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ABSTRACT

Oscillations of a conducting drop immersed in a dielectric fluid in an
aiteruating electric field has begn modelled in order to understand the
enhancement of the transport processes by the electric field. Numerical
solutions for oscillation amplitﬁde. velocity distriﬁution, resonant frequency
and streamlines were obtained; The effects of viscosity and density on the
resonant frequency and the velocity distribution were investigatved. It was
found that the resonant frequency of viscous fluids Qas always smaller than the
free oscillation frequency of the same droplet. The predicted scanning
frequency response curve and the streamlines agree well with the experimental

observations,
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Introduction

Applications of elecffic force in direct contact heat transfer process or
liquid extraction can result in a better energy efficiency than the conventional
agitation methods (Thornton 1968). For liquid systems, which have insulating
continuous phases and conducting dispersed phases, an imposed electric field
will disturb the interface by interacting with induced electric charge, and thus
enhance mass or heat transfer ravte. In a static field, the electric force can
; reduce drop size, increase drop velocity, therefore, increase the inxerfacial
f ‘ area and the transport coefficient. An altermating electric field can also
] reduce the drop size effectively (Kawalski and Ziolkowski, 198l). Experiments
i on direct contact heat transfer showed that an alternating electric field with a
é proper frequency was more efficient than a static field in enhancing the hezt
| transfer coefficient (Kaji et al., 1980, 1985). The experiments also showed
b that the enhancement of the heat transfer coefficient was directly related to
the drop nscillations induced by the electric force. To understand the effects
of the electric fields on the transport processes, we need knowledge cof the

| hydrodymnamics of the electrically forced drop oscillations.

Studies on free oscillations of a drop (Miller and Scriven 1968; Prosperetti
1980: Marston 1980) have revealed that a drop oscillates at its characteristic
frequencies no matter how the oscillations are excited. For viscous fluids, the
oscillation amplitudes decay gradually due to viscous dissipation. Drop
oscillations under the sustained action of an external alternating force are
different. The oscillation frequencies are the sare as those of the externzl

force (Lamb 1945), but the amplitudes are functions of the external forces as
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well as properties of the fluid syétem; A quasi-steady external force maintains
the amplitudes constant, therefore, the decay factors are zero. Torza et al.
(1971) and Sozou (1972) have investigated oscillacions of an uncharged crop in
alternating electric fields. The attention of their work was paid to the
effects of electric properties (resistivity and dielectric¢ constant) on the drop
deformation and the flow patterns., They did not discuss the effects of the
hydrodynamic properties, which are more essential to the study of the transport
processes., Dreop oscillations driven by acoustic waves have been studied by
Marston (1980). Explicit solutions for oscillation amplitudes and phase shift
angles were obtained for low viscosity systems. For solutions in a wide

viscosity range, numerical methods must be used.

In this paper, we present a model for the hydrodynamics of small amplitude
oscillations of a conducting drop immersed iﬁ a dielectric fluid in an
alternating electric field. Expressions of welocity distributions are obtained
analytically and boundary condition equations are solwved numerically. Resonant
frequencies are predicted and effects of viscosity and density on flow fields

are discussed.
Model

Consider a charged fluid sphere immersed in another immiscible fluid. Both
fluids are assumed incompressible and Newtonian, and properties in each phase
are uniform. The interface is presumed to be free from any contamination by
surfactants. It is alsoc assumed that the effect of gravity on dror deformation

can be neglected (gR*Ap/o is small). Only small amplitude oscillations are
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considered, therefore the nonlinear term in the Navier-Stokes equation can be
neglected (Levich 1962). It is further assumed that electric field far from“thé
drop is uniform, the drop phase is conductive and the continuous: phase
dielectric so that electric equilibrium can be reached instantly and charge loss
negligible. This study is limited to the axisymmetric flow, which has been
frequently observed in experiments. Spherical coordinates (r, 6, ¢) will be
used and the origin is at the drop center. # =~ 0 is taken as the symmetry axis
(the electric field is in this direction). The momentum equation is

