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Abstract

The control of plasma position, shape and current in a tokamak fusion re-
actor is examined using linear optimal control. These advanced tokamaks are
characterized by non up-down symmetric coils and structure, thick structure
surrounding the plasma, eddy currents, shaped plasmas, superconducting
coils, vertically unstable plasmas, and hybrid function coils providing chmic
heating, vertical field, radial field, and shaping field. Models of the elec-
tromagnetic environment in a tokamak are derived and used to construct
control gains that are tested in nonlinear simulations with initial perturba-
tions. The issues of applying linear optimal control to advanced tokamaks are
addressed, including complex equilibrium control, choice of cost functional
weights, the coil voltage limit, discrete control, and order reduction. Results
indicate that the linear optimal control is 2 feasible technigue for controlling
advanced tokamaks where the more common classical control will be severely
strained or will not work.
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1 Introduction

The control of tokamak plasma equilibrium is critical to achieving long
duration plasma discharges, Virtually all control analyses in the tokamak
literature have addressed the classical approach to the control of tokamaks
because classical control is used in present experimental devices ([1]-[13]).
However, the tokamak electromagnetic environment is highly coupled, and
the modern optimal approach is better suited to deal with such a problem.
The first serious modern optimal control analyses were done by Gran et al.
([14}-115]) and Firestone{16), for radial position and plasma current control
of the TFTR tokamak([13]. This device has a circular plasma and a thin
structure {vacuum vessel) surrounding the plasma. Ogata and Ninomiya
([17])-i18]) also set up a modern control model for .IT-60[19]. The present
analysis is concerned with future tokamaks which will have important new
features compared to present experimental devices, features which will im-
pact how control is achieved.

In next generation and future tokamak reactors, the plasma will be sur-
rounded by a thick blank=i that is not likely to be up-down symmetric. The
external ohmic and poloidal field coil locations will not be strictly determined
by equilibrium considerations, but will also have to take into account engi-
neering constraints such as coil maintenance, divertor or limiter ports, RF
antenna structures, neutral beams, and diagnostics. These additional consid-
erations may not allow up-down symmetric placement of coils and each coil
would have to supply ohmic heating, vertical field, radial field, and shaping
field. More complex equilibria may be necessary to achieve higher §, and if
divertors are used, control of the null point positions will be critical. Larger
coil currents, voltages, and powers suggest that superconducting coils will
be used. In addition, measurements will probably be scarce, with none or
few taken inside the plasma chamber. The plasma density and temperature
will be high, requiring that no contact be made with the first wali or other
components not designed to handle the heat and particle loads.

The alterations beyond present experiments complicate the control prob-
lem and require a more accurate description of the system for control pur-
poses. The classical control approach uwsed on experimental machines is
single-input/single-output ([5]-[7] and [13]). Conirol of a quantity is with
one set (up-down symmetric pair) of cuils. The coils are geometrically lo-
cated to provide predominantly one function, either vertical field, radial field,



shaping field, or ohmic heating. Great effort is made in the design of the feed-
back system to avoid disturbing one parameter when controlling another. In
addition, because of this control scheme, the coil-to-coil interactions (the volt-
age induced in one coil by another) are typically not included in the control
model, and subsequently have to be minimized by the introduction of further
circuitry(9]. Generally, some form of PID (proportional-integral-derivative)
controller is used where the voltage, produced by the ccil power supply, is
proportional to a gain times the difference between the actual value of the
parameter to be controlled and a reference value. This voltage is expressed
as

Vieodsack = koY — %) + ka(d — 3o) + ks fo‘(y —_— (1)

The terms ky, ka, and k; are the gains for the proportional, derivative, and
integral feedback control, respectively, and y represents the parameter to be
controlled. The characteristics of advanced tokamaks are likely to strain this
.!assical contro] philosophy.

Modern optimal control theory, specifically linear optimal control, can
deal with the entire coupled electromagnetic environment including hybrid
coil functions, electromagnetic interactions, sophisticated eddy current mod-
els, and complex equilibrium. The physical system is described by a set of
ordinary differential equations, rather than the classical input-ouptut rela-
tions. Decoupling of the control system functions is not necessary because all
the information has been included in the derivation of the gains, although it
may still be useful for the given power supplies or control requirements. The
feedback voltages are now represented as 2 gain matrix times a vector of the
currents in the system (coil, plasma, and eddy currents). All the parameters
are controtled simultaneously by all of the control voltages.

The tokamak control problem can be separated into two major parts,
electromagretic and plasma kinetic. The electromagnetic refers to control-
ling the magnetic and electric fields which maintain or change the plasma
position, shape, and current. The plasma kinetic refers to controlling par-
ticle feed rates and heating to maintain or change the plasma density, tem-
perature, current density, and their profiles. The two areas are ultimately
coupled. Only the eleciromagnetic aspect will be examined, taking plasma
kinetic parameters as known. The purpose of this work is to characterize the
control of plasma position, shape, and current in advanced tokamaks and



to evaluate the feasibility of using linear optimal control. The INTOR(20]
tokamak conceptual design is used as a reference example since it has many
of the features envisioned for future tokamaks. It is not intended to design
the control systein for INTOR[20], but to use the design to examine control
behavior. In Section 2, we outline the description of the tokamak electro-
magnetic environment. The operation of a tokamak and determination of
the nominal trajectory are covered in Section 3. Linear optimal control of
tokamaks is discussed in Section 4. The issues regarding application of linear
optimal control are discussed in Section 5 and conclusions are presented in
Section 6.

2 Tokamak Electromagnetic Environment

To utilize conventional optimal control theory, ordinary differential equa-
tions are required for the system description. This is accomplished using
lumped parameter models. The LR circuit equations are used to describe
the coupled behavior of the coils, plasma, and structure {eddy currents),
represented by a vector differential equation,

d
sl +EI=Y (2)
where L is the matrix of self and mutual inductances, R is the diagonal matrix
of resistances, [ is the vector of circuit currents, and V is the vector of circuit
voltages. The plasma and eddy current circuits have no driving voltage
since they are induced currents. The overall model of the electromagnetic
environment is shown in fig. 1, using INTOR[20] as the example.

