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Linear oscillations of axisyrnmetric capillary bridges are analyzed for large valúes of the 
modified Reynolds number C~l. There are two kinds of oscillating modes. For nearly inviscid 
modes (the flow being potential, except in boundary layers), it is seen that the damping rate 
-ílR and the frequency í l , are of the form a.R=cú1C

1/2+co2C+<?(Cin) and 
ílI=a>0+ú)1C

1/2+#(C3/2), where the coeflicients <a0>0, col<0, and Í O 2 < 0 depend on the 
aspect ratio of the bridge and the mode being excited. This result compares well with numerical 
results if C^O.Ol, while the leading term in the expansión of the damping rate (that was already 
known) gives a bad approximation, except for unrealistically large valúes of the modified 
Reynolds number (C;S 10 - 6 ) . Viscous modes (involving a nonvanishing vorticity distribution 
everywhere in the liquid bridge), providing damping rates of the order of C, are also considered. 

I. INTRODUCTION AND FORMULATION 

Static shapes of liquid bridges between two coaxial, 
circular disks were first considered in the pioneering work 
by Plateau.1 In the last years there has been a renewed 
interest in the problem due to the employment of this con-
figuration in fabricating ultrapure single semiconductor 
crystals by means of the so-called floating zone method.3-5 

Also, liquid bridges have been proposed recently as accel-
erometers and for experimental measurement of surface 
tensión and viscosity.6,7 

Classical results by Rayleigh2 and Chandrasekhar8 on 
viscous effects in linear oscillations of liquid jets were ex­
tended to spherical drops.9,10 For liquid bridges, instead, 
most results are concerned with either the inviscid case 
or a one-dimensional Cosserat model,14-17 whose validity is 
restricted to the limit of slender bridges. The standard vis­
cous hydrodynamical model was considered in Refs. 6, 7, 
and 18 and 19 in the limits C<<1, C ~ l , and C>1, respec-
tively, where C is the inverse of the modified Reynolds 
number (to be defined below). In particular, as C->0 the 
efiect of the Stokes boundary layers at the disks must be 
taken into account to obtain asymptotic expansions of the 
form6 - í l R = - c < j 1 C i / 2 + ^ ( C ) and í l / =a 0 +ü) 1 C 1 / 2 

+ 0(C) for the damping rate — ílR>0 and the frequency 
í l />0 , where the inviscid frequency a>0 (already obtained 
by Sanz11) and the first correction CÚ\ depend only on the 
slenderness of the bridge and the inviscid mode being per-
turbed. Unfortunately, this approximation of the damping 
rate is quite poor (roughly, it underestimates the true valué 
by a factor of 10 if 0.001<C<0.01; see Fig. 6), except for 
extremely small valúes of C. The main object of this paper 
is to obtain the following term in the expansions, that is, of 
the order of C, and provides a reasonably good approxi­
mation for C<0.01; see Fig. 6. The correction accounts for 
viscous dissipation, both in the Stokes layers at the disks 

and in the (potential flow at the) bulk, while dissipation in 
the viscous layers near the free surface need not be taken 
into account (it gives terms of the order of C372). A cau-
tious analysis will be necessary in order to avoid wrong 
results (due to the discontinuity of the velocity gradients at 
the corners of the bridge), as it will be remarked below. 
But, in addition to those nearly inviscid modes, a second 
kind of viscous modes appear that involve a nonzero vor­
ticity everywhere in the liquid bridge. We shall also con-
sider these modes that are necessary to explain the transi-
tion to instability of static shapes for C=£0. Notice that for 
C small but nonzero, momentum conservation equations 
are of second order in space, and must exhibit "more" 
modes than those approaching the inviscid ones (as C-»0). 

Our interest in this problem aróse from the need to 
model safely viscous dissipation in a weakly nonlinear 
analysis of forced oscillations of liquid bridges for moder-
ately large valúes of the modified Reynolds number. Such 
analysis is of great practical interest when using the float­
ing zone method to obtain crystals from the melt in space, 
where the floating zone is subjected to dynamic distur-
bances resulting from g jitter, vibration of machines on 
board and spacecraft maneuvers. The disturbances may 
excite undesirable oscillations of non-negligible amplitude. 

Here we only consider linear, free oscillations and cal­
cúlate (approximations to) the associated damping rate, 
frequencies, and eigenmodes. These properties of the liquid 
bridge are essential and must be known precisely when 
considering linear or weakly nonlinear forced oscillations 
near resonance. In fact, with the results given in this paper, 
forced, linear oscillations are calculated straightforwardly 
(as is usually the case in mechanical systems); their anal­
ysis is omitted for the sake of brevity. More care is neces­
sary to consistently analyze forced, weakly nonlinear oscil­
lations that (will be considered elsewhere and) involve 
steady streaming and lead to parametnc resonances; but 



again, in this case, the results in this paper must be used for 
realistic valúes of the modifled Reynolds number. 

We consider a liquid bridge of length L, held by sur-
face tensión forces between two parallel, circular, coaxial 
disks of equal radii R. The volume of the fluid equals that 
of the space in the cylinder bounded by the disks and the 
following additional simplifying assumptions are made. 

(a) The density and viscosity of the surrounding gas 
are negligible, as compared to those of the liquid. Then the 
gas does not aflfect the dynamics of the liquid bridge. 

(b) The properties of both the liquid (density p and 
viscosity ¡x) and the interface (surface tensión a) are uni-
form and constant, and such that the Ohnesorge number 
C=fi/(pcrR)1/2 (that is the inverse of the modified Rey­
nolds number) is small ( C - 2 is sometimes called the Su-
ratman number). 

(c) The gravitational Bond number, B—pgR2/a (g 
=gravitational acceleration) is small compared with C. 
Then gravity may be neglected when considering correc-
tions up to order C. 

(d) The free surface of the liquid is anchored at the 
borders of the disks. 

(e) We consider small-amplitude axisymmetric free 
oscülations of the bridge around the static cylindrical 
shape and neglect nonlinear corrections. 

