
Linear optimization queries*

Abstract

Jiii Matou5ekt

Department of Applied Mathematics, Charles LJniversity

Malostransk6 n~m. 25, 11800 Praha 1, Czechoslovakia

Otfried Schwarzkopf $

Utrecht University, Department of Computer Science

P.O. Box 80.089, 3508 TB Utrecht, the Netherlands

Let F be a set of n halfspaces in Ed (where the di-

mension d ~ 3 is fixed) and c a d-component vector.

We denote by LP(I’, c) the linear programming prob-

lem of minimizing the function c . x over the intersec-

tion of all ha~spaces of I’. We show that r can be

preprocessed in time and space O(ml+j) (for any fixed

& >0, m is an adjustable parameter, n < m < nldizj)

so that given c c Ed, LP(I’, c) can be solved in ttme

O((m,/~./,J + lrq 1) log2d+1 n). The data structure can

be dynamically maintained under insertions and dele-

tions of hyperplanes from 17, in 0(m1+3/n) amortized

i!ime per update operation. We use a multidimensional

version of Megiddo ’s parametric search technique.

In connection with an output-sensitive algorithm of

Seidel, we get that a convex hull of an n-point set in

Ed (d ~ 4) can be computed in time 0(n2”*+h +

h log n), where h is the number of faces of the con-

vex hull. We also show that given an n-point set P

in Ed, one can determine the extreme points of P m

time 0(n2-*f6) (for any fixed 6> o).

*This extended abstract combines a paper [Mat91d] of the first

author with an improvement and simplification achieved by the

second author in [Sch91].

t The research by J. M, was performed while he was visiting at

School of Mathematics, Georgia Institute of Technology, Atlanta.

t 0. S. acknowledges support by the ESPRIT II Basic Research

Action of the European Community under contract No. 3075

(project AI.ICOM). This research was done while he was e~nployed

at Freie Universit?4t Berlin. Furthermore, part of this research was

done while he visited INRIA-Sophia Antipolis.

Permission to copy without fee all or part of this material is granted

provided that the copies are not made or dktributed for direct

commercial advantage, the ACM copyright notice and the title of the

publication and its date appear, and notice is given that copying is by

permission of the Association for Computing Machine~. To copy other-

wise, or to republish, requires a fee and/or specific permission.

1 Introduction and statement of results

This research was originally motivated by the following

problem: Let P be an n-point set in Ed, where the

dimension d is fixed; determine which points of P are

extreme (we call a point x E P eztreme if conv(P \

{z}) # conv(P)). In dimensions 2 and 3, this problem

can be solved relatively easily in optimal time O(n log n)

by computing the convex hull of P (see [PH77]). But if

the dimension is at least 4, then the complexity of an

explicit description of the convex hull of P may be too

large, since conv(P) can have up to Q(nLd/2j) facets.

It is not difficult to see that the question “is z ex-

treme in P?” can be formulated as a linear program-

ming problem with d variables. Megiddo [Meg84] has

shown that a linear program with d variables and n

constraints can be solved in O(n) time. In Megiddo’s

original solution, the constant of proportionality grows

doubly exponentially with d. Subsequent solutions im-

proved this to a single exponential growth ([Dye86],

[Cla86]). Also randomized algorithms with linear ex-

pected running time are known; the best asymptotic de-

pendence on the dimension has been achieved by Clark-

son [Cla88a], and a particularly simple algorithm was

given by Seidel [Sei90].

With linear programming in linear time, the extreme

points can be found in 0(n2) time. Recently Seidel and

Welzl [SW90] improved this complexity to 0(n312 log n)

in dimension 4 and to 0(n2- cd logO(ll n) in any fixed

dimension d ~ 5, where l/cd = 0([d/2J !2). They use a

randomized divide-and conquer to partition the prob-

lem into suitable smaller subproblems, which are then

solved by linear programming.

Here we improve their result. We describe a way to

preprocess a point set P in Ed for fast answering of

separation queries. Given a query point z E Ed, our

algorithm either finds a hyperplane h containing z and

such that all points of P lie in one of the open halfspaces

bounded by h, or determines that no such hyperplane

8th Annual Computational Geometry, 6/92, Berlin, Germany

@1992 ACM 89791-518-6/92/0006/0016 $1.50

16

exists.

Theorem 1.1 Given an n-point set P in Ed and a

parameter m, n < m < nldlz~ , one can preprocess

P with space and preprocessing time O(ml+d) for any

jixed 6>0, so that se{;~tion querzes can be answered

in time 0(~l,~~,zr log n). The data structure can

be maintained in O(mltj/n) amortized time per tn-

sert/delete operation.

With a small modification of this data structure and

when the query time for n queries and the preprocessing

time are balanced appropriately, we obtain

Theorem 1,2 The extreme potnts of an n-point set in

Ed can be found in tzme O(nz-%+d) (for any fixed

b > o).

Our approach can be easily extended to handle lineur

optimization queries. Let r be a set of halfspaces in Ed

and c a d-component vector. We denote by LP(17, c) the

linear programming problem of minimizing the function

c. z over the intersection of all halfspaces of r. We show

that one can preprocess a given set I’. of halfspaces so

that for a given c, LP (I’., c) can be solved quickly. We

may even add a set I’~ of additional constraints (half-

spaces) to the query and solve LP(I’O U rq, c) quickly.

Results of this type for dimensions 2 and 3 were given

by Guibas, Stolfi and Clarkson [GSC87]; they show that

if the query consists of c only, the solution can be found

in O(log n) time, where n = 11’01, with O(n log n) time

preprocessing and O(n) storage.

For a dynamic version of the problem (when up-

dates on I’. are allowed) and for dimension 3, Epp-

stein [Epp91] gave a data structure for the special case

when the sequence of insertionsldeletions is known in

advance. For d < 4 and assuming a random sequence

of updates, Mulmuley [Mu191] gave an algorithm which

has a polylogarithmic query time with high probability,

and with expected amortized update costs O(log n) for

d = 3, resp. 0(nlog2n) for d = 4.

