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Abstract

Let F be any field and let Tn(F) be the n × n upper triangular

matrix space over F. We denote the set of all n × n upper triangular

idempotent matrices over F by Pn(F). A map ϕ on Tn(F) is called a
preserver of idempotence if ϕ(Pn(F)) ⊂ Pn(F); and a strong preserver

of idempotence if ϕ(Pn(F)) = Pn(F). In this paper, we characterize the

bijective linear preservers of idempotence on Tn(F). Further, the strong

linear preservers of idempotence on Tn(F) are characterized.

Mathematics Subject Classifications: 15A04; 15A03
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1 Introduction and main result

In the past six decades, many authors studied linear preserver problems (see[1-

15]) which are concerning with characterizing maps on matrix spaces that pre-

serve some property, set or relation. As pointed out in [5,7], one of techniques

that have been successful in solving linear preserver problems is to reducing

a new problem to a known one, while the latter is often a preserver of idem-

potence. The preservers of idempotence play an important role in studying
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linear preserver problems, and thus there are a lot of results about the linear

preserver of idempotence [1–4, 8, 10–12]. Expressly, the linear preservers of

idempotence on triangular matrices are discussed in [4, 10–12]. These papers

obtained the forms of linear preserver of idempotence on triangular matrices

with a common restriction, that is, they require the field is of characteristic

not 2 (or 2 is a unit of the ring). There is a natural problem, if the field is of

characteristic 2, how determine the forms of linear preserver of idempotence

on triangular matrices? In this paper, we will answer this question. We solve

this problem over any field including the field of characteristic 2. As we will

see, our results contain some new forms.

We now introduce some concepts and fix the notation, which will be used

in the rest of this article. Suppose F is a field and F∗ is its subset consisting of

all nonzero elements, CharF denotes the characteristic of F. For any positive

integer n, let Tn(F) be the linear space of all n × n upper triangular matrices

over F and denote the set of all upper triangular idempotent matrices by

Pn(F), namely, Pn(F) = {A ∈ Tn(F) : A2 = A}. For any matrix B ∈ Tn(F),

BT (respectively, rankB) denotes the transpose (respectively, rank) of B. Let

In be the n × n identity matrix. For any positive integers i and j, let Eij be

the matrix with 1 in the (i, j)-th entry and 0 elsewhere. For a subset S of

Tn(F), let span(S) be the space spanned by S. Symbol ⊕ denotes the usual

direct sum of matrices. For two integers i < j, we let [i, j] = {i, i + 1, · · · , j}.
A Linear map ϕ from Tn(F) to itself is called linear preserver of idempo-

tence if ϕ(Pn(F)) ⊂ Pn(F); and a strong linear preserver of idempotence if

ϕ(Pn(F)) = Pn(F).

We state our main results as follows.

Theorem 1.1 Suppose F is any field and n ≥ 1 is an integer. Then ϕ is a

bijective linear preserver of idempotence on Tn(F) if and only if there is an

invertible matrix T ∈ Tn(F) such that

ϕ(A) = TAT−1 + f(A)In for all A ∈ Tn(F) (1)

or

ϕ(A) = TJAT JT−1 + f(A)In for all A ∈ Tn(F), (2)
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where J =
∑n

k=1 Ek,n−k+1 and f is a linear map from Tn(F) to F satisfying

(a) f(In) = 0; (b) f(Ekk) ∈ {0, 1} for all k ∈ [1, n]; (c) if charF �= 2 then

f = 0; (d) if F �= F2, then f(Eij) = 0 for all i < j.

Theorem 1.2 Suppose F is any field and n ≥ 1 is an integer. Then ϕ is a

strong linear preserver of idempotence on Tn(F) if and only if ϕ is of the forms

(1) or (2).

About Theorem 1.1, we give a remark as follows.

Remark 1.3 Let ϕ be a map on Tn(F) defined by ϕ(A) = a11In for all A =

[aij ] ∈ Tn(F). Then ϕ is a linear preserver of idempotence on Tn(F) but it is

not of the form which given by Theorem 1.1. This show that the assumption of

bijection of ϕ in Theorem 1.1 is essential.