When using R and (pR3/a)l/2 as characteristic length 
and time for nondimensionalization, the resulting problem 
depends only on two nondimensional parameters: the mod­
ified Reynolds number C _ 1 and the slenderness A=L/2R. 
The problem is governed by continuity and momentum 
conservation equations, with appropriate boundary condi-
tions accounting for (i) nonslipping at the disks, (ii) ki-
nematic compatibility and tangential and normal stress 
balances at the free surface, (iii) volume conservation, and 
(iv) anchorage of the free surface at the borders of the 
disks. We use a cylindrical coordínate system (r,6,z) with 
the origin midway between the disks, the axis of symmetry 
as the z axis, and associated unit vectors er, ee , and ez. 
Then the basic static state isp— l—u=v=w=0 and f—\, 
where ¿>, v=uer+vee+w&z, and r=f(z,t) are the nondi­
mensional pressure and velocity fields and the shape of the 
interface, respectively. As usual, we linearize around the 
static state and make a normal mode decomposition by 
seeking solutions of the form 

/>-l=e[¿ ,(/ ' ,z)exp(Oí)+c.c.] + --- , 

«=e[¡7(r,z)exp(íl/)+c.c.] + - " , 

v=e[ V(r,z)exp(£lt) +c.c. ] + • • • , 

w=e[W(r,z)exp(ñt)+c.c.] + --- , 

/ - l = e [ . F ( z ) e x p ( O í ) + c . c . j + --- , 

where e->0 and ce. stands for the complex conjúgate. The 
leading terms in the expansions are given by the following 
eigenvalue problem (suífixes and primes stand for partial 
and total derivatives, respectively): 

Ur+r-lU+Wt=Q, (1) 

Pr+aU=C(Urr+r-iUr+Uzz-r~1U), (2) 

ClV=C(Vrr+r-1Vr+Vzz-r-2V), (3) 

Px+aW=C(W„+t^lWr+WJ, (4) 

with boundary conditions 

U=V=W=0, a t z = ± A , (5) 

U=V=Wr=0, at r=0 , (6) 

U-OF=Ux+JVr=Vr-V=0, at r = l , (7) 

P+F"+F=2CUr, at r=í, (8) 

F=0, a t z = ± A , f F(z)dz=0. (9) 

Equations (1) and (2)-(4) come from continuity and mo­
mentum conservation, while Eqs. (5)-(8) are conse-
quences of nonslipping at the disks, smoothness of the 
pressure, and velocity fields at the axis of symmetry, kine-
matic compatibility, and stress balances at the free surface, 
and Eq. (9) accounts for the anchorage condition and con­
servation of volume. 

As C-»0, two distinguished limits must be considered, 
| í l | ~ l and | í l | ~ C . Eigenmodes corresponding to 
¡ í l | ~ 1 are nearly inviscid and wül be considered in Sec. 
II, while the viscous modes ( | í l | ~ C) will be discussed in 
Sec. III. Notice that the problem (3) and (5)-(7) giving 
the azimuthal component of the velocity field is decoupled, 
and that if V^ÉO then | í l | ~ C (and the corresponding 
mode is viscous). Then, for nearly inviscid modes, we have 

V=0. (10) 

II. NEARLY INVISCID MODES 

Here we consider the distinguished limit | í l | ~ 1 as 
C-+0 in the eigenvalue problem [(1)—(10)] and seek the 
expansión 

a=íi0+c1/2íi1+ca2+---. (ii) 
Four regions must be considered (see Fig. 1): (a) the 
potential flow región, where the vorticity vanishes to all 
orders; (b) two Stokes boundary layers near the disks; (c) 
an interface boundary layer near the free surface; and (d) 
two córner boundary layers near the border of the disks. 
The characteristic size of the boundary layers (b), (c), and 
(d) is of the order of C1/2. 

This section is organized as follows. Regions (a), (b), 
and (c) will be analyzed first. As it is to be expected, the 
analysis of the boundary layers (b) and (c) provide the 
boundary conditions at r= 1 and z = ± A to be imposed to 
the equations applying in región (a). Then, in Sec. II D we 
calcúlate ílj and í l2 by means of the appropriate solvability 
conditions, which must be applied with some care due to a 
singularity [of the velocity field in región (a)] appearing at 
the corners r= 1, z= ± A. The role of this singularity and 
its physical meaning will be discused in Sec. II E. Notice 
that the flow in región (d) is not analyzed explicitly [al-
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FIG. 1. A sketch of the four asymptotic regions in the liquid bridge for a 
nearly inviscid mode. 

though its effect on the flow in región (a) is implicitly 
considered through the analysis of the above-mentioned 
singularity]. 

A. The potentlal flow región 

In this región, the pressure, the velocity components 
(recall that V=0 in this limit), and the interface shape will 
be expanded as 

P=P0+CU2Pl + CP2±---, 

U=U0+Cl/2Ul + CU2+---, 

w= w0+cmwx+cw2+•••, 
F^F0+C1/2FX + CF2+---. 

Then for k=0, 1, and 2, Pk, Uk, Wk, and Fk are seen to be 
given by 

Utr+r^Ut+W^Q, (12) 

pkr+a0uk=cpk, (13) 

/ > f a + Í W * = ^ > (14) 

Wk=Gt, a t z = ± A , rjfcl, (15) 

Uk=Wkr=0, at r=0, (16) 

Uk-CloFk=Mk, at /-=1, z=^±A, (17) 

Pk+Fk+F'¿=Nk, at r=\, z=£±A, (18) 

Fk=0, a t z = ± A , f Fk(z)dz=0. (19) 
J -A 

Here cpk and t/^ are given by 

<p0=f0mO, (20) 

<px = -£lxU0, tf>x=-ílxW0, (21) 

<p2=-íl2Ua-ñxUu f2=-íl2W0-ílxWu (22) 

while Gk, <?¿", Mk, and iV¿ will be calculated in Secs. II B 
and II C, from matching conditions with the Stokes and 
the interface boundary layers. 

B. The Stokes boundary layers 

For the sake of brevity we give details only for the 
boundary layer near z—A, where we use the stretched co­
ordínate §¡=£z—A)C~l/2, and_seek Jhe expansions 
U=ÜQ+Cl/2UX + --- , W=CU2WX + CW2+--- , P=P0 

+ C1' Pj + • • •. The leading term in these expansions is 
well known (see, e.g., Ref. 20). In particular, 

U0=U0(r,A)r{Z), 

^1=^oz('-,A)[|-+n0-
I/2r(^)], (23) 

wheré U0 and W0 were defined in Sea II A, the function V 
is given by 

r ( | ) = l-exp(íl¿ / 2 | -) , (24) 

and hereafter í l0 and íl¿ /2 are chosen, such that the imag-
inary part o / í l 0 and the real part o / í l¿ / 2 are positive. The 
first correction in the expansions above is seen to be given 
by 

ÜXr+r-xÜx + W2S=Pls=0, 

PXr+Cl0Ux-Üm=-ClxU0, 

with boundary conditions [see (5)] 

Üx = W2=0, at | = 0 . 

