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Abstract - This paper is about the reduction of the computational complexity of a speech codec. A Linear
Predictive Coding procedure is developed to allow its implementation with Number Theoretic Transforms.
The use of Fermat Number Transform can reduce, in a significant way, the cost of Linear Predictive
algorithm implantation on Digital Signal Processor.
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1. INTRODUCTION

An important aspect of modern telecommunications is speech coding, which is defined as the process
of digitally representing an analogical speech signal in an efficient way. Its objective is to represent
the speech signal with the lowest number of bits, while maintening a sufficient level of quality of the
synthesized speech with reasonable computational complexity. Most current speech coders are based on
Linear Predictive Coding (LPC) analysis due to its simplicity and high performance.
It is known that the significant part of coders complexity is due to the calculation of the Linear Prediction
(LP ) parameters. Therefore, in any application of real time speech signal analysis, the computation speed
of LP coefficients must be increased.
To reduce the complexity of LP analysis and design an efficient speech coding in fixed-point arithmetic,
different algorithms are implemented with Number Theoretic Transforms (NTT ), which present the
following advantages compared to Discrete Fourier Transforms (DFT ) [1] :

• They require few or no multiplications.
• They suppress the use of floating point complex numbers.
• All calculations are performed on a finite ring of integers, which is interesting for implantation
on Digital Signal Processor (DSP ).

Hence, the use of NTT will reduce the delay features by minimizing the computational complexity. The
special case of Fermat Number Transforms (FNT ), with arithmetic carried out modulo Fermat numbers,
is particularly appropriate for digital computation. Its application to the calculations of convolution and
correlation can provide real benefits for low DSP implantation cost.
Then, we propose a procedure using FNT to determine the LP parameters, by computing the autocor-
relation coefficients with a fast algorithm [2] and by implementing a simplified procedure based on [3].

The rest of the paper is organized as follows : In section 2, we will introduce the Linear Prediction
Analysis used in many speech coders. In a third part, we will present an algorithm used to determine
LP coefficients. Section 4 presents the concept of Number Theoretic Transform and details the Fermat
Number Transform, which is implemented in LP modeling. In the final part, numerical results for the
new procedure are given and discussed for its implantation in CS −ACELP codec.

2. LINEAR PREDICTION ANALYSIS

Linear Predictive Coding exploits the redundancies of speech signal by modelling the vocal tract as a
linear filter, known as an AutoRegressive (AR) model. Speech coders perform an LPC analysis on each
frame (typical duration 10 − 20ms) of speech to obtain LP coefficients and extract the residual signal,
which is the output of analysis filter.
These LPC parameters are quantized and transmitted to the decoder, in which the residual signal
becomes the excitation signal for the LP synthesis filter (Figure 2.1).
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Fig. 2.1. LP analysis synthesis model

The most popular and efficient techniques for estimating the LP parameters are the autocorrelation or
covariance methods. Both choose the short term filter coefficients {ak} by minimizing the energy E of
residual signal by least square calculation :

E =
P+∞
n=−∞ (sw(n)−

Pp
k=1 aksw(n− k))2 (1)

where p is the order of LPC model and sw denotes a windowed speech segment, which reduces the audible
distortion of reconstructed speech. The autocorrelation method yields the LP coefficients by resolving
the following p linear equations :

r(k) = −Pp
n=1 r (|n− k|) an with 1 6 k 6 p (2)

where r(i) =
PNw

n=i sw (n) sw (n− i) with Nw the length of the analysis window and 0 6 i 6 p. The set
of equations can be represented in the following form :

r0 r1 ... rp−1
r1 r0 ... rp−2
... ... ... ...
rp−1 rp−2 ... r0



a1
a2
...
ap

 = R

a1
a2
...
ap

 = −

r1
r2
...
rp

 (3)

The resulting matrix R is symmetric Toeplitz, which implies that the filter A(z) is minimum phase and
guarantees the stability of synthesis filter.

3. SOLUTION OF TOEPLITZ SYSTEM

The previous (pxp) Toeplitz system of linear equations may be solved by classical methods [4] (Gauss,
Cholesky, ...) in order p3 operations or by fast algorithms [4] [5] (Levinson-Durbin, Schur, Trench, ...) of
reduced computational complexity in order p2 flops.
Kumar [3] has presented a method, of complexity O(p(log2 p)2) computations, using Fourier transform
techniques, based on the inverse Trench algorithm [6]. Thanks to the symmetry of LP system, we propose
to simplify the Kumar algorithm as presented below.