In fact, if we take out the assumption of bijection of ϕ, then the forms of

such maps become very complicated. For example, the following ϕ give a lot of

linear preservers of idempotence on Tn(F) which are different from the forms

(1) or (2).

Example 1.4 Let ϕ be a map on Tn(F) defined by

ϕ(A) = (A1 ⊗ B1) ⊕ · · · ⊕ (At ⊗ Bt) for all A ∈ Tn(F),

where Ai, i = 1, · · · t are some si × si special principal submatrices of A such

that

A =

⎡
⎢⎢⎢⎢⎣

A1 ∗ ∗ ∗
0

. . . ∗ ∗
0 0 At ∗
0 0 0 ∗

⎤
⎥⎥⎥⎥⎦ ,

and Bi, i = 1, · · · t are respectively some given mi × mi idempotent upper tri-

angular matrices satisfying
∑t

i=1 simi = n. Then it is easy to check that ϕ is

a linear preserver of idempotence.
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2 Preliminary results

For the proof our main results we need several lemmas.

Lemma 2.1 Suppose that A, B, A + B ∈ Pn(F). Then AB = BA. We have

in addition AB = 0 if CharF �= 2.

Proof. The proof is simple and we omitted it.

Lemma 2.2 [6] Suppose A ∈ Pn(F), then there is an invertible matrix T ∈
Tn(F) such that

A = Tdiag(ε1, ε2, · · · , εn)T−1,

where ε1, ε2, · · · , εn ∈ {0, 1}.

Lemma 2.3 Suppose F is any field and n ≥ 1 is an integer. Suppose

A1, A2, · · · , Am ∈ Tn(F) are idempotent matrices such that AiAj = AjAi for

all i, j ∈ [1, m]. Then there are an invertible matrix T ∈ Tn(F ) and εij ∈
{0, 1}, i = 1, 2, · · · , n, j = 1, 2, · · · , m such that

Ak = Tdiag(ε1k, ε2k, · · · , εnk)T
−1 for all k ∈ [1, m].

Proof. We prove the result by induction on m.

Due to Lemma 2.2, the conclusion is true for m = 1. Suppose the conclusion

is true for m − 1, that is there exist an invertible matrix T1 ∈ Tn(F ) and

εij ∈ {0, 1}, i = 1, 2, · · · , n, j = 1, 2, · · · , m − 1 such that

Ak = T1diag(ε1k, ε2k, · · · , εnk)T
−1
1 , for all k ∈ [1, m − 1].

We will show that the conclusion is true for m, too. Let Am = T1[aij ]T
−1.
1 So

[aij ] ∈ Pn(F) since Am ∈ Pn(F). By the situation of the nonzero elements in

[aij ], we can find a n × n permutation matrix P such that

Am = T1P (B1 ⊕ B2 ⊕ · · · ⊕ Bt ⊕ 0)P−1T−1
1 , (3)

here Bi ∈ Tsi
(F), i = 1, · · · , t are indecomposable idempotent submatrices

of [aij ] (recall that an upper triangular matrix N is called indecomposable if

there is not any permutation matrix Q such that QNQ−1 decomposes into a
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nontrivial direct sum of upper triangular matrices), and s1, · · · , st are some

positive integers.

For every k ∈ [1, m − 1], it follows form AkAm = AmAk that

aij(εik − εjk) = 0 for all k ∈ [1, m − 1].

Indeed, εik = εjk if aij �= 0 for all k ∈ [1, m − 1]. This, together with (3),

one can determine t non-intersectant subsets of [1, n], say {q11, q12, · · · , q1s1},
{q21, q22, · · · , q2s2}, · · · , {qt1, qt2, · · · , qtst}, such that for every i ∈ [1, t],

εqi1k = εqi2k = · · · = εqisi
k ∈ {0, 1} for all k ∈ [1, m − 1]. (4)

Thus, by (4) and the choice of P , one has

Ak = T1P (Ck1 ⊕ Ck2 ⊕ · · · ⊕ Ckt ⊕ Ck)P
−1T−1

1 for all k ∈ [1, m − 1] (5)

where Cki = Isi
or 0si

, i = 1, · · · , t and Ck is a diagonal matrix with diagonal

elements 0 or 1.