We have the following quantitative results:

Theorem 1.3 One can preprocess a set I’. of n half-

spaces in Ed in O(ml+J) (determanistac) tame and

space, for a parameter m, n ~ m < n,ld!/2J

and some fixed 6 > 0, so that given a– query d;

component vector c and a set rq of additional italf-

spaces, the problem LP(I’O U rq, c) can be solved in tzme

O((m,,~,,,J + Irgl) logzd+l n). The data structure can

be dynamically mamtained under insertions and deie-

tions of hyperpianes from 17, in 0(m1+4/n) amortized

time per update operation.

This result can be applied to improve an outlput-

sensitive convex hull algorithm. Seidel [Sei86] gave an

output-sensitive algorithm which computes the convex

hull of an n point set in Ed in time 0(n2 + h log n),

where h is the number of faces of the convex hull. By a

standard lifting transformation, this result also applies

to computing Voronoi diagrams one dimension lower.

By a direct application of the preceding theorem in Sei-

del’s algorithm, we get

Theorem 1.4 The convex hull of an n point set tn

Ed can be computed in time O(n 2-*+6 + hlogn).
The nearest-point Voronoi diagram and farthest-point

Voronoi dtagram of an n point set in Ed–l can be com-

2–*+6 + hlog n) tgme, where h is theputed in O(n

combinatorial complexity of the diagram.

The above results are proved using two main ingre-

dients. One of them is a multidimensional version of

Megiddo’s parametric search technique (a similar tech-

nique has been applied previously e.g. in [CSY87],

[CM89], [N PT90]). The second one are data struc-

tures for so-called halfspace emptiness queries. We

mainly use known data structures ([Mat91c], [Cla88b],

[AM91]), but we add a new capability to these struc-

tures, namely to provide a witness point if the query

halfspace is nonernpty. This can be done using para-

metric search (see [A M92]), but we provide a simpler

and more efficient solution. As a by-product, these aug-

mented data structures can also be used for answering

the following ray shoottng queries: Given a set H of

n hyperplanes in Ed, and a ray p with origin p lying

above all hyperplanes of H, find the first hyperplane in-

tersected by p (the additional requirement on p makes

sure we only have to search within the upper envelope

of H).

Theorem 1.5 Given a set H of n hyperplanes m Ed

(d ~ 4), and a parameter m (n< m < n~dlz~), there is

a data structure for ray shooting queries in the upper en-

velope of H with space and preprocessing time O(ml+&)

and query time 0(n/m1ildi2~ log n), and which supports

dynamtc insertions and delettons of hyperplanes with

amortzzed update time 0(m1+6/n).

This improves a structure for ray shooting queries

by [A M92]. There is a standard application of such

a ray shooting result to nearest neighbor queries. Us-

ing the usual lifting map (see e.g, [Ede87]), nearest-

neighbor queries in Ed– 1 are transformed into shooting

a vertical ray in the upper envelope of a set of hyper-

planes in Ed, and we get the corresponding slightly im-

proved bounds for the nearest neighbor problem.

The time bounds given in Theorems 1.1, 1.3, and 1.5

above are for the most general situation. For the case

of linear or maximal space, ancl if a dynamic struc-

ture is not necessary, we can get slightly better bounds,

17

summarized in Table 1. This table shows space and

amortized update time for several data structures (the

preprocessing time is only mentioned if it differs from

space requirements), and the query times for query al-

gorithms using these structures for ray shooting queries

(or halfspace emptiness queries), and separation queries

(or linear optimization queries) resp. In all cases, 6>0

is an arbitrarily small constant, and m is a parameter

with n < m < n[dlz~. The three last structures do not

support dynamic updates.

2 Halfspace emptiness and ray shooting

queries

In this section, we will consider the following problem:

Given an n-point set Pin Ed, preprocess it in such a way

that given a query halfspace -y, we can quickly deter-

mine whether -y contains some point of P. We will call

this the ha~space emptiness problem (there are actually

two versions of this problem, since we may consider an

open halfspace or a closed one). We will describe some

known results for this problem. However, the subse-

quent application of parametric search will require that

the considered data structure for halfspace emptiness

queries always provides some point lying in the query

halfspace, provided that the halfspace is nonempty (we

call such a point a witness).

There is a general technique (by [AM92]) for obtain-

ing a witness using any algorithm for halfspace empti-

ness (satisfying certain mild requirements). This tech-

nique would bring some technical complications in our

forthcoming parametric search applications, and it also

loses some logarithmic factors in the asymptotic effi-

ciency. Here we describe alternative and simpler ways

for finding a witness. It turns out that this technique

developed for finding a witness can handle also the more

general ray shooting queries.

2.1 Algorithms wit h almost linear space

The best known results for the halfspace emptiness

problem in dimension d ~ 4 with linear space were re-

cently attained in [Mat9 lc]. A dynamization of this

data structure is discussed in [A M91]. Neither of these

data structures provides a witness directly.

We start with several definitions. Let P be an n-point

set in Ed. A simplicial partition of P is a collection

II={(PI, Al),(pm. &)},

where the Pi’s are nonempt,y sets (called the classes of

II) forming a partition of P and each Ai is a relatively

open simplex (not necessarily full-dimensional) contain-

ing Pi. The number m is the stze of the partition.

