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Introduction

Linear programming is one of the most powerful and popular tools of mathematical model-
ing, covering vast areas of human activity, including the economy, the environment, technology,
complex networks, research and more. Linear programming exists in various forms. A large part
of the scientific literature is devoted to linear programming problems. Thousands of researchers
were involved in carrying out these researches. The results of Ivan Ivanovich Eremin are prominent
among these studies. In his research, I.I. Eremin studied various problems of linear and convex
programming, including improper and conflicting objectives, problems of lexicographic and Pareto
optimization, problems of disjunctive programming and pattern recognition, and more [1–5]. The
merit of prof. Eremin is that he studied all these problems in primal and dual forms simultane-
ously [6]. Continuing this line, we consider the linear programming problem in terms of dynamics.

In general, the linear programming problems are static, and they describe the state of a system
at a fixed time. However, real objects, immersed in some medium, vary under the influence of
various external factors. For example, economic facilities vary with economic conditions. This
means that in the coming times static economic models will not be adequate to the changing real
objects. This entails a mismatch between the real object and its mathematical model. To resolve
this inadequacy, it is reasonable to introduce the time factor in the mathematical model. In this
paper, it was done for boundary value problems of optimal control.

1. Problem statement

Consider the simplest formulation for the linear boundary value problem of optimal con-
trol. When controls u(·) run over the set U , the linear controlled dynamics generates the cor-
responding trajectories. The right ends x(t1) = x1 of the trajectories describe the terminal set
X1 = X(t1) ⊆ Rn called the set of attainability.

1This work was supported by the Russian Foundation for Basic Research (project no. 15-01-06045-a),
and the Program for Support of Leading Scientific Schools (project no. NSh-4640.2014.1.)

2Published in Russian in Trudy Inst. Mat. i Mekh. UrO RAN, 2013. Vol. 19. No 2. P. 7-25.
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In the Hilbert space L2[t0, t1], we consider the terminal control problem with linear programming
problem as the boundary value problem (at the right end):

d

dt
x(t) = D(t)x(t) + B(t)u(t), x(t0) = x0, x(t1) = x∗

1, (1.1)

x∗
1 ∈ Argmin

{

〈ϕ1, x(t1)〉 | A1x(t1) ≤ a1, x(t1) ∈ X1 ⊆ Rn
}

, (1.2)

u(·) ∈ U =
{

u(·) ∈ Lr
2[t0, t1]| ‖u(·)‖L2

≤ const
}

. (1.3)

Here D(t), B(t) are n × n, n × r -matrix functions depending continuously on time, A1 is a fixed
matrix of size m × n (m ≥ n, these constraints x ≥ 0 are included in the polyhedron); a1, x0 are
given vectors. Controls u(·) are elements of the space Lr

2[t0, t1], and satisfy the condition (1.3) at
all points of the interval [t0, t1] to within a set of measure zero. The vector ϕ1 ∈ Rn is fixed and
determines the normal to a linear function.

Any pair (x(·), u(·)) ∈ Ln
2 [t0, t1] × U satisfying identically the condition

x(t) = x(t0) +

∫ t

t0

(

D(τ)x(τ) + B(τ)u(τ)
)

dτ (1.4)

for almost all t ∈ [t0, t1], is considered as a solution to a differential system (1.1)–(1.3).

Identity defines a generalized solution of (1.1)–(1.3). As it was shown in [7, Book 1, p. 443],
for any control u(·) ∈ U and given x0 there exists a unique trajectory x(·) subject to (1.1)–(1.3),
and these functions satisfy the identity (1.4). In applications, the control u(·) is often a piecewise
continuous function. The presence of break points on controls u(·) does not affect the values of the
trajectory x(·). Moreover, the trajectory remains unchanged even if we change the values of u(·)
on the set of measure zero.

The trajectory x(·) in (1.4) is an absolutely continuous function [8]. The class of absolutely
continuous functions is a linear variety, which is everywhere dense in Ln

2 [t0, t1]. In what follows
we shall denote this class as ACn[t0, t1] ⊂ Ln

2 [t0, t1]. Newton-Leibniz formula and the formula for
integration by parts obviously hold for any pair of functions (x(·), u(·)) ∈ ACn[t0, t1]×U .3 In [7] it
was proved that the solution x∗

1 ∈ X1, (x∗(·), u∗(·)) ∈ ACn[t0, t1]×U of the problem always exists.

Consider how the system (1.1)–(1.3) operates. This controllable system is a linear constraint
that allocates the variety of linear functions x(·), u(·) defined on the interval [t0, t1]. As already
noted, the right ends of the trajectories generate the set X1. On this set, the linear function 〈ϕ1, x1〉
is defined and allocates either a unique minimum point or a closed convex set of such points.

Now the problem is as follows: it is necessary to choose a control u∗(·) ∈ U such that the
right end of the trajectory x∗(·) coincides with a solution of the linear programming problem (1.2)
formulated on the attainability set for the dynamical system (1.1)–(1.3).

The problem is treated as a dynamic system, which by using a selected control transfers the
linear problem (1.2) from the initial state to the terminal state. Such construction allows us to
adapt and adjust the model of an object to the constantly changing realities of the environment in
which it is immersed.

2. Classic Lagrangian

The considered problem is a linear programming problem formulated in the Hilbert space.
In the linear programming theory for finite-dimensional spaces, it is well known that the primal
problem always exists simultaneously with the dual problem in the dual space. Through appropriate

3Scalar products and norms are defined as 〈x(·), y(·)〉 =
∫

t1

t0
〈x(t), y(t)〉dt, ‖x(·)‖2 =

∫

t1

t0
|x(t)|2dt, where

〈x(t), y(t)〉 =
n
∑

1

xi(t)yi(t), |x(t)|2 =
n
∑

1

x2

i
(t), x(t) = (x1(t), ..., xn(t))T , y(t) = (y1(t), ..., yn(t))T , t ∈ [t0, t1].
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analogy, one can try to obtain explicit dual problem for the system (1.1)–(1.3). For the system
(1.1)–(1.3), we introduce a linear convolution known as the Lagrangian:

L(p1, x1, ψ(·), x(·), u(·)) = 〈ϕ1, x1〉 + 〈p1, A1x1 − a1〉

+

∫ t1

t0

〈

ψ(t), D(t)x(t) + B(t)u(t) −
d

dt
x(t)

〉

dt,
(2.1)

for all p1 ∈ Rm
+ , x1 ∈ Rn, ψ(·) ∈ Ψn

2 [t0, t1], (x(·), u(·)) ∈ ACn[t0, t1]×U , where Ψn
2 [t0, t1] is a linear

variety of absolutely continuous functions from the dual space. This set is everywhere dense in
Ln

2 [t0, t1], i.e., the closure of the variety Ψn
2 [t0, t1] in the norm of Ln

2 [t0, t1] coincides with Ln
2 [t0, t1].

