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Abstract. Estimation of camera pose from an image of n points or lines
with known correspondence is a thoroughly studied problem in computer
vision. Most solutions are iterative and depend on nonlinear optimization
of some geometric constraint, either on the world coordinates or on the
projections to the image plane. For real-time applications we are inter-
ested in linear or closed-form solutions free of initialization. We present
a general framework which allows for a novel set of linear solutions to
the pose estimation problem for both n points and n lines. We present
a number of simulations which compare our results to two other recent
linear algorithm as well as to iterative approaches. We conclude with
tests on real imagery in an augmented reality setup. We also present an
analysis of the sensitivity of our algorithms to image noise.

1 Introduction

Pose estimation appears repeatedly in computer vision in many contexts, from
visual servoing over 3D input devices to head pose computation. Our primary
interest is in real-time applications for which only a small number of world
objects (lines or points) is available to determine pose. Augmented reality [3], in
which synthetic objects are inserted into a real scene, is a prime candidate since
a potentially restricted workspace demands robust and fast pose estimation from
few targets. The motion of the camera is usually unpredictable in such scenarios,
so we also require algorithms which are non-iterative and require no initialization.

In this paper, we propose a novel set of algorithms for pose estimation from
n points or n lines. The solutions are developed from a general procedure for
linearizing quadratic systems of a specific type. If a unique solution for the pose
problem exists, then our algorithms are guaranteed to return it. They fail in
those cases where there are multiple discrete solutions. Hence, we can guarantee
a solution for n ≥ 4, provided the world objects do not lie in a critical configu-
ration [21,25]. The only similar non-iterative methods for an arbitrary number
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of points are those of Quan and Lan [23] and Fiore [7]. We are aware of no com-
peting method for lines, but show that our results are qualitatively acceptable
in comparison to an iterative algorithm of Kumar and Hanson [16].

1.1 Related Work

Our goal has been to develop fast pose estimation algorithms which produce
stable results for a small number of point or line correspondences. In the point
case, a similar approach to ours is taken by Quan and Lan [23]. They derive
a set of eighth degree polynomial constraints in even powers on the depth of
each reference point by taking sets of three inherently quadratic constraints on
three variables and eliminating two using Sylvester resultants. They apply this
method to each point in turn. Our algorithm, like theirs, is based on depth
recovery, but our approach avoids the degree increase, couples all n points in a
single system of equations and solves for all n simultaneously. Recently, Fiore
[7] has produced an algorithm for points which introduces two scale parameters
in the world to camera transformation and solves for both to obtain the camera
coordinates of points. Unlike our algorithm and that of Quan and Lan, Fiore’s
approach requires at least 6 points unless they are coplanar. We show in Sect.
4.1 that our algorithm outperforms both of the other linear algorithms.

There are many closed form solutions to the 3 point problem, such as [5,
10], which return solutions with well understood multiplicities [15,22]. Fischler
and Bolles [8] extended their solution to 4 points by taking subsets and using
consistency checks to eliminate the multiplicity for most point configurations.
Horaud et al. [11] developed a closed form solution on 4 points which avoids this
reduction to a 3 point solution. These closed form methods can be applied to
more points by taking subsets and finding common solutions to several polyno-
mial systems, but the results are susceptible to noise and the solutions ignore
much of the redundancy in the data.

There exist many iterative solutions based on minimizing the error in some
nonlinear geometric constraints. We mention just a few. Nonlinear optimization
problems of this sort are normally solved with some variation on gradient descent
or Gauss-Newton methods. Typical of these approaches is the work of Lowe [19]
and of Haralick [6]. There are also approaches which more carefully incorporate
the geometry of the problem into the update step. For example, Kumar and
Hanson [16] have developed an algorithm based on constraints on image lines
using an update step adapted from Horn’s [13] solution of the relative orientation
problem. We compare this algorithm to our line algorithm in Sect. 4.1. There are
several such variations using image line data. Liu et al. [18] use a combination of
line and point data. Lu, Hager and Mjolsness [20] combine a constraint on the
world points, effectively incorporating depth, with an optimal update step in the
iteration. We use this as a reference in Sect. 4 to compare the three linear point
algorithms mentioned. Dementhon and Davis [4] initialize their iterative scheme
by relaxing the camera model to scaled orthographic. These iterative approaches
typically suffer from slow convergence for bad initialization, convergence to lo-
cal minima and the requirement of a large number of points for stability. Our
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algorithms require no initialization, can be used for a small number of points or
lines, and guarantees a unique solution when one exists.

