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ABSTP_CT

Oscillations of a conducting drop immersed in a dielectric fluid in an

alternar.ing electric field has been modelled in order to understand the

enhancemen= of the transport processes by _he electric field. Numerical

solutions for oscillation amplitude, velocity distribution, resonant frequency

and streamlines were obtained. The effects of viscosity and density on the

resonant frequency and the velocity distribution were investigated, lt was

found that the resonant frequency of viscous fluids was always smaller than the

free oscilla=ion frequency of the same droplet. The predicted scanning

frequency response c:urve and the s_reaml.ines agree well wit/] _he experimenzal

observations +
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Introduction

Applications of electric force in direct contact heat transfer process or

liquid extraction can resul= in a better energy efficie:_cv than the conventional

agitation me=hods (Thornton 1968). For liquid systems, _hich have insulating

continuous phases and conducting dispersed phases, an imposed electric field

will disturb the interface by interacting with induced el.ec=ric charge, and thus

i

, enhance mass or heat transfer rate, In a static field, the electric force can
j,

; reduce drop size, increase drop velocity, therefore, increase the interfacial
i

"I area and the transport coefficient. An alternating electric field can also

:t
:_ reduce _he drop size e.ffectivelv (Kawalski and Ziolkowski. !,981). Experiments

._ on direct contact hea_ transfer showed that an alternatin_ electric f_eld with a

,} proper frequency was more efficient than a static field in enhancing the heat

transfer coefficient (Kaji et al.. 1980, 1985). The experi_.ents also showed

that the enhancement of the heat transfer coefficient _'as directly related to

the drop oscillations induced b:_'the electric force. To understand the effects

of _he electric fields on the transport: processes, we need knowledge of the

hydrodsnnamics of the electrically forced drop oscillationa.

SZudies on free oscillations of a drop (Miller and Striven 1968; Prosperezzi

1980; Mars_on 1980) have revealed that a drop oscillates az its characteristic

frequencies no matter how the oscillations are excited. For viscous fluids, the

oscillation amplitudes decay gradually due to viscous dissipation. Drop

oscillations under the sustained action of an external alternating force are

different. The oscillation frequencies are the sar_'eas those of the ex:ernal

force (Lamb 19A5), but the amplitudes are functions of the external forces as

!llllql!
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well as properties of the fluid system. A quasi-steady external force maintains

the amplitudes constant, therefore, the decay factors are zero. Torza et al.

(1971) and Sozou (1972) have inveszlgated oscillations of an uncharged drop in

alternating electric fields. The attention of their work was paid to the

effects of electric properties (resistivity and dielectric constants) en the drop

deformation and the flow patterns. They did not discuss the effects of the

hydrodynamic properties, which are more essential to the study of _he transport

processes. Drop oscillations driven by acoustic waves have been studied by

Marston (1980). Explicit solutions for oscillation amplitudes and phase shift

angles were obtained for low viscosity systems. For sol_tions in a wide

viscosity range, numerical methods must be used.

In this paper, we present a model for the hydrodynamics of :_mall amplitude

oscillations of a conducting drop immersed in a dielectric fh_id in an

alte_nating electric field. Expressions of velocity distributions are obtained

analyT:ically and boundary condition equations are solved numerica!i'v. Resonant

frequencies are predicted and effects of viscosity and density on flo_' fields

are discussed.

Model

Consider a c/u_rged fluid sphere immersed in another immiscible fluid. Both

fluids are assumed incompressible and Newzonian, and properties in each phase

are uniform. The interface is presumed to be free from any cont_Lminazion by

surfactants, lt is also assumed that the effect of gravity on drop deformation

can be neglected (gR=ap/a is small). Only small amplitude oscillations are
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considered, Therefore the nonlinear term in the Navier-Stokes equation can be

neglected (Levich ].962). lt is further assumed that electric field far from the

drop is uniform, the drop phase is cor,ducti'Je and the conr.inuou; phase

dielectric so that electric equilibrium can be reached instantly and charge loss

negligible. This study is limited to the axisymmetri¢ flow, which has been

frequently observed in experiments. Spherical coordinates (r, 8, _) will be

used and the origin is at the drop center. _ - 0 is taken as the symmer.ry axis

(the electric field is in this direction). The momentum equation is

av 1

.-- - vV2v - - Vp (1)

St p

The continuity equation for an incompressible fluid is

V.v- 0 <2)

By taking The di'_ergenee of the momentum equation and subtracting the continuity

equa=ion, the following pressure equation is obtained (Chandrasekhar 1961).