The basis of the efficient algorithm for the halfspace

emptiness problem in [Mat9 lc] is the so-called Parti-

tion theorem for shallow hyperplanes. We say that a

hyperplane h is k-shallow (relative to P), if one of the

halfspaces bounded by h contains no more than k points

of P in its interior. We say that a hyperplane h crosses

a simplex A if A n h # 0 but A ~ h. For our purposes

here, we use the following form of the theorem:

Theorem 2.1 [Mat91 c] (Partition theorem for shallow

hyperplanes) Let P be a set of n points in Ed, d >4,

and r a parameter, 1 < r < n. Then there exists a

simplicial partition II of size O(r) for P, whose classes

have size between [n/rJ and 2n/r, and such that any

n/r-shallow hyperplane h crosses at most 0(rl-1/[d/2J)

simplices of II. For r < nw, where a > 0 is a certain

constant (dependtng on the dmtension d), such a parti-

tion can be found m tzme O(n logr).

In this formulation we added one property compared

to the version in [Mat9 lc] (proceedings version), namely

the lower bound on the cardinality of the classes. This,

however, follows directly by inspecting the proof in

[Mat91c], and will appear in a journal version of that

paper.

The preprocessing for a basic version of the halfspace

emptiness algorithm consists of building a partition tree

using the above theorem. Each node v of the tree corre-

sponds to some subset PU c P, the root corresponds to

the whole set P. We choose a suitable large constant r,

we find a simplicial partition of P of size O(r) as in the

above theorem and we store the description of the sim-

plices of this partition in the root of the tree. For every

subset Pi of this partition, we then build one subtree

of the root in the same manner. The construction ends

in the leaves of the tree, where the size of the subsets

drops below some constant; then we explicitly store all

the points of such a subset in the corresponding leaf.

The query answering algorithm deciding the empti-

ness of an open halfspace y with a bounding hyperplane

h then uses the partition tree as follows: We start in the

root of the tree, and we determine the simplices of the

simplicial partition stored there intersecting y. If the

number of such simplices is greater than the guaranteed

maximal number K = O(rl – lf ldfzj) of simplices crossed

by any n/r-shallow hyperplane, then y is nonempty, in

fact in contains at least [n/r] points of P (since either

there is a simplex completely contained in -y, or more

than K simplices cross h, implying that h is not n/r-

shallow). Otherwise we proceecl recursively down the

tree into the at most K children of the current node for

which the corresponding simplices intersect -y. This re-

cursion terminates in leaves of the partition tree, where

we simply check if any of the points stored there is con-

tained in y.

18

space;

preprocessing

update time

(amortized)

log2 n

~[d/2J-1+6

nt1+8/n

‘n; nlogn

~lwz~ (]ogn)o(l)

?n(log n)o(l)

N/A

N/A

N/A

ray shooting separation queries

queries

=

~l– Vl@J(logn)W) ~l-lildizj(logn)o(l)

log n (log n)d+l

n
log 71

~lf Ld/2J ~lf
yd,,r(logn)’d+l

Table 1: Summary of data structures

A straightforward analysis of this data structure

shows that it requires O(n) space, O(n log n) prepro-

cessing time and O(nl– lid+J) query time, where 6 ;> ()

tends to O with increasing r. A dynamic version of this

data structure is described in [AM91]. First, it is shown

that one can perform deletions of points from this data

structure (rebuilding srrbtrees from which many points

have been deleted). Insertions are then handled in a

standard way (“binary counting” pattern) using the de-

composability of the halfspace emptiness problem. The

resulting (amortized) update time is 0(log2 n).

We will now discuss several ways to find a witness

using this data structure. The problematic situation is

the

We

following:

In the query answering algorithm, we are at

an inner node v, and we find that y intersects

more than K simplices of the simplicial parti-

tion in v.

say that such a halfspace ~ is deep for v. By the

argument above, we have lynP~ I > n~/r, nu = IPV 1, for

any deep halfspace y. In the dynamic version described

in [AM9 1], however, we have to be a bit careful. For-

tunately, we reconstruct a sub tree when n. /2r points

have been deleted from PV, so we can conclude that for

any deep halfspace y, we have at least l-y n P. I > nU/2r.

A simple randomized algorithm. When we reach

a node v for which y is deep, we pick a random point

p in Pu. By the above, the probability that p E y is at

least l/2r, which implies that the probability that we do

not hit a point in ~ after O(r log n) trials is very small

(less than I/nc, for a constant c >0 that can be made

arbitrarily large). A random point in PV can be found

in time O(log nv) without having to store the set PV ex-

plicitly: if we store the number of points in Pv with each

node, we can just choose a random index in {1, nv }

and track down the point in the corresponding subtree,

in O(log nv) time. The time for witness finding is thus

dominated by the total query time with high probabil-

ity. We needed no auxiliary data structures (except for

the point counts in nodes, whose maintenance is triv-

ial), and so this query answering algorithm can be used

for the dynamic version as well.

A deterministic algorithm (static version). The

key to a deterministic query algorithm providing a wit-

ness is the not,ion of t-nets. A (l/r)- net for an n-point

set P is a subset R C P with the property that every

halfspace ~ with [y (l PI ~ n/r contains a point of R.

We use the following lemma.

Lemma 2.2 (c-net theorem for halfspaces) Let P be a

set of n points in Ed, r < n a parameter. There exzsts

a (l/r)-net R of P with IR[= O(rlogr) [HW87], and

tt can be computed tn time O(nlogr) time if r < nff,

where n >0 is certatn constant [Mat91b].

We augment the (static) data structure for halfspace

emptiness queries as follows: we acid a (1 /r)-net R.

of size O(r log r) for the set P. to every inner node v.

Queries proceed as before, but when we reach a node

v for which ~ is deep, we test all points p E RV for

containment in ~. Since y is not n/r-shallow, -y n R. #

0, so we find a witness in additional time O([RVI) =

O(r log r). Query time and storage of the structure thus

remain the same as before, and this also holds for the

preprocessing time (since RV can be computed in time

linear in the size of P.).