When taking into account that Ux(r,§)-*Ux(r,A) and 
W2g(r£)-*WXz(r,A) asi'-» — oo (matching requirements 
with the potential flow región) and (12) (for k=\), Ux 

and W2 are readily found to be given by 

Üx = Ux(r,A)T(Í) + ( ÍV2n¿ / 2 ) U0(r,A) [T^) -1]§, 

W2= WXz{r,A) [ |+ í l 0 - 1 / 2T( | ) ] - (ÍV2Í>¿ /2) WQz{r,A) 

x{no_1r(|)+no~1/2|[i-r(|)]}. (25) 
Then we only need to take into account (23)-(25) 

(and the corresponding expressions for the axial velocity in 
the boundary layer near z= — A), and apply matching 
conditions with the axial velocity in the potential flow re­
gión to obtain 

W0(r,±A)=Gtir)=0, 

Wl(r,±A)=Gt(r)^±ílol/¿W02{r,±A), 

(26) 

(27) 



» r
2 ( r , ± A ) s G ¿ ! ( r ) s n ¿ - 1 / 2 [ » r

1 i ( r , ± A ) - ( n 1 / 2 í l o ) 

X ^ 0 z ( n ± A ) ] . (28) 

C. The interface boundary layer 

In this layer we use the stretched coordínate 
17=(r— l)C~^2 and seek the expansions_ U=U0 

+ Cl
r¿

¿U1 + CU2+- -.1/2 w= wa+c/¿wx+cw2+ •••, 
P=P0+C1/2Pl+---, and F=F0+CU2Fl + CF2+' 
When these expansions are inserted in (1) and (2), (4), 
(7)-(9) , and the coefficient of each power of C1/2 is set to 
zero, the following problems result: Leading order, 

(29) 
ÜQ~íloF0=W0l¡=P0+Fo+Fo=0, at 77=0; 

first correction, 

Ül7]+Ü0+W0z^0, 

pl7¡+a0u0^o, 

Pü+OoWi-Winn^-^Wo, (30) 

=PX+FX+F'{=Q, at T / = 0 ; 

and second correction, 

U2„+Üi-VU0+Wu=0, (31) 

Piv+OoVi-Vi^-aiÜo, 

<32> 

P 2 Z + Í I 0 ^ 2 - ^ 2 w = - n 1 ^ i - n 2 ^ 0 + Wiv+ ño*, 

u2-a0F2-alFl-a2F0= w27l+ üu 
^P2+F2+F'¿-2^=0, 

at 17=0. (33) 

Now, if matching conditions with the outer potential 
flow región are applied and the second boundary condition 
in (30) is taken into account, it is readily found that 

U0(V,Z) = U0(U), P0(V,z)=P0(l,z), 

W0(V,z) = W0(l,z), 

P1(i7 )z)=Pi(l,z)+77P0 r(l ,z) ) 

-2ílol/2U0z(í,z)exp(al/2r,), 

(34) 

(35) 

(36) 

where it has been taken into account (13), (14), and (20). 
Then 

U2(V,z) = ?72(l,z) +7)UUU) + (17V2) U0rr{l,z) 

l/2„ + (2/íl0) U0zz{ l,z)exp(íl¿/¿7/), (37) 

as obtained upon integration of (31) and (32) and appli-
cation of matching conditions with the outer región, when 
taking into account (12)-(14) and (20)-(22). Finally, 
substitution of (34)-(38) into the first and the third 
boundary conditions in (29) and (30) and (33) yields 

U0(l,z)-CloF0(z)=0, 

P0{l,z)+F0(z)+F'¿(z)=0, 

^1(U)-n0F1(z)=ni^oU). 
P 1 ( l , z )+F 1 ( z )+F í ' ( z )=0 , 

U2{l,z) ~ñoF2(z) = a 1 F 1 ( z ) +Ü2F0(z) 

-(2/íl0)U0zz(U), 

P2{l,z)+F2(z)+F'{=2U0r{l,z), 

for — A < z < A, and the right-hand sides in the boundary 
conditions (17) and (18) are given by 

M0=N0=0, M ^ f t i F o , #1=0 , (39) 

M 2 =í l 1 Pi + « 2 F 0 - ( 2 / f i 0 ) ^ 0 z z , N2=2U0r. (40) 

D. Solvability conditions 

Here we calcúlate fl0, í l ] , and ÍX2, which are uniquely 
determined by the problems (12)—(19) for k=0, 1, and 2, 
with the right-hand sides, as given by (20)-(22), (26)-
(28), and (39) and (40). For convenience, we eliminate 
the velocity components Uk and Wk in these problems, to 
write them as 

AP*=0, 

Pkz=il>k-&oGk . a t z = ± A , r=£\, 

Pkr=0, at r=0, 

(41) 

(42) 

(43) 

Pkr=cpk-n2oFk-Q.oMk, at r=í, z ^ ± A (44) 

Pk+Fk+F'¿=Nk, at r = l , z # ± A . (45) 

^ = 0 , at z = ±A, 
J -A 

F(z)dz=0, (46) 

P2(77,z) =P 2( l ,z) +7]Plr(í,z) + (r]2/2)P0rXU), (38) 

where A {=d2/dr2 + r~x d/dr+ó^/dz2) is the Laplacian 
operator. The (homogeneous) eigenvalue problem corre-
sponding to k=0 uniquely determines Q,0, while for k—\ 
and 2, the nonhomogeneous problem (41)-(46) possesses 
a solution for one and only one valué of Clk, which can be 
calculated by means of an appropriate solvability condi­
tion. In particular, í l t is given by 

a 1 = n0-3 / 2 C P0r(r,A)2rdr( J * P0(l,z)F0(z)dz\ , 

° _ A (47) 

as obtained upon multiplication of (41) for k=0 and 1 by 
Pj and P0, respectively, substraction, integration by parts, 
and substitution of the boundary conditions (42)-(46); 
also, it has been taken into account that 
P0r(r,A)2=P0r{r, — A)2, because, as it will be seen below, 
P0 is either symmetric or antisymmetric in the z variable. 



The same procedure may not be applied to calcúlate 
í l2 because the gradient of P2 diverges at r— 1, z = ± A, and 
integration by parís fails. To see that, notice that P0rz is not 
continuous ar r— 1, z— ± A because P0n(r, ± A) = 0 if 0<r 
< 1 , while if - A < z < A then ¿>0nf(M) =* -üfF^z) 
- -SllF'0( ± A ) ^ 0 as z - ± A [see (41)-(46) with 
/t=0]. Then PQrzz(\,z) diverges as z->±A, and the same 
occurs with P2r(l¿) [see (40) and (44) with k=2]. To 
elimínate this singularity we decompose P2 as 

P2=-(2/£l0)P02Z+Q. (48) 

When (48) is substituted into (41)-(45) and Eqs. (22), 
(28), and (40) are taken into account, it is seen that Q is 
given by 

A0=O, (49) 

ez=±í l 0 - 1 / 2 [P l z z - (O, /2 í l 0 )P 0 z z ] , at z = ± A 
(50) 

e r = 0 , at r = 0 , (51) 

Qr=-alF2-2Cl0üiFl-(O.2l+2n0a2)F0 at r = l , 
(52) 

Q+F2+F^ = ( 2 / í l 0 ) ( P t o - ¿ V ) at r = l . (53) 

