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Linear Passive Networks With Ideal Switches:
Consistent Initial Conditions and State Discontinuities
Roberto Frasca, M. Kanat Camlibel, Member, IEEE, I. Cem Goknar, Fellow, IEEE, Luigi Iannelli, Member, IEEE,

and Francesco Vasca, Member, IEEE

Abstract—This paper studies linear passive electrical networks
with ideal switches. We employ the so-called linear switched sys-
tems framework in which these circuits can be analyzed for any
given switch configuration. After providing a complete characteri-
zation of admissible inputs and consistent initial states with respect
to a switch configuration, the paper introduces a new state reini-
tialization rule that is based on energy minimization at the time of
switching. This new rule is proven to be equivalent to the classical
methods of Laplace transform and charge/flux conservation prin-
ciple. Also we illustrate the new rule on typical examples that have
been treated in the literature.

Index Terms—Consistent initial conditions, energy-based jump
rule, state discontinuities, state jump, switched networks.

I. INTRODUCTION

S WITCHING circuits are encountered in various appli-
cations from power converters to signal processing. To

simplify the analysis, the switching elements are typically
taken as ideal elements. Such ideal switching behavior may
cause discontinuities in the state variables (typically voltages
across capacitors and currents through inductors). A good deal
of literature on switched networks has been devoted to the
problem of state reinitialization, i.e., determining the state after
a discontinuity. The main goal of this paper is to study the state
reinitilization problem for electrical networks consisting of
linear passive elements, independent voltage/current sources,
and ideal switches.

For an account of previous work in the literature, we give
the following inevitably incomplete survey of related work
within the area of circuit theory. In the classical book [1],
state reinitilization problem has been addressed by utilizing
the charge/flux conservation principle. A general formalization
of this conservation principle has not been given; it has been
explained only through examples. A set of algebraic equations
was obtained in [2] for reinitilization of active RLC circuits. In
case of a passive network, the method reduces to the applica-
tion of charge/flux conservation principle. In [3], the principle
of charge/flux conservation has been applied to periodically
operated switched networks for state reinitilization problem. In
[4], the authors proposed a reinitilization method that is based
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on numerical inversion of Laplace transform. Their method
obtains consistent initial states in two steps: one step forward
in time to overcome the impulse and one step backward to the
switching instant. Reference [5] uses also the Laplace transform
method for reinitilization. This line of work has been extended
in [6] to periodically switched nonlinear circuits. Other papers
that took numerical approaches include [7]–[9]. The distribu-
tional framework has been used in [10] where current sources
were excluded, in [11] an approach to calculate the energy
loss after the discontinuity was developed. Other related work
consists of generalizations to nonlinear setting (e.g., [12]–[15])
and calculation and interpretation of energy loss in switching
instants (e.g., [16]–[18]). For internally controlled switching
elements, state reinitialization was considered in [19]–[22].
Also state discontinuities were discussed in the context of
switched capacitor circuits in [23], [24], in the context of robust
stabilization of complex switched networks in [25], and in the
context of steady-state analysis of nonlinear circuits containing
ideal switches in [26]. In the literature, switched networks have
been almost always treated by fixing a switch configuration
and deriving the differential algebraic equations that govern
the network. In order to analyze the same circuit for another
switch configuration, a typical approach consists of deriving
the corresponding circuit equations for the new configuration
(see, e.g., [8]). In our work, we employ the so-called linear
switched systems framework (see, e.g., [21], [27]) that allows
one to obtain circuit equations for any switch configuration
in a natural way. Within this framework, we assume that the
network elements other than the ideal switches and sources
are linear and passive. Based on this assumption, we give a
complete characterization (for any given switch configuration)
of admissible inputs (voltage/current sources), i.e., sources that
are acceptable and consistent initial states, i.e., initial states
that do not cause discontinuities in the state variable. After
that, we study the inconsistent initial states, i.e., initial states
that cause discontinuities. First, we introduce an energy-based
jump rule for determining the state after a jump occurs. The
novelty of this new rule stems from its conceptual insight and
computational simplicity. Finally, the other two alternative
methods for determining the state after discontinuity, namely
Laplace transform method and charge/flux conservation prin-
ciple have been investigated. We show that these two methods
are equivalent to the new energy-based jump rule.

The structure of the paper is as follows. After introducing the
notational conventions in Section II, we begin with setting a
general framework for linear switched systems in Section III.
This is followed by a quick review of the notion of passivity
in Section IV. In Section V, a complete characterization of ad-
missible inputs and consistent initial states is presented. For the
inconsistent states, we introduce an energy-based jump rule and
show its equivalence to charge/flux conservation principle as

1549-8328/$26.00 © 2010 IEEE
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well as Laplace transformation based jump rule in Section VI.
After illustrating the new jump rule with several examples in
Section VII, the paper closes with conclusions in Section VIII
and proofs in Appendix A.

