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Abstract The well-posedness of the boundary value problems for second gradient elasticity

has been studied under the assumption of strong ellipticity of the dependence on the second

placement gradients (see, e.g., Chambon and Moullet in Comput. Methods Appl. Mech.

Eng. 193:2771–2796, 2004 and Mareno and Healey in SIAM J. Math. Anal. 38:103–115,

2006).

The study of the equilibrium of planar pantographic lattices has been approached in two

different ways: in dell’Isola et al. (Proc. R. Soc. Lond. Ser. A 472:20150, 2016) a discrete

model was introduced involving extensional and rotational springs which is also valid in

large deformations regimes while in Boutin et al. (Math. Mech. Complex Syst. 5:127–162,

2017) the lattice has been modelled as a set of beam elements interconnected by internal piv-

ots, but the analysis was restricted to the linear case. In both papers a homogenized second

gradient deformation energy, quadratic in the neighbourhood of non deformed configura-

tion, is obtained via perturbative methods and the predictions obtained with the obtained
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continuum model are successfully compared with experiments. This energy is not strongly

elliptic in its dependence on second gradients. We consider in this paper also the impor-

tant particular case of pantographic lattices whose first gradient energy does not depend

on shear deformation: this could be considered either a pathological case or an important

exceptional case (see Stillwell et al. in Am. Math. Mon. 105:850–858, 1998 and Turro in

Angew. Chem., Int. Ed. Engl. 39:2255–2259, 2000). In both cases we believe that such a

particular case deserves some attention because of what we can understand by studying it

(see Dyson in Science 200:677–678, 1978). This circumstance motivates the present paper,

where we address the well-posedness of the planar linearized equilibrium problem for ho-

mogenized pantographic lattices. To do so: (i) we introduce a class of subsets of anisotropic

Sobolev’s space as the most suitable energy space E relative to assigned boundary condi-

tions; (ii) we prove that the considered strain energy density is coercive and positive definite

in E; (iii) we prove that the set of placements for which the strain energy is vanishing (the

so-called floppy modes) must strictly include rigid motions; (iv) we determine the restric-

tions on displacement boundary conditions which assure existence and uniqueness of linear

static problems. The presented results represent one of the first mechanical applications of

the concept of Anisotropic Sobolev space, initially introduced only on the basis of purely

abstract mathematical considerations.

Keywords Strain gradient elasticity · Linear pantographic sheets · Existence ·

Uniqueness · Anisotropic Sobolev’s space

Mathematics Subject Classification 74A30 · 74G25 · 74G30 · 74G65 · 46E35

1 Introduction

Mechanical scientists have been recently attracted to the formulation of design and con-

struction criteria of new materials whose behaviour is established a priori. One can say that

the aim of this stream of researches is to produce Materials on Demand. More precisely:

once fixed the peculiar behaviour of a material which is desirable for optimizing its use in

a given application, the aim of aforementioned researches is to find the way for construct-

ing such a material. Materials designed in order to get a specific behaviour are often called

metamaterials.

The role of mathematical sciences in the design and constructions of metamaterials re-

cently increased for two reasons: (i) the development of the technology of 3D printing al-

lowed for the transformation of the mathematically conceived structures, geometries and

material properties into the reality of precisely built specimens; (ii) the way in which one

specifies the set of properties to be realized is specifically mathematical, as this specifica-

tion exactly consists in choosing the equations which one assumes to be those governing the

mechanical response of the conceived metamaterial.

Once more we can say that mathematics is shaping our world, as it is allowing us to

design new technological solutions and tools. The present paper deals with a mathematical

problem arising in a specific context involving the design of second gradient metamaterials.

More precisely: in order to find a class of materials whose deformation energy depends on

both first and second gradient of placement field in [22] a microstructured (pantographic)

fabric is introduced and its homogenized continuum model (which we call pantographic

sheet) is determined. Various aspects of modelling of pantographic lattices are considered

in [8, 52, 53, 56, 62–66] where discrete and homogenized models are considered. Let us
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note that one of the sources of generalized continua and models of metamaterials is the

homogenization of heterogeneous materials, see, e.g., [18, 54, 61] and reference therein.

Homogenization may lead also to strain gradient models [14, 17]. While the ideas underlying

the definition of pantographic microstructures have been exploited up to now only in the

context of purely mechanical phenomena, it is expected that when introducing multi-physics

effects (as the piezoelectric coupling phenomena exploited as explained in [23, 35]) the

designed meta materials could have even more interesting features. We expect a fortiori that

the mathematical tools used in the present context will be of use also in the envisioned more

general context.

The linearized equilibrium equations valid in the neighbourhood of a stress free con-

figuration for such pantographic sheets cannot be immediately studied by using the results

available in the literature. However we prove in this paper that the standard strategy in-

volving the use of Poincaré inequality, Lax-Milgram Theorem and coercivity of bilinear

deformation energy form do apply also in the present more generalized context.

What has to be modified is the Energy space where the solutions, relative to suitable

well-posed boundary conditions, are looked for and the Sobolev space which includes this

Energy Space.

Indeed the concept of Anisotropic Sobolev Space, whose definition was conceived on

purely logical grounds by Sergei M. Nikol’skii, see [47], has to be used in order to apply the

abstract Hilbertian setting of solution strategy.

We expect that further developments will lead us to study the complete nonlinear problem

of deformation of pantographic sheets.