Now, note that B1, B2, · · · , Bt are idempotent upper triangular matrices

in (3). Due to Lemma 2.2, then there are invertible upper triangular matrices

U1, · · · , Ut such that

Bi = Uidiag(bi1, · · · , bisi
)U−1

i for all i ∈ [1, t],

here bij ∈ {0, 1}. Put U = U1 ⊕U2 ⊕· · ·⊕Ut ⊕ I, then U is invertible in Tn(F).

We have by (5) and (3) that

Ak = T1PU(Ck1 ⊕ Ck2 ⊕ · · · ⊕ Ckt ⊕ Ck)U
−1P−1T−1

1 for all k ∈ [1, m − 1]

(6)

and

Am = T1PU

⎛
⎜⎜⎝
⎡
⎢⎢⎣

b11

. . .

b1s1

⎤
⎥⎥⎦⊕ · · · ⊕

⎡
⎢⎢⎣

bt1

. . .

btst

⎤
⎥⎥⎦⊕ 0

⎞
⎟⎟⎠U−1P−1T−1

1 .

(7)

Let T = T1PUP−1. By the choice of P and U, it is not difficult to see that

PUP−1 is an upper triangular matrix. Hence, T ∈ Tn(F). Finally, by (6) and

(7) we see that T−1AkT , k = 1, 2, · · · , m are diagonal matrices with diagonal

elements 0 or 1. The proof is completed.
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Lemma 2.4 For a given subset Λ of [1, n] with r elements, put

Γn(Λ) =

{
A ∈ Tn(F) : A

(∑
j∈Λ

Ejj

)
=

(∑
j∈Λ

Ejj

)
A

}
.

Then dim span(Γn(Λ)) ≤ 2−1(n2 − 2nr + n + 2r2).

Proof. We prove the result by induction on n. The case n = 1 is clear.

Suppose the conclusion is true for n − 1. For any A ∈ Γn(Λ), we write A as

A =

[
An−1 δ

0 ann

]
,

where ann ∈ F, An−1 ∈ Tn(F). Clearly, An−1 ∈ Γn−1(Λ1) where Λ1 = Λ\{n}.
Case 1. n ∈ Λ. By A

(∑
j∈Λ Ejj

)
=
(∑

j∈Λ Ejj

)
A, we see that(∑

j∈Λ Ejj

)[ δ

ann

]
=

[
δ

ann

]
. Hence,

[
δ

ann

]
contains at most r nonzero

elements. Thus, by induction hypothesis we have

dim span(Γn(Λ)) ≤ dim span(Γn−1(Λ1)) + r

≤ 2−1((n − 1)2 − 2(n − 1)(r − 1) + (n − 1) + 2(r − 1)2) + r

= 2−1(n2 − 2nr + n + 2r2).

Case 2. n /∈ Λ. By A
(∑

j∈Λ Ejj

)
=
(∑

j∈Λ Ejj

)
A, we see that(∑

j∈Λ Ejj

)[ δ

ann

]
= 0. Thus,

[
δ

ann

]
contains at most n − r nonzero

elements. It follows from the induction hypothesis that

dim span(Γn(Λ)) ≤ dim span(Γn−1(Λ1)) + n − r

≤ 2−1((n − 1)2 − 2(n − 1)r + (n − 1) + 2r2) + n − r

= 2−1(n2 − 2nr + n + 2r2).

We complete the proof.

3 The proof of main results

In this section, we assume that F is any field and n ≥ 1 is an integer.
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Lemma 3.1 Let ϕ be a bijective linear preserver of idempotence on Tn(F).

Then for any k ∈ [1, n], we have rank ϕ(Ekk) = 1 or n − 1.

Proof. Case 1. charF �= 2. For any i �= j, since Eii, Ejj, Eii +Ejj ∈ Pn(F),

we have by Lemmas 2.1 and 2.3 that ϕ(Eii)ϕ(Ejj) = 0 and

ϕ(E11), ϕ(E22), · · · , ϕ(Enn) can be simultaneously diagonalizable. It follows

that rank ϕ(Ekk) = 1 for all k ∈ [1, n].

