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tion algorithm, similar to the one used in the isolated digit 
recognition work described by Sambur and Rabiner, is used 
to classify the individual digits in the utterance. Experiments 
with the system using ten speakers (five male, five female) 
in a fairly low noise environment yielded a 91% correct digit 
recognition score. Similar experiments using ten new speakers 
(five male, five female) in a noisy computer room yielded an 
87% correct digit recognition score. 
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ZZ6. Linear predictive residual analysis compared to band- 
pass filtering for automatic speech recognition. G.M. White 
(Xerox Palo Alto Research Center, 3180 Porter Drive, Palo 
Alto, CA 94304) 

It has been recently proposed by Itakura [F. Itakura, 
"Minimum Predictive Residual Principal Applied to Speech 
Recognition," IEEE Symp. Speech Recogo CMU (1974)] that 
the linear predictive residual can be used as a measure of 
speech waveform similarity. To measure the similarity 
between two waveforms, Itakura proposed to construct a lin- 
ear predictive filter for one waveform and measure the resi- 
dual (predictive error) for the other waveform. Itatoara used 
this technique to achieve some remarkably good speech recog- 
nition scores. We constructed a speech recognition system 
using both bandpass filtering and linear prediction in order to 
compare the two techniques. The classifier used dynamic pro- 
gramming. A 36-word vocabulary was used consisting of the 
alphabet plus digits spoken five times by the same speaker. 
A single word list was used for training and the other four 
were used for testing. Speech input was through a noise can- 
ceiling microphone. For the digital linear predictive, inverse 
filtering, analysis, speech was low pass filtered at about 5 
kHz and digitized at 10 kHz. For the bandpass filtering experi- 
ment, 21 filter channels each 1/3 octave wide were used cover- 
ing the audio spectrum from about 100 Hz to 10 kHz. The rec- 
ognition scores in both cases were 98% correct showing that 
the linear predictive residual technique is essentially equiva- 
lent to bandpass filtering as a means of measuring speech 
waveform similarity. 
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ZZ7. Partial word boundary detection from stress contours. 
D.C. Sargent (Rt. 4, Box 133 B, Pittsboro, NC 27312) 

A machine algorithm was developed for partial word bound- 
ary detection in continuous speech. Word boundary detection 
was achieved by comparing a computer-extracted stress con- 
tour for the 700 syllable test passage with that contour which 
would have been predicted from rigid adherence to the Alter- 
nating Stress Rule. Since this rule functioned only at the word 
level and below, it was more likely to be violated when cross- 
ing word boundaries within a word. The position of any Alter- 
nating Stress Rule violation in the extracted stress contour 
was therefore marked as a probable word boundary location. 
Utilizing this concept, 44% of the word boundaries in the test 
passages were correctly positioned with a false alarm rate of 
less than 10%. Most of the false alarms were caused by the 
presence of adjacent reduced syllables within the same word. 
Research is presently being conducted to incorporate additional 
regu_larities in the stress patterns of English to further improve 
the •gorithm's performance. 
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ZZ8. Algorithm to detect the beginning and end points of a 
speech utterance. K. Ganesan and W.C. Lin (Department of 
Computing and Information Sciences, Case Western Reserve 
University, Cleveland, OH 44106) 

There is a great need to detect the beginning and end points 
of a speech utterance in applications like speech recognition 
and speaker identification. In this paper, we present a method 
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for beginning and end-point detection which makes use of the 
maximum likelihood principle. The features that are used by 
the algorithm are (1) total per-unit energy, (2) zero-crossing 
rate, and (3) absolute amplitude of the speech samples. Con- 
ditional probability densities are estimated for these three 
features using a database of 60 phonetically balanced words 
and ten phonetically balanced sentences spoken by four male 
speakers with General American accents. A set of optimum 
thresholds are obtained for each feature such that the probabil- 
ity of classification error is minimized. The algorithm was 
tested for both isolated words and sentences over a popula- 
tion of six speakers and an error rate of nearly 0% was 
observed. 
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ZZ9. On-line, adaptive speaker-independent word recogni- 
tion system based on phonetic recognition techniques. W.C. 
Lin and K. Ganesan (Department of Computing and Information 
Sciences, Case Western Reserve University, Cleveland, OH 
44106) 

The research reported in this paper deals with a new method 
of phonemic analysis of speech by statistical pattern recogni- 
tion techniques and its application to the problem of Automatic 
Speech Recognition (ASR). An on-line, adaptive, trainable 
speaker-independent system is implemented using this 
approach. The details of the system follow: first, the beginning 
and end points of the speech utterance are detected. The 
utterance is then sent for automatic segmentation where it is 
segmented into the following classes: (1) voiced, (2) unvoiced, 
(3) transition, and (4) silence. An 11-dimensional feature vec- 
tor consisting of 10 linear predictor coefficients and zero- 
erossing rate is extracted from these regions. For voiced 
and transition region, the feature extraction is done pitch 
synchronously and for unvoieed regions, a constant frame of 
6.4 msee is used. A new phonetic unit called phoneme-pair 
is defined for the transition regions, while the unvoiced and 
voiced regions are represented using the phonemes of the IPA. 
Conditional probability densities for each of the phonemes and 
phoneme-pairs are estimated using non-parametric methods 
as a single polynomial in the 11-dimensional space. The 
classifier makes Bayes' minimum risk decision based on these 
probability densities. The recognition results of the ASR sys- 
tem are Training Set: 98.4%, Test Set: 96.0% (for speakers in 
the training set) and 91.0% (for speakers not in the training 
set). The present vocabulary of the system is 60 words and any 
new word can be added by entering its corresponding phonetic 
transcription. The adaptive and trainable characteristics of 
the system will also be demonstrated. 
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ZZ10. On the similarity of noisy phonetic strings produced 
by different words. James K. Baker (IBM Thomas J. Watson 
Research Center, P.O. Box 218, Yorktown Heights, NY 10598) 

In a speech recognition system with an acoustic processor 
which aitcmpts to automatically estimate a phonetic transcrip- 
tion, it is necessary to know the similarity of the probability 
distributions of phonetic strings when different words are 
spoken and input to the acoustic processor. Let aeA,a•-ala•s 
...a nrepresent an arbitrary phonetic string. Define the simi- 
larity between the words W1 and W•. by 

The number of terms in the sum defining $ grows exponentially 
with the length of the words W 1 and W 2. However, if the nodes 
of the phonological graphs for W 1 and W 2 are properly ordered, 
$ can be calculated inductively by a generalization of the com- 
putations used in modeling a probabilistic function of a Markov 
process. The number of computations is approximately the 
product of the number of ares in W1 times the number of ares 
in W 2. 