II. PRELIMINARIES

Throughout the paper, the following notational conventions
will be in force.

We denote the real numbers by and complex numbers by .
The transpose of a matrix is denoted by and Hermitian by

. For a square invertible matrix, we write to denote its
inverse. For a (possibly nonsquare) matrix , the notation
denotes the so-called Moore–Penrose pseudoinverse. For two
matrices and with the same number columns,
denotes the matrix obtained by stacking over . A square
matrix is positive semidefinite if ; in
this case, we write . It is positive definite if it is positive
semidefinite and implies ; in this case, we
write . Associated with a matrix , we define

and
.

The notations and denote the derivative of the func-
tion . We say that a function is a Bohl function
if there are matrices , , and with suitable sizes such that

for . Note that Bohl functions con-
sist of polynomials, sinusoids, exponentials, and finite sums and
products of these.

A pair of matrices is said to be
controllable if . A pair of
matrices is said to be observable
if is controllable. A triple of matrices

is minimal if is controllable and
is observable.

The Laplace transform of a signal is denoted by .
We say that a rational function is proper if the limit

exists and strictly proper if .
We use the same terminology for vectors and matrices, meaning
that each element has the required property.

III. LINEAR SWITCHED SYSTEMS

In this section, we first introduce the linear switched system
framework. This framework provides a compact representation
of switched systems as it enables us to analyze the behavior
of the system under any switching topology. After introducing
this framework, we formalize the switch configuration and the
solution concept we work with. We also define admissible inputs
and consistent initial states for a given switch configuration. All
these concepts/definitions are illustrated by examples.

Consider the systems of the form

(1a)

(1b)

where is the state,1 is the input, and
are ideal switch variables, i.e.,

(1c)

1The variable � is called state by abuse of terminology as depending on the
switch configuration a subset of the variables will qualify as true state variables.
Sometimes, � is referred to as semistate variables or candidates for state vari-
ables in the literature.

for each time instant . We call these systems linear
switched systems (LSS).

This class of systems naturally appears in the context of linear
electrical networks with ideal switches. Given such a network,
one can first extract the switches to the ports. Then, the dy-
namics of the remaining circuit that contains linear circuit el-
ements and sources (under the assumption that the resulting
circuit has the proper hybrid description) can be described by
the state-space form (1a), (1b) where the voltage–current pairs
of the switches correspond to the external variables , the
voltage–current sources correspond to the inputs , and the state
variables are, for instance, voltages across the capacitors and the
currents through inductors. The relations (1c) correspond to the
constitutive laws for ideal switches. A detailed description of a
possible construction procedure of the model (1) for electrical
networks is given in Section VI-D1.

The typical frameworks in the study of switched systems
focus on a given switch configuration and work on the governing
equations of the circuit that is only valid for this configuration
(see, e.g., [8], [10], [19]). Analysis of another configura-
tion requires obtaining the governing equations for the new
switch configuration. The LSS model (1), however, provides
a compact representation which captures the dynamics of any
possible switch configuration. Once the switch configuration
is specified, one can obtain the governing equations directly
from the general LSS description by deleting corresponding
columns of and matrices, and rows of and matrices.
In what follows we elaborate on switch configurations and the
dynamics for a fixed switch configuration.

An issue of particular interest is the behavior of the network
under different switch configurations. We say that LSS (1) is in
the switch configuration on some interval of
time if

(2a)

(2b)

for all time instants in the same interval.
Example III.1: Consider the circuit shown in Fig. 1. This cir-

cuit can be obtained from the classical Buck converter topology
by replacing the diode with an ideal switch . Suppose that
the resistor, the capacitor, and the inductor are all linear ele-
ments. A possible LSS description (see Example VI.7) can be
obtained as follows:

(3a)

(3b)

(3c)

where , and
. As the circuit contains two switches, there

are four possible switch configurations, shown in the equation
at the bottom of the next page.
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Fig. 1. Buck converter.

A. Dynamics in a Switch Configuration

Given a fixed switch configuration , the
dynamics of the LSS (1) is given by the differential-algebraic
equations (DAEs)

(4a)

(4b)

(4c)

(4d)

where the complement of is denoted by , that is
. Here, we use the notation where

to denote the elements of that are in-
dexed by the set and where ,

to denote the submatrix obtained from
by taking the rows indexed by and the columns indexed by .
Also, we denote with by and
with by .

B. Solution Concept

In what follows we define what we mean by a “solution” to
the (4). To avoid certain technicalities that would blur the main
message of the paper, we deal only with Bohl-type inputs (i.e.,
polynomials, sinusoids, exponentials, and finite sums and prod-
ucts of these) in the sequel.