Case 2. charF = 2. It is clear that the conclusion is true when n = 1.

We assume that n ≥ 2. For a given k ∈ [1, n], suppose rank ϕ(Ekk) = r. By

ϕ(Ekk) ∈ Pn(F) and Lemma 2.2, one can find an invertible matrix T ∈ Tn(F)

such that

ϕ(Ekk) = Tdiag(ε1, ε2, · · · , εn)T−1, (8)

where ε1, ε2, · · · , εn ∈ {0, 1} . Take[
A(k−1)×(k−1) B(k−1)×(n−k)

0 C(n−k)×(n−k)

]
∈ Pn−1(F).

By Lemma 2.1 and

Ekk +

⎡
⎢⎣

A(k−1)×(k−1) 0 B(k−1)×(n−k)

0 0 0

0 0 C(n−k)×(n−k)

⎤
⎥⎦ ∈ Pn(F)

we have

ϕ(Ekk)ϕ

⎛
⎜⎝
⎡
⎢⎣

A(k−1)×(k−1) 0 B(k−1)×(n−k)

0 0 0

0 0 C(n−k)×(n−k)

⎤
⎥⎦
⎞
⎟⎠

= ϕ

⎛
⎜⎝
⎡
⎢⎣

A(k−1)×(k−1) 0 B(k−1)×(n−k)

0 0 0

0 0 C(n−k)×(n−k)

⎤
⎥⎦
⎞
⎟⎠ϕ(Ekk).

(9)

Let

S =

⎧⎪⎨
⎪⎩
⎡
⎢⎣

A(k−1)×(k−1) 0 B(k−1)×(n−k)

0 a 0
0 0 C(n−k)×(n−k)

⎤
⎥⎦ : a ∈ F,

[
A(k−1)×(k−1) B(k−1)×(n−k)

C(n−k)×(n−k)

]
∈ Pn−1(F)

⎫⎪⎬
⎪⎭ .



2312 Jin-Li Xu, Chong-Guang Cao and Xiao-Min Tang

Note that ϕ(Ekk)ϕ(aEkk) = ϕ(aEkk)ϕ(Ekk) = a[ϕ(Ekk)]
2. This, together with

(9), implies that ϕ(A)ϕ(Ekk) = ϕ(Ekk)ϕ(A) for every A ∈ S. Thus,

T−1ϕ(S)T ⊂ Γn(Λ),

where Λ = {i : εi = 1 in (8)} is a subset of [1, n]. Due to Lemma 2.4, we obtain

dim span(ϕ(S))

= dim span(T−1ϕ(S)T ) ≤ dim span(Γn(Λ)) ≤ 2−1(n2 − 2nr + n + 2r2). (10)

On the other hand, we have

dim span(S) = dim span(Pn−1(F)) + 1 = 2−1(n2 − n) + 1. (11)

Since ϕ is bijective, so dim span(S) = dim span(ϕ(S)). This, together with

(10) and (11), gives that

r ≤ 1 or r ≥ n − 1.

Clearly, r �= 0 since ϕ(Ekk) �= 0. For the conclusion, it suffices to show that

r �= n. Otherwise, r = n and ϕ(Ekk) = In. If k = 1, we take Ai = E1i,

i = 1, 2, · · · , n and An+1 =
∑n

j=2 Ejj; if k = n, we take Ai = Ein, i =

1, 2, · · · , n and An+1 =
∑n−1

j=1 Ejj; if 1 < k < n, we take Ai = Eii +
∑n

s=k+1 Ess,

i ∈ [1, k − 1], Ak =
∑n

s=k+1 Ess, At = Ekt, t ∈ [k + 1, n] and An+1 = Ekk. In

every case, it is easy to check that

dim span(A1, · · · , An+1) = n + 1. (12)