The plasma is modeled 2s a single filament located at the magnetic axis
by using the semi-empirical formula,

2 I 3 I z
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where R, is the position of the magnetic axis, A is the plasma geometrical
center, ¢ 15 the horizontal minor radius, 3, is the poloidal beta, and I; is
the plasma internal «:lf-inductance per unit length. The mutual inductances
between the plasma and other circuits are determined using the filament



approximation for the plasma, although the plasma self-inductance and re-
sistance are calculated including the full plasma dimensions.

8R L v
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T is the plasma temperature in keV, Z.ss is the effective charge number
of the plasma including impurities, oy is the trapped particle enhancement
factor (taken as 2.0), In A is the Coulomb logarithm, and x is the plasma
elongation.

The eddy currents actually compose a continuous current distribution
in the tokamak structure. In order to use a lumped parameter description,
she structure must be discretized to yield eddy current paths. Each one of
these paths can then be treated as a single circuit. For the blanket zone
surrounding the plasma, this is accomplished by breaking the blanket into
three regions: the first wall; the breeder; and shield. These regions are
characterized by their respective dimensions and electrical resistiviiies. The
eddy currents are modeled as toroidally continuous stzips. For the strip
model, a thick structure is represented by a series of nested sheets or contours
drawn through the center of the region to be modeled. These sheets are
then segmented into strips, as illustrated in fig. 2. The dotted line around
one of the strips shows the actual finite region that is being approximated.
The strips are approximated as three filaments spaced across the length for
mutual inductances and a solenoid for the self-inductance. The resistance is
calculated using the full dimensions of the structure. The typical L/R time
for a strp in the first wall is 7.5 ms., 1.0 second for the breeder, and 0.3
second for the shield.

Poloidal breaks which inhibit toroidally continuous currents are treated
by increasing the resistance of the toroidally continuous eddy current strips.
A full model including these breaks and their actual geometry explicitly
would increase the system dimensions considerabiy[21], and is not considered
necessary at this point. Thus the circuit inodel consists of 10 coil circuits,
one plasma circuit; and 49 eddy current circuits, giving a to.al of 60 circuits,

The plasma circuit is allowed to move in response to magnetic fields
present at its center, and is assumed to reach equilibrium instantaneously,

(=]



since the plasma balances itself in response to forces on the order of microsec-
onds. The time derivative in the vector circuit equation can be expanded to
give,
8L 3L oL éL
LI+-B—RLR+BZLZ+3—I.-:+RI+ Btl—z' (8}
Equilibrium of a dee-shaped plasma is represented by four nonlinear alge-
braic equations|22] describing the vertical field, radial field, qua.d:upole field,
and hexapole field as functions of equilibrium parameters &, Z, &, §, 1, &y,
and [;, where 8, I, and Z are the triangularity, plasma current, and ve:txca.l
distance from the miclplane, respectively. These serve as the expressions giv-
ing R, Z, x, and § for given values of I,, By, li, and external currents. These
are given by,

ftolp 3R i 3 .ﬁ( I
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z ;” B 2) 4Rf() r Aty m\ BT
" (7}
BR=Zgi(R,Z;B;,Z;)I;=O (8)

i=1

Bq_ﬂzaf:(}gzﬂ, ZYL = :;Pfcn + can? +63N+c‘+cs,5p] (9)

l—l

QNBI oI 6
;15 (R, Z; Ry Zi)1; :’rﬁ[uﬁ'i'cv'i'caﬂp}- (10)

The kernels f;, g;, 3{3}, and g—;{,‘- represent the vertical, radial, quadrupole,
and hexapole fields at the plasma center per unit current at the coil or eddy
current. The constants ¢, through cs, and the function f(x) are determined
by fitting to severa! equilibrium calculations covering a range of values for
the equilibrium parameters using the fixed/free boundary equilibrium code,
NEQ23]. This representation allows the gross plasma equilibrium param-
eters to be related directly to external currents, which is necessary for ac-
tual control of these parameters. The dependencies of the quadrupole and
hexapole fields on {; have not been resolved for this work, however they can
be by using more equilibrium calculations. The plasma horizontal minor ra-
dius is taken to be constant, since a physically correct determination requires
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a full equilibrium calculation. Two simple models 2re possible, toroidal flux
conservation and a limiter contour constraint. The toroidal flux conservation
is not satisfactory since it would indicate plasma size changes that are not
consistent with the limiter or first wall location. The limiter constraint is not
used because the processes describing the plasma contacting a limiter are not
modeled. Thus it is considered most sensible to assume a constant horizontal
minoz radius, since it does not change much in the controlled simulations.
The time derivatives &, Z, k, and § are then determined by differentiating
the equilibrium equations, thereby assuming the plasma evolves through a se-
ries of equilibria, The plasma density, temperatuze, Z, ¢, and {; are specified
functions of time.

3 Tokamak Operation

The INTOR|20] conceptual reactor design is used as the examaple for this
study, although a new time dependent plasma start-up trajectory is derived.
The limiter mode of operation is considered, but the horizontal minor radius
is held constant. The predicted operation of an advanced tckamak can Le
broken into six regions; breakdown, start-up, ramp-up, flat-top, ramp-down,
and RF current drive. The plasma current is chosen to follow the equation
I{t) = 12.0{1.0 — exp~®!1%5¢) MA from 0.0 to 5.0 seconds, after which it is
keld constant at 6.0 MA. The breakdown and start-up regions of the discharge
are taken to be from 0.6 to 0.3 seconds, the ramp-up region from 0.3 to 6.0
seconds, and flat-top for about 280 seconds. Only the ramp-up and flat-top
regions are examined, as these comprise the region of tokamak fusion reactor
operation over long periods of time, The ramp-down region is considered to
be the reverse of the ramp-up.