To obtain (50) notice that P0zzz=— r~iP0r2—P0rr2=0 at 
z= ± A [see (41) and (42) and (20)]. Now the gradient of 
Q is continuous up to the corners and í l2 may be obtained 
as above, upon multiplication of (41) (fc=0) by Q and 
(49) by P0, substraction, integration by parts, and substi-
tution of (42)-(46) and (50)-(53). If, in addition, it is 
taken into account, that, as will be seen below, P0, F0, and 
Py are (the three of them at the same time) either sym-
metric or antisymmetric in z, after some further manipu-
lations, we obtain 

ííl2+2+jA f F0(z)P0(\,z)dz 

= 4 F 0 ( A ) F 0 ' ( A ) - J A [O,lF0(z)2+2P0(l,z)2 

+íl1P0(l ,z)F1(z)] í /z 

+í!0-3 / 2 C P0r(r,A)Pir(r,A)rdr. (54) 
Jo 

A fairly good approximation of í l2 i
s obtained by setting in 

Eq. (54), í l i = 0 and P ^ O (see Fig. 5). 
Equations (47) and (54) provide Cl1 and í l2 as soon as 

the solution of (41)-(46) [with <pk, ij/k, Gk, Mk, and Nk, 
as given by (20) and (21), (26) and (27), and (29)] for 
k=0 and 1 is known. The (inviscid) solution correspond-
ing to k=0 and í l0 were first calculated by Sanz,11 who 
found that there are two kinds of inviscid modes: the odd 
modes and the even ones (PQ and F0 being simultaneously 
antisymmetric and symmetric on the plañe z=0 , respec-
tively). For the sake of brevity we only give details corre-
sponding to the odd modes (results for the even ones will 
be given at the end of this section), which are given (up to 
a nonzero constant complex factor) by 

FIG. 2. Here | í l 0 | vs A for the first four modes; (—) the first approxi­
mation as A-»0, Cl0^i(o0mA~i/2, with cooi=4.845..., fij02= 18.51..., 
a)03=49.56..., and o)M=10l.2.... 

Po=&l X a„I0{lnr)cos[ln{z+A.)], (55) 
«odd 

J F 0 =smz+í lo S <v„cos[/„(z+A)], (56) 
nodd 

where í l0 is given by 

s inA=ílo X <V« (57) 
«odd 

and 

úrn=2(ao?„+5„)-1A~1cos A, l„=mr/2A, (58) 

qn=I0Un), r^qn/{l\-\), s^l^-DI^). 
(59) 

Here I0 and / [ are the first two modified Bessel functions of 
the first kind. For each A>0, Eq. (57) defines infinitely 
many, isolated, real valúes of ÍÍQ, one for each inviscid odd 
mode. Also, for m=1,3,5,..., the valué of ílg corresponding 
to the [ ( /n+l) /2] th odd mode strictly increases with A 
and vanishes at A=(ra+l )7r /2 ; therefore, that mode 
is purely osciUatory if A < (m + l)ir/2 and destabilizing if 
A> ( m + 1 )ir/2. A plot of | íl01 vs A for the two first odd 
modes is given in Fig. 2. 

Now we consider (41)-(46) for k=l. For conve-
nience, Fx and P^ are decomposed as 

P i = - í l ¿ - I / 2 P o A + a F^-Cl^F^+F, (60) 

where POAs5Po/3A and FQ/j^dF^/dh, while Q and F are 
seen to be given by 

A 2 = 0 , (61) 

Qz=0, at z = ± A , Qr=0, at r=0 , (62) 

Qr+Ú2f=-2£l0{ü'0£lóm+€l,)F0, a t r = l , (63) 

Q+F+F"=0, at r=í, (64) 



F==FO¿UÍF¡Í, a t z Í = ± A , f F=0, 
J - A 

(65) 

where íl¿ = dílg/dA. The solution of (61)—(65) is readily 
found to be given by 

Q=bP0-Ü.20 X V o ( W c o s [ / „ ( z + A ) ] , 
«odd 

F=bF0-2ñol(0,l+a'0Q.ol/2)sinz 

—Cll X V B c o s [ / „ ( z + A ) ] , 
«odd 

where 

bn=2{a0ax^a'Qaln)q^n{alqn+Sn)-\ 

(66) 

(67) 

(68) 

an' h> In' rn> a n ( l s n a r e a s defined in (58) and (59) and b 
is an arbitrary complex constant. 

Now, ÍÍ! and í l2 may be obtained upon differentiation 
in (55)-(57) (to obtain P0A, F0A, and a'Q) and substitu-
tion of (55)-(57), (60), and (66) and (67) into (47) and 
(54). Nevertheless, some further algebraic manipulations 
are convenient to minimize the computational cost associ-
ated with this calculation, as seen in the Appendix. At the 
moment two remarks are in order: (a) í l2 does not depend 
on the arbitrary constant appearing in (66) and (67), as 
seen when taking into account (47); (b) the real and the 
imaginary parís of í l ( are equal and íl2 '

s rea¡ because ÍÍQ> 

P0, F0, í l j í , , and í l ^ are real [see (55)-(60) and (66)-
(68)]. 

Concerning the even modes, P0, F0, and í l0 (agam> 
defined up to a nonzero complex constant factor) are given 
by11 

(69) 

(70) 

(71) 

(72) 

P 0 = íl¡5 X dJoUn^COSllniz+A)], 
«even 

F0=cosz+al X /•„<*„eos[/„(z+A)], 
neven 

COSA+Í IQ X rndn=:0, 
neven 

where, for n=0,2,...,dn is given by 

J0=Í1¿"2A~1 sin A and 

G?„=2(ílog'„+s„)~1A~1sinA, for n>2, 

while /„, qn, rn> and sn are as defined in (58) and (59). If 
Pj and F\ are decomposed again as in (60), then Q and F 
satisfy (61)-(65), whose solution is now given by 

Q=eP0-al X e„/0(/«>\>cos[/n(z+A)], (73) 
neven 

F=eF0-2aol(.al+a[)aom)cosz 

-a2
0 X <v„cos[/„(z+A)], (74) 

neven 

where 

en=2(a0al +a'0a
1
0
/2)qndn(alqn+sn)-\ (75) 

,10 
-A(Ü,WQ) 

FIG. 3. Here — Aí l , / /̂fí̂  vs A for the first four modes; (—) the flrst 
approximation as A-»0, — Aíl/^/ft^ :a Dm, with Z)1=0.2163..., 
,02=0.1470..., D}=0.2044..., and Z»4=0.1711.... 

while dn,ln,qn, and s„ are as defined in (72) and (58) and 
(59), and e is and arbitrary complex constant. 

The solutions of Eq. (71) are qualitatively similar to 
those of Eq. (57); now, for each m=2,4,..., the (m/2)th 
even mode is such that ÍIQ vanishes at the (m/2)th root of 
the equation A=tan A. A plot of | í l 0 | vs A for the two 
first even modes is given in Fig. 2. Also, remarks (a) and 
(b) above still apply for the even modes. 