év 1

— - Vv - - Up (1)
ot p

The continuity equation for an incompressible fluid is
Vev = 0 (2)

By taking the divergence of the momentum equation and subtracting the continuity

equation, the following pressure equation is obtained (Chandrasekhar 1961).
vip =0 (1)

The boundary conditions include: continuity of the normal and tangential

velocities at the interface:; normal stress balance at the interface: T+ T, -

7.,: continuity of the tangential stress at the interface; normal velocity at

the interface matches with the rate of displacement of the interface: 3¢/dt =

v ; finite pressure and velocities at the drop center as well as at infinity.

tlt"f'
When the drop center moves, the origin of the coordinates moves with it.

Consequently, it seems that the surrounding fluid moves while the drop position

keeps unchanged. In the normal stress balance, v  is surface stress including
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the effects of surface tension and surface charge.

1 1

7. = o = 4 ) - 7

S e

4)
R. R,

-

where o is interfacial tension, R, and R, are principal radii of curvature of

the drop surface, 7, is stress produced by electric charge on the interface.

For free oscillations of a drop with net charge on its surface, the primary
effect of net charge on the oscillations is induced by redistribution of the
charge on deformed drop surface. A first order perrturbation model (weighted in
terms of deformation amplitude) is necessary to describe this charge
redistribution (Rayleigh 1882, Hendricks and Schneider 1963). When an external
alternating electric field exists, direct interaction between the charge and the
field is the primary effect on drop motion and oscillations. This effect can be
described by a zero order perturbation model. The effect of charge
redistribution on the deformed surface becomes secondary. Under ordinary
conditions, the secondary effect is much smaller than the primary effect. Only
the primary effect will be considered in this paper, therefore, a zero order
perturbation model is used. Theoretically, the boundary conditions should be
satisfied on the deformed interface. As a zero order perturbation model, the
boundary conditions will be satisfied on the undeformed spherical interface, and
the normal and tangential components of vectors will be replaced by r and ¢

components, respectively.

In zero order perturbation, the electric charge distribution for a slightly

deformed drop is approximated by that on a spherical conductor (Reitz 1967).
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qQ = q,,, + 3e¢Ecosé (
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vhere q_ , is average net charge density, ¢ is permittivity of the surrounding
fluid, E is field strength, # is polar angle measured from the positive
direction of the electric field. For an alternating electric field, E =
E“cos(ﬁ.c), where E° is amplitude and §, is frequency of the electric field.

The normal stress generated by the charge is

q?. dznet 3 3
T, - ;— - ; + ;cEZ) + 3q,,,E°cos(B,0)P, + ;eE'Z[cos(2ﬂ¢t)+1]P2 (6)
€ €

where Pn - Pﬂ(cosﬂ), is a nth order Legendre function. There is no electric
tangential stress on a conducting drop surface (Taylor 1966). The terms in the
first parenthesis represent average pressure produced by the net and induced
charge. For incompressible fluid, this average pressure only alters pressure
distribution but does not contribute to any drop movement. The second and third
terms contain only first and second order Legendre functions, respectively.
According to the linear oscillation theory (Lamb 1945), the above electric
forces will only affect the first mode (linear translation) and the secend mode
(prolate-oblate oscillation) motions, respectively. Oscillation frequencies

are flo and 26, for the first and second modes, respectively. The time-

independent part in the last term will cause a static prolate deformation.

If higher order corrections were irncluded in the model, secondary effects of
drop deformation would induce oscillations of some other modes, but amplitudes
of those oscillations would be much smaller than the primary motions

considered here, as long as the assumpticn of small amplitude is satisfied.
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Solution procedure for the above equations is similar to that described by
Chandrasekhar (1961). The expressions of the solution are in complex forms,

which involve half order Bessel and Hankel functions.