The plasma trajectory is constructed as a finite number of equilibria.
The equilibrium parameters a1z the plasma current, major radius, vertical
position, horizontal minor radius, elongation, triangularity, poloidal beta,
toroidal field, and plasma internal seli-inductance. The evolution of some of
these parameters as a function of time is s*own in Table 1. An inverse MHD
equilibrium calculation{23] determines the required coil currents at each of
thess points in the trajectory. In additicn, the ohmic current necessary to
drive the piasma current is calculated and distributed among the coils to
minimize the vertical and radial fields in the plasma region. The resulting



field derivatives are also found to be small. The current in <ach coil at any
time is the sum of the equilibrium end ohmic components. The coil current
and voltage time trajectories are determined consistently with the following
constraints: magnetic field at breakdown less than 5 gauss; coil volteges less
than 50 kV; coil currents less than 50 kA /turn; coil current densities less than
20 MA;m?*; maximum B at the superconductor less than 5 T/sec; magimum
B at the superconductor less than 8 Tesla; and 20 volts provided over the
first 0.3 seconds for plasma breakdown and start-up. Each coil is assumed
to have its own separate power supply, although power supply dynamics are
not included. The trajectory does not include eddy currents, or additional
voltages and currents incurred as a result of control.

4 Linear Optimal Control for Tokamaks

The nominal trajectory is the time-dependent path such that if the volt-
ages V(t) are applied to the coils, the currents in the coils, plasiau, aud
structure will follow the reference trajectories I (t), and the equilibrium pa-
rameters will follow their corresponding trajectorias Ry(t), Z,(t), %.(%}, and
8,(t). However, the overall reference trajectory is based on an approximate
model of the system, and any real application of these voltages would not in
fact result in the nominal behavior. It is therefore necessary to construct a
closed loop feedback controller which examines the present state of the sys-
tem and provides a correction to the voltage to keep the plasma paraineters
at the nominal values. This requires a description of the perturbations to
nominal values. The control is derived to keep these perturbations small,
thereby keeping the system along its nominal path.

Five parameters are to be controlled: plasma current; major radius; ver-
tical position; elongation; and triangularity. We define a vector of these five
parameters as Y7 = |R, Z, &, §,1,]. The currents in the system (coil, plasma,
and eddy currents) are the stale variables {the minimum number of varij-
ables that completely summarize the tokamak electromagnetic status), and
the voltages on the coils are the control variables (the variables that are ma-
nipulated to generate the required state variables, The perturbations are
described by linearizing the circuit, equilibrium, and velocity equations in a
first order Taylor expansion:



I(t) = L(t)+ Li(t) (11)

¥ty = V() +Wait) (12)
R(i) = Ro(¢) + Ri(2) (13)
Z(t) = Z,(t)+ Z,(¢) (14)
k(t) = Kot} + rft) (15)
8(t) = &(t) +&i(t). (16)

The zeroth crder terms describe the nominal trajectory, while the linear terms
describe the perturbations to the currents, voltages, and controlled parame-
ters. The resulting linear equations for the perturbed vector quantities are,

Li(t) = A(XL(E) + B(6)V(2) (17)
and
Ry(¢)
&)
Yo(t)= | wft) | = C()L(2). (18)
8it)
Ip, (¢}
These lizear equations provide a description of how the system behaves,
and therefore indicate how deviations from the nominal can arise. Io linear
optimal control these equations are used to derive the closed loop feedback
gains. The controller has all the information about the system and can more
“intelligently” keep the system along nominal in spite of disturbances. The
matrices A, B, and C are described in Appendix A.

A function :epres—c::ntfng the system performance is needed to select the
optimal conirol. The objective is to find the voliage corrections ¥; which
keep the perturbations of the controlled parameters Y, near zero and which
expend as little power as possible in doing so. The most common form for
this so-called cost functional is the quadratic form,

rr Al
= [ |anl)E) + 02200+ e}« a0+ an L 0) + i i)
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or

7= [ gt + YIOROY.e) (20)

where the integral ia over the time of control. The g terms are the weights
for the controlled perameters aad the r terms are the weights for the various
coil voltages. The selection of these weights determines the time response of
the controlled system. A quadratic form for the cost functional is not strictly
necessary. However, it has intuitive appeal being similar to least squares, it
often can be made proportional to the actual energy in the system, it verifies,
the truncation of the first order Taylor expansion by minimizing second order
quantities, and, when coupled with linear dynamics, has a highly tractable
solution (This is not true in most optimization problems[27]).

Succinctly, the optimization problem is to determine the control volt-
ages that minimize the cost functional constrained by the linear dynamics
described by Eq.(17), while leaving the controlled parameters, the circuit
currents, and coil voltages unconstrained. This can be accomplished by con-
structing a Hamiltonian and using the czlculus of variations ([24)-[27]) to
derive the conditions for optimality. This is briefly covered in Appendix B.
The minimization yields two primary results: the control ¥, is given by a
linear function of the currents I,; and is proportional through a matrix which
is the solution to a differential matrix Riccati equation,

V,(t) = ~R (OB (RO (21)
£(DA(1) + AT(DE(E) - P(OBR ()BT (OP(E) -+ CT(OQINE(E) = —B(t).
(22)

It is important to note that the control voltages are not a function of the
controlled parameters ¥, but of the currents £,. This result makes physical
sense because the currents completely describe the electromagnetic envizon-
ment, including the controlled parameters. This is one primary difference
between optimal and classical control, and it has strong implications for the
application of linear optimal control theory. This feedback control is illus-
trated in fig. 3.

In order to generate an optimal rontrol the system matrices 4, B, and

2 &

C, and the weighting matrices Q and R are evaluated at a specific time
along the discharge trajectory. They are then considered constant matrices
(time-invariant)., These matrices are used to derive the Riccati matrix P.
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Since the control of the tokamak is to be performed for a period of time long
compared to any system iime scales, the upper imit in the cost functional
integral is made infinite. This results in a steady-state Riccati matrix (time-
invariant). The Riccati matrix is strictly valid only at the time the system
and weighting matrices were evaluated. However, it is typical that the gain
matrix — 8~ BT P will control well in an interval about the point in time that
it was evaluated. This approach is referred to as a time-invariant, infinite-
time output regulator [24]. For the simulations presented in the following, a
constant gain matrix will be used to control the system for 200 ms. beyond
the point in time where the matrices are derived. In order to control the entire
discharge simulation a number of these gain matrices would be calculated at
several points in time along the discherge trajectory, however this is not done
in the present work. Short sections of the discharge are simulated to test the
control.