To compute the inverse of the (pxp) Toeplitz matrix R, an (LxL) circulant matrix R (shift to the right)
is constructed, with L = 2p− 1. The first line (or column) is given by R1 = [r0r1...rp−1rp−1rp−2...r1].

R =


R

rp−1 . r1
... . ...
... . ...
r1 . rp−1

rp−1 . r1
... . ...
r1 . rp−1

r0 . rp−2
... . ...
rp−2 . r0


(4)

Then, we proceed in three steps to the desired solution directly from first row R1 by applying DFTs :

First step - The first column Q1 of the inverse matrix R is computed first. R being a cyclic shift matrix,
the correlation of elements of R1 and Q1 is equal to the diagonal of the matrix identity. It is known that
Q1 can be computed as Q1 = DFT

−1 ¡1./DFT ¡R1¢¢ where 1./Sq denotes the term by term inverse of
the sequence Sq.
This calculation requires about 2p (log2 p+ 1) multiplications. However, the symmetry of LP system
implies all values are real. Then, the transforms can be replaced by a p-sample cosinus table and the
vector Q1 will be quickly computed with twice less multiplications.
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Fig. 3.1. Flowchart of HD procedure

Second step - By using the persymmetry of the Toeplitz matrix R, the first column Q1 of R−1 is
determined from column R1. The (LxL) matrices R and Q are partitioned and the inverses of the
submatrix of R are computed in a recursive manner until the order n−1 is reached ¡Qn−122 = Q = R−1

¢
:

Ri−122 =

· Ri11 Ri
12

Ri21 Ri
22

¸
and Qi−122 =

· Qi11 Qi12
Qi21 Qi22

¸
with 1 6 i 6 n− 1 (5)

where Ri
11 and Qi11 are scalar numbers, Ri21 = (Ri

12)
T and Qi21 = (Qi12)T . By formulating R022 = R and

Q022 = Q = R
−1
, the submatrices Qi22 are obtained as :

Qi22 = Qi−122 − 1
Qi
11

¡Qi21Qi12¢ with 1 6 i 6 n− 1 (6)

Vector Q1 is obtained by an efficient HD (Half Divisor) procedure, which is derived from HGCD (Half
Greatest Common Divisor) algorithm [7]. The procedure, described in Figure 3.1, is called with the
following parameters

¡
f = Q1, N = 2p− 1, n = p¢ and return the vector g = Q1.

The matrices Φ are computed with convolutions and correlations, denoted ∗ and ~ respectively, and can
be carried out Fast Fourier Transform (FFT ) techniques. The presented HD algorithm requires about
twice fewer operations than HD algorithm in [3].

Third step - The solution of the system is obtained after three stages :

• One L-dimensional new vector is defined as h = [gp−1gp−2...g1g0g1...gp−1]
• The convolution u = h ∗ y is calculated to obtain a p-elements vector u = [upup+1...uL]
• Compute v = g ~ y and w = g ∗ y and determine two (p− 1)-dimensional vectors :ev = [vpvp+1...vL−1] and ew = [w2p...wL+p−1]
• Calculate v = g ∗ ev and w = g ~ ew and deduce the solution of the system as :

ak = uk−1 +
(vk−2 − wk−1)

g0

with 2 6 k 6 p and the first values of LP coefficients a0 = 1 and a1 = uk−1.
To implement the last step by Fourier transform techniques, 5 L-point Discrete Fourier Transforms,
complex products and inverse DFTs are required.

4. NUMBER THEORETIC TRANSFORM

To develop the whole LPC procedure in fixed-point arithmetic with low computational complexity, we
propose to use Number Theoretic Transforms to compute the autocorrelation coefficients. Afterwards,
we will implement the previous algorithm with FNT , which will replace the DFT in convolution and
correlation computations.
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An NTT [1] presents the same form as a DFT but is defined over finite rings. All arithmetic must be
carried out modulo M , which may be equal to a prime number or to a multiple of primes, since NTT is
defined over Galois Field GF (M). Note that NTT admits the Cyclic Convolution Property (CCP ) [5].