We need to explicitly remark here that we believe it is important to consider the par-

ticular case of pantographic lattices whose first gradient energy does not depend on shear

deformation. This could be considered either a pathological case or an important excep-

tional object (in the sense made explicit in [58] and [67]). In both cases we believe that

the pathology shown by pantographic lattices in absence of first gradient shear energy de-

serves due attention for what we can eventually understand by studying its ill-posedness

or well-posedness. The significance of pathological examples in the development of math-

ematics has been widely discussed: without listing the many examples of pathological

mathematical behaviour which has led to a better understanding of physical and math-

ematical world (we have found in the entry of Wikipedia (https://en.wikipedia.org/wiki/

Pathological_(mathematics) consulted on 17 April 2017, really interesting) we simply re-

call the classical example of the Greek discovery of irrational and its consequences (see,

e.g., [38]).1

On the other hand if a behavior must be considered as pathological it is indeed subject to

the personal intuition and therefore pathology is a concept which should not play a relevant

role in scientific theories. What has to be classified as “pathology” depends on many factors

including: its context, the training of the group of scientists studying the problem, and their

experience: indeed what is regarded as pathological by one researcher may very well be

1Si parva licet componere magnis (Virgil), i.e., if it be allowable to compare small things with great ones,

we would like to cite in the present context a relevant statement by Freeman Dyson “The same pathological

structures that the mathematicians invented to break loose from 19-th naturalism turn out to be inherent in

familiar objects all around us in nature” in Characterizing Irregularity, Science 200 [1978] (see [25] for a deep

and further discussion about this point). Moreover we believe to have pointed out in this paper an anomaly

in classical elasticity theory (in the technical sense given to this word by Thomas Kuhn, see [39]). Indeed

we prove here that the standard use of the hypothesis of ellipticity in the proof of well-posedness needs to be

modified if one wants to incorporate linear second gradient elasticity in the body of theory of elasticity. The

most conservative readers will be reassured by the fact that in this way it is avoided a crisis (always in the

sense of Kuhn) inside this theory.

https://en.wikipedia.org/wiki/Pathological_(mathematics)
https://en.wikipedia.org/wiki/Pathological_(mathematics)
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standard behaviour to another one. The concept of pathologic behaviour seems of therefore

of relevance only in the history of scientific thought and in the description of the process of

solution finding.

2 Postulated Deformation Energy for “Long-Fibers” Pantographic Sheets

Pantographic sheets are bidimensional continua whose microstructure is constituted by a

lattice of extensible and continuous fibers having bending stiffness and interconnected by

(internal) pivots (i.e., pin joints which are not interrupting the material continuity of the pairs

of beams to which they are applied). It has to be explicitly remarked that, in general, we are

not considering trusses. A truss, by definition, is assumed to comprise a set of independent

beams that are connected by means of pin joints connecting only ending points of the beams.

This means that if the truss is loaded only with concentrated forces applied to pin joints then

each beam (or fiber) can only be either in compression or in extension. We call lattices of

beams the most general beams structure involving pin joints (but also possibly clamping

devices, or rollers or glyphs).

Roughly speaking, pantographic sheets can be characterized as those lattices of fibers

whose microstructure, once pivots are assumed to be ideal and no external constraints are

applied, allows for the existence of some homogeneous deformations which do not store

deformation energy. These deformations are sometimes called “floppy-modes”. In Fig. 1

such a structure is schematically described, while in Fig. 2 a picture of a 3D printed specimen

in polyamide is shown. Of course the pivots in the real object can have only an approximate

ideal behaviour: they will store some deformation energy and therefore the homogenized

corresponding continuum will need to have a non vanishing deformation energy relative to

shear deformation. In our opinion, however, the ideal case of vanishing first gradient stiffness

deserves a careful attention, as it can suggest to us some features and exotic behaviours

which pantographic sheets can exhibit.

The main feature of the considered pantographic structure consists in the presence of

“long” continuous fibers constituting two arrays: at each intersection point of one fiber with

all fibers of the other array it is present a pin joint (or internal pivot) which is not inter-

rupting the mechanical and geometrical continuity of both interconnecting fibers. This pin

joint imposes that the beam sections which it is interconnecting must undergo the same

displacement, however it leaves free their relative rotations.

We assume that in the reference configuration the two arrays of fibers are initially or-

thogonal and we denote Dα , α = 1,2, the unit vectors of their current directions.

Fig. 1 Scheme of a pantographic sheet and beams connection trough a pivot
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Fig. 2 3D printed specimen of a pantographic sheet

As a macro model of the system described before we consider a continuum whose ref-

erence configuration is given by a (suitably regular) domain ω ⊂ R
2. By assuming planar

motion, the actual configuration of ω is described by the planar macro-placement

χ : ω → R
2, (1)

whose gradient ∇χ will be denoted by F.

For considered “long fibers” pantographic sheets a possible expression for deformation

energy is given by (the two possible methods for getting this expression are described in

[22] or in [12]):

U
(

χ(·)
)

=

∫∫

ω

∑

α

K
α
e

2

(

‖FDα‖ − 1
)2

dω

+

∫∫

ω

∑

α

K
α
b

2

[

∇F : Dα ⊗ Dα · ∇F : Dα ⊗ Dα

‖FDα‖2

−

(

FDα

‖FDα‖
·
∇F : Dα ⊗ Dα

‖FDα‖

)2]

dω

+

∫∫

ω

Kp

2

∣

∣

∣

∣

arccos

(

F D1

‖F D1‖
·

F D2

‖F D2‖

)

−
π

2

∣

∣

∣

∣

2

dω , (2)

which accounts for stretching (first integral) and bending deformations of fibers (second

integral) as well as for the resistance to shear distortion (third integral) related to the variation

of the angle between the fibers. Here ‖ · ‖ is the Euclidean norm in R
2 and : is the double

dot product. The twisting deformations in fibers are not considering here. The coefficients

K
α
e > 0 and K

α
b > 0 are related respectively to the extensional and bending stiffnesses of the

fibers at the interpivot scale, while the coefficient Kp ≥ 0 models, at macro-level, the shear

stiffness of the pantographic sheet and is related to the interaction between the two arrays

of fibers via their interconnecting pivots: when these pivots are perfect this interaction is

vanishing and Kp vanishes. Considering stiffness parameters Kα
e , Kα

b , and Kp we conclude

that pivots are weakest elements in typical pantographic structures. An example of how

printed fibers with pivots look like after breakage is given in Fig. 3. Even made of the same
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Fig. 3 Fibers with pivots

material, pivots are thinner than fibers. Thus, for such structures Kp is much smaller than

the tangent and bending stiffnesses.