The saddle point (p∗1, ψ
∗(t); x∗(t1), x

∗(t), u∗(t)) of the Lagrange function, consisting of primal
(x∗(t1), x∗(t), u∗(t)) and dual (p∗1, ψ

∗(t)) solutions of (1.1)–(1.3), satisfies, by definition, the system
of inequalities:

〈ϕ1, x
∗(t1)〉 + 〈p1, A1x

∗(t1) − a1〉 +

∫ t1

t0

〈

ψ(t), D(t)x∗(t) + B(t)u∗(t) −
d

dt
x∗(t)

〉

dt

≤ 〈ϕ1, x
∗(t1)〉 + 〈p∗1, A1x

∗(t1) − a1〉 +

∫ t1

t0

〈

ψ∗(t), D(t)x∗(t) + B(t)u∗(t) −
d

dt
x∗(t)

〉

dt (2.2)

≤ 〈ϕ1, x1〉 + 〈p∗1, A1x1 − a1〉 +

∫ t1

t0

〈

ψ∗(t), D(t)x(t) + B(t)u(t) −
d

dt
x(t)

〉

dt

for all p1 ∈ Rm
+ , x1 ∈ Rn, ψ(·) ∈ Ψn

2 [t0, t1], (x(·), u(·)) ∈ ACn[t0, t1] × U , x(t0) = x0. Next, we use
the notation x∗(t1) = x∗

1.
So, if the original problem (1.1)–(1.3) has the primal and dual solutions, then they form the

saddle point of the Lagrange function. We now show that the converse proposition is also true:
a saddle point of the Lagrangian (2.1) is formed by the primal and dual solutions of the original
problem (1.1)–(1.3).

The left-hand inequality of (2.2) is the problem of maximizing the linear function in the variables
(p1, ψ(·)) on the whole space Rm

+ × Ψn
2 [t0, t1]:

〈p1 − p∗1, A1x
∗
1 − a1〉 +

∫ t1

t0

〈

ψ(t) − ψ∗(t), D(t)x∗(t) + B(t)u∗(t) −
d

dt
x∗(t)

〉

dt ≤ 0 (2.3)

with p1 ∈ Rm
+ , ψ(·) ∈ Ψn

2 [t0, t1]. From (2.3) we have

〈p1 − p∗1, A1x
∗
1 − a1〉 ≤ 0,

D(t)x∗(t) + B(t)u∗(t) −
d

dt
x∗(t) = 0, x∗(t0) = x0,

(2.4)

for all p1 ∈ Rm
+ . Putting at first p1 = 0, then p1 = 2p∗1, we obtain

〈p∗1, A1x
∗
1 − a1〉 = 0, A1x

∗
1 − a1 ≤ 0,

D(t)x∗(t) + B(t)u∗(t) −
d

dt
x∗(t) = 0, x∗(t0) = x0.

(2.5)

The right-hand inequality of (2.2) is the problem of minimizing the Lagrangian in the variables
(x1, x(·), u(·)) at fixed values p1 = p∗1, ψ(t) = ψ∗(t). We show that (p∗1, x

∗
1, ψ

∗(t), x∗(t), u∗(t)) is the
solution of (1.1)–(1.3). In view of (2.5), from the right-hand inequality of (2.2) we have

〈ϕ1, x
∗
1〉 ≤ 〈ϕ1, x1〉 + 〈p∗1, A1x1 − a1〉 +

∫ t1

t0

〈

ψ∗(t), D(t)x(t) + B(t)u(t) −
d

dt
x(t)

〉

dt (2.6)

for all x1 ∈ Rn, (x(·), u(·)) ∈ ACn[t0, t1] × U .
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Consider the inequality (2.6) under the additional scalar constraints

〈p∗1, A1x1 − a1〉 ≤ 0,

∫ t1

t0

〈

ψ∗(t), D(t)x(t) + B(t)u(t) −
d

dt
x(t)

〉

dt = 0.

Then we get the optimization problem 〈ϕ1, x
∗
1〉 ≤ 〈ϕ1, x1〉 under constraints

〈p∗, A1x1 − a1〉 ≤ 0,

∫ t1

t0

〈

ψ∗(t), D(t)x(t) + B(t)u(t) −
d

dt
x(t)

〉

dt = 0 (2.7)

for all x1 ∈ Rn, (x(·), u(·)) ∈ ACn[t0, t1] × U .
From (2.5) we see that the solution (x∗(t), u∗(t)) belongs to a narrower set than (2.7). Therefore,

this point remains a minimum on a subset of solutions of (2.5), i.e.

〈ϕ1, x
∗
1〉 ≤ 〈ϕ1, x1〉, A1x1 ≤ a1, (2.8)

d

dt
x(t) = D(t)x(t) + B(t)u(t) (2.9)

for all x1 ∈ Rn, (x(·), u(·)) ∈ ACn[t0, t1]×U . Thus, if the Lagrangian (2.1) has a saddle point then
its primal components form a solution to the original problem of convex programming.

3. Dual Lagrangian

Show that the Lagrangian plays the role of ”bridge” allowing to move from the original problem
(in the primal space) to the dual problem (in the dual space). Using the formulas for the transition
to the adjoint linear operators 〈ψ,Dx〉 = 〈DT ψ, x〉, 〈ψ, Bu〉 = 〈BT ψ, u〉 and the formula for
integration by parts on the interval [t0, t1]

〈

ψ(t1), x(t1)
〉

−
〈

ψ(t0), x(t0)
〉

=

∫ t1

t0

〈 d

dt
ψ(t), x(t)

〉

dt +

∫ t1

t0

〈

ψ(t),
d

dt
x(t)

〉

dt, (3.1)

we write out the dual to (2.1) Lagrange function and the saddle-point system (2.2) in the dual form

L(p1, x1, ψ(t), x(t), u(t)) = 〈ϕ1 + AT
1 p1, x1〉 − 〈a1, p1〉

+

∫ t1

t0

〈

DT (t)ψ(t)+
d

dt
ψ(t), x(t)

〉

dt+

∫ t1

t0

〈

BT (t)ψ(t), u(t)
〉

dt−
〈

ψ(t1), x(t1)
〉

+
〈

ψ(t0), x(t0)
〉

(3.2)

for all p1 ∈ Rm
+ , x1 ∈ Rn, ψ(·) ∈ Ψn

2 [t0, t1], (x(·), u(·)) ∈ ACn[t0, t1] × U ; x0 = x(t0), ψ0 = ψ(t0),
ψ1 = ψ(t1).

Both Lagrangians (primal and dual) have the same saddle point (p∗1, ψ
∗(t); x∗

1, x
∗(t), y∗(t))

which satisfies the saddle-point dual system

〈ϕ1 + AT
1 p1, x

∗
1〉 + 〈−a1, p1〉 +

∫ t1

t0

〈

DT (t)ψ(t) +
d

dt
ψ(t), x∗(t)

〉

dt

+

∫ t1

t0

〈

BT (t)ψ(t), u∗(t)
〉

dt − 〈ψ(t1), x
∗
1〉 + 〈ψ(t0), x0〉

≤ 〈ϕ1 + AT
1 p∗1, x

∗
1〉 + 〈−a1, p

∗
1〉 +

∫ t1

t0

〈

DT (t)ψ∗(t) +
d

dt
ψ∗(t), x∗(t)

〉

dt

+

∫ t1

t0

〈

BT (t)ψ∗(t), u∗(t)
〉

dt − 〈ψ∗(t1), x
∗
1〉 + 〈ψ∗(t0), x0〉

≤ 〈ϕ1 + AT
1 p∗1, x1〉 + 〈−a1, p

∗
1〉 +

∫ t1

t0

〈DT (t)ψ∗(t) +
d

dt
ψ∗(t), x(t)〉dt

+

∫ t1

t0

〈BT (t)ψ∗(t), u(t)〉dt − 〈ψ∗(t1), x1〉 + 〈ψ∗(t0), x0〉

(3.3)
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for all p1 ∈ Rn
+, x1 ∈ Rn, ψ(·) ∈ Ψn

2 [t0, t1], (x(·), u(·)) ∈ ACn[t0, t1] × U .