2
Py = P,° + p, L a,exp(-w t)r"P, (7N
nl
2
P, = P.° + Py L 3,,8%Xp(-wx TP (8)
n=1
2 a, nr*! a,.
v, = 2 exp(-wt)] + Ty (%) 1B, (9
n=l W, ‘ ri/?
2 am(m»l) a,, ag,
v, = L exp(-wt)|- + Hoy (%) ]P, + ——exp(-w,t)P, (10)
nel w_rht2 ri/? w
n 1
2 a, r*? ay I (x) X Jnej (%) AP
Vg = ) exp(-w t){ + [ - 1Y (11)
n=1 w, rdf2 n n(n+l) d#
2 aZn akn Hn-ﬂs(xo) onm%(xo) dPn acy dP:
Voo ™ Z exp(-wnt)( + { - 1} + cxp(-wlt)——-~
n=1 w, o r3/? n n(n+l) ds w. d#
' ) (12)
{ = R + [agexp(-w,t) + b,]P, {13)

Where p and p* are pressure and its time-independent part, respectively; v is
velocity; subscripts i and o denote inmner and outer fluids, subscripts r and ¢
denote r and ¢ components, respectively; n is mode number; we~ting , is a

complex number corresponding to oscillation frequency of nth mode; x = .rc.-'):ﬁr:

a,, (k=1,2,3,4,5) and b2 are unknown constants; an. and Hn“‘ are half order
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Bessel and Hankel functions of the first kind, respectively; { represents
deformed drop surface; R is the undeformed spherical drop radius. The last
terms in Equations (10) and (12) represent fluid velocity far from the drop

relative to the drop center.

Because the problem is linear, we can use the complex form in the boundary
conditions and find out the unknown constants numerically, then take the real
parts of the results at the end of the calculations. Substituting the above
expressions into the boundary conditions and after some algebraic manipulation,
a system of linear algebraic equations for each oscillation mode can be
obtained. The equations can be solved numerically with the Gauss elimination

method to get wvalues of the unknown constants.

It is more efficient to present the results in dimensionless form. The

variables are nondimensionalized as follow.

= r/R, v o= v/(BR), a® = |ag|/R, p* = p/(p BRZ), ¥ = p/(BR)

where r, v, a, p, and ¥ are radial coordinate, velocity, amplitude, pressure,
and streamfunction, respectively; the superscript * denotes dimensionless
variables. Dimensionless groups that affect the dimensionless solution of the

second mode oscillation are
-
e, . ey B, p/py, £

where e, = vr]pi/aR and e = oupo/oR, may be regarded as dimensionless
viscosities; " = ﬁ'inR3/a, is a Jdimensionless frequency; o /p; is the density

ratio; £ = 3¢E*?R/20 is the ratio of electric stress to the surface tension
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stress. f = 0.1 is used in this paper. The time-independent part of the normal

stress balance gives solution for bZ: (bz/R) - /4,
Results and Discussion (for Second Mode)

Although first mode motion is also oscillatory and may play an important role
in enhancing transport processes, it only involves linear translation but no
shape deformation. Solution to the first mode can be obtained by the same
method used for the second mode. The following discussions are emphasized on

the second mode shape oscillation.
Frequency scanning response and resonant frequency

Amplitudes of forced oscillations are functions of the electric field and
properties of the fluid system. The linear theory predicts that the amplitude
is proportional to the external force. Effects of other parameters are
complicated. By measuring the oscillation amplitude while varying the frequency
of the force, a scanning frequency response curve can be obtained. Figure 1
shows calculated response curves. The dimensionless amplitude a" is
proportional tec f, and only its relative significance is needed here, therefore,
its scale 1s arbitrary. All the curves in Figure 1 have the same value when §°
approaches zeroc. At this point, the drep is in a quasi-equilibrium state and
the only parameter that affects a" is f. Therefore, a constant f gives a
constant a". When 8" approaches », a" approaches zero. In between, the curve

may pass through a peak, which indicates resonance. The shape of the peak is

determined by e, e and po/pi. When e, or e, increases, the response curve
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becomes flattened and the dimensionless resonant frequency decreases. When
p./py increases, the dimensionless resonant frequency decreases, but the
resonant amplitude first decreases then increases. Figure 2 compares a
predicted scanning frequency response curve with that measured by Trinh et al.
(1982) for a drop driven by an acoustic force. The predicted resonant frequency
is ﬁuned to coincide with the measured one by adjusting the interfacial tension

(calculated at 0.029 N/m compared to 0.035 - 0.04 N/m given in their paper).