For a static data structure, the above bounds can be

slightly improved, as in [Mat91 c]. Instead of setting r to

a large enough constant, we can choose r = n~ for some

sufficiently small constant a > 0, and use exactly the

same structure otherwise. The space is clearly still lin-

ear, the preprocessing time is 0(n log n) and the query

time 0(nl-lild/2J (log n)”(l))) also when we count the

additional witness finding time. We do not know how

to dynamize this improved data structure efficiently, so

in the next algorithm we will return to constant values

of r at every node.

19

We also have a deterministic dynamic version of the

algorithm. Details can be found in the report ver-

sion [MS91].

Ray shooting algorithms. For a point set P and

a nonvertical hyperplane h, let us call a point p E P

h-extreme if there is no point of P above the hyper-

plane passing through p and parallel to h (let us denote

this hyperplane by h(p)). Let us consider the problem

of finding an h-extreme point of P for a query hyper-

plane h. This problem is intuitively more appealing in

a dual setting, where we consider a collection of hyper-

planes and we shoot vertical rays originating above all

the hyperplanes.

It turns out that some of the data structures devel-

oped for halfspace emptiness queries with witness can

be used to find an h-extreme point quite easily. Let

us consider the data structure for the above presented

static deterministic algorithm. Given a query hyper-

plane h, we start in the root of the data structure. In

an inner node v, we proceed as follows: we find an h-

extreme point q ~ R. (Ru is the (l/r)-net at v), and we

recursively find the h-extreme points for all children of

v corresponding to simplices of IIv intersecting the half-

space above h(q) (if there is no such simplex, then q it-

self is h-extreme). Among these, we select an h-extreme

one. In a leaf, an h-extreme point is selected trivially.

This algorithm is obviously correct, and the (l/r)-net

property of R. guarantees that h(q) is a n/r-shallow

hyperplane (relative to P.), and hence we recurse in at

most K children of v. Thus the running time analysis is

the same as for the basic halfspace emptiness algorithm

and we also get the same query time.

As we pointed out, the h-extreme point problem is

equivalent to vertical ray shooting in an upper enve-

lope of hyperplanes. One can generalize the solution

to ray shooting with arbitrary rays originating above

all the hyperplanes. In the primal setting, this corre-

sponds to the following problem: we are given a query

(nonvertical) (d – 2)-flat a, such that there is a hyper-

plane ho passing through a and having no points of P

above it. We want to find an a-extreme point of P,

which is a point p E P such that there are no points

of P above the hyperplane passing through p and a.

The previously considered problem corresponds to the

situation when a is formally at infinity. One can find

an a-extreme point in almost exactly the same way as

we did for an h-extreme point. Hence we can solve the

ray shooting problem with the same complexity as the

halfspace emptiness problem.

2.2 Algorithms with logarithmic query time

Another data structure for the halfspace emptiness

problem is due to Clarkson [Cla88b]; it requires

) pace and preprocessing time, and achieves~(nl@J +6 s

O(log n) query time. A dynamic counterpart of this

data structure with the same asymptotic performance

and 0(nld12j–1+6) amortized update time was given

in [AM91]. We will explain a static data structure (sim-

ilar to Clarkson’s one) and the way one finds a witness

point using this structure.

We will work in a dual setting. Let II be the set of

n hyperplanes dual to the points in P. Answering an

empty half-space query for P reduces to determining

whether a query point q lies above all hyperplanes of H;

we will refer to the dual problem as the upper envelope

problem for H.

Let H be a collection of hyperplanes in Ed, and let

r < 7L be a parameter. For the sake of simplicity, we

will assume that the hyperplanes of II are in general

position. In this situation, a collection E of simplices

with disjoint interiors will be called a (l/r) -cutting for

the (< O)-level of H, provided that the simplices of E

cover all points of level O (with respect to H, i.e. all

points with no hyperplanes of H lying strictly above

them), and that each simplex of E is intersected by at

most n/r hyperplanes of H. We will apply the following

result:

Theorem 2.3 (Shallow cutting lemma, [Mat91c]) Let

H, r be as above. Then there exists a (l/r) -cutting Z for

the (< ())-level of H, consisting of 0(rLd/2J) simpltces.

For r < na (where a >0 M a certain constant, depen-

dent on the dimension), such a cutting can be computed

m O(n log r) time.

For every simplex A E E, we say that a hyperplane

h E H is relevant for A if it lies above A or intersects A.

Let ffL denote the collection of hyperplanes relevant for

A.

A slightly modified Clarkson’s structure for the up-

per envelope problem is a tree-like structure, built re-

cursively as follows: If the number of hyperplanes in

H is smaller than a suitable constant, then one simply

stores the list of hyperplanes of H; this will be a leaf

node. A query is answered by testing the query point

against each hyperplane of If.

If, on the other hand, H is large, one chooses

a suitable parameter r (a sufficiently large constant

in Clarkson’s original construction), and computes a

(1/r) -cutting = for the (< O)-level of H, consisting of

O(rldlzj Si) mplices. We store the cutting E in the root

of the data structure, and for every A E E, we recur-

sively build a subtree corresponding to the data struc-

ture for HA. The space S(n) occupied by this data

structure obeys the recursion

S’(n) < O(rLd12J) + 0(r[d12J)S’(n/r) ,

20

which for a sufficiently large but constant value of r

solves to 0(nld/2J+6).

We now describe a query answering algorithm find-

ing a witness as well. A query with a point q on H

is answered as follows: We begin at the root. Being

in a non-leaf node v, we determine whether q belongs

to some simplex of =U, the cutting stored at v, and if

there is such a simplex, we proceed recursively into the

corresponding child of v. If there is no such simplex, it

means that there is a hyperplane strictly above q.

In this situation, we shoot a vertical ray p from q

upwards, we find the first simplex A of EV intersected

by p and we recurse in the child corresponding to A.

Some of the hyperplanes relevant for A must lie above

q: Indeed, let us take the last hyperplane h encountered

along p in the upward direction. The point q n p has

level O, and so it has to be contained in some simplex.