The N th root of the unit in C, ej 2ΠN , is replaced by the N th root of the unit over GF (M) represented
by the term α, which satisfy the equality


αN = 1

®
M
where h.iM denotes the modulo M operation. An

NTT of a discrete time signal x and its inverse are given respectively by :

X(k) =
DPN−1

n=0 x(n)α
nk
E
M

with k = 0, 1, ..., N − 1 (7)

x(n) =
D
N−1

PN−1
k=0 X(k)α

−nk
E
M

with n = 0, 1, ..., N − 1 (8)

where parameters α and N represent the generating term and the length of the tranform respectively.

4.1. Fermat Number Transform

For an efficient implantation on processor (DSP ), the choice of parameters is crucial. The choice of
modulo equal to a Fermat number [1], Ft = 22

t

+ 1 with t ∈ N, implies the values of N and α equal to
a power of 2 (Table I), hence allowing the replacement of multiplications by bit shifts. The values of N
and α associated to a Fermat Number Transform (FNT ) defined over the Galois Field GF (Ft) are given
by N = 2t+1−i and α = 22

i

with i < t.

Table I. Possible combinations of FNT parameters

A Fermat Number Transform needs about N log2N simple operations (bit shifts, additions) but no mul-
tiplication, while a DFT requires in order N log2N multiplications. Note that fast FNT -type computa-
tional structure (FFNT ) similar to the Fast Fourier Transform exists. Available FFT V LSI hardware
structure for real-time implementation of the FFNT may be adopted. About 30% duration reduction to
convolve two sequences using FFNT instead of FFT implementation can be envisaged [1].

4.2. Fast autocorrelation

The classical method for computing correlation uses the Cyclic Convolution Property. The autocorrelation
of a sequence of N samples generates 2N − 1 output numbers and requires the use of Number Theoretic
Transform of length 2N (the sequences are extended by zeros). To avoid adding zeros, a fast computation
of the autocorrelation coefficients is implemented. We described an efficient algorithm [2], modified to
allow more flexible segmentation of the speech signal frame.

To compute the autocorrelation rxx(k) =
PN−1
j=0 x(j)x(k + j) to the p

th order, the presented method,
based on the segmentation of the frame, computes ni-points autocorrelation analysis. Let us determine
the lengths ni, applicable to NTT , of such that N 6

Pimax
i=1 ni − p with 0 < ni < ni+1. We will be able

to choose ni = ni+1 if ni+1 = nimax . Let us form new frames for i = 1, ..., imax :

• xi,2(j) =
½
x(j + di) with di = (i− 1)(ni−1 − p) and 0 6 j < ni − p
0 for ni − p 6 j < ni

•
½
if i 6= imax : xi,1(j) = x(j + di) for 0 6 j < ni
if i = imax : xi,1(j) = xi,2(j) for 0 6 j < ni

The Number Theoretic Transforms are used afterwards. The autocorrelation is written as :

rxx(k) =
Pimax
i=1

Pni−1
j=0 xi,1(j)xi,2(k + j) with 0 6 k 6 p− 1 (9)

For i = 1, ..., imax − 1, we calculate Xi,1 and Xi,2, the respective NTTs of sequences xi,1 and xi,2. Next,
we compute Yi(j) = Xi,1(j)Xi,2(Ni− j) where Xi,2(Ni) = Xi,2(0) with j = 0, ..., Ni− 1. Afterwards, the
inverse transform yi of Yi makes it possible to obtain the pth order autocorrelation coefficients, which are
equal to rxx(k) =

Pimax
i=1 yi (k) with k = 0, ..., p− 1.

IEEE 4th Eurasip Conf. on Video, Image Processing and Multimedia Communications, 2-5 July 2003, Vol 2, pp. 607-612, Zagreb, Croatia

©2003 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material 
for advertising or promotional purposes or for creating new collective works for resale or redistribution to 
servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.



Using the FNT reduces considerably the computational complexity of speech signal frame autocorrelation
function. Compared to method using CCP with NTT , this fast autocorrelation computation requires
twice fewer multiplications.

5. NUMERICAL RESULTS

Numerical simulations have been conducted to evaluate the performances of Linear Prediction Coding
using FNT . This LP analysis has been implemented in the 8kbit/s CS − ACELP Coder, described in
International Telecommunication Union (ITU) recommendation G.729 [8]. The coder operates on speech
frames of 10ms duration, which corresponds to 80 samples at a sampling rate of 8kHz. The input speech
signal is analyzed within each frame to extract the 10th order linear prediction filter coefficients, which
are converted to Line Spectral Frequencies (LSF ) and quantized. Afterwards, the excitation parameters
(Pitch delay, fixed codebook indices and gains) are estimated on a 5ms subframe basis.