Definition III.2: We say that:
• a continuously differentiable function is a solution with

respect to the switch configuration for the initial state
and the input if the DAEs (4) are satisfied for all
and ;

• an input is admissible with respect to the switch config-
uration if the DAEs (4) admit a solution at least for an
initial state ;

• an initial state is consistent with respect to the switch
configuration and the admissible input if the DAEs (4)
admit a solution.

Fig. 2. Two capacitors.

Two examples that illustrate the concepts of admissibility and
consistency are in order.

Example III.3: Consider the Buck converter of Example III.1
and suppose that both switches are closed, i.e., the switch con-
figuration is given by . Now and the dynamics
are governed by the following DAEs:

(5a)

(5b)

Equation (5b) imposes a constraint on the input, namely .
As such the only admissible input with respect to this switch
configuration is the zero input.

Example III.4: Consider the circuit depicted in Fig. 2. It can
be put in the LSS form as follows:

(6a)

(6a)

(6c)

Suppose that the switch configuration , i.e., the switch
is closed. For this configuration, the DAEs (4) are given by

(7a)

(7b)

The algebraic equation (7b) implies that an initial state is consis-
tent if and only if . Note that given a consistent
initial state the DAEs (7) admit the unique so-
lution for all .

Our first aim is to give a complete characterization of admis-
sible inputs and consistent initial states for a given circuit and
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switch configuration. For this, we will work in the framework
of LSS (1) and exploit the passivity of the underlying linear
system. Next, we summarize the notion of passivity.

IV. PASSIVITY

This section is devoted to the notions of passivity and posi-
tive realness. We quickly review the definition of passivity and
its relation to positive realness as well as the implications of pas-
sivity that will be used throughout the paper.

Having roots in circuit theory, passivity is a concept that
has always played a central role in systems theory. Roughly
speaking, a system is passive if the increase in the stored energy
does not exceed the supplied energy.

Definition IV.1 [28]: A linear system given
by

(8a)

(8b)

is called passive if there exists a nonnegative-valued function
such that for all and all trajectories

of the system (8) the following inequality holds:

(9)

If it exists the function is called a storage function.
An intimately related concept to passivity is positive realness.
Definition IV.2: A rational matrix is pos-

itive real if
• is analytic in ;
• for all .

Here denotes the open right halfplane in .
The relation between passivity and positive realness is

known as the Kalman–Yakubovich–Popov lemma. The fol-
lowing proposition states this relation together with some other
well-known implications of passivity.

Proposition IV.3 [28]: Consider the following statements.
1) The system is passive.
2) The linear matrix inequalities (LMIs)

(10)

have a solution .
3) The function defines a storage func-

tion.
4) The transfer matrix is positive real.
5) The triple is minimal.
6) The pair is observable.
7) The matrix is positive definite.
The following implications hold.

A) 1 2 3.
B) 2 4.
C) 4 and 5 2.
D) 2 and 6 7.

V. A COMPLETE CHARACTERIZATION OF ADMISSIBLE INPUTS

AND CONSISTENT INITIAL STATES

The purpose of this section is to give a complete characteri-
zation of admissible inputs and consistent states. The two main

ingredients are the LSS framework and the notion of passivity
that are discussed in the previous sections.

Note that the Laplace transform is a bijection between Bohl
functions and strictly proper rational functions. By employing
this correspondence, one can treat the DAEs (4) in the Laplace
domain. This formulation, together with the passivity property,
leads to the following complete characterization of admissible
inputs and consistent initial states.

Theorem V.1: Consider the LSS (1). Suppose that the system
is passive with a positive definite storage func-

tion. Then the following statements hold.
1) An input is admissible with respect to the switch config-

uration if and only if

(11)

2) An initial state is consistent with respect to the switch
configuration and the admissible Bohl-type input if and
only if

(12)

Remark V.2: Theorem V.1 generalizes the results of [21],
[27] in two respects: it allows presence of inputs and it does
neither assume minimality of the triple nor injectivity of

. Note that the latter assumption does not hold
in many examples that appear in practice, see, e.g., Examples
III.1 and VII.5.

Remark V.3: Consider the network of Example III.1 with the
switch configuration . Note that , ,
and . As such, the condition (11) states that the only
admissible input for this configuration is .

Remark V.4: Consider the network in Example III.4. Since
the corresponding matrix is zero, all inputs are admissible
for all configurations. Consider the switch configuration

. Note that , , and . By
applying condition (12), we see that the initial state is consistent
if and only if . Note that if (i.e., the
switch is open), condition (12) drops out and all initial states
are consistent.