In this paper we will start considering small deformations of the sheet in the neighbor-

hood of the reference configuration. Therefore we calculate the second order Taylor expan-

sion for the energy U(χ(·)) in terms of the small parameter η controlling the amplitude of

the displacement u starting from the reference configuration. In formulas

χ(X) = X + ηu(X), X ∈ ω. (3)

By introducing the notations H := ∇u, H =: E + W, where E is symmetric and W is

skew-symmetric we get formally (where I denotes the identity tensor)

F = I + ηH, ∇F = η∇H.

As a consequence

FDα = Dα + ηHDα,

FDα · FDα = 1 + 2ηHDα · Dα + η2HDα · HDα,

‖FDα‖ =
√

1 + 2ηEDα · Dα + η2HDα · HDα ≃ 1 + ηHDα · Dα,

1

‖FDα‖
≃ 1 − ηHDα · Dα,

1
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≃ 1 − 2ηHDα · Dα,

K
α
e
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)2
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K

α
e

2
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·
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2
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2,

∇F : Dα ⊗ Dα · ∇F : Dα ⊗ Dα

‖FDα‖2
≃ η2(∇H : Dα ⊗ Dα · ∇HDα ⊗ Dα),

FDα

‖FDα‖
·
∇FDα ⊗ Dα

‖FDα‖
≃ (1 − ηHDα · Dα)

2(Dα + ηHDα) · η∇HDα ⊗ Dα,
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FDα

‖FDα‖
·
∇FDα ⊗ Dα

‖FDα‖
≃ Dα · η∇HDα ⊗ Dα.

Since Dα are unit orthogonal vectors we may replace them by standard basis vectors iα ,

Dα = iα . As a consequence if the displacement u is represented in the basis Dα by means of

its components

u = u1i1 + u2i2, uα = uα(x1, x2), X = x1i1 + x2i2,

then the second order Taylor expansion of the energy (2) is given by

U
(

u(·)
)

=

∫∫

ω

[

K
1
e

2
u2

1,1 +
K

2
e

2
u2

2,2 +
Kp

2
(u1,2 + u2,1)

2 +
K

1
b

2
u2

1,22 +
K

2
b

2
u2

2,11

]

dω, (4)

see also [12] for a direct derivation of this energy based on a homogenization procedure

exploiting the micro-balance of force and momentum. In [51] the same energy has been

derived with an explicit identification of the constitutive coefficients in terms of the Young’s

modulus of the fiber materials, of the area and of the moment of inertia of the fiber cross

sections and of the distance between the nearest pivots. Here indices after comma denote

derivatives, so f,α is the partial derivative of f with respect to xα , f,α = ∂αf ≡
∂f

∂xα
.

Since the torsional (shear) stiffness is much smaller than other stiffness parameters used

in the model we can study independently this singular limit case. So, in what follows and in

the spirit described in the introduction, we mainly consider the mathematically interesting

case which is represented by pantographic structures whose shear stiffness is vanishing.

3 Energy for Pantographic Sheets and Equilibrium Conditions

Let us consider the deformation energy relative to pantographic structures having vanishing

shear stiffness. The deformation energy becomes

U
(

u(·)
)

=

∫∫

ω

W dω, (5)

where the strain energy density W is given by

W =
K

1
e

2
u2

1,1 +
K

2
e

2
u2

2,2 +
K

1
b

2
u2

1,22 +
K

2
b

2
u2

2,11.

For derivation of the equilibrium conditions we consider the first variation of U . First we

obtain

δU =

∫∫

ω

(

K
1
eu1,1δu1,1 +K

2
eu2,2δu2,2 +K

1
bu1,22δu1,22 +K

2
bu2,11δu2,11

)

dω.

Then, integrating by parts we transform δU into

δU =

∫∫

ω

(

−K
1
eu1,11 +K

1
bu1,2222

)

δu1 dω

+

∫∫

ω

(

−K
2
eu2,22 +K

2
bu2,1111

)

δu2 dω
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+

∫

∂ω

[(

n1K
1
eu1,1 − n2K

1
bu1,222

)

δu1 + n2K
1
bu1,22δu1,2

]

ds

+

∫

∂ω
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n2K
2
eu2,2 − n1K

2
bu2,111

)

δu2 + n1K
2
bu2,11δu2,1

]

ds. (6)

Here nα = iα · n, tα = iα · t, n and t are the unit external normal and unit tangent to the

boundary ∂ω vectors, respectively, see Fig. 4. Representing δu1,2 and δu2,1 by formulas

δu1,2 = i2 · ∇δu1, δu2,1 = i1 · ∇δu2

with ∇ defined at the boundary through normal and tangent derivatives

∇ = n
∂

∂n
+ t

∂

∂s
,

where ∂/∂s and ∂/∂n are derivatives with respect to arc length s and normal coordinate,

respectively, we obtain that

δu1,2 = n2

∂δu1

∂n
+ t2

∂δu1

∂s
, δu2,1 = n1

∂δu2

∂n
+ t1

∂δu2

∂s
.

Substituting the latter formulae into (6) and again integration by parts with respect to s we

obtain that

δU =

∫∫

ω

[(

−K
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1
bu1,2222

)

δu1 +
(

−K
2
eu2,22 +K

2
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)

δu2

]

dω

+

∫

∂ω

(

n1K
1
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1
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∂
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(

n2t2K
1
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)

)

δu1 ds

+

∫
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(

n2K
2
eu2,2 − n1K

2
bu2,111 −

∂
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(

n1t1K
2
bu2,11

)

)

δu2 ds

+

∫
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(

K
1
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2
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∂
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2
1

∂
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δu2

)

ds. (7)

Fig. 4 Deformation of a

pantographic sheet
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Here for simplicity we assumed that boundary contour ∂ω is a plane curve which is smooth

enough, i.e., differentiable and without corner points. In [50, 51] the integration by part

procedure valid for boundaries with corner points is considered. The form of δU requires

that only a class of external loads can be applied: indeed the virtual work of external loads

must be consistent with it. So, we must assume that the virtual work of external loads δA is

given in the following form:

δA =

∫∫

ω

(f1δu1 + f2δu2) dω +

∫

∂ω

(ϕ1δu1 + ϕ2δu2) ds

+

∫

∂ω

(

n2µ1

∂

∂n
δu1 + n1µ2

∂

∂n
δu2

)

ds. (8)

Here fα are surface loads. Moreover ϕα and µα are forces and couples respectively assigned

on the part of the boundary ∂ω where uα and/or ∂uα

∂n
are not assigned. Therefore we intro-

duce a suitably regular partition of ∂ω into two disjoint subsets ∂eωα and ∂nωα (or ∂eω
⊥
α

and ∂nω
⊥
α ) on which either displacements (or normal derivatives of displacements) are as-

signed or their dual quantities are assigned respectively (the index α = 1,2 refers to the

displacement component uα).

Finally, from the principle of least action δU − δA = 0, and by assuming the following

essential boundary conditions,

u1 = u0
1, (x1, x2) ∈ ∂eω1, (9)

u2 = u0
2, (x1, x2) ∈ ∂eω2, (10)

n2∂nu1 = ϑ1n2, (x1, x2) ∈ ∂eω
⊥
1 , (11)

n1∂nu2 = ϑ2n1, (x1, x2) ∈ ∂eω
⊥
2 , (12)

where u0
1, u0

2, ϑ1, and ϑ2 are given functions at ∂ω and ∂n = ∂/∂n, we obtain the equilibrium

equations and natural (static) boundary conditions

−K
1
eu1,11 +K

1
bu1,2222 − f1 = 0, (x1, x2) ∈ ω, (13)

−K
2
eu2,22 +K

2
bu2,1111 − f2 = 0, (x1, x2) ∈ ω; (14)

n1K
1
eu1,1 − n2K

1
bu1,222 −

∂

∂s

(

n2t2K
1
bu1,22

)

= ϕ1, (x1, x2) ∈ ∂nω1; (15)

n2K
2
eu2,2 − n1K

2
bu2,111 −

∂

∂s

(

n1t1K
2
bu2,11

)

= ϕ2, (x1, x2) ∈ ∂nω2; (16)

K
1
bu1,22n

2
2 = n2µ1, (x1, x2) ∈ ∂nω

⊥
1 ; (17)

K
2
bu2,11n

2
1 = n1µ2, (x1, x2) ∈ ∂nω

⊥
2 . (18)

It is interesting that (13) and (14) contain partial derivatives of different orders. For ex-

ample, (13) contains second derivative with respect to x1 and fourth derivative with respect

to x2.

Since the energy has a reduced form (in other words: in it some higher order derivatives

are not appearing) we have also reduced boundary conditions. For example, for a fixed

boundary and differently from what happens in the case of first gradient elasticity, instead of

∂nu1 = 0 we have n2∂nu1 = 0 which has a sense if n2 �= 0. Indeed, if n2 = 0 that corresponds
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Fig. 5 Pantographic rectangle

to a vertical line then the boundary condition (17) becomes trivial, both left and right parts

of (17) vanish identically. Let us consider a rectangle ABCD shown in Fig. 5. Note that

here the fibers are oriented along the sides of the rectangle. Here two sides are free and at

two sides the displacements are zero. The corresponding boundary conditions are

along AB: K
1
bu1,22 = 0, K

1
bu1,222 = 0, K

2
eu2,2 = 0,

along BC: K
1
eu1,1 = 0, K

2
bu2,111 = 0, K

2
bu2,11 = 0,

along CD: u1 = 0, u2 = 0, ∂2u1 = 0,

along DA: u1 = 0, u2 = 0, ∂1u2 = 0.

Clearly, this rectangle gives an example of degenerated boundary conditions, since instead

of four conditions as in the general case, here we have only three. This circumstance occurs

always when the boundary (or a part of it) is parallel to one of the coordinate axes, i.e., is

parallel to one of the fiber directions.

4 Heuristics

It is evident that the immediate application of the classic methods used for proving existence

and uniqueness of the solution of the elastic problem is not possible in the present context

[16, 28, 32, 42], as coercivity could seem, at first sight, a condition which is not verified

(this circumstance is already mentioned in [12]). Moreover also the results for second gra-

dient continua proven by Healey et al. [36, 44] are not applicable here, as the energy of

pantographic sheets is not coercive with respect to the highest order derivatives.

Before framing the problem in the appropriate energy space we present here some heuris-

tic preliminary considerations.

First of all: assume that for a displacement field u∗ the energy (5) vanishes.

It is trivial to check that as u∗
1,1 = 0

u∗
1 = f (x2)
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while, as u∗
1,22 = f,22 = 0

f = a1x2 + b1

and, finally,

u∗
1 = a1x2 + b1,

where a1 and b1 are constants. We have that

u∗
2 = a2x1 + b2

with constant a2 and b2 independent of a1 and b1.

Note that in the case of plane infinitesimal deformations the rigid body motion is

ur = φ × X + b,

where φ = φi3 is a constant rotation vector, i3 = i1 × i2, × is the cross product, and b =

b1i1 + b2i2 is a constant vector. So in components the rigid body motion has the form

u1 = φx2 + b1, u2 = −φx1 + b2.

It is therefore evident that the “kernel” or “null-space” of the strain energy not only

include rigid (infinitesimal) motions (corresponding to a1 = −a2) but also pure shear that

corresponds to elongation/contraction in the directions at an angle ±π/4 with respect to

the coordinate axes (when a1 = a2). The null-space of strain energy density consists of four

linear independent modes and all their linear combinations

u∗
1 = i1, u∗

2 = i2, u∗
3 = i3 × X, u∗

4 = x2i1.

Instead of u∗
4 one can use the equivalent mode x1i2 or the symmetric mode x2i1 + x1i2. Dif-

ferently to what happens for first gradient elasticity a fourth mode having vanishing energy

appears and it relates to uniform shear in a specific direction.