Another approach is to recover the world to image plane projection matrix
and extract pose information. This technique is examined by [1,9] among many
others. This is also the basis for the calibration technique of Lenz and Tsai [17].
This projective approach is inherently less stable for pose estimation because of
the simultaneous solution for the calibration parameters. It also requires a large
data set for accuracy. We compare this approach to ours in Sect. 4.1.

2 Pose Estimation Algorithm

Throughout this paper we assume a calibrated camera and a perspective projec-
tion model. If a point has coordinates (x, y, z)T in the coordinate frame of the
camera, its projections onto the image plane is (x/z, y/z, 1)T .

2.1 Mathematical Framework

We begin with a general mathematical treatment from which we will derive both
our point and line algorithms. Consider a system of m quadratic equations in n
variables xi of the form

bi =
n∑

j=1

n∑

k=j

aijkxixj (i = 1 . . .m) (1)

where the right hand side of (1) is homogeneous in {xi}. We present a lineariza-
tion technique to solve this system in the special case where the solutions is a
single point in R

n. Let xij = xixj and ρ = 1. We rewrite (1) as

n∑

j=1

n∑

k=j

aijkxij − biρ = 0 (i = 1 . . .m) (2)

Since xij = xji, this is a homogeneous linear system in the n(n+1)
2 + 1 variables

{ρ, xij | 1 ≤ i ≤ j ≤ n}. Such a system can be solved by singular value
decomposition. We first write the system as

Mx̄ = 0 (3)

where x̄ = (x11 x12 . . . xnn ρ)T and M is the matrix of coefficients of the system
(2). Then x̄ ∈ Ker(M). If M = UΣVT is the SVD, then Ker(M) = span({vi})
where {vi} are the columns of V corresponding to the zero singular values in
Σ. If Ker(M) is one dimensional, then x̄ is recovered up to scale. However, the
condition ρ = 1 determines scale and returns the correct solution to (2), from
which we recover the solution to (1) up to a uniform sign error. In practice, the
physical interpretation of the problem will determine sign.
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If the dimension of Ker(M) is N > 1, we attempt to isolate the solution to (1)
by reimposing the quadratic nature of the original problem. Since x̄ ∈ Ker(M),
there exist real numbers {λi} such that

x̄ =
N∑

i=1

λivi (4)

For any integers {i, j, k, l} and any permutation {i′, j′, k′, l′}, observe that
xijxkl = xi′j′xk′l′ . Substituting individual rows from the right hand side of
(4) into relations of this sort results, after some algebra, in constraints on the λi

of the form
N∑

a=1

λaa(vij
a v

kl
a − vi′j′

a vk′l′
a ) +

N∑

a=1

N∑

b=a+1

2λab(vij
a v

kl
b − vi′j′

a vk′l′
b ) = 0 (5)

where we use the notation λab = λaλb for integers a and b, and vij
a refers to

the row of va corresponding to the variable xij in x̄. We again have the ob-
vious relation λab = λba. It follows that equations of the form (5) are linear
and homogeneous in the N(N+1)

2 variables {λab}. These can be written in the
form Kλ̄ = 0 where K is the matrix of coefficients from (5) and λ̄ is the vec-
tor formed by the terms {λab}. We again solve this system by SVD, where
K = ŨΣ̃ṼT. Observe that Ker(K) must be one dimensional, since two inde-
pendent solutions would allow us to derive two solutions to (1), contradicting
our original assumption. Having recovered λ̄ up to scale, we recover the correct
scale by imposing the condition implied by the last row of (4), specifically that
λ1vL

1 +λ2vL
2 + ....+λNvL

N = ρ = 1 where vL
i is the last row of vi. Having solved

for λ̄, hence x̄, we obtain xi as ±√
xii, where the choice of sign for x1 determines

the sign of xi by sgn(xi) = sgn(x1)sgn(x1i).
Before presenting our pose estimation algorithms, we briefly present a more

formal treatment of our approach. Let HQ(Rn) and HL(Rn) be the set of
quadratic and linear equations on R

n, respectively, which are homogeneous in
the variables. Our approach was to linearize the quadratic system in (1) to
the linear one in (2) by applying the map f : HQ(Rn) → HL(Rñ) defined by
f(titj) = tij , f(1) = ρ, where ñ = n(n+1)

2 +1. This increases the dimension of the
solution space to N ≥ 1 by artificially disambiguating related quadratic terms.
Let V0 = Ker(M) as above. We think of V0 as an N dimensional affine variety
in R

ñ. V0 assumes an especially simple form since it is a vector subspace of R
ñ.

