LINEAR PROGRAMMING AND NETWORK FLOWS

THIRD EDITION

Mokhtar S. Bazaraa John J. Jarvis Hanif D. Sherali

A JOHN WILEY & SONS, INC., PUBLICATION

CONTENTS

ONE:	INTRODUCTION1				
	1.1	The Linear Programming Problem1			
	1.2	Linear Programming Modeling and Examples7			
	1.3	Geometric Solution			
	1.4	The Requirement Space			
	1.5	Notation			
		Exercises			
		Notes and References			
TWO:	LINEAR ALGEBRA, CONVEX ANALYSIS, AND				
	POLYH	IEDRAL SETS			
	2.1	Vectors			
	2.2	Matrices			
	23	Simultaneous Linear Equations 59			
	24	Convex Sets and Convex Functions 62			
	2.5	Polyhedral Sets and Polyhedral Cones 68			
	26	Extreme Points Faces Directions and Extreme			
	2.0	Directions of Polyhedral Sets: Geometric Insights 69			
	27	Representation of Polyhedral Sets. Conneutre insights			
	2.7	Exercises 80			
		Notes and Deferences 28			
		Notes and References			
THREE:	THE SIMPLEX METHOD 80				
THICE.	31	Extreme Points and Ontimality 89			
	3.2	Basic Feasible Solutions 92			
	3.3	Key to the Simpley Method			
	3.5	Geometric Motivation of the Simpley Method 107			
	2.5	Algebra of the Simpley Method			
	3.5	Termination: Ontimality and Unhoundedness 112			
	3.0	The Simpley Method			
	3.1	The Simplex Method in Tablasy Format			
	2.0	Plack Division			
	3.9	Block Pivoting			
		Exercises			
		Notes and References147			
FOUR	STARTING SOLUTION AND CONVERGENCE 140				
FOUR.	1 1	The Initial Pasic Feasible Solution 149			
	1.1	The Two Dhase Method			
	4.2	The Dis 1/Method			
	4.5	The Big-M Method			
	4.4	How Big Should Big-M Be?			
	4.5	The Single Artificial variable Technique			
	4.6	Degeneracy, Cycling, and Stalling			
	4.7	Validation of the Two Cycling Prevention Rules			
		Exercises			
		Notes and References			
EIVE-	ODECI	AT CIMPLEY IMPLEMENTATIONS AND			
FIVE:	SPECIAL SIMPLEX IMPLEMENTATIONS AND				
	OFILM	The Deviced Cimpley Mathed			
	5.1	The Cincle Material Conduction in 197			
	5.2	The Simplex Method for Bounded Variables			
	5.3	Farkas Lemma via the Simplex Method			
	5.4	The Karush-Kuhn-Tucker Optimality Conditions			

		Exercises Notes and References	239 252		
SIX	DUALITY AND SENSITIVITY ANALYSIS				
	6.1	Formulation of the Dual Problem	255		
	62	Primal-Dual Relationships			
	63	Economic Interpretation of the Dual	265		
	6.4	The Dual Simpley Method	273		
	6.5	The Prime Dual Method	281		
	6.6	Finding on Initial Dual Feasible Solution: The	201		
	0.0	Artificial Constraint Technique	289		
	67	Sensitivity Analysis	290		
	6.8	Parametric Analysis	307		
	0.0	Exercises	315		
		Notes and References	331		
SEVEN:	THE I	DECOMPOSITION PRINCIPLE			
	7.1	The Decomposition Principle			
	7.2	Numerical Example			
	7.3	Getting Started			
	74	The Case of Linbounded Region X	348		
	7.5	Block Diagonal or Angular Structure	355		
	7.6	Duality and Relationshins with other			
	7.0	Decomposition Procedures	364		
		Evercises	360		
		Notes and References			
EIGHT:	COMPLEXITY OF THE SIMPLEX ALGORITHM				
	81	Polynomial Complexity Issues	383		
	82	Computational Complexity of the Simplex Algorithm	387		
	83	Khachian's Ellipsoid Algorithm	301		
	8.4	Karmarkar's Projective Algorithm	307		
	85	Analysis of Karmarkar's Algorithm: Convergence			
	0.5	Complexity Sliding Objective Method and Pasia			
		Ontimel Solutions	400		
	86	Affine Scaling Drimal Dual Path Following and			
	0.0	Predictor, Corrector Variants of Interior Daint Mathade	420		
		Everaison	420		
		Notes and Deferences			
		Notes and References			
NINE:	MINI	MAL-COST NETWORK FLOWS	445		
	9.1	The Minimal–Cost Network Flow Problem	445		
	9.2	Some Basic Definitions and Terminology			
		from Graph Theory	447		
	9.3	Properties of the A Matrix	451		
	9.4	Representation of a Nonbasic Vector in			
		Terms of the Basic Vectors	457		
	9.5	The Simplex Method for Network Flow Problems	458		
	9.6	An Example of the Network Simplex Method	467		
	9.7	Finding an Initial Basic Feasible Solution	467		
	9.8	Network Flows with Lower and Upper Bounds			
	9.9	The Simplex Tableau Associated with a Network			
		Flow Problem	473		

	9.10	List Structures for Implementing the Network	
		Simplex Algorithm	474
	9.11	Degeneracy, Cycling, and Stalling	480
	9.12	Generalized Network Problems	486
		Exercises	489
		Notes and References	502
TEN:	THE TRA	ANSPORTATION AND ASSIGNMENT PROBLEMS	505
	10.1	Definition of the Transportation Problem	505
	10.2	Properties of the A Matrix	508
	10.3	Representation of a Nonbasic Vector in Terms	
		of the Basic Vectors	512
	10.4	The Simplex Method for Transportation Problems	514
	10.5	Illustrative Examples and a Note on Degeneracy	520
	10.6	The Simplex Tableau Associated with a Transportation	
		Tableau	527
	10.7	The Assignment Problem: (Kuhn's) Hungarian	
		Algorithm	527
	10.8	Alternating Basis Algorithm for Assignment Problems	536
	10.9	A Polynomial Successive Shortest Path	
		Approach for Assignment Problems	538
	10.10	The Transshipment Problem	542
		Exercises	542
		Notes and References	553
ELEVEN:	THE OU	T-OF-KILTER ALGORITHM	555
EBL (B.).	11.1	The Out-of-Kilter Formulation of a Minimal	
	••••	Cost Network Flow Problem	555
	11.2	Strategy of the Out-of-Kilter Algorithm	562
	11.3	Summary of the Out-of-Kilter Algorithm	.574
	11.4	An Example of the Out-of-Kilter Algorithm	
	11.5	A Labeling Procedure for the Out-of-Kilter Algorithm	
	11.6	Insight into Changes in Primal and Dual Function Values.	
	11.7	Relaxation Algorithms	
		Exercises	
		Notes and References	594
TWEI VE.	MAVINA	AL FLOW CHORTEST BATH MULTICOMMODITY	
IWELVE:	FLOW	AL FLOW, SHOKIESI PAIH, MULIICOMMODILY	505
	121	The Maximal Flow Problem	505
	12.2	The Shortest Path Problem	607
	12.3	Polynomial Shortest Path Algorithms for Networks	
		Having Arbitrary Costs	619
	12.4	Multicommodity Flows	623
	12.5	Characterization of a Basis for the Multicommodity	
		Minimal-Cost Flow Problem	633
	12.6	Synthesis of Multiterminal Flow Networks	638
		Exercises	647
		Notes and References	662
BIBLIOGR	RAPHY		665
INDEX			