In Figs. 3-5 we give —ÍÍJ/ Í IQ 7 2 and —íl2 (that are 
real) in terms of A for the first four (two odd and two 
even) modes. Notice that for the first mode, í l0 and í l t 

vanish at A=ir, while fl2^=0, and the same oceurs (gener-
ically) with the remaining modes at those valúes of the 
slenderness, such that either sin A = 0 or A=tan A. This 
fact would lead us to the (incorrect) conclusión that vis-
cosity affeets the inviscid instability limit, A=TT. However, 
as A-»ir the perturbation process in this section breaks 
down as we comment now. 

-A(£2,WO) 

FIG. 4. The same plot of Fig. 3 for smaller valúes of A. 



FIG. 5. Here — Ü2 vs A for the first four modes; (—) the first approxi-
mation as A-»0, —íl2=*<u2,„A~2, with <y2i=9.15..., a22=31.12..., 
«23=56.16..., and6)34= 112.1...; (-•-) theapproximationmentionedright 
after Eq. (54). 

The characteristic size of the Stokes boundary layers 
near the disks is of the order lc = y¡C/\íl0\ [see Eq. (24)], 
and must be small, as compared with A for the perturba-
tion process in this section to be correct. This condition is 
violated as \Cl0\A

2=/?(C), that is, if either 
I sin A\ =#((?) or I A—tan A| = ¿?(Ca); to see that, just 
notice that | O0 | ~ A~3 / 2 as A-»0, and that if A0> 0 is such 
that either sin A Q = 0 or A0=tan AQ, then there is an invis-
cid mode whose associated frequency satisfies 
| í l 0 | ~ | A—A0 |1/2 as A-*A0. The perturbation process in 
this section also breaks down when O0 is real and negative. 
Now the velocity profiles in the Stokes boundary layers 
exhibit an oscillatory behavior [with a small wavelength, of 
the order of C1/2; see Eqs. (23) and (24)] that cannot be 
matched with the nonoscillatory velocity profiles in the 
bulk. In these cases the problem is no longer nearly inviscid 
(namely, viscous effects are important in the whole liquid 
bridge) and a diiFerent perturbation scheme (to be com-
mented in Secs. I I IC- I I IE) must be applied. 

E. On an apparent paradox 

Let us calcúlate í l2 directly, without making the de-
composition (48). To this end, as we did to calcúlate Cll, 
we multiply Eq. (41) for k=0 and 2 by rP2 and rP0, 
respectively, substract, intégrate in 0 < r < l , — A<z<A, 
and intégrate by parts to obtain 

fA P0(l,z)P2r{l,z)dz= P P2(l,z)P0r(l,z)dz 
J - A J - A 

- 2 fJP0(/-,A)P2z(r,A)rC?r. 
Jo 

(76) 

Here we have taken into account that P0z(r,±A)=0 and 

that P0P2Z is °dd in z. When the boundary conditions (42)-
(45) are substituted into (76), we obtain an expression for 
Í22 that is different from that in Eq. (54). 

This difEculty was first encountered by Ursell21 when 
studying surface gravity waves; in fact, in his case the free 
surface was not anchored at the wall and the difficulty 
already appeared in the first correction problem. Ursell did 
not use a decomposition similar to that in Eq. (48) to 
correctly solve the problem; instead he added up the dissi-
pation rates at the Stokes boundary layers to obtain the 
correct valué of the damping rate. The same procedure 
could have been used in See. II D to obtain the correct 
valué of the real part of íl2 , but then (i) much more in-
volved calculation (also accounting for the dissipation rate 
at the potential flow región) would be necessary; and (ii) 
we would not have ensured that the imaginary part of í l2 

(yielding a second correction to the frequency of the oscil-
lations) does vanish. To explain the discrepaney Ursell 
correctly argued that it should be due to a mathematical 
singularity near the córner región. 

A further explanation of the discrepaney was given by 
Mei and Liu,22 who added an additional term in (their 
analog of) Eq. (76), to account for the rate of pressure 
working near the córner viscous región; a somewhat care-
ful analysis of the córner región was necessary to evalúate 
this term. We may obtain this additional term very easily, 
without analyzing the córner región, by first noticing that 
the procedure abo ve leading to Eq. (76) fails because P2r 

diverges as r-* 1 and z-> ± A. If, instead, the same proce­
dure is applied to the domain 0<r<l—e, —A<z<A 
(with e > 0 ) , where P2 is smooth, then we obtain 

P0( \-e,z)P2r{\-e,z)dz 

j P2(l-e,z)P0r(l-e,z)dz 

- 2 (l~£p0(r,A)P2z(r,A)rdr, 
Jo 

and, by letting e-»0, 

P0( U)PiÁ U)<fe+4ÍV %(l,A)P0ra( 1,A) 
- A 

= P P2(l,z)¿>0r(l,z)cfe-2 i ' P^r^P^r^rdr. 
J-A JO 

(76') 

To obtain (76') we only need to decompose P2 as in (48) 
and take into account that the gradients of P0 and Q are 
continuous up to the boundary (including the corners) of 
the domain 0<r< 1, —A<z<A, and that, as 0<e-»0, 



n P0(l-e,z)P0m(l-e,z)dz 
Then ílj and <f>0 are given by the following decoupled prob-
lem: 

-r. PQz{ 1 - e,z)P0rz{ 1 - e,z)dz 

POz(hz)P0Jl,z)dz 

= -2P0( l ,A)Po«(l ,A) + 
J-A 

z)-Porzz(1>z)ífe-

[recall that P0ra(
?'' ± A) = 0 if 0 < /• < 1 and that P0 • P0rz is 

odd in z]. Now, if the boundary conditions (42)-(45) are 
substituted into (76') then (54) is obtained, without sur-
prises. 

III. VISCOUS MODES 

The analysis in Sec. II will be completed here to obtain 
al! nontrivial solutions of ( l ) - (9 ) as C-»0. This requires 
us to analyze the following. 

(a) those nevo solutions of (1 )-(9) that appear only as 
far as C^O, because the viscous momentum equations are 
of higher order than those corresponding to the inviscid 
limit. They will be considered in Secs. I I IA-I I I C. 

(b) Those solutions corresponding to cases when the 
analysis in Sec. II fails, as pointed out at the end of Sec. 
I I D . They will be considered in Secs. III D-III E. 

In both cases, the eigenmodes exhibit a vorticity dis-
tribution that is of the same order throughout the liquid 
bridge (and no longer confined to boundary layers). 