Clearly well-posedness results must take into account such a property.

Secondly: it has to be recalled that boundary conditions producing well-posed problems

in the case of second gradient continua are more general than when dealing with first gradi-

ent continua (see for more details about generalized boundary conditions, e.g., [33, 34, 46,

59] and the historic works by Piola). The procedure which is used in the aforementioned

papers can be summarized as follows (see [5, 19]): i) one postulates the principle of virtual

work, i.e., the equality between internal and external work expended on virtual displace-

ments; ii) one determines a class of internal work functionals involving second gradients of

virtual displacement; iii) one determines, by means of an integration by parts, the class of

external work functionals which are compatible with the determined class of internal work

functionals.

A consequence (see, e.g., [24, 33, 46, 59]) of the just described procedure is that Neu-

mann problems for considered second gradient deformation energies must include, to be

complete, double symmetric and skew-symmetric boundary forces together with forces con-

centrated on points. To be more precise: the class of so-called natural boundary conditions

must include the dual (with respect to work functionals) quantities of normal gradients of

virtual displacements. Following Germain, the dual of the tangential part of normal gradient

of virtual displacement is a “couple” (i.e., skew-symmetric contact double forces) while the

dual of the normal part of normal gradient of virtual displacement is a “double force” (i.e.,
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symmetric contact double forces). For some reasons (initially studied in [20, 21, 29], but

surely further investigations are needed!) this kind of boundary conditions has been consid-

ered, sometimes and by some schools of mechanicians, unphysical: the reader is referred to

the beautiful paper by Sedov, Leonid Ivanovich, [57] for a lucid discussion of this point and

its physical, mathematical and epistemological implications.

After having identified the displacements which are in the null space of the deformation

energy, a conjecture about mixed boundary conditions which are likely to produce well-

posed problems can, consequently, be formulated. Indeed, let us partition the boundary ∂ω

of the body ω into two disjoint subsets, i.e., ∂ωe and ∂ωn. We assume that the displace-

ments on ∂ωe are assigned and that the displacements on ∂ωn are free. We call AC the set

of C2 displacements verifying the assigned conditions on ∂ωe . We say that AC is singular

if there exist an element u in AC and a displacement field u0 belonging to the null space

for deformation energy (i.e., a displacement having vanishing deformation energy) such that

u + u0 also belongs to AC. We conjecture here (and rigorously prove in the next section)

that the considered mixed boundary problem is well-posed if and only if AC is NOT sin-

gular. Remark that if the considered elastic energy is a first gradient one and it is positive

when regarded as a function of infinitesimal strain tensor then the aforementioned statement

reduces to the standard requirement that in well-posed problems the constrained body can-

not undergo rigid displacements. The concept of underconstrained system (see [40]) has to

be modified in order to include the treated case of planar second gradient continua: see, for

instance, Figs. 1 and 2 for examples of underconstrained pantographic sheets. This point

will need further investigations to include the case of pantographic sheets moving in three-

dimensional space and three-dimensional pantographic bodies.

In the present paper we limit ourselves to consider Dirichlet’s and mixed boundary prob-

lems in which, on a part of the body boundary, only the displacement is assigned, while the

remaining part of the body boundary is left free.

5 On Ellipticity of Equilibrium Equations

The equilibrium equations (13) and (14) are very specific. Indeed, unlike classic mechanical

models like membranes, plates, or linear elastic solids they are neither elliptic nor strongly

elliptic. Let us introduce the differential operators

P1(D) = −K
1
e∂

2
1 +K

1
b∂

4
2 , P2(D) = −K

2
e∂

2
2 +K

2
b∂

4
1 , D = (∂1, ∂2). (19)

So (13) and (14) take a symbolic form

P1(D)u1 = f1, P2(D)u2 = f2. (20)

Then the ellipticity of P1(D) and P2(D) requires that, see [31, 32],

K
1
bξ

4
2 �= 0, K

2
bξ

4
1 �= 0, ∀ ξ ≡ (ξ1, ξ2) �= 0,

respectively. Obviously, these conditions are not fulfilled.

Strong ellipticity requires the fulfillment of a stronger condition such as

K
1
bξ

4
2 ≥ c1|ξ |4, K

2
bξ

4
1 ≥ c2|ξ |4, ∀ ξ ≡ (ξ1, ξ2) �= 0

with positive constants c1 and c2, see [4] for the general framework, and [44] for the strain

gradient elasticity. So, it is clear that here the equilibrium equations are not strongly elliptic.
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Nevertheless, the considered operators are still elliptic in the sense of Agmon-Douglis-

Nirenberg [2, 3]. The differential operators P1(D) and P2(D) belong to the class of quasi-

elliptic or semi-elliptic differential operators. The boundary value problems for quasi-elliptic

operators have been intensively studied at the end of the Sixties, see, e.g., [6, 7, 13, 45, 68].

The quasi-elliptic operators are a particular class of the so-called hypoelliptic operators, see,

e.g., [37]. It is easy to prove that P1(D) and P2(D) are hypoelliptic. Indeed, necessary and

sufficient condition for the hypoellipticity of the operator P (D) is the following limiting

relation [27, 37]

|∇P (ξ)|

|P (ξ)|
→ 0, |ξ | → +∞,

where ∇P = ( ∂P
∂ξ1

, ∂P
∂ξ2

), which is fulfilled for P1(D) and P2(D).

For the theory of elliptic, quasi-elliptic and hypoelliptic operators we refer to [4, 27, 37,

43, 49, 55] and the references therein. In particular, in [43, p. 214] the variational statement

of similar problem for an rectangle is discussed.

