1

n2n−2
Yn−1
j¼1

½anðjÞ cosðnφÞ þ bnðjÞ�; ð10Þ
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as shown in Ref. [40], where

anðjÞ ¼ 2jðn − jÞ;
bnðjÞ ¼ n2 − 2jnþ 2j2: ð11Þ

The dependence of P on n and φ is shown in Fig. 2.
It then follows that

���� ∂P∂φ
���� ¼ nPj sinðnφÞj

Xn−1
j¼1

anðjÞ
anðjÞ cosðnφÞ þ bnðjÞ

; ð12Þ

as shown in Ref. [40].
Finally, we wish to establish the scaling of Δφ. With a

small φ approximation [sinðφÞ ≈ φ, cosðφÞ ≈ 1 − 1
2
φ2]

we find

Δφ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3

2nðnþ 1Þðn − 1Þ

s

¼ 1

2
ffiffiffiffiffiffiffiffiffiffi
ðnþ1

3
Þ

q ; ð13Þ

as shown in Ref. [40]. Thus, the phase sensitivity scales as
Δφ ¼ Oð1=n3=2Þ as shown in Fig. 3.
We would like to compare the performance of our

QuFTI to an equivalent multimode interferometer baseline
for which we will construct the shot-noise limit (SNL)
and Heisenberg limit (HL). This is a subtle comparison,
due to the linearly increasing unknown phase shifts,
f0;φ;…; ðn − 1Þφg, that the QuFTI requires to operate.
The mathematical relation is shown in Fig. 3, where we
have converted the number of resources, N, to the number
of photons, n. There is disagreement on how such resources
should be counted. This is the method that we feel most

fairly counts our resources. A more detailed supporting
discussion can be found in Ref. [40].
We have shown that a passive linear optics network fed

with single-photon Fock states may implement quantum
metrology with phase sensitivity that beats the shot-noise
limit. Unlike other schemes that employ exotic states such
as NOON states, which are notoriously difficult to prepare,
single-photon states may be readily prepared in the labo-
ratory using present-day technology. Furthermore, we show
in Ref. [40] that this network is far more robust against
dephasing than the NOON state. This new approach to
metrology via easy-to-prepare single-photon states and
disjoint photodetection provides a road towards improved
quantum metrology with frugal physical resources.
While computing the sensitivity using the standard error

propagation formula of Eq. (1) provides clear evidence that
our scheme does indeed beat the SNL, it would be
instructive to carry out a calculation of the quantum
Fisher information and thereby provide the quantum
Cramér-Rao bound, which would be a true measure of
the best performance of this scheme possible, according to
the laws of quantum theory. However, due to the need to
compute the permanent of large matrices with complex
entries, this calculation currently remains intractable. We
will continue to investigate such a computation for a future
work. In general, analytic solutions to matrix permanents
are not possible. In this instance, the analytic result is
facilitated by the specific structure of the QuFTI unitary.
Other inhomogeneous phase gradients may yield analytic
results, but we leave this for future work.
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FIG. 2 (color online). Coincidence photodetection probability
P against the unknown phase φ and the number of photons and
modes n. As n increases, the dependence of P on φ increases,
resulting in improved phase sensitivity.

FIG. 3 (color online). Phase sensitivity Δφ against the number
of photons n (red circles). The shot-noise limit of 1=
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N

p
(black

squares) and Heisenberg limit of 1=N (orange triangles) are
shown for comparison. The QuFTI exhibits phase sensitivity
significantly better than the shot-noise limit, and only slightly
worse than the Heisenberg limit.
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