A. Azimuthal eigenmodes 

The problem (3) and (5)-(7) giving the azimuthal 
component of the velocity is decoupled, and gives the 
(real) eigenvalues 

Cl=-CV2
n+A2

m), (77) 

where /„ is defined as in (58) (n=positive integer) and 
/L1,A2,...> are the roots of the equation ( / ^ second Bessel 
function) 

The associated eigenmodes are defined (up to a constant 
factor) as 

P=U~W=0, F=0, V=JiW¿-)án[lH(z+A)]. 

Notice that these solutions are valid for arbitrary valúes of 
C (not necessarily small). 

The remaining modes satisfy (10) and to obtain them 
it is convenient to introduce a streamfunction <f> as 

<f>r=-rW, <f>z=rU. (78) 

B. The generic case sin A^O, tan A^éA, and | í l | ~ C 

In this case we seek the expansions 

í 2 = C í l i + • • • , $ = 0 O + • • • , 

P = C P 1 + - " > F=CFl + —. 

( j f -n1 )^r^,=o f 

0o=^Oz=°> a t * = ± A , 

(f>0=r-l<l)0rr-r
l<l>0r=0, at r=0 , 

^0z=^0r/-—^0/-=°> a t r=\, 

where the operator J£ is defined as 

, d2 . d d2 

The eigenvalues of (79)-(82) are 

í l i = — A*—Pkm> 

(79) 

(80) 

(81) 

(82) 

(83) 

(84) 

where A1,A2,—> are the strictly positive roots oíJx(Xk) = 0 , 
and, for each /y i^ , /^ , . . . , are the (strictly) positive roots 
of one of the following equations: 

Uton tanh(AftA) =Ák tan(fikmA), 

Xk tanh(AftA) -\-[ikm tan(jtifcmA) =0 . 

(85) 

(86) 

The associated modes are given (up to a constant factor) 
by 

<¡>o= t r(/**«A)tf( A*z) -H (AftA) Ti/ib,?) ] rJx (A*r), 

where r ( z ) = s i n z and H(z)^ssinhz if [ikm satisfies (85), 
while T(z) =cos z and H(z) =cosh z otherwise. 

As k-> oo and/or m-»oo, | í l ] |~A^+w 2 . Then the 
analysis here breaks down as kr+m2~ C i (and | í l | is no 
longer small). This leads us to the next case. 

C. The generic case sin A^O, tan A^A, í í<0 real, 
and | í l | ~ 1 

Now the streamfunction exhibits oscillatory behavior 
in z and/or r, of quite small wavelength, of the order of 
C1/2, throughout the liquid bridge. The asymptotic analysis 
of these eigenmodes, by means of a múltiple scales method, 
is beyond the scope of this paper; it will be presented in 
Ref. 23, where comparison with quite precise numerical 
results will also be made. 

D. The critical cases [sin A| ~C 2 with A~1 and 
|tan A - A l - C 2 

The interest of this limit is that now, in addition to the 
viscous modes considered in Secs. I I IA and IIIB, there 
are two additional modes, such that | í l | ~ C. To analyze 
them we introduce the parameter / (with | / | ~ 1 ) , defined 
by 

A=A 0 +C 2 / , (87) 

where A0 is a positive solution of one of the equations 

sin A 0=0, tanA 0 =A 0 , (88) 

and seek the expansions 

n = c í i i + - - - , $ = C 0 1 + - - - , 

P=P0+C?P2+ ••• , F=F0+C2F2+ ••• . 



Then F0
 a n d Po a fe given by 

Por=Poz^ O =>P0=const, 

F5+Fo+P0=0, a t r = l , 

JAn 
F0(z)dz=0, 

- A 0 

while O], 0i, P2, and F 2 are given by 

{j?-ajarlo, 

<f>i=<t>\z=Q, at z = ± A 0 , 

</>i — r~1<l)lrr—r~~2<l>lr=0, at r = 0 , 

0 ^ = 0 ^ 0 , 0 1 ^-0i r =í l i i ; ' ¿ , at r=\, 

fAo 
F2=^IF'0 a t z = ± A 0 , F2(z)dz=0, 

J-An 

(89) 

(90) 

(91) 

(92) 

(93) 

(94) 

F1"+F'2+P22=2{^r2Z~alF'0), at r = l , (95) 

(96) 
Ao 

where the operator ¿£ was defined in (83) and 

J , 2«=íMir+ÍM ; o-0 im--¿ i i» . a t r = l . 

The solution of (89) and (90) (up to a constant fac­
tor) is 

F 0=0, jF0=sinz, i f s inA 0 =0. o=v» 

P 0 sco t Ao, 

^ 0 = (eos z—cos A0)/sin AQ, if tan A0=Ao. 

(97) 

(98) 

When (97) or (98) are substituted into (91)-(96), we 
obtain a problem that is not essentially simpler than the 
original problem (1 )-(9) (for C ~ 1), and will be solved in 

Ref. 23. From the results there we may anticipare that 
there is a critical valué of / (depending only on AQ), / c<0, 
such that if l=Mc, then (91)-(96) has a (unique) solution 
for exactly two valúes of ílx (that are real if l>lc and 
complex conjúgate i f /</ e ) , while for / = / c , (91)-(96) has 
a solution for one and only one valué of íl[ that is real and 
strictly negative. AIso, as j / | —• oo, the two modes consid­
erad here do match with two nearly inviscid modes (pre-
cisely with those modes that exhibit a breaking down of the 
perturbation process of Sec. II) . Then the modes consid-
ered here provide the transition (from purely oscillatory 
behavior to exponential behavior in time) exhibited by the 
nearly inviscid modes at the critical valúes of the slender-
ness satisfying (88). For further details on this question 
and for comparison of the asymptotic solution considered 
here with the numerically computed solution of ( l ) - (9 ) 
for small but nonzero valúes of C; see Ref. 23. 

Here we only give details concerning the following two 
properties, that, in particular, imply that the inviscid in-
stability limit of the liquid bridge, A=ir, is not atTected by 
viscous efFects (to sol ve the question raised by the end of 
Sec. I I D ) : (a) if 7=0, then ^ = 0 , with <f>x=0, andF2s=0 
is a solution of (91)—(96); and (b) if /<0, then every 
solution of (91)-(96) is such that Re ílj <0 1 

To prove that, we multiply (91) by r~l<¡>i (hereafter, 
overbars and ce. stand for the complex conjúgate), inté­
grate in 0 < r < l , and — A0<z<Ao, intégrate by parts 
twice, and take into account the boundary conditions 
(92)-(95) to obtain 

rAo 

J-Ar 
{F'2"+F'2)^{\,z)dz+al f f (Iftrl 

J -AQ JO 

+ \<¡>Xz\
2)r'~idrdz 

-Ao _ _ JAQ _ 
[0 l s ( l ,z )<M l,z) +c.c. + | <Ml,z) 12]d: 

-Ao 

JAo /*1 
\J?fa\2r-ldrdz. 