6 Existence and Uniqueness of Weak Solutions

Let us now come back to the first variation of the energy functional. For solution we have

the principle of virtual work in the form

δU − δA = 0. (21)

For simplicity let us replace δu by a new function v. With v Eq. (21) transforms to

B(u,v) ≡

∫∫

ω

(

K
1
eu1,1v1,1 +K

2
eu2,2v2,2 +K

1
bu1,22v1,22 +K

2
bu2,11v2,11

)

dω

=

∫∫

ω

(f1v1 + f2v2) dω

+

∫

∂ω

(

ϕ1v1 + ϕ2v2 + n2µ1

∂v1

∂n
+ n1µ2

∂v2

∂n

)

ds. (22)

Here we introduce the bilinear form B(u,v) to denote the quadratic terms in (21).

Now we introduce the weak solution of the boundary-value problem (13)–(17) as the

vector-function u such that the variational equation (22) is fulfilled for any test function

v = v1i1 + v2i2. The properties of u and v are specialized below.

Without loss of generality, in what follows we use the following dimensionless form of

W :

2W = u2
1,1 + u2

2,2 + u2
1,22 + u2

2,11. (23)

Now the bilinear form is

B(u,v) =

∫∫

ω

(u1,1v1,1 + u2,2v2,2 + u1,22v1,22 + u2,11v2,11) dω.

Here we keep the same notations uα and xα for dimensionless displacements and dimen-

sionless coordinates, respectively. So, W has the form of a seminorm in anisotropic Sobolev
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spaces, see definition in [9–11], and Appendix. More precisely: let u1 ∈ W
(1,2)

2 (ω) and

u2 ∈ W
(2,1)

2 (ω), then we have that u ∈ W
(1,2)

2 (ω) ⊕ W
(2,1)

2 (ω) and

2U(u) =

∫∫

ω

[

u2
1,1 + u2

2,2 + u2
1,22 + u2

2,11

]

dω = |u1|W (1,2)
2

+ |u2|W (2,1)
2

(24)

is a seminorm in W
(1,2)

2 (ω) ⊕ W
(2,1)

2 (ω). Here we introduced the following notations for

some auxiliary seminorms

|f |
W

(1,2)
2

:= ‖f,1‖L2
+ ‖f,22‖L2

, |f |
W

(2,1)
2

:= ‖f,11‖L2
+ ‖f,2‖L2

,

whereas it is possible to transform them into norms for instance following the standard

choice:

‖f ‖
W

(1,2)
2

= ‖f ‖L2
+ |f |

W
(1,2)
2

, ‖f ‖
W

(2,1)
2

= ‖f ‖L2
+ |f |

W
(2,1)
2

. (25)

It clear that the functional space W
(1,2)

2 (ω) ⊕ W
(2,1)

2 (ω) is constituted exactly by the set

of all functions for which (24) is finite. We will call energy space E for the considered

energy functional any subspace of W
(1,2)

2 (ω) ⊕ W
(2,1)

2 (ω) which is the completion of one

of the previously introduced space AC relative to NONSINGULAR boundary conditions

using the norms (25). Remark that when restricted to an energy space the seminorm given

by (24) becomes a norm.

Now the definition of a weak solution for linear pantographic structures can be given as

follows.

Definition 1 We call u ∈ E a weak solution of the equilibrium problem (21) if (22) is

fulfilled for any test function v from a dense set in E.

The bilinear form B(u,v) is continuous and the following inequalities are valid:

B(u,v) ≤ |u1|W (1,2)
2

|v1|W (1,2)
2

+ |u2|W (2,1)
2

|v2|W (2,1)
2

≤ ‖u‖E‖v‖E . (26)

For the analysis of existence and uniqueness of weak solutions we start by considering

two cases. The simplest case is given by Dirichlet boundary conditions.

6.1 Dirichlet’s Boundary Conditions

We start by proving the existence and uniqueness for the simplest case when the whole

boundary is fixed. Consider the set of equations for the strong formulation of equilibrium

problem:

−u1,11 + u1,2222 = f1, −u2,22 + u2,1111 = f2, (x1, x2) ∈ ω; (27)

u1 = 0, u2 = 0, n2∂nu1 = 0, n1∂nu2 = 0, (x1, x2) ∈ ∂ω. (28)

Here the weak solution is defined through the integral equation

B(u,v) =

∫∫

ω

(f1v1 + f2v2) dω, ∀v1, v2 ∈ C2
0 (ω), (29)
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which, when assuming that f belongs to L2(ω), can be written as

B(u,v) − (f,v)L2
= 0, ∀v ∈ C2

0 (ω).

Using the Poincaré inequalities (Friedrich’s inequality, see, e.g., [1]) we get

‖u1‖L2
≤ C1‖u1,1‖L2

, ‖u2‖L2
≤ C1‖u2,2‖L2

(30)

with some constants C1 and C2 and, as a consequence, we can establish that

|u1|W (1,2)
2

+ |u2|W (2,1)
2

≥ C
(

‖u1‖W
(1,2)
2

+ ‖u2‖W
(2,1)
2

)

with another constant C. In other words we proved that | · |
W

(1,2)
2

and | · |
W

(2,1)
2

play the

role of norms in
◦

W
(1,2)

2 and
◦

W
(2,1)

2 , respectively, where with the upper circle we denoted

the completion of C2
0 (ω) (or C∞

0 (ω)) with respect to the corresponding norms. So here the

energy space E is the anisotropic Sobolev’s space
◦

W
(1,2)

2 (ω)⊕
◦

W
(2,1)

2 (ω). This means that

we have proven that B(u,v) is coercive

B(u,u) ≥ C‖u‖2
E .

One can easily prove that (f,v)L2
is a linear bounded functional in E. Thus, by using

Lax-Milgram theorem [30], the following theorem can be easily proven:

Theorem 1 Let the Cartesian components f1 and f2 of f belong to the space L2(ω). There

exists a weak solution u∗ ∈ E ≡
◦

W
(1,2)

2 (ω)⊕
◦

W
(2,1)

2 (ω) to the equilibrium problem (27) and

(28), which for any v ∈ E satisfies the equation

(

u∗,v
)

E
−

∫∫

ω

f · vdω = 0.

Furthermore, u∗ is unique and it is a minimizer of the energy:

F
(

u∗
)

= inf
u∈E

F(u), F (u) ≡ U(u) −

∫∫

ω

f · udω.