The optimal control law requires that all the currents in the system be
fed back. However, only the coil and plasma currents are measurable; the
eddy currents are not. The remaining currents must be reconstructed from
other measurements, In addition, the eddy current models are only dis-
cretized versions of the continuously distributed currents in the structure.
More accurate models will require more eddy currenis, and more currents
would have to be reconstructed. This indicates it is unlikely to have as many
measurements as currents (so that a unique relationship exists between them)
because a very large number of measurements would be required. The con-
sequence of this difficulty is that another form of estimation, such as the
Kalman estimator ([24]-[27]), is needed to generate estimates of the currents
from fewer measurements. This is of special interest for advanced tokamaks
where the neutron and particle heating, as well as radiation damage, should
make measurements near the plasma difficult. However, there are still too
many currents to estimate and feed back {or an on-line computer, even with
the present model of 60 currents. There is thus motivation to derive a re-
duced system description that corresponds to fewer curreats, and reduces the
number of calculations required to determine the control.
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5 Issues for the Optimal Control of Toka-
maks

The control simulations are done by setting up initial perturbations in
the coil, plasmna, and eddy currents. The equilibrium corresponding to these
currents is calculated to provide the controlled parameters, that have been
perturbed from their nominal values. The system is then simulated using
the derived optimal control gains. It is emphasized that the plasma density,
temperature, {;, and Z.;; are specified functions of time, and no effort has
been made in this work to consider uncertainties in these parameters.

5.1 Weighting Matrices in the Cost Functional

The matrices @ and R in the cost functional are used to weight the
various controlled parameters and voltages. There is no general method for
choosing the matrices, although they have the most direct influence on the
controlled behavior of the tokamak, and serve as design Lools to achieve the
desired responses. The matrices are virtually always diagonal, allowing :he
individual penalization of parameters and voltages. Increasing the val:es
in Q and/or decreasing the values in & generally result in a faster return
to nominal conditions. The greater the weight, the morte heavily the corre-
sponding variable is kept smail. Thus if large values are chosen for the ¢
terms in Eq.(19), then the system will only tolerate small values of ¥, and
drive large values of ¥, quickly to zero. If the » terms are made large, then
only small control action is used, taking longer for perturbations to be driven
{o zero.

Good control behavior can be qualitatively characterized by several fea-
tures: smooth monotonic approach to nominal (no oscillations); short time
to reach nominal; and modest, non-oscillating required voltage. The method
used here to calculate the weights involves determining acceptable pertur-
bations in the controlled parameters and available control{16]). For example,
if it is acceptable for the plasma radial position to be 1 centimeter off the
nominal value, then this represents the maximum tolerable perturbation. If
only 10 kilovolts are available from the coil power supplies for the control.
then this is the maximum available control. The weights are set equal to one
over the square of these values, multiplied by factors to allow for fine tuning.

12



Thus, we have the expressions,

o fa o L
“=RNE Ty (23)

for the values ¢; and r; which occur in Eq.(19). Once the AY;'s and V. 's
are set, the factots, fg, and fr,, are varied to arrive at the desired response.
The base values for the controlled parameters are as follows: 10* (AR=0.01
m); 108 (AZ=0.01 m); 10* (Ax=0.01); 10* (A§=0.01); and 10~® (AT,=10"
amps). The base values for the control voltages are the recinrocal squares of
the nominal voltages at that particular time in the discharge. When values
are reported for the weights, they correspond to the f factors, not the actual
weights.

Shown in fig. 4 are the major radius and vertical position for increasing
values in the @ matrix {which more heavily weight the controlled parame-
ters). Three separate cases are shown, where the factors fg, are all made 0.1,
1.0, and 10.0. One sees that the response is faster as the weights increase,
although at the highest values oscillations (overshoot) are introduced. De-
creasing the weights in the & matrix would have a similar effect because the
gains are being jncreased. These brief results illustrate the impact that the
€ and H matrices have on the behavior of the controlled system, and should
be kept in mind in the further discussions.

5.2 Voltage Limitation

An important concern in the control of disturbances is the limitation
imposed by a maximum allowable voltage on the coils. This value has been
taken as 30 kilovolts. In order to show the effects of such a limit, simulations
were done at current flat-top, where the control voltages are the largest,
with and without a voitage maximum imposed. It should be emphasized
that all simulations presented do not have a voltage limit unless specified.
We assume a perturbation in the plasma current of 0.5 MA, resulting in a 5
centimeter offset of the major radius. The response of plasma current and
major radius are shown in fig. 5. The general effect is that the response is
slowed. The major radius {as well as the elongation and triangularity which
are not shown) does not overshoot in the voltage limited case, bu! more time
is needed before the system returns to ithe nominal state.

13



This case constitutes a constrained voltage control problem, However, the
optimal control has been derived assuming unconstrained voltages, thus the
control is not truly optimal. A control solution taking the voltage constraints
explicitly into account has not been done. Simulation results indicate that
stability is maintained in all cases when a maximum voltage ts imposed on the
optimal control that was earlier derived assuming no voltage maximum. In
fact, the responses are monotonic, and only take longer to reach the nominal
state.

The voltage maximum plays an important role in the present work be-
cause control is being supplied purely by the large PF coils and these are far
from the plasma. Smaller control coils close behind the shield would reduce
the required voltages considerably. It is always desirable to locate the PF
coils as close to the plasma as possible. Of course, if the coils are super-
conducting, it must be determined whether they can respond fast enough
without exceeding their stability limits for magnetic field changes. For ad-
vanced tokamaks with a thick blanket, an inner coil set (right behind the
shield) is likely to require mega-amps of current, while the outer PF coils
carry 10’s of mega-amps. Using normal coils for the inner set could result in
severe power requirements. Finally, the location of the coils cannot be deter-
mined solely to produce a given class of equilibria, but is constrained by the
engineering coufiguration of the device (ports, antennnas, diagnostics, etc.).
Sir -e the purpose of the present work is not to design the control system for
INTOR/[20], these issues are not pursued.