Again, note that ϕ(Ekk) = In and Ekk + Ai ∈ Pn(F), i ∈ [1, n + 1]. This,

together with Lemma 2.1, gives that ϕ(Ai) ∈ Pn(F) for all i ∈ [1, n + 1]. We

will conclude that

ϕ(Ai)ϕ(Aj) = ϕ(Aj)ϕ(Ai) (13)

for every part i, j ∈ [1, n + 1]. When k = 1, we have Pn(F) 
 ϕ(E11 + (Ai +

Aj)) = In + ϕ(Ai) + ϕ(Aj) for every i, j ∈ [1, n]. So, we have ϕ(Ai) + ϕ(Aj) ∈
Pn(F). Due to Lemma 2.1, proving (13) for i, j ∈ [1, n]. But Ai+An+1 ∈ Pn(F),

for all i ∈ [1, n], so we have by Lemma 2.1 that (13) holds for i, j ∈ [1, n + 1].
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The proof of (13) for the case k = n is similar to the case k = 1. Consider

the case 1 < k < n. By the choice of A1, · · · , An+1, we see that (13) holds

for i, j ∈ [1, k] ∪ {n + 1} or i ∈ [1, k] ∪ {n + 1} and j ∈ [k + 1, n]. When

i, j ∈ [k +1, n], it follows by Pn(F) 
 ϕ(Ekk +(Ai +Aj)) = In +ϕ(Ai)+ϕ(Aj)

that (13) holds. Hence, by Lemma 2.3 we have that ϕ(A1), · · · , ϕ(An+1) can be

simultaneously diagonalizable. It gives that dim span(ϕ(A1), · · · , ϕ(An+1)) ≤
n, which contradicts (12) since ϕ is bijective. The proof is completed.

Lemma 3.2 Let ϕ be a bijective linear preserver of idempotence on Tn(F).

Then there are an invertible matrix T ∈ Tn(F) and a bijective map g from

[1, n] to itself such that

ϕ(Ekk) = TEg(k)g(k)T
−1 + μkkIn for all k ∈ [1, n]

and

ϕ(Eij) =

{
bijT (Eg(i)g(j) + Dij)T

−1, g(i) < g(j),

bijT (Eg(j)g(i) + Dij)T
−1, g(i) > g(j),

for all i < j ∈ [1, n] ,

where μkk ∈ {0, 1}, bij ∈ F∗, Dij = diag(ε
(ij)
1 , ε

(ij)
2 , · · · , ε

(ij)
n ) with ε

(ij)
g(i) = ε

(ij)
g(j)

for all k, i, j ∈ [1, n], satisfying (a) if charF �= 2 then μkk = 0; (b) if F �= F2

then Dij = 0.

Proof. For any i �= j, since Eii, Ejj, Eii+Ejj ∈ Pn(F), so ϕ(Eii), ϕ(Ejj), ϕ(Eii)+

ϕ(Ejj) ∈ Pn(F). This, together with Lemma 2.1, implies that for any i �= j,

ϕ(Eii)ϕ(Ejj) = ϕ(Ejj)ϕ(Eii) and in addition

ϕ(Eii)ϕ(Ejj) = 0 if charF �= 2. (14)

Due to Lemma 2.3, ϕ(E11), ϕ(E22), · · · , ϕ(Enn) can be simultaneously diago-

nalizable by an invertible matrix T ∈ Tn(F). Note that Lemma 3.1, so we may

find a map g from [1, n] to itself such that ϕ(Ekk), k ∈ [1, n] can be written in

the forms

ϕ(Ekk) = TEg(k)g(k)T
−1 + μkkIn, for all k ∈ [1, n], (15)

where μkk ∈ {0, 1}.
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If charF �= 2, one can by (14) obtain that μkk = 0 and g is bijective. If

charF = 2, we will show that g is bijective, too. When n = 1 or 2, we have

immediately that g is bijective. Assume that n ≥ 3. In order to prove this, we

will conclude that if g(i) = g(j) then i = j for any i, j ∈ [1, n]. When μii = μjj,

then ϕ(Eii) = ϕ(Ejj) and so i = j since ϕ is a bijection. Next suppose that

μii �= μjj. If i �= j, we will get a contradiction. It is no loss generality to assume

that i < j, μii = 0 and μjj = 1. Take

Ak =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Ekk +
∑j−1

s=i+1 Ess +
∑n

s=j+1 Ess, k ∈ [1, i − 1],

Eik, k ∈ [i, j − 1] ∪ [j + 1, n],

Eii + Ejj, k = j,∑j−1
s=i+1 Ess +

∑n
s=j+1 Ess, k = n + 1.