From the right-hand inequality of (3.3) we have

〈ϕ1 + AT
1 p∗1 − ψ∗(t1), x

∗
1 − x1〉 +

∫ t1

t0

〈

DT (t)ψ∗(t) +
d

dt
ψ∗(t), x∗(t) − x(t)

〉

dt

+

∫ t1

t0

〈

BT (t)ψ∗(t), u∗(t) − u(t)
〉

dt ≤ 0

for all x1 ∈ Rn, (x(·), u(·)) ∈ ACn[t0, t1] × U . Putting u(·) = u∗(·) in the resulting inequality, we
get

〈ϕ1 + AT
1 p∗1 − ψ∗(t1), x

∗
1 − x1〉 +

∫ t1

t0

〈

DT (t)ψ∗(t) +
d

dt
ψ∗(t), x∗(t) − x(t)

〉

dt ≤ 0 (3.4)

for all x1 ∈ Rn, x(·) ∈ ACn[t0, t1]. Assuming x(·) = x∗(·), we find

∫ t1

t0

〈

BT (t)ψ∗(t), u∗(t) − u(t)
〉

dt ≤ 0 (3.5)

for all u(·) ∈ U .

Given that (3.4) is the problem of maximizing a linear function in the variables (x1, x(·)) ∈
Rn × ACn[t0, t1], the inequalities (3.4), (3.5) can be rewritten in the form

DT (t)ψ∗(t) +
d

dt
ψ∗(t) = 0, ϕ1 + AT

1 p∗1 − ψ∗
1 = 0,

∫ t1

t0

〈

BT (t)ψ∗(t), u∗(t) − u(t)
〉

dt ≤ 0, u(·) ∈ U. (3.6)

From the left-hand inequality of (3.3) with the equations (3.6) we have

〈ϕ1 + AT
1 p1 − ψ1, x

∗
1〉 + 〈−a1, p1〉 +

∫ t1

t0

〈

DT (t)ψ(t) +
d

dt
ψ(t), x∗(t)

〉

dt + 〈ψ(t0), x0〉

+

∫ t1

t0

〈

BT (t)ψ(t), u∗(t)
〉

dt ≤ 〈−a1, p
∗
1〉 +

∫ t1

t0

〈

BT (t)ψ∗(t), u∗(t)
〉

dt + 〈ψ∗(t0), x0〉.

Note that ψ∗(t0) = 0. Indeed, suppose that ψ∗(t0) 6= 0, and fix the values of all variables, except
ψ(t0), in this inequality. Passing to ∞ in those components for which the corresponding components
of x(t0) are greater than zero, we obtain a contradiction with the existence of the saddle point of
the Lagrange function.

Given that ψ∗(t0) = 0, we consider this inequality provided two scalar constraints

〈ϕ1 + AT
1 p1 − ψ1, x

∗
1〉 = 0,

∫ t1

t0

〈

DT (t)ψ(t) +
d

dt
ψ(t), x∗(t)

〉

dt = 0.

Then we get the problem of maximizing the scalar function

〈−a1, p1〉 +

∫ t1

t0

〈

ψ(t), B(t)u∗(t)
〉

dt ≤ 〈−a1, p
∗
1〉 +

∫ t1

t0

〈

ψ∗(t), B(t)u∗(t)
〉

dt

under two scalar constraints

〈ϕ1 + AT
1 p1 − ψ1, x

∗
1〉 = 0,
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∫ t1

t0

〈

DT (t)ψ(t) +
d

dt
ψ(t), x∗(t)

〉

dt = 0,

where we come to the dual problem under the vector constraints:

(p∗1, ψ
∗(t)) ∈ Argmax

{

〈−a1, p1〉 +

∫ t1

t0

〈

ψ(t), B(t)u∗(t)
〉

dt
∣

∣ (3.7)

ϕ1 + AT
1 p1 − ψ1 = 0, DT (t)ψ(t) +

d

dt
ψ(t) = 0, p1 ∈ Rm

+ , ψ(·) ∈ Ψn
2 [t0, t1]

}

. (3.8)

Thus, the system (3.7), (3.8) gives the dual problem with respect to (1.1)–(1.3). This problem
can be viewed as a generalization of dual problem in the finite-dimensional linear programming.

4. Mutually dual problems

Write out together a pair of mutually dual problems.

Primal problem:

(x∗
1, x

∗(t), u∗(t)) ∈ Argmin
{

〈ϕ1, x(t1)〉 | A1x(t1) ≤ a1, x(t1) ∈ Rn,

d

dt
x(t) = D(t)x(t) + B(t)u(t), t0 ≤ t ≤ t1, (4.1)

x(t0) = x0, x(t1) = x∗
1 ∈ X1, u(·) ∈ U

}

.

Dual problem:

(p∗1, ψ
∗(t)) ∈ Argmax

{

〈−a1, p1〉 +

∫ t1

t0

〈

ψ(t), B(t)u∗(t)
〉

dt
∣

∣ p1 ≥ 0, ψ(·) ⊆ Ψn
2 [t0, t1],

ϕ1 + AT
1 p1 − ψ1 = 0, DT (t)ψ(t) +

d

dt
ψ(t) = 0

}

, (4.2)
∫ t1

t0

〈

BT (t)ψ∗(t), u∗(t) − u(t)
〉

dt ≤ 0, u(·) ∈ U. (4.3)

If there is no dynamics in (4.1)–(4.3), the system takes the form of primal and dual linear program-
ming problems for finite-dimensional optimization:

x∗
1 ∈ Argmin

{

〈ϕ1, x1〉 | A1x1 ≤ a1, x1 ∈ Rn
}

,

p∗1 ∈ Argmax
{

〈−a1, p1〉 | ϕ1 + AT
1 p1 = 0, p1 ≥ 0

}

.

Each problem in the system (4.1)–(4.3) (separately or in combination) can be the basis for the
development of methods for calculating the saddle points of the Lagrangian [9–18]. Another family
of methods can be obtained by combining the left-hand inequality of the saddle-point system for
the primal Lagrange function with the right-hand saddle-point inequality for the dual Lagrangian.
Thus constructed methods will converge monotonically in the norm to saddle points of Lagrangians.
With regard to the initial boundary value problem of optimal control it means the weak convergence
in controls, the strong convergence in trajectories, conjugate trajectories and terminal variables.

In this paper, we will consider an iterative process for solving a boundary value differential
system obtained from the saddle point inequalities. It will be shown that this system is close to
the similar differential system received from the Pontryagin maximum principle.
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5. Primal-dual (combined) differential system

Consider the left-hand saddle-point inequality of (2.2) for the classical Lagrangian together with
the right-hand saddle-point inequality of (3.3) for the dual Lagrangian. Subsystems (2.5) and (3.6)
were obtained as a result of these systems.