5.3 Effects of Eddy Currents

The presence of substantial structure between the poloidal field coils
and the plasma introduces eddy currents which strongly affect the control.
Present experimental devices have a very thin vacuum vessel with some
coil and vessel support structure. The vessels are constructed with bellows
(convoluted geometry) or insulator breaks to increase the resistance seen by
tcroidal currents. These reduce the eddy current amplitudes and L/R times.
The vessels typically have a 5 ms. or smaller magnetic field penetration time.
In other words, the structural components are configured with the purpose
of minimizing eddy current effects. In the renctor, the blanket will be thick,
with its structure and geometry dictated by neutronics, heat transfer/thermal
hydraulics, and materials issues. The minimization of eddy current effects
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will be a secondary concern.

To illustrate the effects of eddy currents and to demonstrate the difference
between a thin structure, and a thick one, a series of start-up simulations have
been done. Here the plasma cutrent rises from zero to its final value in 300 ms.
In iig. B the plasma current is shown as a function of time for the cases of no
structure, toroidally continuous structure, and broken structure. The three
broken structure cases are simulated by increasing the toroidally continuous
eddy current resistances by a factor of 10, 100, and 1000. The toroidally
continuous structure is unacceptable; the plasma current is a tactor of 20
below the reference case after 300 ms. The coils are spending volt-seconds
driving currents in the structure rather than the plasma, which would severely
reduce the volt-seconds left for flat-top and ramp-down. From the broken
structure examples an increase in the eddy current resistances by at least a
factor of 100 is required to yield an acceptable response.

Breaking the blanket electrically to inhibit eddy currents is determined
by the requirements of plasma start-up, and to a much lesser extent by
plasma control. Due to the intense neutron and particle heating, as well
as radiation damage, it is not desirable to electrically break the first wall
and it is continuous in all simulations. Only the breeding region and shieid
are divided electrically, and the increase in the eddy current resistance by a
factor of 100 is used ia all subsequent simulations. The results indicate that
the blanket must be electrically broken to drive plasma current ohmically in
advanced tokamaks, unless the entire blanket is composed of high resistance
materials (e.g., ceramic). Such a design also helps in control by reducing the
eddy current disturbaoces.

Eddy currents also strongly influence control. This can be illustrated for
a thick blanket by examining the response of the controlled parameters and
coil voltages in two cases; no structure and full structure. the response of
the major radius for full structure is shown in fig. 7, and is much siower
than for no structure. Also in fig. 7 the voltage on one specific coil, 49, the
outermost PF coil, is shown during this simulation. Initially the voltage is 7
times that with no structure, but later approaches as high as 1000 times the
no structure result. On present machines, the no structure result would give
a good approximation to the required voltage.

In addition to affecting control behavior, the eddy currents also present a
physical limitation on the control of the parameters R, Z, %, §, and I, beyond
those due to controiler response time, measurement quality, and maximum
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input (voltage). The eddy currents are induced in response to changes in coil
and plasma currents, or plasma motion, and act to oppcse the changes. The
thicker and more conductive the structure, the more severe is the opposing
action and the longer it persists. It is not possible to exercise control to
any degree of accuracy and response time, because the eddy currents are
tracking the current changes. This is well iliustrated in figs. 8 and 9 where
the vertical position and one eddy current amplitude are given as a function of
time for a case where the weights on the controlled parameters are increased
by a factor of 10 and 100. These increased weights would ideally correspond
to cases of faster return to nominal. However, the vertical position shows
larger oscillations for greater control authority. The eddy current amplitude
oscillates because the control on the coils is oscillating in an effort to drive the
system back to nominal more quickly. Clearly, this is not a desitable control,
especially in a tokamak reactor where the plasma is hot, The plasma motion
implied in figs. § and 9 would [ead to contact with limiters and walls, possibly
leading to a disruption. Smoother behavior is preferred and the control must
be set to reflect the inherent limitations which eddy currents impose.

The examples in this section demonstrate the changing nature of the con-
trol problem as tokamak machines become more like fusion reactors. These
changes require that we develop a more accurate system description for con-
trol which, of course, includes eddy curzents. The philosophies now used for
control in tokamak experiments will not suffice because they are based on a
specific tokamak configuration that cannot be realized for fusion reactors.

5.4 Discrete Control

The actual implementation of optimal control in a tokamak will be in
discrete, not continuous form. The tokamak plasma is continuous in time,
but the control system is discrete because it requires that measurements be
taken, signals processed, and control voltages generated. This requires a
finite time. Thus control voltages are being updated every At, where At
is the sum or all time delays. All simulations reported in this work so far
assume continuous time control. To show that the control does not fail for
finite time control updates, three discrete control cases are examined. This
is done by using discrete anaiogues of the A and B matrices in the linear
dynamics equation,
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Li(tn) = Al(ta) + BVy(tn) (24)
A =exp AAt (25)

. At
B = (/0 expé‘rdr) B. (26)

The time-invariant control problem is solved with sampling times of I, 10
and 20 ms. The weighting matrices are taken to be those for the continuous-
time case. The system is started at an iritial perturbation, and the discrete
control is such that the voltages on the coils are held fixed for the sampling
time, AL,

The responses of the plasma major radius and vertical position ate shown
in fig. 10 for each three discrete sampling times, 1, 10, and 20 ms. The 1 ms.
case is almost identical to the continuous case, because this sampling time is
shorter than all the system time constants. The 10 ms. case shows a similar
response but a faster approach to nominal. For a sampling time of 20 ms., a
much more oscillatory response is found. The vertical position shows violent
oscillations, swinging from -8.0 to 8.0 centimeters before damping out. The
major radius shows a fast initial approach to nominal, but overshoots.

The oscillatory behavior in the case of 20 ms. between sampling points is
expected. The voltages to the coils are held constant for the sampling period,
leaving the system to react without updating the control. The control must
therefore push and pull more strongly when it is applied, in order to bring
the system to nominal. Such behavior also implies that the coil voltages will
make large swings back and forth, something which may not be feasible with a
given power supply. This is supported by examining the voltage trajectories,
shown in fig. 11. The 1 and 10 ms. cuses show similar behavior while the 20
ms. case clearly shows an excessive effort to control the plasma.