It is easy to check that

dim span(A1, · · · , An+1) = n + 1. (16)

Since ϕ(Eii) + ϕ(Ejj) = In and ϕ(Eii + Ejj + Eik) ∈ Pn(F) for all k ∈
[i, j−1]∪[j+1, n], we obtain that ϕ(Ak) ∈ Pn(F) for all k ∈ [1, n+1]. Again, for

any s �= t, it is easy to see that ϕ(As+At) ∈ Pn(F). This, together with Lemma

2.1, gives that ϕ(As)ϕ(At) = ϕ(At)ϕ(As) for any s, t ∈ [1, n + 1]. Further, we

see by Lemma 2.3 that ϕ(A1), · · · , ϕ(An+1) can be simultaneously diagonaliz-

able. Thus, dim span(ϕ(A1), · · · , ϕ(An+1)) ≤ n. This contradict (16) since ϕ

is bijective. In every case, we have shown that g is bijective.

For i < j, let us consider the image of Eij under ϕ.

When F �= F2, take μ ∈ F with μ �= 0, 1. Because of ϕ(Eii)+aϕ(Eij), ϕ(Ejj)+

aϕ(Eij) ∈ Pn(F) where a = 1, μ, we have by (15) that [ϕ(Eij)]
2 = 0 and

ϕ(Eij) = TEg(i)g(i)T
−1ϕ(Eij) + ϕ(Eij)TEg(i)g(i)T

−1

= TEg(j)g(j)T
−1ϕ(Eij) + ϕ(Eij)TEg(j)g(j)T

−1

By the direct computation, we get

ϕ(Eij) =

{
bijTEg(i)g(j)T

−1, g(i) < g(j),

bijTEg(j)g(i)T
−1, g(i) > g(j),

for all i < j ∈ [1, n]

where bij ∈ F∗.
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When F = F2. Note that ϕ(Eii) + ϕ(Eij), ϕ(Ejj) + ϕ(Eij), ϕ(Ejj + Ekk) +

ϕ(Eij) ∈ Pn(F) for all k �= i, j ∈ [1, n]. It is easy to check that⎧⎪⎨
⎪⎩

ϕ(Eij) + [ϕ(Eij)]
2 = ϕ(Eii)ϕ(Eij) + ϕ(Eij)ϕ(Eii),

ϕ(Eij) + [ϕ(Eij)]
2 = ϕ(Ejj)ϕ(Eij) + ϕ(Eij)ϕ(Ejj),

ϕ(Eij) + [ϕ(Eij)]
2 = (ϕ(Ejj) + ϕ(Ekk))ϕ(Eij) + ϕ(Eij)(ϕ(Ejj) + ϕ(Ekk)).

Moreover, we get{
(ϕ(Eii) + ϕ(Ejj))ϕ(Eij) = ϕ(Eij)(ϕ(Eii) + ϕ(Ejj)),

ϕ(Ekk)ϕ(Eij) = ϕ(Eij)ϕ(Ekk), for all k �= i, j.
(17)

Note that g is bijective, then it follows by (17) that

ϕ(Eij) =

{
T (Eg(i)g(j) + Dij)T

−1, g(i) < g(j),

T (Eg(j)g(i) + Dij)T
−1, g(i) > g(j),

for all i < j ∈ [1, n],

where Dij = diag(ε
(ij)
1 , ε

(ij)
2 , · · · , ε

(ij)
n ). Also, we have by ϕ(Eii)+ϕ(Eij), ϕ(Ejj)+

ϕ(Eij) ∈ Pn(F) that ε
(ij)
g(i) = ε

(ij)
g(j). The proof is completed.

Now we can prove the main result of this paper.

Proof of Theorem 1.1. The “if” part. If charF �= 2, the result is

obvious. We assume that charF = 2. We only prove it for ϕ is of the form

(1), since the proof when ϕ is of the form (2) is similar. For any A = [aij ] ∈
Pn(F), we will show that f(A) ∈ {0, 1}. The conclusion is clear if F = F2.