Combining them together, we write out the primal-dual differential system

d

dt
x∗(t) = D(t)x∗(t) + B(t)u∗(t), x∗(t0) = x0,

〈p1 − p∗1, A1x
∗
1 − a1〉 ≤ 0,

DT (t)ψ∗(t) +
d

dt
ψ∗(t) = 0, ϕ1 + AT

1 p∗1 − ψ∗
1 = 0,

∫ t1

t0

〈

BT (t)ψ∗(t), u∗(t) − u(t)
〉

dt ≤ 0, u(·) ∈ U, p1 ∈ Rm
+ .

(5.1)

The primal-dual system (5.1) was obtained from the necessary and sufficient conditions for
a saddle point of the Lagrange function. A similar system can be obtained on the basis of the
Pontryagin maximum principle. Due to the linearity of the dynamics, the Hamiltonian for this
optimal control problem takes the form of variational inequalities. In view of the convexity of U ,
the Pontryagin maximum principle can be written as

d

dt
x∗(t) = D(t)x∗(t) + B(t)u∗(t), x∗(t0) = x0,

〈p1 − p∗1, A1x
∗
1 − a1〉 ≤ 0,

DT (t)ψ∗(t) +
d

dt
ψ∗(t) = 0, ϕ1 + AT

1 p∗1 − ψ∗
1 = 0,

〈

BT (t)ψ∗(t), u∗(t) − u(t)
〉

≤ 0,

(5.2)

for all p1 ∈ Rm
+ , u(·) ∈ U and almost all t ∈ [t0, t1].

The variational inequalities (5.1) and (5.2) with variable u(·) are, in fact, different inequali-
ties. The first inequality describes the problem of maximizing a linear function in functional space
on given set U . The second inequality is actually a family of finite-dimensional variational in-
equalities, depending on certain parameter t ∈ [t0, t1]. Moreover, each of these inequalities is a
finite-dimensional problem of maximizing the linear function in variable u.

Without a doubt, the system (5.2) is more universal statement than (5.1), but (5.1) clearly
emphasizes its saddle-point nature and allows us to build techniques within the Hilbert spaces.
These methods converge to the problem solution in all its variables: controls, trajectories, conjugate
trajectories as well as primal and dual variables of terminal problems. Similar methods based on
the maximum principle are not known to the authors. The variational inequality (5.1) is usually
associated with the integral maximum principle [7, Book 2, p. 450].

Return to the system (5.1). The variational inequalities of the system can be rewritten in the
equivalent form of operator equations with operators of projection onto the corresponding convex
closed sets. Then we arrive at the system of operator and differential equations

d

dt
x∗(t) = D(t)x∗(t) + B(t)u∗(t), x∗(t0) = x0, (5.3)

p∗1 = π+(p∗1 + α(A1x
∗
1 − a1)), (5.4)

DT (t)ψ∗(t) +
d

dt
ψ∗(t) = 0, ϕ1 + AT

1 p∗1 − ψ∗
1 = 0, (5.5)

u∗(t) = πU (u∗(t) − αBT (t)ψ∗(t)), (5.6)

where π+(·), πU (·) are the projection operators onto the positive orthant Rm
+ and the set U of

admissible controls, α > 0. Here (p∗1, ψ
∗(t);x∗

1, x
∗(t), u∗(t)) is the solution of (5.3)–(5.6).
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6. Saddle-point method for solving problem

Consider an iterative process constructed on the basis of (5.3)–(5.6). Suppose, the values of the
dual variable p1 = pk

1 ∈ Rm
+ and the control u(t) = uk(t) ∈ U are known on the k-th iteration. Then

you can solve the differential equation (5.3) and find the trajectory xk(t). Then you calculate the
terminal value xk(t1) = xk

1 and using pk
1, xk

1 implement the step (5.4). Then, using the transversality
condition you calculate the terminal value ψk

1 = ϕ1 + AT
1 pk

1, solve the system (5.5) and find the
conjugate trajectory ψk(t). Finally, when ψk(t) and uk(t) became known you make a move by the
control variable (5.6) and define the next iteration uk+1(t) ∈ U .

Formally, the process described above has the form

d

dt
xk(t) = D(t)xk(t) + B(t)uk(t), xk(t0) = x0, (6.1)

pk+1
1 = π+(pk

1 + α(A1x
k
1 − a1)), (6.2)

DT (t)ψk(t) +
d

dt
ψk(t) = 0, ψk

1 = ϕ1 + AT
1 pk

1, (6.3)

uk+1(t) = πU (uk(t) − αBT (t)ψk(t)), k = 0, 1, 2, ... (6.4)

Note that in this method, each iteration is actually reduced to the solution of two systems of
differential equations (6.1), (6.3).

The process (6.1)–(6.4) refers to the methods of simple iteration and is the simplest of the
known computational processes. In the case of strictly contractive mappings this process converges
at a geometric rate. However, in our case we deal with the saddle-point problem for which the
simple iteration methods do not converge. Therefore, to solve the saddle-point problem, we use
the saddle-point extragradient approach. Other gradient-type approaches were considered by many
authors, mainly applied to variational inequalities [19].

The extragradient method for solving the problem (5.3)–(5.6) is the controlled process (6.1)–
(6.4), each iteration of which is divided into two half-steps.

The formulas of this iterative method have the form:

1) predictive half-step

d

dt
xk(t) = D(t)xk(t) + B(t)uk(t), xk(t0) = x0, (6.5)

p̄k
1 = π+(pk

1 + α(A1x
k
1 − a1)), (6.6)

d

dt
ψk(t) + DT (t)ψk(t) = 0, ψk

1 = ϕ1 + AT
1 pk

1, (6.7)

ūk(t) = πU (uk(t) − αBT (t)ψk(t)); (6.8)

2) basic half-step

d

dt
x̄k(t) = D(t)x̄k(t) + B(t)ūk(t), x̄k(t0) = x0, (6.9)

pk+1
1 = π+(pk

1 + α(A1x̄
k
1 − a1)), (6.10)

d

dt
ψ̄k(t) + DT (t)ψ̄k(t) = 0, ψ̄k

1 = ϕ1 + AT
1 p̄k

1, (6.11)

uk+1(t) = πU (uk(t) − αBT (t)ψ̄k(t)), k = 0, 1, 2, ... (6.12)

Here, two differential equations are solved and the iterative move in controls is carried out on each
half-step.

From the formulas of this process, we can see that the differential equations (6.5), (6.7) and
(6.9), (6.11) are only used to calculate the functions xk(t), x̄k(t), ψk(t) and ψ̄k(t), so the process
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can be written in a more compact form

p̄k
1 = π+(pk

1 + α(A1x
k
1 − a1)), (6.13)

ūk(t) = πU (uk(t) − αBT (t)ψk(t)), (6.14)

pk+1
1 = π+(pk

1 + α(A1x̄
k
1 − a1)), (6.15)

uk+1(t) = πU (uk(t) − αBT (t)ψ̄k(t)), (6.16)

where t ∈ [t0, t1], xk(t), x̄k(t), ψk(t) and ψ̄k(t) are calculated in (6.5), (6.9) and (6.7), (6.11).
For auxiliary estimates we present the operator equations (6.5)–(6.12) in the form of variational

inequalities

〈p̄k
1 − pk

1 − α(A1x
k
1 − a1), p1 − p̄k

1〉 ≥ 0, (6.17)

〈pk+1
1 − pk

1 − α(A1x̄
k
1 − a1), p1 − pk+1

1 〉 ≥ 0, (6.18)
∫ t1

t0

〈

ūk(t) − uk(t) + αBT (t)ψk(t), u(t) − ūk(t)
〉

dt ≥ 0, (6.19)

∫ t1

t0

〈

uk+1(t) − uk(t) + αBT (t)ψ̄k(t), u(t) − uk+1(t)
〉

dt ≥ 0 (6.20)

for all p1 ∈ Rm
+ , u(·) ∈ U .

