
Linear Programming Based Affinity Scheduling for
Heterogeneous Computing Systems

Issam Al-Azzoni
Department of Computing and Software

McMaster University
Hamilton, Ontario, Canada

Douglas G. Down
Department of Computing and Software

McMaster University
Hamilton, Ontario, Canada

Abstract Resource management systems (RMS) are an

important component in heterogeneous computing (HC)

systems. One of the jobs of an RMS is the mapping of ar-

riving tasks onto the machines of the HC system. Many

different mapping heuristics have been proposed in recent

years. However, most of these heuristics suffer from sev-

eral limitations. One of these limitations is the perfor-

mance degradation that results from using outdated global

information about the status of all machines in the HC

system. This paper proposes a new heuristic which ad-

dresses this limitation by only requiring partial informa-

tion in making the mapping decisions. Simulation results

show that our heuristic performs very competitively while

requiring dramatically less information.

Keywords: cluster computing, affinity scheduling, linear

programming

1 Introduction

Clusters of commodity computers are rapidly gaining
acceptance as the preferred way to construct large
computing platforms for applications with extensive
computer needs [16]. These distributed heteroge-
neous computing (HC) systems are constructed by
networking various machines that have varying ca-
pabilities in order to execute a set of tasks. Such
systems form the building blocks for grids which are
becoming very successful in managing and organiz-
ing an institution’s computing resources [5].

When a new task arrives to the HC system, it
is the responsibility of the RMS to assign the task
to a machine and govern the execution of the task
[12, 16]. Several mapping heuristics for HC systems
have been suggested. This paper proposes a new
mapping heuristic that has several advantages over
the other heuristics. Throughout this paper, we re-
fer to our new heuristic as the Linear Programming
Based Affinity Scheduling (LPAS) heuristic.

It is necessary for a mapping heuristic to guar-
antee the stability of the HC system, if the system
can be stabilized. For instance, the heuristic must
prevent any severe imbalance in load across the ma-
chines. The LPAS heuristic achieves this property

by solving an allocation linear programming prob-
lem that provides an allocation of machines to the
arriving tasks such that, for stable systems, stability
is guaranteed. In addition to guaranteeing stability,
the LPAS heuristic also achieves competitive perfor-
mance in terms of the mean task response time.

In several heuristics, the mapper is assumed to
have up-to-date information about the status of all
machines (or at least a large number of them). This
increases the complexity of the heuristic since the
mapper needs to examine a large number of ma-
chines. Furthermore, it could be practically difficult
to implement these heuristics. Another problem is
that the supplied information can be out of date re-
sulting in performance degradation. As observed in
[15], this is a major limitation of heuristics which at-
tempt to exploit global information to balance load
too aggressively. The LPAS heuristic addresses the
problem by only requiring partial information about
the status of the HC system at the mapping points.

Our workload model is described in Section 3.1.
The model is applicable to HC systems having semi-
consistent ETC (expected time to compute) matri-
ces [14]. Although some heuristics have attempted to
use partial information, they suffer from poor perfor-
mance in systems having our workload model. Fur-
thermore, the configuring of such heuristics is not
trivial. As will be discussed later, the LPAS heuris-
tic achieves good performance with the added ad-
vantage of using partial information.

The remainder of this paper is organized as fol-
lows. In Section 2, we discuss work on mapping
heuristics for HC systems. In Section 3.2, we de-
scribe several existing mapping heuristics. Then, in
Section 4, we present the LPAS heuristic. Simula-
tion results and a comparison of the heuristics are
provided in Section 5.

2 Related Work

The problem of mapping tasks onto machines in HC
systems is an extremely active field (for example, see
[4, 7, 8]). In the literature, several authors refer to
the mapping of tasks onto machines as scheduling.



Several mapping heuristics are described and
compared in [14]. Our new heuristic can be clas-
sified as a dynamic, on-line mode mapping heuristic.
The model assumptions in [14] and our assumptions
for the HC system are identical. However, the au-
thors in [14] assume, in their simulation experiments,
that the expected execution times of a task on all
machines are known for all the tasks that arrive for
execution. This can be unrealistic in typical HC sys-
tems. On the other hand, we assume that the tasks
are grouped into classes and only the arrival rates
of each class’s tasks and execution rates of each ma-
chine on each class are known. This assumption is
made in several models of cluster and grid environ-
ments (such as [6, 13]).

The work of [14] is extended in [13] by looking at a
real-world workload and also examining the impact
of affinity effects. They compare the performance
of several scheduling algorithms. One of these algo-
rithms is similar to the MCT (Minimum Completion
Time) algorithm [14]. Another algorithm is a vari-
ation on the MCT algorithm that attempts to min-
imize completion time while taking affinity effects
into account. Their experimental results show that
varying the MCT algorithm to take affinity effects
into account has an improved performance over the
MCT algorithm.