The shapes of the curves are similar, indicating that eleccric force and

[

{
acoustic force have similar effects on drop deformation.

The resonant frequencies can be obtained from the frequency resﬁonse curves.
Figure 3 compares the resonant frequencies calculated by this model with the
free oscillation frequencies (Prosperecti 1980). When calculating dimensionless
frequency for free oscillation, the oscillation frequency should be divided by
the mode number in order to be consistent with the definition for the forced
oscillation. The effects of viscosities on free and resonant frequencies are
similar. As viscosities increase, the frequencies decrease. For inviscid‘
fluids, the resonant frequency coincides with the natural frequency. For
viscous fluids, the resonant frequency is always smaller than the free
oscillation frequency. The larger the viscosities, the greater the difference

between them.
Velocity distribution

Variations of velocities in the § direction are described by Legendre

functions. Only the variations in the r direction will be discussed. For
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convenience, #§ = 0 is chosen for v; and 8 = /4 for v;'because in tﬂese
directions the velocities are maximum. Other factors that affect the velacities
are e,, e, p./P;, B*, and time. It is clear from the velocity expressions that
the velocities change with time periodically. The effect of g* on the
velocities is similar to that on the amplitude. Therefore, these two factors
will not be further discussed. In the following, the resonant frequency and the
time for maximum radial velocity at the interface are used. Figures 4 and 5
show the radial and tangential velocity profiles with e, =~ e = e as a
parameter. The velocities decrease with incfeasing e. When e is small, the
drop phase velocities are proportional to the radius except near the interface
and the tangential velccity has very large gradiénts on both sides of the
interface. The gradients increase with decreasing e, but no slip of velocity
occurs as long as e is not zero. Consequently, the viscous dissipation is
concentrated in a thin boundary layer near the interface for small viscosity
fluids, as has been predicted by Miller and Scriven (1968) for & free
oscillating drop. If e, or e, changes individually, the velocity gradient in

the correspondirng side of the interface will be mostly affected.

Effect of density ratio on the tangential velocity is illustrated in Figure
6 for e, = e, = 0.001. Of the profiles shown in the figure, p /p; = 1 gives the
smallest velocity. The velocity profiles shift outward if p /o, < 1, and inward
if p,/p, > 1. In either of the cases, the larger tangential velocity gradient

is always in the less dense side of the interface.
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Streamlines

‘Since the flow fleld of the oscillating drop is axisymmetric, the stream
functions‘can be easily obtained from the integration of the velocity
expressions. Flow patterns for mode 2 are illustraced‘in Figure 7. fhe effects
of viscosity And derisity ratio are {llustraced in different quadrants, The
eircle in the middle indicates the interface of the drop. In all the conditions
the internal and external streawlines meet at ﬁhe interface'and form closed
cyéles. During oscillation the fluids move back and forth once in a period
along the streamlineﬁ. The centers of the cycles indicate the positions of
stagnant rings where the radial and'tangenhial velocities are zeto. The §
position of the rings are determined by v_ = 0, which gives § = cos™t[1/3. v, =
0 decarmines the radial position of the ring., which turns our to he a function
of many parameters. When the densities are the same ((a) and (b)), the stagnant
rings move to the less viscous side of the interface, while when the viscous
effects are the same ((a), (¢) and (d)), the rings move to the less dense side
of the interface. The internal streamlines observed by Trinb et al. (1982)

qualitatively agree with the predicted results,
Conclusions

The proposed oscillation model for a drop in an alternating electric field is
able to predict velocity field, scanning frequency response curve, resonant
frequency, and streamlines. The predicted scanning frequency response curve and
the streamlines are in good agreement with experimental observations. It is

found that the resonant frequency of the forced oscillation i{s equal to the fre-
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oscillation frequency for inviscid fluids, but always smaller than the free
oscillation frequency for viscous fluids. The viscosities and the density ratio

have significant influence on the velocity profiles.