VI. INCONSISTENT INITIAL STATES

Having established complete characterization of consistent
initial states, we focus on inconsistent initial states in this sec-
tion. First, we begin with the well-known example of two ca-
pacitors. This is followed by the introduction of the so-called
energy-based jump rule which is one of the main contributions
of the paper. Finally, we show the equivalence of this new rule to
those of the Laplace transform based method and the charge/flux
conservation based method.

Consider the circuit given in Example III.4. When the switch
is closed, the initial state is consistent only
if . Otherwise one should expect an in-
stantaneous jump in the state so that . The
standard ways of computing this jump is to employ charge/flux
conservation principle or Laplace transform method.

In this very simple example, the former method yields

(13a)

(13b)



3142 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 57, NO. 12, DECEMBER 2010

Hence, we get

(13c)

For the Laplace transform method, one has to solve the alge-
braic relations obtained by taking the Laplace transform of (6).
This would result in

(14)

and hence (13c) by the initial value theorem of Laplace trans-
form. Although the Laplace transform method yields the same
results it may not be preferable for complex networks as it ne-
cessitates symbolic manipulations.

In what follows, we propose a novel approach for the com-
putation of the state jump. This new approach is based on the
stored energy of the system and gives an explicit formula for
the state after the jump in terms of the LSS form (1) and the
chosen switch configuration. Its main advantages are to reduce
the required computational power significantly and to provide
further insight to state discontinuities caused by switching.

Later, we will show that the new jump rule is equivalent to
charge/flux conservation rule, as well as the Laplace transform
method, for linear passive electrical networks.

A. Energy-Based Jump Rule

Inspired by the jump rules that are employed in the context of
mechanical systems with unilateral constraints (see [29]–[31])
and of electrical networks with switching elements (see [21],
[27], [32]), we introduce an energy-based jump rule in what
follows.

Theorem VI.1: Consider the LSS (1). Suppose that
is passive with a positive definite storage

function. Let be an initial state,
be a switch configuration, and be an admissible Bohl-type
input with respect to the switch configuration . Consider the
minimization problem

(15a)

(15b)

Then, the following statements hold.
1) For any positive definite solution of the LMIs (10), the

quadratic program (15) has a unique solution.
2) The unique solution of (15), , can be explicitly given by

(16)

where is a matrix with appropriate dimensions such that
. Moreover, is the solution of (15) if

and only if

(17a)

(17b)

3) If and are two positive definite solutions of the
LMIs (10), then .

We define the unique value obtained by the above minimiza-
tion problem as the reinitialized state for the energy-based jump
rule and denote it by . Note that if is a consistent ini-
tial state with respect to an admissible Bohl-type input , i.e.,

, then ,
and hence .

Remark VI.2: One of the advantages of calculating the reini-
tialized state using the energy-based jump rule via (16) is its
computational ease. This formula gives the reinitialized state in
terms of the parameters of the system description of the LSS
from (1) and the stored energy defined by the matrix . The
computation based on (16) requires two ingredients: the ma-
trices and . The rows of the matrix form a basis for the
null-space of the matrix . As such, one can employ stan-
dard numerical linear algebra routines, for instance MATLAB’s
null command. Computation of is quite straightforward by
efficient LMI techniques (see, e.g., [33]), for instance, via the
LMI Toolbox of MATLAB. Moreover, if the state variables are
taken as voltages across capacitors and currents through induc-
tors then the matrix can be directly obtained from the ca-
pacitances and inductors as explained in detail in Remark VI.6.
Once and are given, the explicit formula (16) requires only
matrix inversion and multiplication.

B. Reinitialization via Laplace Transform Method

Another common method to resolve the jump issue is to use
the Laplace transform. For a given switch configuration , one
can take the Laplace transform of (4). This yields

(18a)

(18b)

(18c)

(18d)

where is the Laplace transform of the corresponding variable,
whereas and

are obtained from (1). For an initial state and
input , one looks for a solution of (18). The following theorem
provides conditions of solvability for these equations in case the
underlying linear system is passive.

Theorem VI.3: Consider the LSS (1). Suppose that
is passive with a positive definite storage

function. Let be an initial state, be
a switch configuration, and be an admissible Bohl-type input
with respect to the switch configuration . Then, the following
statements hold.

1) The equations in (18) admit a solution
where the pair is proper and is strictly
proper.

2) If with , 2 are two solutions,
then

(19a)
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(19b)

(19c)

We define the unique value as the reini-
tialized state for the Laplace transform method.