Remark 1 Since for the coercivity we need inequalities (30) which require that only the

functions are zero at the boundary, (i.e., u1 = u2 = 0 at ∂ω), for uniqueness is suffices to

consider only the boundary conditions concerning displacements, without considering the

condition on the normal derivatives (28).

Remark 2 We used here L2(ω) as a functional space for f. This condition can be weakened

using imbedding theorems of E into anisotropic Lebesgue spaces [9–11] and we omit this

for simplicity.

For non-homogeneous boundary conditions (9)–(12) we seek a solution in the form

u = u∗ + u0, where u0 is a vector function which satisfies (9)–(12) whereas for u∗ bound-

ary conditions (28) are assumed. Substituting this representation into (27) and (9)–(12) we

reduce the non homogeneous boundary-value problem to the previous one, for which we

already proved the theorem on existence and uniqueness of weak solutions.
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Fig. 6 Two rectangles with

clamped edge with different fiber

orientation

6.2 Mixed Boundary Conditions

Somehow more difficult is the case of mixed boundary conditions. In the theory of linear

elasticity it is known that for existence and uniqueness it is enough to request that a part

of the boundary is fixed: i.e., when rigid displacements are not allowed [16, 28, 32, 42].

In our problem it is not enough to require that rigid displacements are ruled out. Indeed

as an example we consider two rectangles with one fixed side whereas others are free, see

Fig. 6. More precisely, on side AB the displacements are zero: u = 0. The difference in

rectangles consists only on their orientation with respect to the coordinate axes, that is to

fiber orientations. It is clear that for the first rectangle the solution is not unique since the

displacement

u = ax2i1

satisfies the equilibrium and boundary conditions for any value of a: the set AC in this

circumstance is indeed SINGULAR. For the second rectangle, instead, the set AC is actually

NON-SINGULAR and the aforementioned displacement is not a solution of equilibrium

problem.

In other words, for rectangle a) we have at least the solutions u = 0 and u = ax2i1.

Obviously we should avoid such situations since even without loading we have an infinity

of non-trivial (deformative) solutions. Thus, in what follows we always assume that the

boundary conditions are nonsingular.

Let us consider the mixed boundary-value problem formulated by (9)–(18). Here the en-

ergy space E is a subspace of W
(1,2)

2 (ω)⊕W
(2,1)

2 (ω) obtained as the completion of functions

C2(ω) which verify (9)–(12).

The weak solution is defined as an element u belonging to E satisfying the equation

B(u,v) =

∫∫

ω

(f1v1 + f2v2) dω

+

∫

∂ω

(

ϕ1v1 + ϕ2v2 + n2µ1

∂v1

∂n
+ n1µ2

∂v2

∂n

)

ds (31)

for any admissible function v (i.e., a function belonging to a dense subset of E).

Using the same technique we formulate the theorem on existence and uniqueness of the

weak solution in E.



Linear Pantographic Sheets: Existence and Uniqueness of Weak 191

Theorem 2 Let the Cartesian components f1 and f2 of f belong to the space L2(ω), ϕα ∈

L2(∂nωα), µα ∈ L2(∂nω
⊥
α ) and assume that the boundary conditions are nonsingular. There

exists a weak solution u∗ ∈ E to the equilibrium problem (12)–(18) which for any v ∈ E

satisfies the equation (31).

Furthermore, u∗ is unique and it is a minimizer of the functional F(u):

F
(

u∗
)

= inf
u∈E

F(u),

F (u) ≡ U(u) −

∫∫

ω

f · udω +

∫

∂ω1

(

ϕ1u1 + ϕ2u2 + n2µ1

∂u1

∂n
+ n1µ2

∂u2

∂n

)

ds.

6.3 Existence and Uniqueness Considering Non-zero Shear Stiffness

Using the anisotropic Sobolev spaces we can also prove existence and uniqueness for a more

general case by considering energy in the form of (4). In dimensionless form the energy is

given by

2U(u) =

∫∫

ω

[

u2
1,1 + u2

2,2 + (u1,2 + u2,1)
2 + u2

1,22 + u2
2,11

]

dω, (32)

and the bilinear form becomes

B(u,v) =

∫∫

ω

[

u1,1v1,1 + u2,2v2,2 + (u1,2 + u2,1)(v1,2 + v2,1)

+ u1,22v1,22 + u2,11v2,11

]

dω. (33)

Differently from the previous case where the energy is exactly a seminorm in W
(1,2)

2 (ω) ⊕

W
(2,1)

2 (ω), now U is slightly different. Moreover, for the energy (32) there are only rigid

body motions as in the case of the classical plane elasticity. Considering Dirichlet or mixed

boundary conditions with u1 = 0, u2 = 0 at the part of the boundary we can use the Korn

inequality [16, 32, 42] to prove the coercivity condition

B(u,u) ≥ C‖u‖2
E . (34)

Here the energy space E is a subspace of W
(1,2)

2 (ω) ⊕ W
(2,1)

2 (ω) obtained as the completion

of functions C2(ω) which verify kinematic boundary conditions in the norm given by (32).

Using Lax-Milgram theorem we can prove existence and uniqueness of the weak solutions.

Let us note that this problem is much easier for analysis than the problem with zero shear

stiffness. However the results given in the previous section gives us (i) the logical basis

needed for formulating a numerical integration scheme which can be used in the case of

small shear stiffness and (ii) a basis for understanding the exotic behaviour of purely second

gradient pantographic sheets.

7 Conclusions

The results presented in this paper allow us to prove existence and uniqueness theorems for

the elastic problem in the case of planar pantographic sheets and for a variety of boundary

conditions. The main difficulties which we had to confront were: i) the existence of floppy

modes, i.e., deformations corresponding to zero deformation energy and ii) the absence in

the deformation energies of many higher order derivatives.