The enhancement of a transport process by an alternating electric field
depends on how much the systems are disturbed., Operation at a resonant

frequency is desirable because it produces maximm disturbance for the same

- energy input. The predicted scanning frequency response curves can give best

operation frequency range for any fluid system. The velocity distribution is

very useful for the modelling of a mass or heat transfer process.
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Notation

®
]

dimensionless oscillation amplitude
a,, ™ constants in expressions of solutions, k=1, 2, 3, 4, 5

b, = second mede static deformation

m
g
i

alternating electric field strength, amplitude of E, U/m
e = u]p/a§
£ = 3¢E*?R/(20)

H =~ half order Hankel function

i+l
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£ =01

J = half order Bessel function

ntk

n -~ oscillation mode number

P, = Legendre function

}

)

g,

Voo

KO

Ao

W

K]

'

[ Lk

b
" r—— L

P, p = pressure, static part of pressure, N/m?

q, qnoc -

R = equiwvalent spherical drop radiusf m

R;, R, = principal radii of curvature of drop surface, m

r

t

= radial coordinate, n

- time, s

velocity, m/s
- rlw/v
= Rlw/v

Greek letters

wr o

= angular frequency of electric field, s7%

= permittivity of the continuous phase, farad/m

=~ radial position of deformed drop surface, m

=~ coordinate

- kinematic viscosity, m?/s
- density, kg/m°

= interfacial tension, N/m
-~ srress, N/m?

=~ streamfunction, m¥/s

- ting,
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D

e
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surface charge density, net surface charge density, coul/m?
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Subscripts

e = electric field

i = inside the drop

n -1, 2, oscillation mode number
0 = outside the drop

r = radial direction

s = on the interface

¢ = # direction

Superscripts

* . dimensionless wvariables
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Figure Captions

Figure 1. Predicted scanning frequency response curves for 2nd mode
oscillation. The line passing the peaks of the response curves indicates the
effect of density ratio on the resonant amplitude for e, = e, = 0.0L.

Figure 2. Comparison of predicted and observed (Trinh et al. 1982) 2nd mode
scanning frequency response curves for a silicone/CCl, drop immersed in
distilled water. The smooth curve is predicted. Drop volume =~ 1.5 cm?, Py =

po = 990 kg/m?®, v, = 3.2x107% m?/s, v, = 1.01x107¢ m¥/s.

Figure 3. Comparison of resonant frequency of forced oscillation and free

oscillation frequency for 2nd mode.

Figure 4. Radial velocity distribution for a drop undergoing 2nd mode

oscillation with e, = e, =~ e as a parameter.

Figure 5. Tangential velocity distribution for a drop undergoing 2nd mode

oscillation under the same conditions as those of Figure 4.

Figure 6. Tangential velocity distribution for a drop undergoing 2nd mode

oscillation with p_/p, as a parameter.

Figure 7. Streamlines for a drop undergoing 2nd mode oscillation.
(a): e, = e, = 0.001, p/p, = 1; (b): e, = 0.01L, e, = 0.00L, p /p, = 1;

(c): e, = e, = 0.001, p /p, = 100; (d): e, ~ e, = 0.00L, o /p, = 0.01.
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Figure 2. Comparison of predicted and observed (Trinh et al. 1982) 2nd mode

scanning frequency response curves for a silicone/CCl, drop immersed in
distilled water. The smooth curve is predicted. Drop volume = 1.5 cm’, p, =

Py = 990 kg/m?, v, = 3.2x10°8 w?/s, v, = 1.01x10"® m?/s.
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®) | (a)

Figure 7. Streamlines for a drop undergoing 2nd mode oscillation.

(a): e, = e = 0.001, p/p, = 1; (b): e, = 0.01, e, = 0.001, p,/py = L,

t

(c): e, =e, = 0.001, p /p, = 100; (d): e, = e, = 0.00L, p/p, = 0.01.
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