Remark VI.4: In order to compute the reinitialized state with
Laplace transform method, one has to solve (18c) for .
This requires symbolic manipulation which increases compu-
tational burden heavily. In the literature, semisymbolic com-
putation methods for solving (18c) have been introduced (see,
e.g., [34]). These methods are based on interpolations on the
unit circle and reduce the heavy computational burden of purely
symbolic computations. Since the explicit formula (16) requires
only matrix inversion and multiplication, the proposed method
has a clear computational advantage over the Laplace transform
method regardless of whether purely symbolic or semisymbolic
techniques are employed. However, the explicit formula (16) is
valid only for passive networks whereas the Laplace transform
method is applicable to more general networks.

C. Equivalence of Energy-Based Jump Rule and Laplace
Transform Based Jump Rule

So far, we have introduced a jump rule based on energy min-
imization and discussed the Laplace transform based jump rule.
It turns out that the Laplace transform based and the energy-
based jump rules are equivalent as stated in the following the-
orem.

Theorem VI.5: Consider the LSS (1). Suppose that
is passive with a positive definite storage

function. Let be an initial state, be
a switch configuration, and be an admissible Bohl-type input
with respect to the switch configuration . Then

D. Charge/Flux Conservation Principle

Our next aim is to show that the energy-based jump rule and
the principle of charge/flux conservation (for linear circuits con-
taining resistors, capacitors, inductors, independent voltage/cur-
rent sources, and ideal switches) yield the same reinitialized
state.

In the general framework of LSS (1), the state variable does
not necessarily consist of capacitor voltages and inductor cur-
rents. As such, one cannot directly apply the charge/flux con-
servation principle to a general LSS.

First, we begin with deriving a particular LSS form of an elec-
trical network (consisting of resistors, capacitors, inductors, in-
dependent voltage/current sources, and ideal switches) in such
a way that the charge/flux conservation principle can be related
to this LSS form.

1) Derivation of Circuit Equations: Consider a network
whose elements are resistors, inductors, capacitors, independent
sources, and switches. Suppose that the graph2 associated to
the network is connected and that capacitors do not form a loop
(with or without voltage sources) and inductors do not form a
cut set (with or without current sources). This assumption is

2We refer to [35] and [36] for the fundamental concepts of circuit theory.

not restrictive since if such a loop is present, one can break the
loop by putting a switch in series to a capacitor (in the loop)
and choose the switch configuration such that this extra switch
is closed. A dual approach can be taken for inductors.

In order to obtain circuit equations, we first extract the ideal
switches to the ports. For the remaining circuit, we consider a
proper tree, i.e., a tree that contains all the voltage sources and
the capacitors in the network, but no inductors and no current
sources. It is always possible to find a proper tree (if no loops
of capacitors/voltage sources and no cut sets of inductors/cur-
rent souces are present). The capacitors are included in the tree
branches, while the inductors in the links. The resistors, sources,
and switches are included either in the branches or in the links in
order to complete the tree. We partition the links and branches
into eight subsets, namely the resistive links, the inductive links,
the independent current source links, the port links, the capac-
itive branches, the resistive branches, the independent voltage
source branches, and the port branches. Let be the number of
the links and be the number of the branches. The Kirchhoff
voltage law (KVL) applied to the fundamental loops and the
Kirchhoff current law (KCL) to the fundamental cut sets are
obtained as follows:

(20)

where , , , , , , , and are subvectors repre-
senting, respectively, voltages for the resistive links, the induc-
tive links, the independent current source links, the port links,
the capacitive branches, the resistive branches, the independent
voltage source branches and the port branches; , , , ,

, , , and are subvectors representing, respectively,
currents for the resistive links, the inductive links, the indepen-
dent current source links, the port links, the capacitive branches,
the resistive branches, the independent voltage source branches,
and the port branches.

For the resistors, capacitors, and inductors, the constitutive
laws of are given by

(21)

where , , , and are diagonal matrices with positive
diagonal elements (or positive definite matrices to be more gen-
eral) of appropriate sizes.

For the ideal switches, the constitutive laws are given by

(22a)

(22b)

where , , , and .
Let

(23)
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be a partition of the matrix that conforms with the (20).
Using the KVL/KCL (20) and constitutive laws of the el-

ements (21), one can obtain the following LSS form for the
network:

(24a)

(24b)

(24c)

(24d)

for and , where and
are the number of switches belonging to the port branches and
to the port links, respectively. Here, the matrices are reported in
(24e)–(24j), shown in the equation at the bottom of the page.

Remark VI.6: Naturally, the linear system
given by (24a) and (24b) forms a passive system with the
storage function

Indeed, this choice results in

(25)

(26)

Note that is clearly positive definite.

Example VI.7: Consider the circuit depicted in Fig. 1. By
taking a tree consisting of the voltage source , the switch

, and the capacitor ; and applying KVL, one arrives at the
equations

This results in

where

Next, we formalize the charge/flux conservation principle
with the help of the special LSS form obtained above.