Therefore A contains this point or some point below

it, and so h is relevant for A, showing the correctness

of this step. In a leaf node, we solve the query by in-

specting all the hyperplanes in that node. This finishes

the query algorithm. Since we spend a constant time in

every node, the query time is O(log n).

The reader familiar with the dynamic data structure

of [AM91] can easily verify that the same method works

also for that structure and provides a witness hyper-

plane, while retaining the same (O(log n)) query time.

Since the dynamic data structure requires a larger (n,on-

constant) value of r, we need some auxiliary data stmc-

ture to find the first simplex hit by the ray p. This is

easily done by point location in the projection of the

cutting E. on a horizontal hyperplane, which does not

affect the space or query time requirements.

Finally we point out that the above described method

can be applied also for ray shooting with rays originat-

ing above all hyperplanes. In this case, we always re-

curse in the last simplex of the cutting & intersected by

the query ray; the correctness of this approach is proved

similarly as above. In the dynamic data structure with

nonconstant r, we again use a point location structure

for finding this last simplex. This time we map the

problem into a higher dimensional space, where the loci

corresponding to rays with the same last simplex in-

duce a subdivision. We conclude that ray shooting of

the considered form can be performed with 0(n[di2~ +6)

space and preprocessing time, O(log n) query time and

o(nldlzj-l+~) amortized update time.

The possibility of reducing the space and preprocess-

ing time while retaining a logarithmic query time for

the halfspace emptiness problem and the related ray

shooting problems was investigated in [Sch92]. One of

the solutions obtained there gives 0(nld/2j (log n)c’[l))

space and preprocessing time and O(log n) query time.

2.3 Space/query time tradeoff, further proper-

ties of the algorithms

The above described algorithms can be combined, ob-

taining a continuous tradeoff between space and query

time. Such combination is rather standard (see e.g.,

[CSW90]) and we omit the details. For halfspace empti-

ness queries, we obtain the following:

Theorem 2.4 Given an 71 point set P in Ed (d > 4)

and a parameter m (n < m < nldlzj), there is a

data structure for hatfspac~ empt:ness queries with wit-

ness with space and preprocessing time O(m1+8), and

with query time t(n, m) = 0(n/ml/ldi2J log n). The

structure supports updates wtth amortized update time

o(ml+~/n). ❑

Also, applying the combined data structures for ray

shooting instead of halfspace emptiness queries, we ob-

tain Theorem 1.5.

For the parametric search technique in the sequel, we

will also need an efficient parallel version of the query

answering algorithms for halfspace emptiness. Actu-

ally, for the algorithms with logarithmic query time,

a sequential version is good enough for our purposes,

so we only need to parallelize the algorithm with lin-

ear space (and the combined algorithm). Based on the

above description, the reacler may check that the lin-

ear space algorithm can be parallelized with O(log n)

parallel time ancl the number of processors propor-

tional to the sequential query time. The combined al-

gorithm with space/query time tradeoff then answers

a query in t-(n, m) = O(log n) parallel steps using

7r(n, m) = 0(n/ml/ld12J) processors.

The subsequent considerations will actually need

only little information about the specific halfspace

emptiness algorithm used. The running time analy-

sis will be expressed in terms of t(n, m), r(n, m) and

~(n, m) (we only assume that r(nj m) = (log n)”(l) and

log r(n, m) = O(log n)). We will however require that

all the information the halfspace emptiness algorithm

neecls about the bounding hyperplane h of the query

halfspace y can be inferred solely from answers to ques-

tions of the form “what is the relation of h to a point

q (above, or, or below)?” (the point q may depend on

P ancl on the answers to previous questions, but not

on h directly). Actually, we will apply the algorithms

in the dual setting, where the permitted question is of

the form “what is the relation of the query point p to

some hyperplane h?”. For the above presented half-

space emptiness algorithms one easily verifies that their

elementary tests are of this form.

21

3 Multidimensional parametric search

Let us consider the following problem: We are given n

real numbers Z1, Cn, and for some real number z,

we want to decide the order relation (equal, less than,

or greater than) between .z and each z;. We do not

explicitly know the value of z, but we suppose that an

algorithm is available which decides the order relative

to z for any given number r. The calls to this algo-

rithm are expensive, so we want to make as few calls as

possible.

A well-known solution to this problem is to sort

xl, Xn, and then use binary search to locate the

position of z among these numbers. In this way, we can

find a point z’ such that the order relation of z’ to each

of ~i is the same as for z, by O(log n) calls to the order

decision algorithm. All remaining order relations are

then determined by direct comparisons with z’.

This is a view of binary search suitable for generaliza-

tion into higher dimensional setting. Instead of points

Zl, ..., ~n E El, we consider nonvertical hyperplanes

hl, h~ in Ed, and z will a point in Ed. The re-

lation we want to determine is whether .z lies below,

on, or above hi, and we again assume that we have

an algorithm which can answer such a question for any

given hyperplane h. In one step of the generalized bi-

nary search, we want to determine the relation of z to a

constant fraction of the hi’s using a constant number of

calls to the decision algorithm. Such a procedure is con-

tained in Megiddo’s paper [Meg84], and a refined ver-

sion in [Cla86]. One can also use a construction which

originated in the context of random sampling methods:

For any collection of hyperplanes, the space can be par-

titioned into a constant number of simplices in such a

way than no simplex is intersected by more than (say)

half of the hyperplanes. The most economical construc-

tion of this type was given in [CF90], and in [Mat91a]

it was shown that it can be performed in linear time.

Either of these methods can be used to eliminate a con-

stant fraction of hyperplanes. Performing this O(log n)

times, we are left with only a constant number of hyper-

planes with an unknown relation to z, which can then

be tested directly.