To recover the original solution to (1), we impose additional constraints of the
form xijxkl = xi′j′xk′l′ for {i′, j′, k′, l′} a permutation of {i, j, k, l}. Let e1 be one
such equation, and let Var(e1) be the algebraic variety in R

ñ defined by it. Then
V1 = V0∩Var(e1) is a subvariety of V0 defined by the ei and the system (2). Since
Var(e1) is not in any linear subspace of Rñ it follows that V1 is a proper sub-
variety of V0. Given a sequence of such constraints {ei} with ei independent of
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{ej | j < i}, we obtain a nested sequence of varieties V0 ⊃ V1 ⊃ V2 . . . of decreas-
ing dimension. Since we have more quadratic constraints than the dimension of
V0, we eventually arrive at the desired solution. Observe that this procedure is
entirely generic and does not depend on the coefficients of the original system
(1). It follows that an abstract description of the subspace S = Var({ei}) ⊂ R

ñ,
which we do not yet have, would allow us to eliminate the second, often more
computationally intensive, SVD needed to find Ker(K) in our procedure. Note
that we are aware of the problems overdimensioning can cause when seeking
solutions in a given parameter space in the presence of noise, for example in
determining the Essential matrix. However, these effects are determined by the
geometry of the underlying space. In our case, the genericity of S and the linear
nature of V0 contributes to the robustness which we see in Sect. 4.

2.2 Point Algorithm

We assume that the coordinates of n points are known in some global frame,
and that for every reference point in the world frame, we have a correspondence
to a point on the image plane. Our approach is to recover the depths of points
by using the geometric rigidity of the target in the form of the n(n−1)

2 distances
between n points.

Let wi and wj be two points with projections pi and pj . We indicate by
dij the distance between wi and wj . Let ti and tj be positive real numbers so
that |tipi| is the distance of the point wi from the optical center of the camera,
similarly for tj . It follows that dij = |tipi − tjpj |. This is our basic geometric
constraint (see Fig. 1).

pi
pj

dij tipitjpj

Image Plane

Camera Optical Center

Fig. 1. The basic geometric constraint used in n point algorithm relates the distance
between points in the world dij and the scale factors ti and tj associated with the
projections pi and pj .

Let bij = d2ij . Then we have

bij = (tipi − tjpj)T (tipi − tjpj)

= t2ip
T
i pi + t2jp

T
j pj − 2titjpT

i pj (6)

Equation (6) is exactly of the form (1) and we apply the solution described to
recover the depth scalings ti. In this case, M in (3) has size n(n−1)

2 ×(n(n+1)
2 +1)
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and a simple argument shows that it can be written as M = (M′|M′′), where
M′ is n(n−1)

2 × n(n−1)
2 diagonal. It follows that Ker(M) is n(n+1)

2 + 1− n(n−1)
2 =

n+ 1 dimensional. Hence, we must compute K and find its kernel. K will have
(n+1)(n+2)

2 rows and there are O(n3) equations of the form (5). We use only the
n2(n−1)

2 constraints derived from expressions of the form tiitjk = tijtik.
The choice of sign for {ti} is clear, since these are all positive depth scal-

ings. Given these scale factors, we have the coordinates of world points in the
frame of the camera. Now the recovery of camera rotation and translation sim-
ply amounts to solving the absolute orientation problem. We translate the two
clouds of points, in the camera and world frames, to their respective centroids
and recover the optimal rotation using unit quaternions [12] or SVD of the cross-
covariance matrix [14]. Given the rotation, translation between the two centroids
is immediately recovered.