2) Formulation of Charge/Flux Conservation Principle: The
principle of charge/flux conservation is applied to a network in
order to obtain consistent initial conditions for the state variables
(capacitance voltages and inductance currents). The principle of

(24e)

(24f)

(24g)

(24h)

(24i)

(24j)

(24k)

(24l)
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TABLE I
TRANSFERRED CHARGE/FLUX RELATIONS FOR CIRCUIT ELEMENTS

charge conservation states that the total charge transferred into
a junction or out of a junction at any time is zero. Dually, the
principle of flux conservation states that the flux summed over
any closed loop is continuous. As such, KCL is valid in terms
of the transferred charges for a node and KVL is valid in terms
of the transferred fluxes for a loop with the definitions of trans-
ferred charges/fluxes for different elements shown in Table I. In
this table, denotes the corresponding value before disconti-
nuity and after discontinuity.

For the principle of charge conservation, these definitions,
together with (20), yield

(27a)

and

(27b)

where , , , and , respectively, correspond to the
charges transferred to the capacitors, voltage sources, port
branches, and port links.

From (20), the KVL after the discontinuity is given by

(27c)

Analogously, it is possible to derive a set of equations for the
principle of flux conservation

(27d)

and

(27e)

where , , , and , respectively, correspond to
the fluxes transferred to the inductors, current sources, port
branches, and port links.

From (20), the KCL after the discontinuity is given by

(27f)

Finally, the constitutive laws of the switches have to be
considered

(27g)

(27h)

where , , , and .
Remark VI.8: The existing methods based on the charge/flux

conservation principle (see, e.g., [8], [10], [19]) require the cir-
cuit equations for the given switch configuration as input. When
one wants to analyze another switch configuration, the corre-
sponding governing equations should be derived for the new
configuration. The LSS framework makes it possible to apply
the charge/flux conservation principle to any switch configura-
tion without deriving the circuit equations for each topology. To
our knowledge, the formalization of the charge/flux conserva-
tion principle for an arbitrary switch configuration had not been
studied in the literature before.

With all above preparations, we are ready to show the equiv-
alence of the charge/flux conservation principle to the energy-
based jump rule in what follows.

E. Equivalence of Charge/Flux Conservation Principle and
Energy-Based Jump Rule

Principle of charge/flux conservation says that and ,
satisfying the relations in (27) for a given switch configuration,

, , , and , should be taken as the reinitialized state for
the network. Naturally, one should ask if there exists a solution

and that satisfy those relations. If such a solution exists,
the next natural question is to ask whether it is unique. To our
knowledge, these questions have not been formally answered in
the literature.

In what follows, we will show that any solution and
for the relations in (27) coincides with the one obtained from
energy-based jump rule. Hence, this solution is the unique so-
lution.

Theorem VI.9: Consider the . For any
given switch configuration, , , , and , the reinitialized
state obtained by charge/flux conservation principle
(27) coincides with the reinitialized state obtained by energy-
based jump rule. As such charge/flux conservation principle
(27) always yields a unique solution.

Remark VI.10: Together with the general formulation of
charge/flux conservation principle based on the LSS frame-
work, above theorem indicates that the energy-based jump rule
has no computational advantage over that of charge/flux conser-
vation principle. However, the existing methods (see, e.g., [8],
[10], [19]) based on charge/flux conservation principle require
the derivation of corresponding circuit equations for the given
configuration. Thanks to the LSS framework, the energy-based
jump rule is given as an explicit formula which works for any
switch topology without deriving governing equations of each
topology separately. In this sense, the energy-based jump rule
has considerable computational advantage over the existing
methods based on charge/flux conservation principle.
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Fig. 3. Switched network of Example VII.3.

VII. EXAMPLES

In this section, we illustrate the computational simplicity of
the new method on some examples considered in the literature
within the context of switched electrical networks. The first one
is the ubiquitous two-capacitor example.

Example VII.1: Consider the circuit depicted in Fig. 2. An
LSS form for this circuit was given in (6). Suppose that the
switch configuration is given by , i.e., the switch is
closed. Since , one can take in Theorem VI.1.
Note that can be taken as a diagonal matrix with the diagonal
elements and . Then, it follows from Theorem VI.1 that

(28)

Example VII.2: Consider the circuit depicted in Fig. 1. An
LSS form for this circuit was given in (3). Take . Since

, one can take in Theorem VI.1. Note that
can be taken as a diagonal matrix with the diagonal elements
and . Then, it follows from Theorem VI.1 that

Example VII.3: Consider the circuit depicted in Fig. 3 that
was investigated in [10]. It can be expressed in the LSS form as
follows:

Take . Since , one can take in
Theorem VI.1. Note that can be taken as a diagonal matrix
with the diagonal elements and . Then, it follows from
Theorem VI.1 that

Fig. 4. Switched network of Example VII.4.