192 V.A. Eremeyev et al.

Therefore the results by Healey and Chambon [15, 36, 44] could not be applied directly

and there was the appearance of a lack of the coercivity of considered energy. Indeed the

second gradient deformation energy for pantographic sheets is not coercive if one considers

the standard Sobolev Space, whose norm involves all second order derivatives.

However we prove that the standard Hilbertian abstract setting used for solving the elas-

tic problem does not need to be changed. Instead one has to change the definition of the

Energy spaces which correspond to the various imposed boundary conditions: they must be

regarded as subsets of the Anisotropic Sobolev space whose norm is defined by involving

only the derivatives appearing in the considered deformation energy. The abstraction effort

due to Nikol’skii (and to Besov and others) which lead him to introduce a wider class of

Sobolev spaces was initially motivated only by the need of developing a mathematical the-

ory based on the minimum possible necessary assumptions: Anisotropic Sobolev Spaces

include functions which do not posses all higher order weak derivatives.

The abstract tool which he developed allowed us to frame rather naturally the numerical

and mathematical problems concerning the equilibrium of linear pantographic sheets. Dis-

cussion of the finite element method developed for anisotropic Sobolev’s spaces is given in

[26].

We are also confident that the same tools will allow us to study non-linear deformations

problems. Finally we want to stress once more that the study of apparent pathologies can be

a fruitful source of understanding in both mathematics and in the mathematical modelling

of physical phenomena.
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Appendix: Anisotropic Lebesgue and Sobolev Functional Spaces

In the paper we used the classic and anisotropic Lebesgue and Sobolev functional spaces.

For sake of self consistency, we present here some necessary information on this topic. In

plane elasticity and other problems of mechanics functional spaces such as Lebesgue space

L2(ω) and Sobolev’s spaces W 1
2 (ω) and W 2

2 (ω) are widely used [16, 28, 41, 42]. The norms

in these spaces are defined as follows:

‖f ‖L2
=

(∫∫

ω

f 2 dω

)
1
2

,

‖f ‖W1
2

=
(

‖f ‖2
L2

+ ‖f,1‖
2
L2

+ ‖f,2‖
2
L2

)
1
2 ,

‖f ‖W2
2

=
(

‖f ‖2
L2

+ ‖f,1‖
2
L2

+ ‖f,2‖
2
L2

+ ‖f,11‖
2
L2

+ 2‖f,12‖
2
L2

+ ‖f,22‖
2
L2

)
1
2 ,

where f = f (x1, x2) is a function defined in an open set in the two-dimensional Euclidean

space, ω ⊂ R
2, the boundary of ω is assumed to be smooth enough. Various useful require-

ments to the boundary of ω are discussed in [1, 11]. The Greek indices take values 1, 2.

L2(ω), W 1
2 (ω) and W 2

2 (ω) are examples of a separable Hilbert space [1].
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In this paper we use the various imbedding theorems for Sobolev’s spaces, therefore let us

recall the general definition of an imbedding. We say that the normed space E is imbedded

in the normed space H , and we write E → H to denote this imbedding, if (i) E is a vector

subspace of H , and (ii) there exists a constant C such that ‖u‖H ≤ C‖u‖E ∀u ∈ E. For

imbedding theorems in Sobolev’s spaces we refer to [1, 41, 42].

In addition to classic Lebesgue and Sobolev’s space we introduce the anisotropic

Lebesgue and Sobolev spaces. Here we are restricting ourselves to functions defined on

a set of R2. Let p = (p1,p2) be a multiindex, where 1 < pα < ∞. Then the norm in the

anisotropic Lebesgue space Lp is defined as

‖f ‖Lp =

((∫

f (x1, x2)
p1 dx1

)p2/p1

dx2

)1/p2

.

If p1 = p2 = p we use standard notation Lp = Lp . ‖ · ‖Lp is called the mixed norm [1].

An anisotropic Sobolev space consists of functions having different differential prop-

erties in different coordinate directions, so such functions have generalized derivatives of

different order and, in general, different Lp in coordinate directions x1 and x2. The the-

ory of the anisotropic Sobolev spaces including imbedding theorems, relations with other

Sobolev’s spaces and analysis of the coercivity of differential operators is presented in [9,

10, 47], see also [11, 60]. We introduce the multiindex ℓ = (l1, l2) where lα are natural

numbers and the norm

‖f ‖W ℓ
p

= ‖f ‖Lp +

2
∑

α=1

∥

∥∂ lα
α f

∥

∥

Lp
. (35)

So, the set of functions defined on ω and having generalized derivatives such that the in-

troduced norm is finite, is called the anisotropic Sobolev space W ℓ
p (ω). Obviously, when

l1 = l2 = l and p1 = p2 = p we have the classical Sobolev space W l
p . The anisotropic

Sobolev’s space W ℓ
p is a separable Banach space whereas W ℓ

2 is a Hilbert space.

We also introduce the anisotropic Sobolev space
◦

W ℓ
p as the closure of C2

0 (ω) (or C∞
0 (ω))

functions in norm (35).

For our purposes we consider two specific anisotropic Sobolev spaces W
(1,2)

2 and W
(2,1)

2

with norms

‖f ‖
W

(1,2)
2

= ‖f ‖L2
+ ‖f,1‖L2

+ ‖f,22‖L2
, (36)

‖f ‖
W

(2,1)
2

= ‖f ‖L2
+ ‖f,11‖L2

+ ‖f,2‖L2
. (37)

With certain assumptions on the regularity of ω for these spaces, there are the following

imbedding theorems [11, 47]:

W ℓ
2 (ω) → W 1

2 (ω), W ℓ
2 (ω) → C(ω), ℓ =

{

(1,2), (2,1)
}

.

Evidently, any function f ∈ W 2
2 (ω) belongs to W ℓ

2 (ω) with ℓ = {(1,2), (2,1)}, but not all el-

ements of W ℓ
2 (ω) belong to W 2

2 (ω). For more details on imbeddings in anisotropic Sobolev’s

spaces and their further generalizations including results on traces of functions we refer to

[9–11, 47, 48, 60].
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