2.3 Line Algorithm

Unlike the point case, direct recovery of line parameters does not appear feasi-
ble, since the number of linearized variables (derived for example from Plücker
coordinates) grows too fast in comparison to the number of available constraints.
Instead, we show how to directly recover the rotation and translation.

Let {li = (vi,pi)} be a collection of 3D lines such that in the world coordinate
frame {vi} are normalized vectors giving the directions of the lines and {pi} are
points on the lines. It follows that in parametric form, points on li are given
by tivi + pi for the real parameter ti. If (R,T) ∈ SE(3) = SO(3) × R

3 is the
transformation relating the world and camera frames, then the corresponding
representations of the lines in the camera frame are {li = (wi,qi)} where wi =
Rvi and qi = Rpi +T. Let Pi be the plane defined by the optical center of the
camera and the line li.

Let the corresponding lines in the image plane of the camera be {si =
(ᾱi, ci)}, where ᾱi and ci are of the forms (αi,x, αi,y, 0)T and (ci,x, ci,y, 1)T

respectively, with ᾱi normalized. Consider the point di on si which is closest
to the origin of the image plane. Then di = ci − (cT

i ᾱi)ᾱi. Let γ̄i = di

||di|| .
It follows that γ̄T

i ᾱi = 0 so that {ᾱi, γ̄i} is an orthonormal frame span-
ning the plane Pi (see Fig. 2). Since wi lies entirely in the plane Pi, we can
write it as wi = (wT

i ᾱi)ᾱi + (wT
i γ̄i)γ̄i. Substituting wi = Rvi we obtain

Rvi = (RvT
i ᾱi)ᾱi + (RvT

i γ̄i)γ̄i. From this we develop a set of quadratic equa-
tions in the entries of R to to obtain a system of the form (1) and directly recover
the rotation matrix. Let Ki,j = vT

i vj . We have the equation

Ki,j = (7)

[(RvT
i ᾱi)ᾱi + (RvT

i γ̄i)γ̄i]T [(RvT
j ᾱj)ᾱj + (RvT

j γ̄j)γ̄j ]

For i �= j we obtain three additional equations from

Rvi ×Rvj = (8)

[(RvT
i ᾱi)ᾱi + (RvT

i γ̄i)γ̄i]× [(RvT
j ᾱj)ᾱj + (RvT

j γ̄j)γ̄j ]
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wiqi

cidi
O

ᾱi

ᾱi

γ̄i

Plane, Pi
3D line, li

projected line, si Optical Axis

Image Plane

Camera Optical Center

Fig. 2. Geometric constraint used in n line algorithm. The plane Pi determined by the
line li and the optical center is spanned by {ᾱi, γ̄i}. Thus, wi = Rivi can be written
as a linear combination of these two vectors.

Observe that (7) and (8) do not enforce the requirement that R ∈ SO(3). We
accomplish this using the 12 quadratic constraints derived from

RTR = RRT = I (9)

Note that in general, there are only 6 independent constraints in (9), but by
employing our linearization procedure, we introduce more relations on the 45
linearized terms {rij = rirj}, where {ri} are the 9 entries in R. Using (7), (8)
and (9), we obtain n(2n− 1) + 12 equations of the form (1) in the 46 variables
{ρ, rij}. For n ≥ 5, we obtain a solution for R directly from the SVD of the
corresponding M from (3). For n = 4, the additional step involving the SVD
of K is required. Observe that the sign convention is also determined. Since
R ∈ SO(3), we need only choose the global sign so that det(R) = 1.

Having recovered the rotation, we describe how to recover the translation.
Given the point qi on the line li in camera coordinates, we project to a point
ki = (qi,x/qi,z, qi,y/qi,z, 1) on the image plane. Since this point is on the line si,
we have, using the notation of this section,

qi,z(kT
i γ̄i)γ̄i = qi,zdi

Substituting qi = Rpi +T for each line, we obtain two linear equations in the
entries of T. A solution can be obtained by directly applying SVD.