Let us recall Megiddo’s parametric search technique,

first described in [Meg83] and then applied in the de-

sign of numerous algorithms. The basic idea ‘behind his

method is as follows: Suppose we have a problem ?(z)

that receives as input n data items and a real parameter

z. We want to find a value Z* of z at which the output

of 7(z) satisfies certain properties. Suppose we have

an efficient sequential algorithm A for solving P(z) at

any given z, and also an algorithm B which can answer

questions whether the given .z is equal to, less than, or

greater than the desired value Z* (often A and B are

actually the same algorithm). Assume moreover that

the flow of execution of A depends on comparisons of z

with some values, which only depend on the input items

and on the outcomes of previous comparisons, but not

on z directly.

Megiddo’s technique then runs the algorithm A

“generically”, without specifying the value of z, with

the intention of simulating its execution at the unknown

z*. Each time a comparison is to be made, we run al-

gorithm B “off line”, thereby determining the outcome

of the comparison at z*. Then execution of the generic

A can be resumed. As we proceed through this execu-

tion, each question that we resolve further constrains

the range where Z* can lie, and we thus obtain a se-

quence of progressively smaller intervals, each known

to contain Z*, until we reach the end of the generic A

with a final interval 1. It follows that the outcome of A

will be combinatorially the same when we run it on any

z E I, including z*. If I is a singleton, we have found

Z*; otherwise it is often straightforward to determine

z’, depending on the nature of the problem — in many

cases any value Z* E 1 would do.

The cost of this implicit search is usually dominated

by CTB, where C’ is the maximum number questions

answered by B and TB is the running time of B. Since

this bound is generally too high, Megiddo suggests to re-

place the generic algorithm A by its parallel version, AP.

If AP uses m processors and runs in ~ parallel steps, then

each such step involves at most T independent compar-

isons, that is, each can be carried out without having to

know the outcome of the others. At this point, we can

apply the binary search strategy to resolve these com-

parisons. This requires 0(7r+TB log m) time per parallel

step, for a total of O(mr + TBr log m) time, which often

results in a saving of nearly an order of magnitude in

the running time. An improvement of this technique

by Cole [C0187] can further reduce the running time in

certain cases by another logarithmic factor,

In multidimensional parametric search, we assume

that the questions asked by the parallel algorithm AP

are not just comparisons of some real numbers with z,

but rather they are of the form “what is the relation of

z to a hyperplane q“, and the algorithm B can answer

questions of this type. We then simply replace the usual

binary search by the above outlined multidimensional

search. This allows us to answer one round of r ques-

tions generated by the parallel algorithm by O(log n)

calls to the algorithm B, with O(r) time overhead.

A similar approach has been used by Cole et al.

[CSY87] for a problem in the plane, and in higher di-

mensions by Cohen and Megiddo [CM89] and indepen-

dently by Norton et al. [NPT90] (the authors are in-

debtecl to N. Megiddo for pointing out the latter two

references). However simple, this extension of the para-

22

metric search technique seems to have many potential

applications in computational geometry.

4 Separation queries

We are ready to prove Theorem 1.1. It will be more con-

venient to work in the dual space (as we already dicl for

the halfspace emptiness queries with logarithmic query

time). The collection P of points dualizes to a collec-

tion II of nonvertical hyperplanes, and a hyperp lane

lying completely outside conv(P) dualizes to a point z

completely above or completely below all hyperplanes

of H. The condition that the hyperplane should lpass

through a given point z means in dual that z should

be contained in a query hyperplane ~. We will restrict

ourselves to the “above” case (the “below” case can

be treated similarly). We thus have the following query

problem for a collection H of hyperplanes: Given a non-

vertical hyperplane ~, decide if there exists a pOht of

$ lying strictly above all hyperplanes of H (let us call

such a point good for short).

We generalize this query problem to the following

problem 11~($): given a nonvertical k-flat ~ ~ Ed, find

a good point in f. We are actually interested in solving

IId-l (f), but we will build the solution to all 11~ by

induction on k. In order that this induction works, we

need the following extended type of solution to 11~(f):

If a good point exists, return one, but if it does not, re-

turn a (k+ 1)-tuple E(f) ~ H such that each point off

lies below some h @ E(f) (E(f) will be called an obscur-

ing (k+ 1)-tuple for f), The existence of such a (k+ l)-

tuple follows from a dual version of Caratheodory’s The-

orem on convex sets, and we can certainly find such a

(k+ 1)-tuple in time 0(1111’t’) by inspecting all (k+ l)-

tuples. We will have a more efficient way to do it, but

this observation will be needed for smaller collections of

hyperplanes.

The preprocessing in our solution will be the same

as for an halfspace emptiness algorithm (one of the

algorithms from section 2) or, more precisely, for its

dual version, solving the upper envelope problem. Us-

ing such a data structure, we will be able to SOIWS all

the problems IIk.

Let us begin by the case k = O. Then f is just a

point, and thus problem IIo(f) can be solved in Itime

to(n, m) = t(n, m); the obscuring l-tuple is just a wit-

ness hyperplane.

Let now k > 0, To solve II~(f), we will apply lc-

dimensional parametric search technique, searching for

a good point z“ E f. The role of the generic algorithm

A will be played by an algorithm deciding whether a

point z is good, with a witness in the negative case.

We now need the algorithm B answering questions

about the position of z’ within f relative to a given

hyperplane q. It will work as follows: Given such a

question, we consider the (k – 1)-flat f’ = f n q and

we solve problem IIk-l(f’). If this finds a good point

z“ E f’, then also the original problem 11~(f) is solved.

Otherwise we have an obscuring k-tuple 5 = E(f‘).

Since the region of points in f not obscured by Z is

convex, it may lie on one side of q only, and thus at

least one of the halfspaces determined by f’ in f is also

obscured by E, and only the other one remains as a

potential location of .z*. This suggests an answer about

the position of Z* relative to q, which is correct provided

that a good point in f exists at all.