Fig. 5.1. Input sentence pronounced by Male Talker

In these tests, we compare the standard analysis using Levinson-Durbin algorithm [4] [8] to the proposed
LPC procedure. Both methods are compared, for the same sentence (Figure 5.1), by computing the
prediction gain, Signal to Noise Ratio (SNR), spectral distortion and euclidean LSF distance measures.

5.1. Implementation of FNT-based LPC Model

Although DSP becomes more and more powerful, implantation of multiplications or divisions remains
more complicated than additions or shifts. Hence, to evaluate the computational cost of our LPC
procedure, we will consider the number of multiplications only.
Linear Predictive Coding computes predictive parameters using autocorrelation coefficients. To calculate
the 11th order autocorrelation coefficients of a 240-sample windowed signal, we propose to use the previous
fast algorithm with one 256-sample segment. The coefficients {ai} will be computed with two 256-point
FNTs. Only 256 multiplications are required to obtain the autocorrelation coefficients.
Afterwards, to determine LP parameters, the simplified Kumar algorithm, which already requires fewer
multiplications than other methods, can still be improved using FNT . A fast similar algorithm is
developed to operate with 32-bit numbers.
For the dimension p = 10, the HD procedure, where the vectors g can be computed with fast matrix
multiplication algorithm using FNT [9], is called 17 times every frames. All arithmetic is carried out
modulo F5 and the FNT replaces DFT in convolution and correlation computations. However, to avoid
the number representation problems met in [10], we accept to round off Q1 in the first step and P in
HD algorithm by calculating 32-bit integer divisions, instead of modulo divisions defined over GF (F5).
These approximations do not introduce significant degradation in the algorithm performance.
Thanks to the use of FNT framework, the proposed algorithm of complexity O (p log2 p) fixed-point
operations gives other advantages and can be computed, through a parallel processing the procedure, in
less than 7p clock cycles.

5.2. LPC Analysis Comparisons

After presenting a procedure allowing low costs of implantation and computation, we are going to verify
that the different implementations of LPC analysis do not induce a significant distortion in the synthesized
signal. To compare the coefficient values and the speech signal degradation, the LP modelling procedures
have been progammed into MatLab software. The SNR and euclidean LSF distance measures reveal a
slight difference between floating-point G.729 method and 32-bit fixed-point proposed procedure.
In Figure 5.2, the solid plot represents the SNR obtained through codec using the new procedure and
the dashed curve is computed with G.729 LPC analysis :

SNR = 10 log10

³ P79
i=0 s

2
iP79

i=0(si−bsi)2
´

(10)

where si and bsi are frame samples of input speech signal and of reconstructed speech respectively.
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Fig. 5.2. SNR between input and output signals of G.729 codec

Fig. 5.3. Euclidean LSF distance measure

The proposed procedure involves minuscule audible distortion in the synthesized signal. We confirm that
both methods give very close results by computing a euclidean LSF distance (Figure 5.3) defined as :

dLSF =
Pp=10
i=1

³
w
(1)
i

³
w
(1)
i − w(2)i

´´2
(11)

where w(1)i and w(2)i are 10th order quantized LSF coefficients obtained using LPC analysis, with
Levinson-Durbin and proposed procedure respectively, and the Vector Quantization described in [8].

6. CONCLUSION

In this paper, an efficient implementation of a Linear Predictive Coding procedure in speech signal
processing has been presented. Fast algorithms have been implemented to determine autocorrelation and
Linear Prediction coefficients. Then, a fixed-point HD procedure has been developed to resolve symetric
Toeplitz system of equations.
To limit the implantation cost of the LP analysis, the use of Number Theoretic Transforms has been
proposed. In particular, it is shown that Fermat Number Transforms reduce the computational complexity
of various algorithms involved in the LPC modelling. The FNT , which may be implemented with fast
hardware structure for real-time application, allows a LP analysis much faster than the existing methods.
Next stages would be to implant the procedure into Digital Signal Processor. A subjective comparison
of speech quality should be made in the form of Mean Opinion Score (MOS).
Although the selected application is the CS − ACELP G.729 coder, the proposed LPC procedure can
be adapted to other types of speech coder or LP system of different order. Other areas where fast
computations are required could also take benefit of a FNT implementation.
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