3 Sensitivity Analysis

We analyze the sensitivity of our algorithms and show that the error in our
solutions is bounded by the error in the image data. For basic definitions and
information on matrix perturbation theory, see [24]. We consider first the simpler
case of five or more lines and then apply a more elaborate analysis to the point
algorithm. We omit the four line case in this treatment. Let | · |F indicate the
Frobenius norm and | · | the 2-norm. Suppose that M in (3) is a perturbation of
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the real system M̃ due to noise, with M̃ = M +Me. Since M is derived from
polynomials in image measurements, a bound on image noise implies that we
can bound |Me|. Suppose that the real physical solution to the pose problem is
given by some x̃ = x̄ + x̄e, where x̄ solves the perturbed system (i.e. Mx̄ = 0)
with M̃x̃ = 0. It is our goal to bound |x̄e|.

Expanding out the expression for the unperturbed system results in Mx̄ +
Mx̄e = −Me(x̄+ x̄e). Using Mx̄ = 0 and multiplying by M†, the pseudoinverse
of M, we obtain M†Mx̄e = −M†Me(x̄+ x̄e).

For the case of five or more lines, recall that M has full column rank. It
follows that M†Mx̄e = x̄e. Now, applying simple properties of the norm to
both sides, we obtain |x̄e| ≤ |M†|F |Me|F (|x̄| + |x̄e|). We can either ignore the
quadratic term |Me|F |x̄e|, or use the highly conservative estimate that |x̄e| ≤ |x̄|
for any reasonable situation. Thus, for 1 < λ ≤ 2

|x̄e| ≤ λ|M†|F |Me|F |x̄|
The point case is complicated by the fact that M is rank deficient. We write
x̄e = x̄n + x̄p, where x̄p ∈ K = Ker(M) and x̄n is orthogonal to K. Then
applying the procedure above, we find that for points,

|x̄n| ≤ λ|M†|F |Me|F |x̄| (10)

but we have no constraint on x̄p. In order to bound this component of the error,
we must use the fact that both x̄ and x̃ must lie on the variety above if they
are valid solutions, whether perturbed or not. We write the ij component of x̄p

as x̂ij and of x̄n as x̌ij , so that the ij component of x̄e is x̂ij + x̌ij . Using the
notation for inner products from section 2.2, we state that

−2pij x̂ij + piix̂ii + pjj x̂jj = 0 (11)

This is a consequence of the simple form M takes in the point case. See [2]
for proof. Consider now the relation xiixjj = x2ij which must be satisfied by x̃.
Substituting appropriate terms results in

(xii + x̂ii + x̌ii)(xjj + x̂jj + x̌jj) = (xij + x̂ij + x̌ij)2 (12)

If we now intersect this quadric in x̂ii, x̂jj , x̂ij with the plane described by (11),
we obtain a conic in x̂ii, x̂jj . Using the same procedure we can find two other
conics in x̂ii, x̂kk and x̂jj , x̂kk and intersect them all to obtain a discrete set of
solutions for x̂ii, x̂jj , x̂kk, hence x̂ij , x̂ik, x̂jk using (11). These depend only on
x̄, {pij} and the bounded x̄n. An alternative approach is to ignore second order
terms in error in the quadric (12) to obtain

xiix̂jj + xjjx̂ii − 2xij x̂ij ≈ 2xij x̌ij − (xiix̌jj + xjj x̌ii) (13)

Now, the intersection of the plane defined by (13) with (11) results in a line in
x̂ii, x̂jj . We find two other lines (as with the conics above), and solve. In this
case, we can write down an explicit solution. Using ii, jj, kk, we have
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x̂ii =
fijajkbik + fikbijbjk − fjkbijbik

aijajkbik + aikbijbjk
(14)

aij = xjj − xij
pii

pij

bij = xii − xij
pjj

pij

fij = 2xij x̌ij − (xiix̌jj + xjj x̌ii)

Since these relations must hold, for all integers i, j, k, we select the smallest x̂ii

in absolute value.
Thus, we see by inspections of (14) that up to first approximation, |x̄p| is of

the same magnitude as |x̄n|, which is already bounded by (10).

4 Results

We conduct a number of experiments, both simulated and real, to test our al-
gorithms (hereafter referred to as NPL and NLL for n point linear and n line
linear, respectively) under image noise. We compare to the following algorithms.
For points:

PM Direct recovery and decomposition of the full projection matrix from 6 or more
points by SVD methods. We use a triangle (�) to indicate this algorithm on
all graphs.