When the computation of the generic algorithm is

finished without finding a good point in the calls to

algorithm B, the possible position of z“ is restricted to

an open convex region R, which is an intersection of

at most O(r(n, m) log T(n, m)) of open halfspaces in f

(each halfspace corresponding to one call to algorithm

B). Let us discuss the various cases arising here.

First suppose that the generic algorithm answers YES

(there is a good point). If the region R is nonempty,

any of its points must be good (since for any such

point, the computation of algorithm A would conclude

this). If R is empty, then the answers to the ques-

tions must have been inconsistent, and since all the

questions are correctly answered provided that a good

point exists, the conclusion is that no good point ex-

ists. Therefore there must be an obscuring (k + l)-

tuple, and it, can be found among the hyperplanes

forming the obscuring k-tuples computed in answering

the questions by algorithm B. By testing all (k + l)-

tuples of these O(~(n, m) log m(n, m)) hyperplanes, we

find that an obscuring (k + 1)-tuple is found in time

O((r(rl,m)log T(?i, ??l))~+l).

Let us now assume that the generic algorithm an-

swers NO; in this case it has to exhibit a witness, which

will be one specific hyperplaue h ● H. Since the com-

putation of algorithm A would be the same for every

specific point of the region R, this h has to obscure all

points of R. Together with the obscuring k-tuples found

in the computations of algorithm B, we again have a

small collection of hyperplanes for which we know that

it contains an obscuring (k + 1)-tuple.

The parallel running time of algorithm A is at most

~(n, m) with m(n,m) processors and the running time of

algorithm B is tk–l (n, r-n) by inductive hypothesis. We

thus get that the running time of the algorithm solving

problem IIk is

(o tk_l(7t, rn)7-(?t, r?l)log7r(n, rn) +

= O(t(n, rn)?-(n, rrl)~logk X(n, m)).

23

With the algorithm for halfspace emptiness queries de-

scribed in Section 2, we get

n
tk(n, ~) = ‘tml/[d/2J logzk+l n).

(For the case of maximal space m = nld12j, we

have m(n, rn) = 1 and the query time reduces to

o(logk+l n)). This finishes the proof of Theorem 1.1. •I

Proof of Theorem 1.2: In order to test whether a

point x is extreme in a set P, we need a separation

query with z on the point set P \ {z}. It is straightfor-

ward to extend the halfspace emptiness algorithm from

section 2 in such a way that it declares a closed half-

space empty even if its bounding hyperplane constrains

only the point x: Such a hyperplane is O-shallow, hence

the fact that x belongs to the bounding hyperplane can

be found only in a leaf of the partition tree, so one

simply excludes the test involving x in that leaf. A

similar modification can be made in the dynamic ver-

sion of Clarkson’s algorithm. We then get an algorithm

which can perform a separation query with x on P\ {x}

for any x E P, within the

Theorem 1.1. Performing n

treme points, and the time

~ ~ #-V(l@j+l)

same time bounds as in

such queries finds all ex-

bound follows by setting

❑

5 Extension to the linear programming

case

In this section, we extend the algorithm from the pre-

vious sections for handling linear optimization queries.

Let us consider a set r. of n closed halfspaces defining

constraints in our linear programming problem. We

will assume that the intersection of these halfspaces is

nonempty and contains an interior point o (if this is

not the case, then either the linear programming prob-

lem has no admissible solution, or its dimensionality

can be reduced). Using a duality with center o, we get

that the admissibility of a point z in a linear program-

ming problem LP(f’o, c) translates to the emptiness of

a closed halfspace in the dual space. Hence the admis-

sibility can be checked using an algorithm for half space

emptiness. If a set r~ of additional constraints is added

to a linear optimization query, the admissibility check-

ing algorithm can obviously be modified to check the

admissibility with respect to r. u I’q with O(lrg /) in-

crease in the query time; thus adding new constraints

with the query presents no problem and we will just

consider the minimization problem over an intersection

of halfspaces of a set r, whose bounding hyperplanes

form a set H. For simplicity, we will again assume that

the hyperplanes of II are in general position, and that

the optimal solution to the considered linear program-

ming problem is unique. With some more care, these

assumptions can be removed.

The solution to a linear optimization query will be

analogous to the separation query solution in the pre-

vious s;ction. This time problem IIk (~) will be the

following: For a k-flat ~ ~ Ed, find an admissible point

z“ ~ ~ minimizing c. z over the intersection of the half-

spaces of r with f, and a dejintng k-tuple of this z“, i.e.

a k-tuple of hyperplanes from If whose common inter-

section with f is the point z“. If no admissible points

exist in f, an obscuring (k + 1)-tuple E ~ If should be

output (E witnesses the non-admissibility for all points

of f). Our original problem can be solved as soon as we

exhibit a solution to Hd(Ed).

The problem IIo(f) is just the admissibility checking

for a point f (requiring a witness halfspace for non-

adrnissibility). To solve IIk (f) for k > 0, we run the

admissibility checking algorithm generically, and we re-

quire an algorithm answering questions about the po-

sition of the optimal solution z* in f relative to given

hyperplanes. To answer such a question for a hyper-

plane q, we solve 11~-1 (q n f). If an optimal solution .z’

is found, its defining (k – 1)-tuple guarantees that the

value of the objective function in one of the halfspaces

clefined by q in f cannot exceed the value at z’, and

thus the other halfspace must be given as the answer.

If an obscuring k-tuple is returned, similarly as for the

separation queries one of the halfspaces in f is excluded

as a possible location of admissible points.