-A,, Jo 

But integration by parts and substitution of (90), (92), 
and (96)-(98) yields 

f ° {F^+F'1)^í{U)dz=-ax f {F'¿+F2)F0dz 
J - A Q J -AQ 

^ [ ^ ( A o ^ o í A o J - i ^ - A o ^ - A o ) ] - ^ f F2(F'¿+F0)dz 
J-Ao 

= - / í l [ | J F 0 ( A 0 ) | 2 + | F 0 ( - A 0 ) | 2 ] + í i i f F2P0(l,z)dz=-2lñ 
J -A 0 

(100) 

Also, 



[(¡>lzz(l,z)^lr(l,z)+c.c.+ \<l>lz(\,z)\2]dz 
J - A Q 

JA0 r\ _ _ _ _ 

-A 0 JO 

= [^iz^Ur-hr^in-r~^\z^ir+r~lhArz+^--^r-'l\(l>lz\
2]r-ldrdz 

J -AQ JO 

= i*0 f [ ^ ( ^ - ' • - V i , ) + c . c . - | ^ l r a | 2 - r - 2 | ( A l z | 2 - | ^ r a - r - V i z i 2 ] ^ 1 ^ ^ , 
J - A 0 JO 

(101) 

where the second equality is obtained upon integration by 
parts when taking into account (92). Finally, 

f f l2fa22(.<l>Xrr-r-x<t>lr)+c.c.-\J?<t>x\
1\r-ldrdz 

J-AQ JO 

= - f" Clfarr-r-'K-fa^r-'drdz. (102) 
J - A Q J O 

2Then, we only need to substitute (100)-(102) into (99), 
and take the real parí to obtain 

Re ñj-2l+ J {\K\2+\4>\z\2)r~x drdz\<0, 

and the stated property (b) readily follows. 

E. The critical case A~C2 

As mentioned at the end of Sec. I I D , the analysis in 
Sec. II breaks down also as A~C a . In the distinguished 
limit Q=coCA - 2 , A=/C a , with \a\ ~ / ~ l , we obtain an 
asymptotic problem whose solutions exhibit oscillations in 
the r variable of quite a short wavelength, of the order of A. 
As in Sec. I I IC, the analysis of this limit will be presented 

elsewhere.23 Here, let us just mention that such an analysis 
provides inflnitely many symmetric and antisymmetric 
modes (one for each nearly inviscid mode). Each mode 
yields two valúes of Cl that are real if l<lc and complex 
conjúgate if l>lc, where lc depends only on the mode. 

IV. RESULTS AND CONCLUDING REMARKS 

We have seen that as the modifled Reynolds number is 
large, liquid bridges exhibit two kinds of axisymmetric os-
cillating modes. 

Nearly inviscid modes were analyzed in Sec. II, where 
two corrections of the inviscid oscillating frequency and 
the damping rate were calculated. From the results in Figs. 
3-5, it appears that the ratio Re Íl i /Re íl2 is roughly of the 
order of 10 - 3 for the first mode (and even smaller for the 
remaining modes). This means that the first correction 
cannot give a good approximation to the damping rate, 
except for unrealistically small valúes of C (Le., C ~ 10 - 7 ) . 
This is illustrated in Figs. 6 and 7, where the damping rate, 
— Re í l is given in terms of A and C, for C = 2 X 10 - 3 and 
A=ir /4 , respectively. Notice that, as anticipated in the 
Introduction, our (three terms) approximation is quite 

FIG. 6. The damping rate versus C at A=i r /4 for the first four modes: as 
given by the expansión (11) with two (—) and three (—) terms, and as 
calculated mimerically in Ref. 7( + ) . 

FIG. 7. The damping rate versus A at C = 0.002 for the first four modes: 
as given by the expansión (11) with two (—) and three (—) terms, and 
as calculated numerically in Ref. 7( + )• 



FIG. 8. Damping rate and frequency in terms of A for a nearly inviscid 
mode. 

good for C moderately small. Further comparisons with 
(almost-) exact valúes of SI for C small will be given in 
Ref. 23. 

Viscous modes were considered in Sec. III, where two 
cases appeared. The generic case was considered in Secs. 
I I IA-III C. Notice that some of the modes exhibit a non-
vanishing azimuthal component of the velocity field (see 
Sec. III A). Also, some of the remaining modes (i.e., those 
giving a damping rate of the order of C; see Sec. III B) are 
such that the liquid bridge remains being a cylinder in the 
first approximation, and that the (small) correction to the 
free surface shape does not affect the first approximation of 
the associated pressure and velocity fields. The critical 
cases, when the analysis of the nearly inviscid modes in 
Sec. II failed because the associated oscillating frequency 
becomes too small were considered in Sec. I I ID, where we 
formulated the appropriate asymptotic problem, giving a 
first approximation of the oscillating frequency and damp­
ing rate. For the sake of brevity we did not solve this 
(nontrivial) problem, but only gave some qualitative prop-
erties of its solution (In particular, we showed that the 
critical valúes of the slenderness, where the transition from 
oscillatory behavior to nonoscillatory exponential growth 
takes place, are not afifected by viscous effects.) In fact, 
that problem and those corresponding to the limits consid­
ered in Secs. III C and III D will be solved as particular 
cases in Ref. 23, where a semianalytical solution of (1 ) -

(9) will be given, which allows a quick and quite exact 
computation of the eigenvalue SI for arbitrary (not neces-
sarily small) valúes of C. A sketch of the dependence of the 
damping rate and frequency for a typical nearly inviscid 
mode is given in Fig. 8. There A0 is one of the Solutions of 
Eq. (90),whileACl = / e t í l andAc l = AQ + lcC°; wherelcis 
as defined in Secs. I I IE and III D, respectively; notice that 
¡Qq ~ C/A2 and a C j ~ C2 (see Secs. III D and I I IE) . 

Notice that, as C->0, the damping rate of nearly invis­
cid modes is of the order of Cxn, while that of the (nono­
scillatory) viscous modes is of the order of C. Then, for 
suíficiently small valúes of C, the nearly inviscid modes 
decay faster than the viscous modes; but due to the numer-
ical valúes of the coeñicients in the expansions (as in the 
second paragraph of this section), for this property to be 
true, Cmust be unrealistically small (say, C ~ 1 0 - 7 ) . For 
C £ 10~3 the opposite is true. For example, if A = l then 
the eigenvalue associated with the first nearly inviscid 
mode is Sln¡ <* -0.058(1 + i)Cm - 6.7033C, while that 
associated with the first viscous mode is ílva¿ — 17.15C; 
then if, say, C= 10 - 3 , the damping rates of both modes are 
Re íln¡ ^ -0.008 54 and Re íl„=* -0.017 15. 