V=p- 0 (2,)

The boundary conditions include" continuity of the normal and tangential

velocities at the interface; normal stres.s balance an the interface" r:.:. r -

fro: continuity of the tangential stress at the interface; normal velocity at

the interface matches with the ra=e of displacemen_ of the interface" a[/at -

vrlr,_; fini'te pressua'e and velocities at the drop center as well as at infinity.

When =he drop center moves, the origin of The coordinates moves with i=.

Consequently, it seems that the surrounding fluid moves while the drop posi-ion

keeps unchanged. In the normal stress balance, r_ is surface stress including



the effects of surface tension and surface charge.

i I
- a(-- +--) -

r e 4)

R: R2

where o is interfacial tension, RI and _ are principal radii of curvature of

the drop surface, T is stress produced by eJ,ectric charge on the interface.

For free oscillations of a drop with net charge on irs surface, _he primary

effect of net charge on the oscillations is induced by redistribution of the

charge on deformed drop surface. A first order perturbation model (weighted in

terms of deformation amplitude) is necessary to describe this charge

redistribution (Rayleigh 1882, Hendricks and Schneider 1963). When an external

alternating electric field exists, direct interaction between the charge and the

field is the primary effect on drop motion and oscillations. This effect can be

described by a zero order perturbation model. The effect of charge

redistribution on the deformed surface becomes secondary. Under ordinary

conditions, the secondary effect is much smaller than the primary effect. Only

the primary effect will be considered in this paper, therefore, a zero order

perturbation model is used. Theoretically, the boundary, conditions should be

satisfied on the deformed interface. As a zero order perturbation mode]., the

boundal_ condi:ions will be satisfied on the undeformed spherical interface, and

r,he normal, and _angential components of vectors will be replaced by r and ,6

components, respectively.

In zero order perturbation, the electric charge distribution for a slightly

deformed drop ks approximated by that on a spherical conductor (Reitz 1967).
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q - q._,_+ 3_Ecos8 (5)

_'here qr.,_is average ne_ charge density, ¢ is permittivity of the surrounding

fluid, E is field strength, _ is polar angle measured from the positive

direction of the electric field. For an alternating electric field, E -

E'cos(_,t), where E° is amplitude and _o is frequency of the electric field.

The normal stress generated by the charge is

q2 q2 3 3
• °

i _" -- _--- (-- + -¢E_) + 3q"e_E ¢os(_,t)P_ -e -¢E'2[cos(2_,t)+l]pz (6)
1 2¢. 2_ 2 2

!:
I where P_ - P_(cosS), is a nth order Legendre function. There is no electric
I'
i

1 tangential stress on a conducting drop surface (Taylor 1966). The terms in the
"ii

first parenthesis represent average pressure produced by the net and induced

! charge. For incompressible fluid, this average pressure only alters pressure

'i distribution but does not contribute to any drop movement• The second and third
I

terms contain only firs_ and second order Legendre functions, respectively.
I

According to the linear oscillation theory (Lamb 1945), the above electric

II forces will only affect the first mode (linear translation) and the second mode

(prolate-oblate oscillation) motions, respectively. Oscillation frequencies

,, are _e arid 2/9e for the first and second modes, respectively, The time-

!! independent par= in the last term will cause a static prolate deformation.

', If higher order corrections were included in the model, secondary effects of

drop deformation would induce oscillations of some other modes, but amplitudes

of those oscillations would be much smaller than the primary motions

. considered here, as long as the assumption of small amplitude is satisfied.
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Solution procedure for the above equations is similar to that described by

Chandrasekhar (1961). The expressions of the solution are in complex forms,

which involve half order Bessel and Hankel functions.