The following estimates were obtained from the operator equations (6.17)–(6.20):

|p̄k
1 − pk+1

1 | ≤ α|A1(x
k
1 − x̄k

1)| ≤ α‖A1‖|x
k
1 − x̄k

1|, (6.21)

‖ūk(·) − uk+1(·)‖ ≤ α‖BT (t)(ψk(·) − ψ̄k(·))‖ ≤ αBmax‖ψ
k(·) − ψ̄k(·)‖, (6.22)

where Bmax = max‖B(t)‖ for all t ∈ [t0, t1], α > 0.

1. In the proof of the method convergence to the solution, we need two more estimates. This
refers to the deviations |xk(t) − x̄k(t)| and |ψk(t) − ψ̄k(t)|, t ∈ [t0, t1]. By the linearity of the
equations (6.5) and (6.9), we have

d

dt

(

xk(t) − x̄k(t)
)

= D(t)(xk(t) − x̄k(t)) + B(t)(uk(t) − ūk(t)), xk(t0) − x̄k(t0) = 0.

Integrate the resulting identity from t0 to t:

(xk(t) − x̄k(t)) − (xk(t0) − x̄k(t0)) =

∫ t

t0

D(τ)(xk(τ) − x̄k(τ))dτ +

∫ t

t0

B(τ)(uk(τ) − ūk(τ))dτ.

From the last equation, we get the estimate

|xk(t) − x̄k(t)| ≤ Dmax

∫ t

t0

|xk(τ) − x̄k(τ)|dτ + Bmax

∫ t1

t0

|uk(τ) − ūk(τ)|dτ, (6.23)

with Dmax = max ‖D(t)‖, t ∈ [t0, t1]. We apply the lemma Gronwall [7, Book 1, p. 472] as:
inequality 0 ≤ ϕ(t) ≤ a

∫ t

t0
ϕ(τ)dτ + b, t0 ≤ t ≤ t1, leads to the inequality ϕ(t) ≤ bea(t1−t0),

t0 ≤ t ≤ t1, where ϕ(t) is continuous, a ≥ 0, b ≥ 0 are constants. Using this lemma, we obtain
from the (6.23)

|xk(t) − x̄k(t)| ≤ Bmaxe
Dmax(t1−t0)

∫ t1

t0

|uk(t) − ūk(t)|dt.

Evaluating the integral in the right-hand side of this inequality by the Cauchy-Schwarz inequality,
we have

|xk(t) − x̄k(t)|2 ≤ B2
maxe

2Dmax(t1−t0)(t1 − t0)‖u
k(·) − ūk(·)‖2. (6.24)
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Hence for t = t1 we find the deviations for terminal values of the trajectories

|xk
1 − x̄k

1|
2 ≤ B2

maxe
2Dmax(t1−t0)(t1 − t0)‖u

k(·) − ūk(·)‖2. (6.25)

To prove that the sequence {xk(·)} is limited, we actually have to repeat the above arguments.
Recall the highlights. Write down the difference of two linear equations (6.5) and (5.3):

d

dt

(

xk(t) − x∗(t)
)

= D(t)(xk(t) − x∗(t)) + B(t)(uk(t) − u∗(t)), xk(t0) − x∗(t0) = 0.

Passing from this difference to the analog of (6.23), we have

|xk(t) − x∗(t)| ≤ Dmax

∫ t

t0

|xk(τ) − x∗(τ)|dτ + Bmax

∫ t1

t0

|uk(τ) − u∗(τ)|dτ.

Concluding these considerations, we obtain the analogue of (6.24):

|xk(t) − x∗(t)|2 ≤ B2
maxe

2Dmax(t1−t0)(t1 − t0)‖u
k(·) − u∗(·)‖2. (6.26)

2. Finally, from the equations (6.7), (6.11) we obtain the similar estimates for conjugate
trajectories |ψk(t) − ψ̄k(t)|:

d

dt

(

ψk(t) − ψ̄k(t)
)

+ DT (t)(ψk(t) − ψ̄k(t)) = 0, (6.27)

where ψk
1 − ψ̄k

1 = AT
1 (pk

1 − p̄k
1). Integrating (6.27) from t to t1, we have

∫ t1

t

d

dt

(

ψk(t) − ψ̄k(t)
)

dt +

∫ t1

t

DT (t)(ψk(t) − ψ̄k(t))dt = 0,

from whence

ψk(t) − ψ̄k(t) =

∫ t1

t

DT (t)(ψk(t) − ψ̄k(t))dt + ψk
1 − ψ̄k

1 .

Consequently, the estimate is valid:

|ψk(t)− ψ̄k(t)| ≤

∫ t1

t

|DT (t)(ψk(t)− ψ̄k(t))|dt+ |ψk
1 − ψ̄k

1 | ≤ Dmax

∫ t1

t

|ψk(t)− ψ̄k(t)|dt+ b, (6.28)

where t ∈ [t0, t1], b = |ψk
1 − ψ̄k

1 |. Apply again the Lemma Gronwall [7, Book 1, p. 472]: if
0 ≤ ϕ(t) ≤ a

∫ t1
t

ϕ(τ)d(τ) + b, t0 ≤ t ≤ t1, then the inequality ϕ(t) ≤ bea(t1−t) is also true. Here
ϕ(t) is a continuous function, a ≥ 0, b ≥ 0 are some constants. Based on this statement, we get
out of (6.28)

|ψk(t) − ψ̄k(t)|2 ≤ |ψk
1 − ψ̄k

1 |
2e2Dmax(t1−t). (6.29)

From (6.7), (6.11) for terminal values, we have

|ψk
1 − ψ̄k

1 |
2 = |AT

1 (pk
1 − p̄k

1)|
2 ≤ ‖AT

1 ‖
2|pk

1 − p̄k
1|

2. (6.30)

Substitute (6.30) into (6.29)

|ψk(t) − ψ̄k(t)|2 ≤ ‖AT
1 ‖

2e2Dmax(t1−t)|pk
1 − p̄k

1|
2.

Integrating inequality from t0 to t1, we find

‖ψk(·) − ψ̄k(·)‖2 ≤ ‖AT
1 ‖

2/(2Dmax)
(

e2Dmax(t1−t0) − 1
)

|pk
1 − p̄k

1|
2. (6.31)

Similarly we prove the boundedness of conjugate trajectories by evaluating |ψk(t)−ψ∗(t)|. From
(6.7) and (5.5), we have

d

dt

(

ψk(t) − ψ∗(t)
)

+ DT (t)(ψk(t) − ψ∗(t)) = 0,

Passing from this difference to analogs of (6.28)-(6.31), we obtain

‖ψk(·) − ψ∗(·)‖2 ≤ ‖AT
1 ‖

2/(2Dmax)
(

e2Dmax(t1−t0) − 1
)

|pk
1 − p∗1|

2. (6.32)
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7. Proof of method convergence

Show that the process (6.5)–(6.12) converges monotonically in norm to one of solutions of the
original problem.