Otherwise, F �= F2. Since A2 = A, so that akk = 0 or 1 for all k ∈ [1, n].

Note that f(Ekk) ∈ {0, 1} and f(Eij) = 0 for all k and i < j, then f(A) =∑n
k=1 akkf(Ekk) ∈ {0, 1}. As f(A) ∈ {0, 1}, it is easy to check that ϕ(A) =

TAT−1 + f(A)In is idempotent. To continue, let us show that ϕ is bijective.

One way to prove this conclusion is to show that ϕ(Pn(F)) = Pn(F) since

span(Pn(F)) = Tn(F). Let A ∈ Pn(F), then T−1AT ∈ Pn(F). We by above

have known f(T−1AT ) ∈ {0, 1}. When f(T−1AT ) = 0, we have ϕ(T−1AT ) =

A; when f(T−1AT ) = 1, by f(In) = 0 we have ϕ(T−1(In + A)T ) = In + A +

f(In + T−1AT )In = A. This completes the proof of the “if” part.

The “only if” part. It is known that ϕ has the form in Lemma 3.2.

Firstly, let us prove that Dij = μijIn where μij ∈ {0, 1} for any i < j ∈
[1, n]. But from Lemma 3.2 we know that if F �= F2 then Dij = 0, so that we
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only need consider the case F = F2. The case n = 2 is obvious, so we assume

that n ≥ 3. We prove it only for g(i) < g(j), since the proof for g(i) > g(j) is

very similar. Let k �= i, j be any integer in [1, n]. The proof is divided into the

following four cases.

Case 1. k < i and g(k) < g(j). It follows from Ejj + Ekj + Eij ∈ Pn(F)

that

Eg(j)g(j) + Eg(k)g(j) + Dkj + Eg(i)g(j) + Dij ∈ Pn(F).

This tells us that

ε
(kj)
g(k) = ε

(ij)
g(k) + 1, ε

(kj)
g(i) = ε

(ij)
g(i) + 1, ε

(kj)
g(j) = ε

(ij)
g(j) + 1,

or

ε
(kj)
g(k) = ε

(ij)
g(k), ε

(kj)
g(i) = ε

(ij)
g(i), ε

(kj)
g(j) = ε

(ij)
g(j).

Note that ε
(kj)
g(k) = ε

(kj)
g(j), so we see that ε

(ij)
g(k) = ε

(ij)
g(j) .

Case 2. k < i and g(j) < g(k). By Ejj + Ekj + Eij ∈ Pn(F), we get

Eg(j)g(j) + Eg(j)g(k) + Dkj + Eg(i)g(j) + Dij ∈ Pn(F),

this is impossible for any diagonal matrices Dij and Dkj. So the case dos not

appear.

Case 3. i < k and g(i) < g(k). Similar to the proof of Case 1, we have by

Eii + Eik + Eij ∈ Pn(F) that ε
(ij)
g(k) = ε

(ij)
g(i).

Case 4. i < k and g(k) < g(i). Similar to the proof of Case 2, we get a

contradiction by Eii + Eik + Eij ∈ Pn(F).

The above Cases 1 − 4 with ε
(ij)
g(i) = ε

(ij)
g(j) deduce that Dij = μijIn where

μij = ε
(ij)
g(j) ∈ F2 = {0, 1}. So, we have that

ϕ(Eij) =

{
bijT (Eg(i)g(j))T

−1 + μijIn, g(i) < g(j),

bijT (Eg(j)g(i))T
−1 + μijIn, g(i) > g(j),

for all i < j ∈ [1, n]

where μij ∈ {0, 1}, and if F �= F2 then μij = 0 for all i < j ∈ [1, n]. Now, by

Lemma 3.2, similar to the proof of Theorem 3.1 in [11], we have g(k) = k for

all k ∈ [1, n] or g(k) = n − k + 1 for all k ∈ [1, n].
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Suppose g(k) = k for all k ∈ [1, n] holds. If F �= F2, it follows from

ϕ(Eik + Ekk + Ekj + Eij) ∈ Pn(F) that bij = bikbkj for all i < k < j ∈ [1, n].