When the generic algorithm finishes its work, the po-

sition of the optimal solution Z* is again restricted to

an intersection R of a polylogarithrnic number of half-

spaces in f. If the generic algorithm concludes that

an admissible point exists and R is nonempty, we may

use a “brute force” linear programming algorithm (go-

ing through all points defined by k-tuples of constraints

returned as either defining (k — 1)-tuples or obscuring

k-tuples) to optimize the objective function over R and

hence compute the solution to the problem II~(f). If

this optimization problem happens to be unbounded,

also the original linear programming problem is un-

bounded and the whole computation may finish. The

other cases are similar to the separation query algo-

rithm. Also the running time analysis for this algorithm

is the same as for the separation queries, This concludes

the proof of Theorem 1.3. !Zl

24

References

[AM91]

[AM92]

[CF90]

[Cla86]

[Cla88a]

[Cla88b]

[CM89]

[C0187]

[CSW90]

[CSY87]

[Dye86]

[Ede87]

[Epp91]

[GSC87]

[HW87]

P. Agarwal and J. Matou3ek. Dynamic half-space

range reporting and its applications. Tech. Report

CS-1991-43, Duke University, 1991.

P. AgarwaJ and J. Matou3ek. Ray shooting and

parametric search. In 2Jth Synap. on Theory of

Computing, 1992. To appear. Also published as

Tech. Report CS-1991-22, Duke University, 1991.

B. Chazelle and J. Friedman. A deterministic view

of random sampling and its use in geometry. Com-

binatorics, 10(3):229–249, 1990.

K. Clarkson. Linear programming in O(rz x 3d’)

time. Information Processing Letters, 22(1)1:21-

24, 1986.

K. Clarkson. Las Vegas algorithm for linear pro-

gramming when the dimension is small. In F’roe,

.29th IEEE Symposiuna on Foundations of Com-

puter Science, pages 452–457, 1988.

K. L. Clarkson. Applications of random sampling

in computational geometry II. In Proc. Jth ACM

Sympostum on Computataona! Geometry, pages

1-11, 1988.

E. Cohen and N. Megiddo. Strongly polynomial-

time and NC algorithms for detecting cycles in

dynamic graphs. In Proc. 21st ACM Symposium

on Theory of Computing, pages 523–534, 1989.

R. Cole. Slowing down sorting networks to obtain

faster sorting algorithms. .Jourrsal of the A CM,

34:200-208, 1987.

B. Chazelle, M. Sharir, and E. Welzl. Quasi-

optimal upper bounds for simplex range searching

and new zone theorems. In Proc. 6. ACM Syntpo-

sium on Computational Geometry, pages 2~1–33,

1990.

R. Cole, M. Sharir, and C. Yap. On k-hulls and

related problems. SIAM .Jour-nal on Computing,

16(1):61-67, 1987.

E. M. Dyer. On a multidimensional search tech-

nique and its application to the Euclidean 1-

centre problem. SIAM Journal on Computang,

15:725-738, 1986.

H. Edelsbrunner. Algorithms in combinatorial ge-

ometry. Springer, 1987.

D. Eppstein. Dynamic three-dimensional linear

programming. In Proc. 32nd IEEE Symposium

on Foundations of Computer Science, pages 94–

103, 1991.

L. Guibas, J. Stolfij and K. Clarkson. Solving re-

lated two- and three-dimensional linear program-

ming in logarithmic time. Theoretical Conqouter

.Sczence, 49(1):81–84, 1987.

D. Haussler and E. Welzl. c-nets and simplex

range queries. Discrete & Computational Geonxe-

try, 2:127–151, 1987.

[Mat91a]

[Mat91b]

[Mat91c]

[Mat91d]

[MS91]

[Meg83]

[Meg84]

[Meh85]

[Mu191]

[NPT90]

[PH77]

[sch91]

[Sch92]

[Sei86]

[Sei90]

[SW90]

J. Matouiek. Approximations and optimal geo-

metric divide-and-conquer. In Proc. .Z3nd ACM

Symposium on Theory of Computing, pages 505-

511, 1991.

J. Matou5ek. Efficient Partition Trees. In

Proc. 7th ACM Symposium on Computational Ge-

ometry, pages 1–9, 1991.

J. Matouiek. Reporting points in halfspaces. In

Proc. 32nd IEEE Symposium on Foundations of

Computer Science, pages 207-215, 1991.

J. Matou<ek. Linear optimization queries. J. Al-

gorithms, to appear.

J. MatouSek and O. Schwarzkopf. Linear opti-

mization queries. Tech. Report B 91–19, Freie

Universitat Berlin, 1991.

N. Megiddo. Applying parallel computation algo-

rithms in the design of serial algorithms. .lournal

of the ACM, 30:852–865, 1983.

N. Megiddo. Linear programming in linear time

when the dimension is fixed. Journal of the A CM,

31:114-127, 1984.

K. Mehlhorn. Multi-dimensional Searchtng and

Computational Geometry. Springer-Verlag, Hei-

delberg, 1985.

K. Mulmuley. Randomized multidimensional

search trees: Lazy balancing and dynamic shuf-

fling. In Proc. 3%sd IEEE Symposium on Founda-

tions of Computer Science, 1991, pages 180-196.

C. H. Norton, S. A. Plotkhr and E. Tardos. Us-

ing separation algorithms in fixed dimension. In:

Proc. Ist Annual ACM-SIAM Symposium on Dis-

crete Algorithms, 1990, pages 377–378.

F. P. Preparata and S. J. Hong. Convex hulls

of finite point sets in two and three dimensions.

Communications of the ACM, 20:89-73, 1977.

0. Schwarzkopf. On the Post Office Problem.

Manuscriptj 1991.

0. Schwarzkopf. Ray shooting in convex poly-

topes. This proceedings.

R. Seidel. Constructing higher-dimensional con-

vex hulls at logarithmic cost per face. In Proc.

Ifith ACM Syniposaunl on Theory of Computzng,

pages 404–413, 1986.

R. Seidel. Low dimensional linear programming

and convex hulls made easy. Discrete 8’ Compu-

tational Geometry, 6:423-434, 1991.

R. Seidel and E. Welzl. Private communication,

May 1990.

25