2

Pi " Pi" + Pi [ am_exp('_ut)rnP= (7)

I o

j Po " Po + Po _- azneXP('_n_2r'n'IPn (8)

n-i

i
i Z alnnrn-: a3n

r3,2

2 azn(n+l ) a_n a51

vro " X eXp('_nt)[" + "----Hn+%(xo)]Ph . ---exp(-_:t)P: (I0)

n-! _n rn+2 r312 _l

]

J _ n*_(xi], z a:nr=': a3n Jn,_(x±) x J : ) dPu

[ vei- _[ exp(-O, nt){--+--[ .......... " ])-- (11)
I' n-_ _r. r31= n n(n+l) d_

I

2 a2n a_n H_._(xo) XoHn+_(xo) dPn asl dP.
,I V_o" I exp('_nt)( .... +-------[ - ])---4.-----exp(-_:t) ---i

_,!, n'1 u)nrn'2 r 3/2 n n (n_-l) d_ _ d9

1 (!2)

:I [ - R "+ [a_2exp(-_2t ) + b2]e 2 (_3_
'I

Where p a_d p" are pressure and its time-independent part, respectively; v is

I velocity: subscrip1:s i and o denote irmer and outer fluids, subscripts r and ._

I denote r and _ components, respectively; n is mode number: _n-+ir_9 , is a

'ii complex number corresponding to oscillation frequency of nth mode; x - _r"

[ _ (k-I,2,3,_,5) and bz are unknown constants: Ju*% and H_.% are half order
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Bessel and Hankel functions of the first kind, respectively; [ represents

deformed drop surface; R is the undeformed spherical drop radius. The last

terms in Equations (I0) and (12) represent fluid velocity far from the drop

relative to the drop center.

Because the problem iS linear, we can use the complex form in the boundary

conditions and find out the unknown constants numerically, then take =he real

parts of the results at the end of the calculations. Substituting the above

expressions into the boundary conditions and after some algebraic manipulation,

a system of linear algebraic equations for each oscillation mode can be

obtained. The equations can be solved numerically _ith the Gauss elimination

method to get values of the unknown constants.

lt is more efficient to present the results in dimensionless form. The

variables are nondimensionalized as follow.

r*- r/R, v* = v/(_R), a"- lasnl/R, p"- p/(_:$aR2), _"- _/($eR 3)

where r, v, a, p, and _ are radial coordinate, veloci_, amplitude, pressure,

and streamfunction, respectively; the superscript * denotes dimensionless

variables. Dimensionless groups that affect the dimensionless solution of the

second mode oscillation are

, B e ,ei eo, PJPi f

where e_, - _ip_pA/_R and eo - _op_o/aR, may be regarded as dimensionless

viscosities; _"- _,_piR3/u, is a dimensionless frequency; po/p i is the density

ratio; f - 3_E'XR/2a is the ratio of electric stress to the surface tension

II,



stress, f- 0.i is used in this paper. T%,e time-independent part of the normal

stress balance gives solution for b2- (b2/R) - f/&.

Results and Discussion (for Second Mode)

Although first mode mo=ion is also oscillatory and may play an important role

in enhancing transport processes, it only involves linear translation but no

shape deformation. Solution to the first mode can be obtained by the same

method used for the second mode. The following discussions are emphasized on

the second mode shape oscillation.

I:'.requency scannin E response and resonant frequency

AmpliTudes of forced oscillations are funcuions of the electric field and

properties of the fluid system. The linear theory predicts that the amplitude

is proportional to the external force. Effects of other parameters are

complicated. By measuring the oscillation amplitude while varying r_he frequency

of the force, a scanning frequency response curve can be obtained. Figure 1

shows calculated response curves. The dimensionless amplitude a" is

proportional to f, and only its relative significance is needed here, therefore,

its scale is arbitrary. All the curves in Figure 1 have the same value when B°

approaches zero. At this point, the drop is in a qIL_si-equilibrium state and

the only parameter that affects a" is f. Therefore, a constant f gi_es a

constan_ a'. When _* approaches =, a* approaches zero. In between, the curve

may pass through a peak. which indicates resonance. The shape of the peak is

determined by el, e o and po/p i. WheT, ei or eo increases, the response curve

-i
=
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becomes f]attened and the dimensionless resonant frequency decreases, kquen

Po/Pl increases, the dimensionless resonant frequency decreases, but the

resonant amplitude first decreases then increases. Figure 2 compares a

predicted scanning frequency response curve with that measured by Trinh et al.

(1982) for a drop driven by an acoustic force. The predicted resonant frequency

is tuned to coincide with the measured one by adjusting the interfacial tension

(calculated a= 0.029 N/m compared to 0.035 - 0.04 N/m given in their paper).

The shapes of the curves are similar, indicating that electric force and
l

acoustic force have similar effects on drop deformation.

The resonant frequencies can be obtained from the frequency response curves.