F The n point linear algorithm of Fiore [7]. We signify this by a square(�).
QL The n point linear algorithm of Quan and Lan [23]. We signify this by a diamond

(♦).
LHM The iterative algorithm of Lu, Hager and Mjolsness [20] initialized at ground

truth. We signify this by a circle (◦) and include it primarily as a reference
to compare the absolute performance of the linear algorithms. We expect it to
achieve the best performance.

For lines:

KH The iterative algorithm of Kumar and Hanson referred to as R and T in [16].
We initialize KH at the ground truth translation and rotation (KHRT signified
by �) and at ground truth translation and identity rotation (KHT signified by
�).

4.1 Simulation

All simulations are performed in MATLAB. We assume calibrated virtual cam-
eras with effective focal length (diagonal terms in calibration matrix) 1500 in the
point case and 600 in the line case. We report errors in terms or relative rotation
error and relative translation error. Each pose (R,T) is written as (q̄,T), where
q̄ is a unit quaternion. For recovered values (q̄r,Tr), the relative translation error
is computed as 2 |T−Tr|

|T |+|Tr| and the relative rotation error as the absolute error in
the unit quaternion, |q̄ − q̄r|. Noise levels in image measurements are reported
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in terms of the standard deviation of a zero mean Gaussian. For the point case,
when we add Gaussian noise with standard deviation σ to image coordinates, we
do so independently in the x and y directions. We also only admit noise between
−3σ and 3σ. In the line case, we again report pixel noise and propagate to noise
in the line parameters following [26]. Unless indicated, all plots represent mean
values over 400 trials.

Point Simulation 1 (Dependence on noise level): We vary noise from σ = 0.5
to 4. For each noise level, we generate 400 random poses. For each pose, we
generate 6 points at random with distances between 0 and 200 from the camera.
We restrict translations to |T | < 100. In Fig. 3 observe that NPL outperforms
PM, F and QL for all noise levels.
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Fig. 3. (Point Simulation 1) Rotation and Translation errors for 6 points vs. noise
level. We plot results for the five algorithms, NPL, PM, F, QL, LHM. Note that
NPL outperforms all but the iterative LHM with ground truth initialization.
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Fig. 4. (Point Simulation 2) Rotation and Translation errors vs. number of points
used for pose estimation with 1.5 × 1.5 pixel Gaussian noise. We plot results for the
five algorithms, NPL, PM, F, QL, LHM.We see that NPL outperforms all but the
iterative LHM with ground truth initialization for all numbers of points considered.
The difference is largest for a small number of points.
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Point Simulation 2 (Dependence on number of points): We demonstrate that all
5 algorithms perform better as the number of points used for pose estimation
is increased. Points and poses are generated exactly as in Point Simulation
1, but the number of points is varied from 5 to 11. We add 1.5 × 1.5 pixel
Gaussian noise to all images. Note in Fig 4 that NPL outperforms the other
linear algorithms but that the performance difference is greatest for fewer points,
which is our primary concern as mentioned in the introduction. Note that we do
not plot results for PM or F for 5 points, since these algorithms require at least
6 points.

Line Simulation 1 (Dependence on noise level): We vary pixel noise from σ = 0.5
to 5 and propagate to noise in line parameters following [26]. For each noise level,
we generate 400 poses and 6 line segments for each pose. World line segments
are contained in a 20 × 20 × 20 box in front of the camera and translations are
restricted to |T | < 10. We plot relative rotation and translation errors for NLL
and KH (see Fig. 5). As expected, the iterative algorithm performs better for
good initialization (ground truth in the case of KHRT). However, we cannot
predict convergence time. With poor initialization, even at ground truth transla-
tion and R = I for KHT, our linear algorithm shows better mean performance.
This is a result of convergence to local minima in some trials. We immediately
see the advantage of having no initialization requirement for NLL.
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Fig. 5. (Line Simulation 1) Rotation and Translation errors vs. noise level for NLL
and KH. We initialize KH at ground truth R and T (KHRT) to evaluate absolute
performance and at ground truth T and R = I (KHT) to demonstrate the advantage
of requiring no initialization in NLL.