Theorem 1. If the set of solutions (p∗1, ψ
∗(t);x∗

1, x
∗(t), u∗(t)) for the problem (5.3)–(5.6) is not

empty, and the terminal problem is a linear programming problem then the sequence (pk
1, ψ

k(·);xk
1,

xk(·), uk(·)), generated by (6.5)–(6.12) with step length chosen from the condition 0 < α < 1√
2K

,

where K = max(K1,K2),

K2
1 = B2

max‖A
T
1 ‖

2/(2Dmax)
(

e2Dmax(t1−t0) − 1
)

, K2
2 = ‖A1‖

2B2
maxe

2Dmax(t1−t0)(t1 − t0),

contains a subsequence which converges to the solution of the problem. Namely, the convergence
in controls is weak, while the convergence in trajectories, conjugate trajectories as well as in the
finite-dimensional variables of the terminal problem is strong.

In particular, for this subsequence the sequence of total deviations

{

‖uk(·) − u∗(·)‖2 + |pk
1 − p∗1|

2
}

decreases monotonically on the Cartesian product Lr
2[t0, t1] × Rm

+ .

P r o o f. The main efforts in the theorem are focused to obtain the estimates of |uk(t)−u∗(t)|2

and |pk
1−p∗1|

2. For this purpose we will use variational inequalities. In the proposed iterative process,
one part of the formulas is written in the form of variational inequalities, the other part – in the
form of differential equations, so in order to uniform the reasoning we will write the differential
equations also in the form of variational inequalities.

1. Write down the equation (6.11) in the form of variational inequality

〈ϕ1 + AT
1 p̄k

1 − ψ̄k
1 , x∗

1 − x̄k
1〉 +

∫ t1

t0

〈

DT (t)ψ̄k(t) +
d

dt
ψ̄k(t), x∗(t) − x̄k(t)

〉

dt ≥ 0.

Similarly we proceed with the equation (5.5):

−〈ϕ1 + AT
1 p∗1 − ψ∗

1, x
∗
1 − x̄k

1〉 −

∫ t1

t0

〈

DT (t)ψ∗(t) +
d

dt
ψ∗(t), x∗(t) − x̄k(t)

〉

dt ≥ 0.

Sum these inequalities

〈AT
1 p̄k

1 − AT
1 p∗1 − (ψ̄k

1 − ψ∗
1), x

∗
1 − x̄k

1〉

+

∫ t1

t0

〈DT (t)(ψ̄k(t) − ψ∗(t)) +
d

dt
(ψ̄k(t) − ψ∗(t)), x∗(t) − x̄k(t)〉dt ≥ 0.

(7.1)

Using the formula for integration by parts

∫ t1

t0

〈
d

dt
(ψ̄k(t) − ψ∗(t)), x∗(t) − x̄k(t)〉dt = −

∫ t1

t0

〈ψ̄k(t) − ψ∗(t),
d

dt
(x∗(t) − x̄k(t))〉dt

+〈ψ̄k
1 − ψ∗

1, x
∗
1 − x̄k

1〉,

we transform the differential term in the left-hand side of (7.1) (this transformation means the
transition to the conjugate differential operator)

〈AT
1 p̄k

1 − AT
1 p∗1, x

∗
1 − x̄k

1〉 − 〈ψ̄k
1 − ψ∗

1, x
∗
1 − x̄k

1〉
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+

∫ t1

t0

〈

ψ̄k(t) − ψ∗(t), D(t)(x∗(t) − x̄k(t)) −
d

dt
(x∗(t) − x̄k(t))

〉

dt + 〈ψ̄k
1 − ψ∗

1, x
∗
1 − x̄k

1〉 ≥ 0.

By reducing similar terms, after multiplication by α, we obtain the inequality

α〈AT
1 (p̄k

1−p∗1), x
∗
1− x̄k

1〉+α

∫ t1

t0

〈

ψ̄k(t)−ψ∗(t), D(t)(x∗(t)− x̄k(t))−
d

dt
(x∗(t)− x̄k(t))

〉

dt ≥ 0. (7.2)

2. Obtain now a similar inequality with respect to the variable p1. To do this, put p1 = pk+1
1

in (6.17):
〈p̄k

1 − pk
1 − α(A1x

k
1 − a1), p

k+1
1 − p̄k

1〉 ≥ 0.

Add and subtract the term αA1x̄
k
1:

〈p̄k
1 − pk

1, p
k+1
1 − p̄k

1〉 − α〈A1(−x̄k
1 + xk

1), p
k+1
1 − p̄k

1〉 − α〈A1x̄
k
1 − a1, p

k+1
1 − p̄k

1〉 ≥ 0.

Put p1 = p∗1 in (6.18):

〈pk+1
1 − pk

1, p
∗
1 − pk+1

1 〉 − α〈A1x̄
k
1 − a1, p

∗
1 − pk+1

1 〉 ≥ 0.

Add up these inequalities

〈p̄k
1 − pk

1, p
k+1
1 − p̄k

1〉 + 〈pk+1
1 − pk

1, p
∗
1 − pk+1

1 〉

−α〈A1x̄
k
1 − a1, p

∗
1 − p̄k

1〉 − α〈A1(x
k
1 − x̄k

1), p
k+1
1 − p̄k

1〉 ≥ 0.

Assuming p1 = p̄k
1 in the second inequality of the system (5.1), we have

α〈p∗1 − p̄k
1, A1x

∗
1 − a1〉 ≥ 0.

Summarize the last two inequalities

〈p̄k
1 − pk

1, p
k+1
1 − p̄k

1〉 + 〈pk+1
1 − pk

1, p
∗
1 − pk+1

1 〉

−α〈A1(x̄
k
1 − x∗

1), p
∗
1 − p̄k

1〉 + α〈A1(x̄
k
1 − xk

1), p
k+1
1 − p̄k

1〉 ≥ 0.

Finally, add up the resulting inequality with (7.2)

〈p̄k
1 − pk

1, p
k+1
1 − p̄k

1〉 + 〈pk+1
1 − pk

1, p
∗
1 − pk+1

1 〉 + α〈A1(x̄
k
1 − xk

1), p
k+1
1 − p̄k

1〉

+α

∫ t1

t0

〈ψ̄k(t) − ψ∗(t), D(t)(x∗(t) − x̄k(t)) −
d

dt
(x∗(t) − x̄k(t))〉dt ≥ 0.

(7.3)

3. Consider the inequalities in controls. Put u(·) = uk+1(·) in (6.19)

∫ t1

t0

〈ūk(t) − uk(t) + αBT (t)ψk(t), uk+1(t) − ūk(t)〉dt ≥ 0.

Add and subtract the term ψ̄k(t) under the sign of the scalar product:

∫ t1

t0

〈

ūk(t) − uk(t), uk+1(t) − ūk(t)
〉

dt − α

∫ t1

t0

〈

BT (t)(ψ̄k(t) − ψk(t)), uk+1(t) − ūk(t)
〉

dt

+α

∫ t1

t0

〈

BT (t)ψ̄k(t), uk+1(t) − ūk(t)
〉

dt ≥ 0.