Fig. 5. Switched network of Example VII.5.

Example VII.4: Consider the circuit depicted in Fig. 4 that
was investigated in [11]. It can be expressed in the LSS form as
follows:

Take . Since , one can take . Note that
can be taken as a diagonal matrix with the diagonal elements
and . Then, we get

Example VII.5: Consider the circuit depicted in
Fig. 5 that was investigated in [1, Sec. IV-C].
It can be expressed in the LSS form as follows:

Take . Since , one can take in Theorem
VI.1. Note that can be taken as a diagonal matrix with the
diagonal elements and . Then, it follows from Theorem
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VI.1 that

VIII. CONCLUSIONS

A single compact framework called linear switched systems
was employed for linear networks with ideal switches; this
framework, which is valid for any switch configuration unifies
and simplifies the analysis of such circuits. Within this frame-
work, a complete characterization of admissible inputs and
consistent states was presented. Under the passivity assumption
for general systems, a new state reinitialization method based
on energy minimization was developed. The advantages of the
method, besides providing a clear insight to state discontinu-
ities, are threefold.

• It is independent of any network topology and nature (ap-
plicable to any linear switch system).

• It is computationally simpler over the existing methods
which need to reanalyze the circuit each time a new switch
configuration is adopted.

• More importantly, it provides once more a proof that nature
settles itself by consuming the minimum amount of energy.

This new method was shown to yield the same reinitialized state
as:

• the one provided by using the Laplace transform tech-
niques applied to linear switch systems (without any dis-
tribution theory or any Dirac delta functional);

• the charge/flux conservation principle based state reinitial-
ization rules (by providing a rigorous derivation for elec-
trical circuits).

Two main directions arise as possibilities for further research.
Extensions of the presented results for networks containing
other types of switching elements such as ideal diodes and
thyristors forms one of these directions; the other direction is
to investigate the energy-based reinitialization rule for active
and/or nonlinear circuits.

APPENDIX

PROOFS

For the proofs, we need two auxiliary results. The first one is
concerned with the consequences of passivity.

Lemma A.1 [32, Lemma 2.5]: Suppose that the system
is passive. Let be any solution to LMIs (10)

and let . Then, the following
statements hold.

i) is positive semidefinite.
ii) .

iii) .
iv) for all complex numbers .
v) for all real positive

numbers that are not eigenvalues of .
The second auxiliary result provides conditions for the solv-

ability of rational equations under a passivity assumption.

Theorem A.2: Consider the rational equation

(29)

where the matrices , , , , , are of appropriate sizes,
is a strictly proper rational, and a rational function. Suppose
that the linear system is passive with a positive
definite storage function. Then, the following statements hold.

1) The following statements are equivalent.
a) The relation is satisfied for all

.
b) Equation (29) admits a solution for a given and

.
c) Equation (29) admits a proper solution for a given

and .
Moreover, if and are two solutions to (29), then

.
2) The following statements are equivalent.

a) The relation is satisfied for all
and .

b) Equation (29) admits a strictly proper solution for a
given and .

Proof: 1a 1b: Let and
. It follows

from [37, Th. 4.1] that (29) admits a solution if and only if

(30)

admits a solution for all sufficiently large real numbers . Since
for all , for all real

numbers . Therefore, it would suffice to prove that

(31)

for all sufficiently large real numbers . To see this, let be a
positive real number greater than all real eigenvalues of . Also
let . Due to passivity, is positive semidefinite.
This means that . By using Lemma A.1
v) and iv), we get . This means . From
Lemma A.1 v) and iii), we already have . Then, we
get

(32)

To see the reverse inclusion, let . Thus,
and . From Lemma A.1 i), we know that is positive

semidefinite. This allows us to say that
. By invoking Lemma A.1 iii), iv), and v), we get
. This means that . Therefore,

(33)

Then, (31) follows from (32) and (33).
1b 1c: Let be a solution to (29). Suppose that

where . If
then is proper. Suppose that . Note that (29)

implies that

(34)

(35)
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since these are the coefficients of and of the right hand
side. By left-multiplying the latter by and using Lemma A.1
ii) and iv), one gets

(36)

This means that is also a solution of (29).
Clearly, one can find a proper solution by employing the above
argument repeatedly.

1c 1a: Let be a proper solution to (29). Note that
lies in .

the rest of 1: It follows from (29) that

(37)

From Proposition IV.3.4 and Lemma A.1.i), we get that

(38)

for all sufficiently large positive real numbers . Since is
rational, we can further conclude that

(39)

2a 2b: From the first part of the theorem, we know that (29)
admits a proper solution, say . Let
where . From (29), we get

(40)

(41)

By left-multiplying the latter by , using Lemma A.1 ii) and
iv), and the fact that , one gets

(42)

Consequently, is a strictly proper solution to
(29).