Set

T1 = Tdiag(1, b12, · · · , b1n).

We have by direct computation for any field that

ϕ(Eij) = T1EijT
−1
1 + μijIn for all i ≤ j ∈ [1, n], (18)

where μij ∈ {0, 1} satisfying (a) if charF �= 2 then μij = 0 for all i ≤ j ∈ [1, n];

(b) if F �= F2 then μij = 0 for all i < j ∈ [1, n]. Now for any A = [aij ] ∈ Tn(F),

let

f(A) =

(
n∑

i=1

n∑
j=1

aijμij

)
In,

one can easy to check that f is a linear map from Tn(F) to F. By (18) we get

ϕ(A) = T1AT−1
1 + f(A)In for all A ∈ Tn(F).

From the definition of f and the conditions of (18), we have (a) if charF �= 2

then f = 0; (b) if F �= F2, then f(Eij) = 0 for all i < j ∈ [1, n]. Again,

for any k ∈ [1, n], since f(Ekk) = [bij ] ∈ Pn(F) so that btt ∈ {0, 1} for all

t ∈ [1, n]. When charF = 2, we see by μij ∈ {0, 1} and the definition of f that

f(Ekk) ∈ {0, 1} for all k ∈ [1, n]. Note that f(In) = f(
∑n

i=1 Eii) ∈ {0, 1} and

ϕ(In) = In + f(In)In �= 0. We get f(In) �= 1 so that f(In) = 0. The above all

tell us that ϕ is of the form (1). Similarly, if g(k) = n− k + 1 for all k ∈ [1, n]

holds, we can prove that ϕ is of the form (2). The proof is completed.

Proof of Theorem 1.2 . In order to prove the result, by Theorem 1.1

we only need to prove the following:

ϕ(Pn(F)) = Pn(F) ⇐⇒ ϕ is bijective and ϕ(Pn(F)) ⊂ Pn(F).

The “⇐=” part. By Theorem 1.1, ϕ is of the forms (1) or (2). If charF �= 2,

the conclusion is clear. On the other hand, for charF = 2, we already show

that ϕ(Pn(F)) = Pn(F) in the proof of the “if” part of Theorem 1.1.

The “=⇒” part. We only need to prove that ϕ is bijective. In fact, by the

following

Tn(F) = span(Pn(F)) = span(ϕ(Pn(F))) ⊂ Imϕ ⊂ Tn(F)

we get Imϕ = Tn(F). So ϕ is surjective and furthermore it is bijective.



2318 Jin-Li Xu, Chong-Guang Cao and Xiao-Min Tang

Acknowledgements

This work was supported in part by the Chinese NSFs under Grant No.

10671026 and No. 10671033, the Fund of Heilongjiang Education Commit-

tee under Grant No. 1055G033.

References

[1] L.B. Beasley and N.L. Pullman, Linear operators preserving idempotent

matrices over fields. Linear Algebra Appl., 146 (1991), 7–20.

[2] C.G. Cao and X. Zhang, Additive operators preserving idempotent matri-

ces over fields and applications, Linear Algebra Appl. 248 (1996), 327-338.

[3] W.L. Chooi and M.H. Lim, Linear preservers on triangular matrices. Lin-

ear Algebra Appl., 269(1998), 241–255.
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[10] L. Molnar and P. Šemrl, Some linear preserver problems on upper trian-

gular matrices, Linear and Multilinear Algebra, 45(1998),189-206.



Linear preservers of idempotence 2319

[11] X.M Tang, C.G. Cao and X. Zhang, Modular automorphisms preserving

idempotence and Jordan isomorphisms of triangular matrices over com-

mutative rings, Linear Algebra Appl., 338 (2001), 145-152.

[12] X. Zhang, Idempotence-preserving linear operators on triagular matrices

over commutative integral ring (in Chinise), J. Xinjiang Univ. Natur. Sci,

10(2)(1992): 25-27.

[13] X. Zhang and C.G. Cao, Homomorphisms between additive matrix groups

which preserve some invariants (in Chinese). Harbin Press, 2001, Harbin.

Received: December 29, 2006