Notice that for small C, many of the valúes of | SI \ 
associated with viscous modes (i.e., those considered in 
Sec. II B), are quite small, and roughly appear as a múl­
tiple eigenvalue (Íl-^O) of ( l ) - (9 ) in any not-sufficiently 
precise numerical computation. This may explain, for ex­
ample, why viscous modes did not appear in the numerical 
results by Tsamopoulus et al.,1 and also the failure of the 
finite element method employed in Ref. 7 for calculating 
nearly inviscid modes when the associated frequency was 
small. 

Finally, let us point out that the main ideas in this 
paper are expected to also apply if the simplifying assump-
tions in the Introduction are relaxed. In particular, (a) if 
the volume of the liquid is not equal to that of the cylinder 
bounded by the disks; (b) if the radii of the two disks are 
not equal; (c) if gravitational eiFects are taken into ac-
count; and (d) if nonaxisymmetric modes are considered. 
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APPENDIX: SOME USEFUL IDENTITIES 

When using Eqs. (47) and (54) to calcúlate the cor-
rections to the damping rate and frequency for nearly in­
viscid modes, it is convenient to minimize the computa-
tional cost. To this end we first derive some identities that 
allow us to avoid the need to performing numerical 
quadratures. Those identities follow from the basic identity 
(already used in Sec. II): 



f r d r ( ÍQiAQ2-Q2AQ1)dz 

= f [Q1ír,A)Q2l{r,A)-Qi{r,-A)Q2l{r,-A)]rdr 
Jo 

+ fA [ f í l (U)02r (U)- f i2 (U)Glr (U)]<fe . 
J - A 

(Al) 

that applies whenever <2i and Q2 are sufficiently smooth 
a n d g l z ( r = ± A ) = 0 . 

By applying (Al) with Ql=P0, Q2
:=PQA> Qi=Po> 

Q2=zP0z> and Qi = Q, Q2=zP0z, respectively, we obtain 
[upon substitution of (41 )-(46), (26)-(28), and (39) and 
(40) for k=0, and (61)-(65), and some further manipu-
lations involving integration by parts] 

íl¿ fA F0(z)P0(l,z)dz+ílQF'0(A)2 

+Í15"1 Cp0r(r,A)2rdr=0, (A2) 
Jo 

A f P0r(r,A)2rdr 
Jo 

= - P ^ P P\zdz+íll{ F0íz) 

X [F0(z) +P0( l ,z)]¿z-AÍ1¿F0(A)2 , (A3) 

A f iJor('-.l)er(''.A)rc?/-
Jo 

= - CrdrT P02Q2dz+a2
0F0{A)F(A)+Ü.2 

Jo J - A 

X fA ÍF0(z)+P0(U)]F(z)dz+Aa2
Q[F'¿(A) 

fA ¿>oü> ,z)Fx{z)dz 

= -a 0 - 1 / 2
J F 0 (A) 2 - (4 í l 0 ) 

5 / fA 

-1/2 

X 5 A ( J po(M)*o(*)<k 

+ J " - A P O ( 1 , z)F(z)dz. (A6) 

When taking into account (A2)-(A6), it turns out 
that in order to calcúlate í l t and í l2 by means of (47) and 
(54), we only need to calcúlate the following integráis, 
which are given below in terms of the explicit series. For 
the odd modes, 

X F ( A ) - F 0 ( A ) í " ( A ) ] + (íl0íli + í i ¿ / ^o) 

X \f-Aw+ 3Po(hz) 
'( A \ 2 F0dz-AF'0(A) 

(A4) 

Also, (60) yields 

f P0r(r,A)PXr(r,A)rdr 
Jo 

= -(4n0)-1 / 2¿(Jo 

f PoAr,A)Qr(r,A)rdr, 
Jo 

wJLl C P0r{r,A)2rdr^ 

f P0(l,z)F0(z)dz= - sin{2 A)+Aa*0 £ a2
nqnrn, 

J _A nodd 
(A7) 

f P0(l,z)2dz=Añt 2 a2
nq

2
n, (A8) 

J —A nodd 

f f 0 ( 2 ) 2 ^ = A - ~ s i n ( 2 A ) - 4 í l g c o s A £ a „ ^ „ - 1 

J _A ¿ i»odd 

+AÍ1¿ I aM, 
nodd 

[\dr[K PlzdzJ^) 2 [ / 0 ( / „ ) 2 - / i ( / „ ) 2 ] ^ ; 
Jo J - A \ L I «odd 

(A9) 

(A10) 

p P0(l )z)77(z)c?z=í^2J(a0íl¿ / 2+fi0ííi)sín(2A) 

-Afto 2 anbnqnrn, (A l l ) 
nodd 

J - A 
.F0(z).F(z)¿z 

+ 
(A5) 

= - í l o - 2 ( í l 0 f t 0
/ 2 +í l (A) Í2A-sin(2A) 

~4íloCOsA E anñilñ) 
nodd / 

+ 2ílgcosA I bnrnq-x-Atf0 2 a„¿»„̂ > (A12) 
n odd « odd 

f ' * • f ^OzCz^ 
Jo J - A 

= - ( ~ ) 2 Uoiln)2-IÁÍn)2]a„bnll (A13) 
\ ¿ / n o d d 

where an, ln, q„, rn, sn, and bn are as defined in (58) and 
(59), (68), and the arbitrary constant b has been set to 
zero in Eqs. (66) and (67). 

Similarly, for the even modes, we have 



j P0(l,z)F0(z)dz=sin(2A)-2A~l sin2 A 

+ AÍ1¿ X d'„2qnrn, (A 14) 
neven 

f P o d ^ ^ ^ Z A - i s i n ^ + A í i * X <2<¿ (A15) 
J —A n even 

JA 1 

i^oU)2 cfe= A + - sin(2A) -2A" 1 sin2 A-4Í12, sin A 

X X a'/nq~l + ml X d'fá 

(A16) 

1 rfí 

l 'd'í ñ,dz= Oz l 2 ; „ 2 [/o(/B)2-/,(4)2K2/2, 
(A17) 

P0( l,z)¿*(z)¿z= (2/ílg) (o¿a¿ /2+^iíio) 

X [2A_1 sin2 A-sin(2A) ] 

-AO¿ I d'ne'nqnrn, (A18) 
«even 

j * FQ(z)F(z)dz 

=a0-2(íl¿íl¿ /2+íl1a0) J4A-1 sin2 A-2A-sin(2A) 

+4íl2sinA X rf^í"1) 
n even / 

+ 2 n 2 s i n A X e ^ - ^ A Í l S X « > Í 
n even « even 

(A19) 

[ rdr[ P02Qzdz 
Jo J-A 

(ACÚ\ „ 
= - — X [/oC/„)2-/,(4)2]^X4 (A20) 

\ ¿ / «even 

where ¿¿=<?¿=0 while d'n=d„ and eñ=e« for «>2, with Í/„ 
and e„ as given in Eqs. (72) and (75). 
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