Line Simulation 2 (Dependence on number of lines): We generate poses and
points as in Line Simulation 1 but for the numbers of lines varying from 4 to
11 and with fixed noise of 1.5×1.5 pixels. We see in Fig. 6 that the performance
of both algorithms improves with increasing number of lines. Note also that KH
is less likely to converge to local minima for larger numbers of lines. The absolute
performance of NLL is again comparable to KH.
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Fig. 6. (Line Simulation 2) Rotation and Translation errors vs. number of points for
NLL and KH. Noise is fixed at 1.5× 1.5 pixels. We initialize KH at ground truth R
and T (KHRT) to evaluate absolute performance and at ground truth T and R = I
(KHT) to demonstrate the advantage of requiring no initialization in NLL.

4.2 Real Experiments

All images were taken with a Sony XC-999 camera and Matrox Meteor II frame
grabber. The camera was calibrated using Lenz and Tsai’s algorithm [17]. All
image processing was done offline using MATLAB. Note that the more compu-
tationally intensive point algorithm NPL can be run in real-time (> 30 Hz) on
a 600 MHz PIII using the implementation of SVD from numerical recipes in C
for up to 9 points without any attempt to optimize the algorithm.
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Fig. 7. (Point Experiment 1) Reprojection of a virtual box and three edges of a
cube onto real-world reference objects. We estimate camera pose using the 8 circled
points and NPL.

Point Experiment 1: We demonstrate that virtual objects are correctly registered
into a real scene using NPL for pose estimation. The 8 marked points in Fig.
7 are marked by hand with a MATLAB. We take the vertex coordinates of a
virtual box and the corners of the metal edge in the world frame, transform
to the camera frame using the three recovered poses, and reproject. The metal
edge, which we augment to a full cube, is 7 inches on each side, and the camera
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distance varies from 30 to 40 inches from the nearest corner of the cube. Notice
that the virtual boxes are properly placed and aligned with the world reference
objects for all three poses.

Point Experiment 2: We repeat Point Experiment 1 on a different scale.
In Fig. 8, the box is approximately 18 inches on each side, and the camera is
approximately 8 feet from the nearest corner of the box. We estimate pose from
the 8 marked points using NPL. We then take the coordinates of two virtual
boxes of identical size, stacked on top of and next to the real one, transform to
camera coordinates, and reproject into the image. Note that the virtual boxes
are very closely aligned with the real one and appear to be the correct size.

Point Experiment 3: We test NPL on coplanar points. Nine points on a planar
calibration grid have a uniform spacing of 8 inches. An image is taken from ap-
proximately 11 feet away. We recover the coordinates of the 9 points using NPL
and compute a best fit plane from the recovered points. The mean distance from
the recovered points to the best fit plane is 0.15 in. with a standard deviation of
0.07 in. We see that our algorithm does not degenerate for coplanar points.

Line Experiment 1: We demonstrate the correct registration of virtual objects
into a real scene using NLL. In Fig. 9(a), we indicate the 7 line segments used
to estimate camera pose. In Fig. 9(b), we overlay a texture on the faces of the
pictured box by transforming the world coordinates of the box vertices to camera
coordinates and warping the texture onto the resulting quadrangles via homo-
graphies. We also place a virtual cube on the original box. The cube is aligned
with the real box in world coordinates. Observe that after transformation to
the camera frame and reprojection, it remains aligned. Finally, we highlight the
edges of the table by transforming its world coordinates to camera coordinates
and reprojecting the appropriate line segments.co
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Fig. 8. (Point Experiment 2) Reprojection of 2 virtual boxes of dimensions identical
to a real box. We estimate camera pose using the 8 circled points and NPL.
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Fig. 9. (Line Experiment 1) (a) Line segments used to estimate camera pose. (b)
Texture is added to the faces of the real box. A virtual cube is placed on the box. The
edges of the table are highlighted.

5 Conclusion

Our goal was to develop fast, accurate pose estimation algorithms for a limited
numbers of points or lines. We have presented a general mathematical procedure
from which we derive a pair of linear algorithms which guarantee the correct so-
lution in the noiseless case, provided it is unique. Our point algorithm shows
performance superior to competing linear algorithms and comparable to a re-
cent iterative algorithm. For our line algorithm, there is no competing linear
approach. We show results comparable to a robust iterative algorithm when it
is correctly initialized and avoid the problems associated with local minima for
such algorithms.
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