2b 2a: The relation readily follows from
the first part of the theorem. Let be a strictly proper solution
with where . It
follows from (29) that

(43)

Hence, .

A. Proof of Theorem V.1

1) Necessity readily follows from (4c). For sufficiency, let
be such that . Take ,

, , , , and
. Since is passive with some positive

storage function, so is with the same storage
function. By applying Theorem A.2, we get the desired
solution for the initial state and the input .

2) Similar to the previous case, necessity immediately follows
from (4c) and sufficiency can be proven by applying the
very same argument.

B. Proof of Theorem VI.1

1) Let be a matrix of appropriate dimensions such that
. Then, the constrained minimization

problem (15) can be rewritten as

Let be the Lagrangian associated to this problem, i.e.,

By differentiating with respect to the unknown and
the Lagrange multiplier and equating these derivatives to
zero, one gets

(44a)

(44b)

These conditions are known as Karush–Kuhn–Tucker con-
ditions (see, e.g., [38]) and they are known to be necessary
conditions for optimality. When the cost function is convex
and the constraint set closed, they are also known to be suf-
ficient conditions for optimality (see, e.g., [38]). Note that
the cost function of (15) is (even strictly) convex as is
positive definite and the constraint set is closed as it is given
by linear equations. Hence, we can conclude that the above
Karush–Kuhn–Tucker conditions are necessary and suffi-
cient for being a solution of (15). By solving from
the first condition, one obtains

(45)

It follows from elementary linear algebra that
. This means that

this linear equation has a solution if and only if
. To see that this condition holds,

note that

since is admissible. As by definition, one gets

Hence (45) has always a solution. To conclude the proof,
it remains to show the uniqueness of this solution. Let
and be two solutions of the Karush–Kuhn–Tucker con-
ditions. It follows from (45) that

Since is positive definite, is pos-
itive semidefinite and hence

. Therefore, one gets

from the first of the Karush–Kuhn–Tucker conditions.
Since is positive definite, this yields .
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2) The expression (16) readily follows from (44a) and (45). To
prove that (17) holds, observer first that (17b) immediately
follows. For (17a), note that

due to (44a). Since and is positive
semidefinite [Lemma A.1 i)], one gets

. Hence, one has

It follows from Lemma A.1 ii) that
and hence

3) Let and are two positive definite solutions of the
LMIs (10). Also let and be the corresponding
solutions of (15). It follows from (17)

Hence, we get

Let be any positive definite solution to the LMIs (10).
The former relation, together with Lemma A.1 iii), results
in

(46)

whereas the latter yields

(47)

where
. Since is positive semidefinite due to passivity, we

have where denotes the orthog-
onal subspace. Then, basic linear algebra implies that

(48)

Thus, (46) and (47) imply that

(49)

As is positive definite, we finally get

(50)

C. Proof of Theorem VI.3

1) Note that (18) admits a solution if and only if (18c) admits
a solution. Then, the claim follows from Theorem A.2 by
choosing , , , , , and as in the proof of Theorem
V.1.

2) Note that (19b) readily follows from Theorem A.2.1. The
relations (19a) and (19c) follow from (18a), (18d), (19b),
and Lemma A.1 v).

D. Proof of Theorem VI.5

We know from Theorem VI.3 that (18) admits a solution
where the pair is proper and

is strictly proper. Let have the expansion

(51)

From (18a) and (18c), we get

(52a)

(52b)

(52c)

Equivalently

(53a)

(53b)

Consequently, the claim follows from Theorem VI.1.2.

E. Proof of Theorem VI.9

For notational simplicity, we give a proof of the case for
which all switches on the links are closed and on the branches
are open. The general case follows in the same lines.

Since all switches on the links are closed and on the branches
are open, we get

(54a)

(54b)

In view of Theorem VI.1, we need to show that

(55)

(56)

To do so, we first claim that

(57)

To see this, note that

(58)

(59)

Thus, we also get

(60)
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As a result,

(61)

Since the reverse inclusion readily follows from the structure of
, (57) holds.
To establish (55), first note that we get

(62)

from the second and fourth row blocks of (27b), the first and the
fourth row blocks of (27e), and (57). Then, we have

(63)
Since due to the first row block of (27b) and

due to the second row block of (27c), we get

(64)

In view of (62), this implies (55).
To establish (56), note first that

(65)

due to the semidefiniteness of and (57). Since

(66)

due to the structure of , it is enough to show that the last sum-
mand on the left-hand side lies in . This, however, follows
from (54) and the last row blocks of (27c) and (27f).
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