Figure 3 compares the resonant frequencies calculated by this model with the

free oscillation frequencies (Prosper_=ti 1980). When calculating dimensionless

frequency for free oscillation, the oscillation frequency should be divided by

t'he mode number in order to be consisten_ with the definition for the forced

oscillation. The effects of viscosities on free and resonant frequencies are

similar. As viscosities increase, the frequencies decrease. For inviscid

fluids, _he resonant frequency coincides with the natural frequency. For

viscous fluids, the resonant frequency is always smaller than the free

oscilla_ion frequency. The larger _he viscosities, the greater the difference

between them..

Veloci£ 7 distribution

Variations of velocities in the 0 direction are described by Legendre

functions. Only the variations in the r direction will he discussed. For
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, - " and _ -w/4 for v e because in theseconvenience 8 0 is chosen for v=

, directions the velocities are maximum. Other factors that affect the velocities

_* and time. lt is clear from the velocity expressions thatare eo,, ei, Po/Pi, •

=he velocities change with time periodically. The effect of ft" on the

velocities is similar to that on the amplitude. Therefore, these two factors

will not be further discussed. In =he following, the resonant frequency and the

time for maximum radial velocity at the interface are used. Figures 4 and 5

show the radial and tangential velocity profiles with ei - eo - e as a

parameter. The velocities decrease with increasing e. When e is small, the

drop phase velocities are proportional =o the radius except near the interface

and =he =a.ngential velocity has very large gradients on both sides of =he

interface. 'The gradients increase with decreasing e, bn= no slip of velocity

occurs as long as e is noC zero. Consequently, the viscous dissipation is

concentrated in a thin boundary layer near the interface for small viscosity

fluids, as has been predicted by Miller and Striven (1968) for a free

oscillating drop. If ei or eo changes individually, the _eloci_y gradient in

the corresponding side of the interface will be mostly affected.

Effect of density ratio on the _angential velocity is illustra=ed in Figure

6 for e i - eo - 0.001. Of the profiles shown in _he figure, popi - I gives the

smallest velocity. The velocity profiles Shift out-ward if PoPl < l, and inward

if Po/P_ > i. In either of the cases, the larger tangential velocity gradient

is always in the less dense side of =he interface.

I

l

z

_=.

=
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Screaml ines

Since the flow field of the oscillating drop is axlsymmeCric, the scream

functions can be easily obtained from the Integration of the velocity

e,%7#resslons. Flow pacter_%s for mode Z are ill_strated in Figure 7. The effects

of vlscosit-y and density ratio are _llus_rated lm dlfferen¢ quadrants. _he

circle in the middle indicates the interface of the drop. In all the conditions

the inter_al and exrermal streamlines meet at the interface and form closed

cycles. During oscillation the fluids move back and forth once in a period

along the streamline_1. The cen_ers of the cycles indicate the positions of

stag_1_DC rings where the radial and nangenCial velocities are zero. The

position of the rimgs are determined by v= - 0, which gives 8 - cos'_._l-_3, v_ -

0 determines the radial position of the rlng_, which t_rns ouc _o he a funcclon

of many paraJ_eters. When the den,_i_les are the same ((a) and (b)), the stagnasc

rings move co _he less viscous side of the interface, while when the vlsco_s

effects are the same ((a), (c) and (d)), the rings move to the less dense side

of the interface. The incernai streamlines observed by TrIP/_ et al. (1982)

qualitatively agL'ee wi_h the predicted results,

Conclusions

The proposed oscillation m'odel for a drop In an alternating elec_;rlc field is

able to predic_ velo¢i_,y field, s_:anning frequency response curve, resonant

frequency,, and screamli'nes, lq_e predicted scanning frequency response curve and

the s_reamlines are in good agreement, wi_h e.xperimen_al observations. _'_ is

found ¢hac _he resonant frequency of the forced oscillation is equal to che fre _-
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oscillation frequency for inviscid fluids, but always smaller than the free

osciila_ion frequency for viscous fluids. The viscosities and the density ratio

have si_nlficant influence on the velocity profiles.

The enhancement of a _ranspor_ process by an alte_ating electric field

depends on how .much the systems are dls_urbed. Operation at a resonant

frequency is desirable because it produces maximum disturbance for the same

energy input. The predicted scanning frequency response curves can give best

operation frequency range for any fluid system. The velocity dis_rib_tion is

" very _seful for the modellin 8 of a mass or heat transfer process.