A very interesting result appears in these simulations. The 10 ms. sam-
pling time case shows faster approach to nominal than the 1 ms. case, and
the return to nominal is monotonic. This illustrates that some discreteness
in the application of the control may actually be desirable because of the
presence of the eddy currents. The eddy currents introduce a time delay be-
tween the production of either an electric field for driving plasma current, or
a magnetic field for maintaining equilibrium, and the arrival of these felds at
the plasma. Since the eddy currents in the structure also slow down plasma
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motion, shape, and current changes, it should not be necessary to update
the control more frequently than the time delay. Thus a system response can
be obtained that is as good as that of the continuously controlled system by
using a sampling time that is of the order of the eddy current delay time.

The controllers on present tokamak experiments have sampling tirnes be-
tween 2 to 10 ms. and the eddy current time scales for the vacuum vessel
are typically 5 ms. The results here suggest that future tokamaks with thick
blankets may be better and more efficiently controlled usiag a discrete con-
troller and a sampling period on the order of the eddy current time scale. The
final cheice of sampling period will depend on the power supply dynamics
and the on-line computer requirements, neither of which have been modeled
in these simulations.

5.5 Reduction of System Order

Reduction of the system order is desirable for practical implementation of
a controller and estimator. The optimal control law specifizs the control as a
linear function of the circuit currents. Yet while the coil and plasma curtents
can be measured, the eddy currents cannot. The eddy currents must in
turn be estimated from available measurements, perhaps using the Kalman
estimator ([24]-{27]). In addition, the larger the number of circuits in the
system model, the longer will be the required computational time for both
the controller and the estimator. Therefore, order reduction is desirabie and
must be done in a manner that has little or no influence on the true system
response.

A modal reduction method is developed in which those modes with unsta-
ble and near-zero eigenvalues, as well as dominant negative eigenvalues, are
retained in the reduced-order model. This technique can guarantee stability
of the linear closed loop system. The reduced-order model has modal states
as variables which do not correspond directly to currents in the original sys-
tem. The modal state currents ars used to derive the optimal control (or
system gains). The control derived in this way is then applied to the larger,
original system. A number of other order reduction techniques were consid-
ered, but were not found to guarantee stability of the closed loop system, or
were not applicable to unstable open loop systems(28]. A description of the
modal reduction technique is given in Appendix C.

There are a number of characteristics of advanced tokamaks that mo-
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tivate order reductior. Tokamaks of advanced design ate unsiable due to
the vertical instability caused by plasma elongation. The system usually
hes near-zero eigenvalues because of the use of superconducting coils, which
have zero resistance. Furthermore, such tokamaks have many large negative
eigenvalues corresponding to the eddy currents. For instance, in the case of
INTOR|20] studied Eere, the full-order closed locp linear sysiem matrix has
at least 40 of its eigenvalues unchanged from the open loop values ({these
are the largest negative eigenvalues), and the eigenspectrum shows a natural
break at the 12t* eigenvalue (when arranged from largest to smallest) where
the eigenvalues jump by a factor of between 20 and 300.

The unstable and near-zero eigenvalues must be included in the reduced-
order model to insure that the control is stabilizing. The fact that 40 eigenval-
ues are unchanged from open loep to closed loop systems suggests that these
modes are not affected by the control since they already decay fast enough.
These eigenvalues can be neglected in a reduced-order model. Another key is
that the break in the eigenspectrum, which represents the difference between
the coil and plasma, and eddy curtent time scales, suggests where a reduction
ought to take place. These points all indicate that a reduction can indeed be
made and will yeild controlled behavior very similar to full-order control of
the system.

Two examples are shown in figs. 12 and 13 which illustrate order reduc-
tion. The original system is modelled with 60 states while the reduced-order
models have 13, 15, and 20 states, respectively. The weights are chosen to
be the same in the three cases, and the same initial perturbations are used
in all cases. A 12 state case could not be simulated because the oscillatory
behavior is too violent. The responses for the 13 state case are poor. This is
primarily due to the absense of control over the fine time scale behavior. For
the 15 state case the response behavior is much improved, although there are
discrepancies due to long time scale oscillations. Finally, the 20 state case
gives results almost identical to the full-order results.

These examples indicate that it is feasible to use a reduced order model
which requires fewer states to be estimated and fed back, to model and
control the full-order system. If a more accurate eddy current model is used
(for example, to include poloidal breaks explicitly), then it only introduces
more of the larger negative eigenvalues which correspond to the currents
neglected in the reduced order model. Thus the reduced-order model should
still be valid.
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6 Conclusions

Linear optimal control of advanced tokamaks is examined and demon-
strated to be a feasible candidate for controlling the electromagnetic en-
vironment. It is particularly well suited for advanced tokamaks, such as
INTOR(20] or reactors, where eddy currents have » much greater effect on
the system. The additional features of advanced tokamaks are likely to strain
the classical single-input/single-output strategy. The linear optimal control
approach is based on a total system deseription which includes accurate mod-
els of the dynamics. In fact, it is not the optimal part of the control that is
critical but the ability of the control to deal with the entire coupled system.
This includes multiple-input /multiple-output and contzrol of all parameters
simultaneously, rather than the scalar decoupled control of the classical ap-
proach. The opiimization serves as the best way to choose the gains, and
guarantees a stable linear closed loop system.

Optimal control will allow the actual control of equilibrium parameters,
rather than requiring a preprogramming of the coil currents assuming ex-
pected plasma parameters. The multipole method employed in this paper
gives a relationship between equilibrium parameters and the currents in the
plasma and the external conductors. The control voltages are a function of
the currents, which determine the equilibdium configuration. It is not neces-
sary to measure equilibrium parameters such as elongation and triangularity,
which are required for classical control. The optimal control approach alse
can handle more complicated equilibria, such as beans, asymmetric plasmas,
and divertor plasmas. Rather than controlling the equilibriurm parameters,
the magnetic flux or field at several probes could be controlled simultane-
ovsly.