(7.4)

Put u = u∗(·) in (6.20)

∫ t1

t0

〈

uk+1(t) − uk(t) + αBT (t)ψ̄k(t), u∗(t) − uk+1(t)
〉

dt ≥ 0. (7.5)
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Add up (7.4) and (7.5) then

∫ t1

t0

〈ūk(t) − uk(t), uk+1(t) − ūk(t)〉dt +

∫ t1

t0

〈uk+1(t) − uk(t), u∗(t) − uk+1(t)〉dt

−α

∫ t1

t0

〈BT (t)(ψ̄k(t)−ψk(t)), uk+1(t)−ūk(t)〉dt+α

∫ t1

t0

〈BT (t)ψ̄k(t), u∗(t)−ūk(t)〉dt ≥ 0.

(7.6)

Substituting u(t) = ūk(t) in the variational inequality of (5.1), we have

∫ t1

t0

〈BT (t)ψ∗(t), ūk(t) − u∗(t)〉dt ≥ 0. (7.7)

Summarize (7.6) and (7.7)

∫ t1

t0

〈ūk(t) − uk(t), uk+1(t) − ūk(t)〉dt +

∫ t1

t0

〈uk+1(t) − uk(t), u∗(t) − uk+1(t)〉dt

−α

∫ t1

t0

〈BT (t)(ψ̄k(t)− ψk(t)), uk+1(t)− ūk(t)〉dt + α

∫ t1

t0

〈ψ̄k(t)− ψ∗(t), B(t)(u∗(t)− ūk(t))〉dt ≥ 0.

(7.8)
4. Summing (7.3) and (7.8), we obtain

〈p̄k
1 − pk

1, p
k+1
1 − p̄k

1〉 + 〈pk+1
1 − pk

1, p
∗
1 − pk+1

1 〉 + α〈A1(x̄
k
1 − xk

1), p
k+1
1 − p̄k

1〉

+α

∫ t1

t0

〈ψ̄k(t) − ψ∗(t), D(t)(x∗(t) − x̄k(t)) + B(t)(u∗(t) − ūk(t)) −
d

dt
(x∗(t) − x̄k(t))〉dt+

+

∫ t1

t0

〈ūk(t) − uk(t), uk+1(t) − ūk(t)〉dt +

∫ t1

t0

〈uk+1(t) − uk(t), u∗(t) − uk+1(t)〉dt

−α

∫ t1

t0

〈BT (t)(ψ̄k(t) − ψk(t)), uk+1(t) − ūk(t)〉dt ≥ 0.

(7.9)

5. Estimates obtained in points 1–4 of this theorem follows from the right-hand inequality
of (2.2). Get a similar estimate from the left-hand inequality of the same system. Subtract the
equation (6.9) from (5.3):

D(t)(x∗(t) − x̄k(t)) + B(t)(u∗(t) − ūk(t)) −
d

dt
(x∗(t) − x̄k(t)) = 0.

By the last equation, the fourth term in the inequality (7.9) resets to zero, and as a result we have

〈p̄k
1 − pk

1, p
k+1
1 − p̄k

1〉 + 〈pk+1
1 − pk

1, p
∗
1 − pk+1

1 〉 + α〈A1(x̄
k
1 − xk

1), p
k+1
1 − p̄k

1〉

+

∫ t1

t0

〈ūk(t) − uk(t), uk+1(t) − ūk(t)〉dt +

∫ t1

t0

〈uk+1(t) − uk(t), u∗(t) − uk+1(t)〉dt

−α

∫ t1

t0

〈BT (t)(ψ̄k(t) − ψk(t)), uk+1(t) − ūk(t)〉dt ≥ 0.

(7.10)

Taking into account (6.21), (6.22) we estimate the third and last terms in the left-hand part of
(7.10) and obtain

〈p̄k
1 − pk

1, p
k+1
1 − p̄k

1〉 + 〈pk+1
1 − pk

1, p
∗
1 − pk+1

1 〉 + (α||A1||)
2|x̄k

1 − xk
1)|

2

+

∫ t1

t0

〈ūk(t) − uk(t), uk+1(t) − ūk(t)〉dt +

∫ t1

t0

〈uk+1(t) − uk(t), u∗(t) − uk+1(t)〉dt

+(αBmax)
2

∫ t1

t0

|ψ̄k(t) − ψk(t)|2dt ≥ 0.

(7.11)
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6. Using the identity |y1 − y2|
2 = |y1 − y3|

2 + 2〈y1 − y3, y3 − y2〉+ |y3 − y2|
2, we can rewrite the

scalar product from (7.11) in the form of the sum (difference) of squares

|pk
1−p∗1|

2−|pk+1
1 −p̄k

1|
2 − |p̄k

1 − pk
1|

2−|pk+1
1 − p∗1|

2+2(α‖A1‖)
2|x̄k

1−xk
1|

2+‖uk(·)−u∗(·)‖2

−‖uk(·)−ūk(·)‖2−‖ūk(·)−uk+1(·)‖2−‖uk+1(·)−u∗(·)‖2+2(αBmax)
2‖ψ̄k(·)−ψk(·)‖2 ≥ 0.

(7.12)

Rewrite (7.12) in the form

|pk+1
1 −p∗1|

2+|pk
1−p̄k

1|
2+|p̄k

1−pk+1
1 |2−2(α‖A1‖)

2|x̄k
1−xk

1|
2+‖uk+1(·)−u∗(·)‖2+‖uk(·)−ūk(·)‖2

+‖ūk(·)−uk+1(·)‖2−2(αBmax)
2‖ψ̄k(·)−ψk(·)‖2≤‖uk(·)−u∗(·)‖2+|pk

1−p∗1|
2.

(7.13)
Estimate, given the inequalities (6.25) and (6.32), the fourth and last terms in the left-hand side
of this inequality:

2(α‖A1‖)
2|x̄k

1 − xk
1|

2 ≤ 2(α‖A1‖)
2B2

maxe
2Dmax(t1−t0)(t1 − t0)‖u

k(·) − ūk(·)‖2;

2(αBmax)
2‖ψ̄k(·) − ψk(·)‖2 ≤ 2(αBmax)

2‖A1‖
2/(2Dmax)

(

e2Dmax(t1−t0) − 1
)

|pk
1 − p̄k

1|
2.

Substituting these estimates in (7.13), we finally get

|pk+1
1 − p∗1|

2 + |p̄k
1 − pk+1

1 |2 + ‖uk+1(·) − u∗(·)‖2 + ‖ūk(·) − uk+1(·)‖2

+d1|p
k
1 − p̄k

1|
2 + d2‖u

k(·) − ūk(·)‖2 ≤ |pk
1 − p∗1|

2 + ‖uk(·) − u∗(·)‖2,
(7.14)

where d1 = 1 − 2α2K2
1 , d2 = 1 − 2α2K2

2 ,

K2
1 = B2

max‖A
T
1 ‖

2/(2Dmax)
(

e2Dmax(t1−t0) − 1
)

, K2
2 = ‖A1‖

2B2
maxe

2Dmax(t1−t0)(t1 − t0).

Denote K = max(K1,K2) then provided d1 > 0, d2 > 0, i.e. 0 < α < 1√
2K

, from (7.14) we get

a monotone decreasing of the sequence
{

‖uk(·) − u∗(·)‖2 + |pk
1 − p∗1|

2
}

on the Cartesian product
Lr

2[t0, t1] × Rm
+ :

|pk+1
1 − p∗1|

2 + ‖uk+1(·) − u∗(·)‖2 ≤ |pk
1 − p∗1|

2 + ‖uk(·) − u∗(·)‖2.