_j
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Notation

a* - dimensionless oscillation amplitude

a1_- constants in expressions of solutions, k-l, 2, 3, A,. 5

bz -second mode static deformation
4

E, E" - al_ernating electric field strength, amplitude of E, V/m
b

f - 3_E°'_R/(2o)

H_ - half order Hankel func=ion
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Jn4._" half order Bessel function

n - oscilla.=ion mode number

Pn" Legendre function

p, p - pressure, static parr of pressure, N/m 2

q, q,e=" surface charge densi_/, nec surface charge densiL-y, coul/m 2

R- equivalen= spherical drop radius, m.

R_, _ -principal radii of curvature of drop surface, m

r- radial coordinate, m

t - time, s

v - veloci=y, m/s

X " r_

Greek lec£ers

_0 - ang,'_larfrequency of electric field, s"_.

- permittivity of =he con=inuous phase, farad/m
=

-- radial position of deformed @top surface, m
=

: 8 -- coordinate

u - kinemaclc vlscosi_y, m_/s

p - densicT, kg/,m_

; o"- interfacial tension, N/m
_

_', N/m 2_ ? -- sr.ress,

i

-' _#- streamfunction, m_/s

: _ - ±in_ e

il "
' , , ,, , , ii, i ii ': ........

, ',i,i,, ,, ,,ii-',l)l_ll, l]_lr...... ' 'i_UI)1ilIn,?ll , vii i, ..... n"
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Subscrip rs

e - electric field

i - inside =he drop

n - lr 2, oscillation mode number

o - outside the drop

r - radial direction

s - on the interface

8 - 8 direction

Superscripts

* - dimensionless variables
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Figu_'e i. Predicted scanning frequency response curves for 2hd mode

oscillation. The line passing the peaks of t:he response curves indicates the

effect of density ratio on =he resonant amplitude for e_ - eo - 0.01.

i

Figure 2. Comparison of predicted and observed (Trinh e= al. 1982) 2hd mode

scanning frequency response curves for a silicone/COl 4 drop immersed in

di_:s=illed water. The smoo=h curve is predicted. Drop volume - 1.5 cm 3, PL"

Po- 990 kg/m 3, mi - 3.2xi0 "6 reZ/s, wo - 1.01xl0 "e mZ/s.

Figure 3. Comparison of resonant frequency of forced oscillation and free

oscillation frequency for 2nd mode.

Figure A. Radial velocity distribution for a drop undergoing 2nd mode

oscillation with e_ - eo - e as a parameter.

Figure 5. Tangential velocity distribution for a drop undergoing 2hd mode

oscillation under the same conditions as those of Figure 4.

Figure 6. Tangential velocity distribution for a drop undergoing 2nd mode

oscillation with #o/P_ as a parameter.

Figure 7. Streamlines for a drop undergoing 2nd mode oscillation.

(a)" ei -e o -0.001, Po/Pl" l; (b)" ei -O.O!, eo --O.OOl, Po/P_ = i;

(c)" e_ - eo - 0.001, Po/P, " I00; (d)" e_ - eo - 0.001_ po/p_ - 0.01.
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Figure 2. Comparison of predicted and observed (Trinh et ai. 1982) 2nd mode

scanning frequency response curves for a silicone/CCla drop immersed in

distilled water. The smooth curve is predicted. Drop _rolume - 1.5 cm3, p_-

Po" 990 kg/m 3, vi- 3.2×I0 "s m2/s, vo - 1.01xl0 "6 mZ/s.



a . *

b



,, ,,, ....... Li, ..... ,J, , ,,,,I, , ,L , ,_,,,, 'l'illJ_,t, t. , tit, _ i_' __L_I,_ >lhih,l_,_I ,., _iII,, .. ,_I , ,Ld

t _

,,,IMP',,,,_q],_' ' p,_n'II1_' I]1_,'lll_P,'lll ...... ql'll_ r _rll ...... arn'",,,,;'III' fir, ..... ,r nl,_lIp,,nn,'pl'_ ,,, ' ,irr,,,_ ........ r.....................lip



J,Jli,,iL , ,,,_ , , , _l _, , JLl_l,I JIl,_ ,,,uill_l_l III I_,,

i__

I





2

Ce) (=)

Figure 7. Streamlines for a drop undergoing 2nalmode oscillation.

(a)" ei = e° = 0.001, PoPL = I; (b)" eI - 0.01, eo - 0°001, PoPi ="i;

(c)" ei - eo - 0.001, PoPi " i00; (d)" ei = eo = 0.001, po/p_ = 0.01.
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