The important limitations in the control of advanced tokamaks. aside
from those of the coil power supply response time and measurement quality,
are the coil voltage limit and eddy currents. These limitations reduce the
speed and smoothness with which a perturbation can be returned to nominal.
Voltage limits lead to slower returns to nominal, although they do eliminate
any overshoot. It should be pointed out that the voltage limit can be dealt
with by making the weights on the coil voltages in the cost functional large
enough to avoid exceeding the limits. This would remove the concern over
stability, but would influence control behavior.

It is clear that the complexities caused by the presence of structure (eddy
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currents) in advanced tokamaks will be more severe than in present exper-
iments. It has been shown in this work that while the first wall can be
electrically continucus, the blanket must be divided in order to increase the
eddy current resistances by at least a factor of 100. This will aid control,
although the control will still return perturbations to nominal more slowly
than for a thin structure. Attempts to achieve very fast respounse of the con-
trol leads to highly oscillatory responses as the controller tries to compensate
for exclusion of the fields by the eddy currents.

Discrete control would actually be used in real devices, with the sampling
time determined by the time delays in activating coil power supplies. It
appears from the simulations reported here that there are advantages to
controlling discretely using a sampling time on the order of the eddy current
decay time, rather than using very short sampling times. Fast monotonic
approaches to nominal are found and the required coil voltages are not much
different from those predicted from the continuous time cases.

Finally, the issue of reducing the order of the system model has been ad-
dressed. Reduction of system order is critical to real implementation of linear
optimal control in tokamaks, because ‘he madels will in general require many
circuits to describe the eddy currents in the structure. A modal reduction
technique has been found to be the cnly approach which guarantees stability
of the closed loop system. For a system such as INTOR[20}, 20 modal states
are required to reproduce the bzhavior of the full-order (60 state) system.
The model of the tokamak electrcmagnetic environment yields many large
negative eigenvalues which correspond to the eddy currents. The introduc-
tion of more eddy currents to produce a more accurate model only introduces
more medes with large negative eigenvalues, which can be neglected. This
indicates that even if the system order is increased, the reduced system will
still be accurate. System reduction means in practice a significant reduction
in the computer time required for estimation and voltage calculations.
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Appendix

A Linearization

The application of linear optim:l control requires a linearized model of
the actual nonlinear mathematical description of the physicra system. The
time dependence of terms will be suppressed in the following. The nonlinear
dynamics model is given by the vector circuit equation, equilibrium equa-
tions, and velocity equations.

. 3L a oL aL .
+ = = = =] =V 37
Li+ 218+ 3202 + 2k + BRI+ 2=V (27)
whl = 0 (28)
le =0 (29)
wll = 0 (30}
wjl = 0 (31)
dwh . 0wl . .T dwg Bwh
—ﬁ“‘I_R-FT?“E-iZ'F I +I —éI—i'i'__Rl'i‘ at ~—=I = (32)
wh Bwl
aRIR aZLZ+ Ti= (33)
owl . 8wl . 8wl . .wdw,. . Gul
T;RT——BZ Lz+ﬁ—1n+1 Sritul+ ol (34)
dwl dwf 3wl

ws oWy ows oWs T3_5 T 8_-_
aRU“' aZLZ+ L K+ 661& + [ I+_,L+ En =0 (35

The v-ctors w are the kernels that give the ﬁelds at the plasma center from
current sources. wg refers to the vertical field, wy refers to the radial field,
w, refers to the quadrupole field, and w; refers to the hexapole field. The
expressions containing the plasma parameters (such as Shafranuv vertical
field formula) have been moved to the left side of the equilibrium and ve-
locity equations. Denoting zeroth order by “o” and first order by #1”, and
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expanding the dependent variables as the sum of zeroth a..d ficst order terms,
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, Gui r duf
T R T
Expanding the independent variables,
R=R+H, Z=2,+2
E=h, K1 =8 +6
I=L+L, V=V,+V,.
The linearized form of the vector circuit equation becomes,
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The equilibrium equations become
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The linearized equation for the time derivative of the plasma major radius
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L+wh =0  (50)
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The linearized equation for the time derivative of the plasma vertical position
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The linearized equation for the time derivative of the plasma elongation is,
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The lmeanzed equation for the time derivative of the plasma triangularity
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These equations are more conveniently expressed in matrix form. The cir-
cuit equation contains terms that must be eliminated by substitution of the
cquilibrium and velocity equations. The vector Z will be defined as [R, Z,«].
The circuit, equilibrium, and vciocity equations are shown, respectively.

EL + El + Q_Zx +HZ, = [V (54)
uz, = -¥1, (55)
LZ-.—I = "Q—Z-l - §ll - I.;['.l (56)
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The matrix I,m refers to a rectangular matrix with ones on its diagonal, with
n the number of currents and m the number of voltages. After substituting
into the vector circuit equation to give an equation depending only on the
currents and voltages, the definitions of 4 and B are,

litn

~HU'Y+ E] (57)

A=-[E-GP'T| " [gP QU 'Y - GP™!

IIUJ

= [E-G27'T] " Lum: (58)

In addition, are the relations between the parameters to be controlled and
the currents in the system. A vector relation for these can be given by,

wy, =XI,. (59)

The matrix C is defined as W ~'X. It was necessary to use an algebraic ma-
nipulator algorithm call RED DUCE to generate the high order derivatives for
the field quantities and the linearization in cases of complicated dependences.

B Optimization

In order to generate an optimal control a function representing the system
performance must be created, to specify what the objective of the control is.
The objective of t..e control is to find the correction to the nominal voltagss
on the coils that keep perturbations in the controlled variables (R, Z,x, §, I
near zero, and spend as little effort as possible in doing so. The time depen-
dence of terms will be suppressed in the following. A function that represents
this objective is,

J= _[(,T (¥Toy, + ¥TRV] at. (60)

We want to minimize this integral over time. However, the system behaves
according to specific dynamics and so these must be incorporated when de-
riving the optimal control. This is done by constraining the optimization to
obey the linear dynamics equations,

i, =4l

=~

+8 (61)

[’<

=Cl. (62)
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We will not constrain the values that the I,'s and Wi's can take. One of the
more straightforward ways to minimize a2 functional with constraints is by
creating a Hamiltonian for the problem.