7. Summarize the inequality (7.14) from k = 0 to k = N :

|pN+1
1 − p∗1|

2 + ‖uN+1(·) − u∗(·)‖2 +
N

∑

k=0

|p̄k
1 − pk+1

1 |2 +
N

∑

k=0

‖ūk(·) − uk+1(·)‖2

+d1

N
∑

k=0

|pk
1 − p̄k

1|
2 + d2

N
∑

k=0

‖uk(·) − ūk(·)‖2 ≤ |p0
1 − p∗1|

2 + ‖u0(·) − u∗(·)‖2.

From this inequality, provided 0 < α < 1√
2K

, it follows that the sequence is bounded for any N

|pN+1
1 − p∗1|

2 + ‖uN+1(·) − u∗(·)‖2 ≤ |p0
1 − p∗1|

2 + ‖u0(·) − u∗(·)‖2. (7.15)

From here also we get the boundedness for series

∞
∑

k=0

|p̄k
1 − pk+1

1 |2 < ∞,
∞

∑

k=0

‖ūk(·) − uk+1(·)‖2 < ∞,
∞

∑

k=0

|pk
1 − p̄k

1|
2 < ∞,

∞
∑

k=0

‖uk(·) − ūk(·)‖2 < ∞;

and therefore the convergence to zero for the following terms

|p̄k
1 − pk+1

1 | → 0, ‖ūk(·) − uk+1(·)‖2 → 0, |pk
1 − p̄k

1| → 0, ‖uk(·) − ūk(·)‖2 → 0. (7.16)
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Hence by the triangle inequality, we obtain |pk
1 − pk+1

1 | → 0, ‖uk(·) − uk+1(·)‖ → 0, k → ∞. From
(6.25) and (6.32), it follows that

|xk(t) − x̄k(t)| → 0, |xk
1 − x̄k

1| → 0, ‖ψk(·) − ψ̄k(·)‖ → 0, k → ∞. (7.17)

Moreover, from (7.15) we get the boundedness of the sequences

|pk
1 − p∗1| ≤ const, ‖uk(·) − u∗(·)‖ ≤ const,

and from (6.26) and (6.32) — the boundedness of the sequences in other variables:

|xk(t) − x∗(t)| ≤ const, |xk
1 − x∗

1| ≤ const, ‖ψk(·) − ψ∗(·)‖ ≤ const.

8. Since the sequence (pk
1, ψ

k(·);xk
1, x

k(·), uk(·)) is bounded on Rm
+×Ψn

2 [t0, t1]×Rn×ACn[t0, t1]×

U then it is weakly compact [8]. The latter means that there exists a subsequence (pki

1 , ψki(·);xki

1 ,
xki(·), uki(·)) and a point (p

′

1, ψ
′

(·);x
′

1, x
′

(·), u
′

(·)) which is the weak limit of this subsequence. Weak
convergence is understood in the sense of pointwise convergence of the linear functionals on the
Cartesian product Rm

+ × Ψn
2 [t0, t1] × Rn × ACn[t0, t1] × U for any fixed element (p1, ψ(·);x1, x(·),

u(·)) as i → ∞. In finite-dimensional spaces the weak and strong convergences coincide [8].
Now we can show that (p

′

1, ψ
′

(·);x
′

1, x
′

(·), u
′

(·)) is a solution of (5.3)–(5.6). To do this, first note
that the pair of equations (6.8), (6.12) and variational inequalities (6.19), (6.20) are equivalent,
because the projection operator represents the problem of minimizing of the quadratic function
1
2 |u(t) − (uki(t) − αBT (t)ψki(t))|2 on the set U , and the variational inequalities (6.19), (6.20) are
necessary and sufficient conditions for a minimum of this quadratic function.

In [7, Book 2, p. 651] it was shown that a linear operator is weakly continuous. Taking the
limit as ki → +∞ in the system (6.5)–(6.12) (except for the equations (6.8) and (6.12), we obtain

d

dt
x

′

(t) = D(t)x
′

(t) + B(t)u
′

(t), x
′

(t0) = x0,

p
′

1 = π+(p
′

1 + α(A1x
′

1 − a1)), (7.18)

DT (t)ψ
′

(t) +
d

dt
ψ

′

(t) = 0, ϕ1 + AT
1 p

′

1 − ψ
′

1 = 0.

Since the point (p
′

1, ψ
′

(·);x
′

1, x
′

(·), u
′

(·)) satisfies the system (7.18), or what is the same, the system
(5.1), it is a saddle point of the Lagrange function (2.1) (Sec. 2 ”Classic Lagrangian”). As shown in
Sec. 3 (”Dual Lagrangian”), this point is also the saddle point of the dual Lagrangian (3.2). Thus,
the point (p

′

1, ψ
′

(·);x
′

1, x
′

(·), u
′

(·)) satisfies the saddle-point system (3.3). In turn, this system leads
to the fulfillment of conditions (3.6), i.e.

DT (t)ψ
′

(t) + d
dt

ψ
′

(t) = 0, ϕ1 + AT
1 p

′

1 − ψ
′

1 = 0,

∫ t1

t0

〈BT (t)ψ
′

(t), u
′

(t) − u(t)〉dt ≤ 0, u(·) ∈ U.
(7.19)

Comparing (7.18), (7.19) with (5.3)–(5.6), we can conclude that (p
′

1, ψ
′

(·);x
′

1, x
′

(·), u
′

(·)) = (p∗1,
ψ∗(·);x∗

1, x
∗(·), u∗(·)). In other words, any weak limit point of the sequence (6.5)–(6.12) is a solution

to the original problem. This process decreases monotonically in the norm in the sense of the
inequality

|pk+1
1 − p∗1|

2 +

∫ t1

t0

|uk+1(t) − u∗(t)|2dt ≤ |pk
1 − p∗1|

2 +

∫ t1

t0

|uk(t) − u∗(t)|2dt.

Here (k + 1)-th iteration is embedded in the ball on the k-th iteration. Note that the component
∫ t1
t0

|uk+1(t) − u∗(t)|2dt due to its weak convergence does not necessarily tend to zero as k → +∞.
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Along with the common process taking place in the functional space, there is a sub-process in
the terminal space – on the attainability set. This sub-process is described by the formulas (6.6),
(6.10) and takes place in the finite-dimensional Euclidean space. By the common scheme, this sub-
process converges to a saddle point of the Lagrange function l(p1, x1) = 〈ϕ1, x1〉 + 〈p1, A1x1 − a1〉
for the convex programming problem formulated on the set of attainability. The convergence of
the sub-process to a saddle point of the Lagrangian is strong due to the fact that the weak and
strong convergences in finite-dimensional spaces coincide. The theorem is proved.

8. Conclusion

In this paper, the terminal control problem is treated as a saddle-point dynamic problem with
the boundary value condition. This condition is defined implicitly as a solution to the linear
programming problem. The saddle-point dynamic problem generates a system of saddle-point
inequalities in functional space. These inequalities are seen as strengthening the Pontryagin max-
imum principle in the convex case. The saddle-point inequalities generate the differential system,
which is close to a similar system in the maximum principle. Based on this system, the saddle-
point process was formulated, and its convergence to the saddle point of the Lagrange function was
proved. Namely, it was proved the weak convergence in controls, the strong convergence in phase
and conjugated trajectories as well as the strong convergence to a solution of the boundary-value
optimization problem on set of attainability.
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