H = [TCTQCL, + VTRV, + AT |AL + BV (63)

Here A represents a vector of Lagrange multipliers. The necessary conditions
for optimality, which can be found elsewhere[27], are,

- 3L = i (84)
aH
57 = (65)
oH .
3 L (66)
NT) = E(T)L(T)- (67)

The third condition only returns our linear dynamics equations, and the last
is a boundary condition at the final time. The first two yield,

V,=-R"B"A (68)

A=-CTger, — ATA. (69)

Using the boundary conditions and the above derived equations, it can be
shown[24] that the vector of Lagrange multipliers is lincarly related to tie
currents for all time,

{2

=Pl (70)

Using this, the optimal control vector ¥, is a linear function of the currents
in the system.

Vi= -8 BTEIL (71)
The equation satisfied by the matrix P can be derived by substituting A =
P1, into t'se equation for A and using the linear dynamics equation.

"o

4+ ATP - PBRT'BTP+CTQC = -2 (72)
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In the present work only the steady-state solution for P is sought, so the
upper limit in the cost functional integral is made infinite, and the equation
satisfied by the matrix is the nonlinear algebraic matrix equation given by the
above with —-E set to zero. Rather than actually using the matrix equation

to solve for the Riccati matrix, the differential system is typically used.

‘ A -BR'BT
E-1% %))

The steady-state Riccati matrix can be found by diagonalizing the above
system matrix and using the eigenvectors[24].

C Modal Reduction

The basic idea behind reduction of order is to construct a reduced description
of the system that still contains all the important behavior, use this model
to construct an optimal control law, and then apply the resulting control law
to the original larger system. For the control to be useful it should stabilize
the system and hopefully give acceptable responses to perturbations to the
system. The method used here is a modal reduction, also called aggregation.
In the method the reduced order state variables are linearly related to the
original system state variables (in a tokamak these are the cusrents). The
time dependence of terms will be suppressed in the following. The original
and reduced systems are given by,

£1=£_Il +§_V_1 é:&'*'cvl (74)

z=HI, E=HAHYHH")™ (C=HB (75)
Here dim(z) is less than dim(J;). Once the matrix 4 is chosen, a new cost
functional is created that weights the states of the reduced system and the
same voltages as the original system (a system would not be reduced below
the number of coils). The control derived is the optimal control for Lhe
reduced system.

T
o= [ Qe+ VIRV at (76)
Q.= (HH") " HCTQCHT (HHT)™ (77)



Vi=-RE"'G"Ez (78)
The matrix P, is the Riccati matrix for the reduced system. This modal
approach involves preserving dominant eigenvalues, and any positive or near
zero eigenvalues, of the original system in the reduced order model. The
large negative eigenvalues corresponding to quickly daraped behavior are
neglected. The original system is diagonalized to yield the eigenvalues and
eigenvectors.

g=Ay+IV, [ =My (79)

A is the diagonal matnx of cigenvalues of the original system matrix 4 and
is defined as A = M ' 4M. The modal matrix is taken and all columas cor-
responding to nondominant eigenvalues are removed. Then all rows corre-
sponding to nondominant eigenvectors are removed, yeilding a square reduced
modal matrix. From .hese series of linear transformations the matrix H can
be derived. The eigeavalues of the matrix F will be exactly those eigenval-

ues of the original matrix A that were retained in the reduced model. When
the optimal control law calculated for the reduced order model is applied to
the original system, the resulting closed loop eigenvalues will be those of the
closed loop reduced system and those remaining nondominant eigenvalues of
the original system matrix A. This results in a suboptimal control relative
to the control derived for *he original system, feeding back all the currents
in the system. These modal states do not necessarily correspond directly to
currents in the original system, but are linear combinations of them.
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Table 1: Equilibrium trajectory of various parameters

time(sec) | I,(MA) | R(m) | Z(mm) | a(m) | =« é B,
0.30 0.40 5.32 3.10 1.20 } 1.10 | -0.006 | 0.01
0.48 0.64 5.32 1.00 1.20 | 1.10 } -0.006 | 0.02
0.65 0.87 5.32 -1.00 1.20 | 1.10 | -0.006 | 0.03
0.83 1.10 5.32 -2.00 1.20 | 1.10 | -0.006 | 0.04
1.00 1.31 5.32 | -1.00 1.20 | 1.10 | -0.006 | 0.05
1.50 1.91 5.35 6.50 1.20 ) 1.15 | 0.014 | 0.08
2.25 2.75 5.36 9.20 1.20 | 1.22 | 0.047 | 0.20
3.00 3.51 5.37 8.30 1.20 | 1.29 | 0.080 | 0.50
4.50 4.86 5.36 5.20 1.20 | 1.42 | 0.130 | 0.97
6.00 6.00 531 9.40 1.20 | 1.57 | 0.166 | 1.95
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Figure 1. The INTQOR tokamak electromagnetic environment.

Figure 2. Illustration of the sheet/strip eddy current r odel. The crosses
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voltage limit (a) and & 50 kV voltage limit (b).

Figure 6. Plasma current as a function of time for start-up simulation in-
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Figure 7. Plasma major radius and voltage on the outermost PF coil as
a function of time for no structure {solid) and full broken structure
(dash) comparison.

Figure 8. Plasma vertical position as a functio: of time for no struc-
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Figure 8. An eddy current amplitude as a function of time for the full
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for discrete control with sampling times of 1 ms. {dot), 10 ms. (dash),
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Figure 11. Voltage on outermost PF coil as a function of time fr discrete
control with sampling times of 1 ms. (sclid), 10 ms. (dash), and 20
ms. (dot).

Figure 12. Plasma major radius as a function of time for comparis: - of full
order (dash} and reduced models of order 13 (a), 15 (b), and 20 (c)
(solid).

Figure 13. Plasma elongation as a function of time for compavison of full
order (dash) and reduced models of order 13 (a), 13 (b), and 20 (c)
{soud).
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