Several mapping heuristics require that the map-
per continuously obtains information from the ma-
chines at mapping instances. As discussed in Sec-
tion 1, performance degradation may result due to
the significant complexity of the mapping heuristic
or due to the effect of outdated information. A small
number of heuristics attempt to avoid this effect by
supplying the mapper with information from a small
subset of the machines. The KPB (k-percent best)
heuristic suggested in [14] is one such heuristic. How-
ever, it may introduce instability in highly loaded
systems and configuring its parameters may not be
trivial. Our new heuristic follows the same idea, but
has the advantages of better performance and sta-
bility guarantees. Also, it has the advantage of pro-
viding an explicit method for finding an allocation
of the machines to the tasks.

Several other heuristics for HC systems have been
proposed. Some heuristics are designed to address
the issues of load balancing [10, 11] and fairness
[3]. In [19], a general failure modeling framework
is used to study the impact of failures on system
performance for a wide range of scheduling policies.
Other heuristics that go through a discovery phase
are suggested in [13]. Such heuristics differ from
the heuristics discussed in this paper which assume
a priori knowledge of task execution rates on each
machine. Finally, other heuristics have different as-
sumptions than the ones herein. For example, one
of the assumptions made is the complete indepen-
dence of tasks. In [9], heuristics are proposed for HC

systems where the tasks depend on the existence of
their associated files on the target machine and sev-
eral files can be shared by several tasks.

Our model for an HC system has been studied in
the context of queueing analysis. The MCT heuristic
is a variation on the MinDrift rule which is shown
to perform well in heavy traffic scenarios [17]. A
processor allocation policy which corresponds to the
MCT heuristic is introduced in [18].

3 Mapping Heuristics

3.1 Overview

In a general HC system, there is a dedicated map-
per for assigning incoming tasks to machines. Let
the number of machines in the system be M . It is
assumed that the tasks are classified into N classes
of tasks. Let I be the set of classes and J be the
set of machines. Tasks that belong to the same class
i have arrival rate αi. Furthermore, the execution
time of a task on a machine depends on the class of
the task and the machine. Let µi,j be the execution
rate for tasks of class i at machine j, hence 1

µi,j
is

the mean execution time for class i tasks at machine
j. Let α be the arrival rate vector, the ith element
of α is αi. Also, let µ be the execution rate matrix,
having (i, j) entry µi,j . Several techniques for classi-
fying tasks and obtaining the arrival and execution
rates in HC systems exist (see [13]).

The mapping heuristics considered in this paper
are on-line mode heuristics [14]. In the on-line mode,
a mapping decision is made by the mapper as soon
as a task arrives. The tasks are assumed to be inde-
pendent and atomic. Each new task arriving in the
system is assigned to one of the machines immedi-
ately upon arrival, and after that, the task can only
be executed by the machine to which it is assigned.
It is assumed that there is no queueing at the map-
per and tasks are queued at the machines to which
they are assigned. A First-Come First-Serve (FCFS)
scheduling policy is used by the machines.

The on-line mode heuristics assume that the ex-
ecution rates are known. Furthermore, in most of
these heuristics, the mapper uses information sup-
plied by the machines in making mapping decisions.
Such information includes, for instance, the ma-
chine’s expected completion time. Thus, when a task
arrives to the HC system, the mapper contacts the
machines whose information is needed, and subse-
quently, the machine supplies the mapper with the
requested information.

3.2 Mapping Heuristics

A mapper using the MET (minimum execution time)
heuristic assigns an incoming task to the machine
that has the least expected execution time for the



task [14]. Thus, when a new task of class i arrives
in the system, the mapper assigns it to a machine
j such that j ∈ arg minj′∈J 1/µi,j′ . Ties are broken
arbitrarily; for instance, a mapper could pick the
machine with the smallest index j when more than
one machine has the least expected execution time.
The MET heuristic does not require the machines
to send their expected completion times back to the
mapper as tasks arrive, thus the MET heuristic has
the advantage of requiring limited communication
between the mapper and machines. However, this
heuristic can cause severe load imbalance to a degree
that the system is unstable. For example, consider
an HC system with one arrival stream with rate α1

= 6, and two machines with execution rates µ1,1 =
5 and µ1,2 = 3, respectively. This system will suffer
from load imbalance causing instability if the MET
heuristic is used, as no tasks are sent to machine 2.
It is easy to see that the system can be stabilized
with the given value of α1.

The MCT (minimum completion time) heuristic
assigns an arriving task to the machine that has the
earliest expected completion time [14]. Several ex-
isting resource management systems use the MCT
heuristic or other heuristics that are based on the
MCT heuristic, including SmartNet [7, 8].

The MCT heuristic is formally stated as follows.
When a task of class i arrives, the mapper assigns it
to a machine j such that j ∈ arg minj′{1/µi,j′ +∑

i′∈I Qi′,j′/µi′,j′}, where Qi′,j′ is the number of
tasks of class i′ that are waiting or executing at ma-
chine j′, at the time of the arrival of task i. The
mapper examines all machines in the HC system
to determine the machine with the earliest expected
completion time.

The KPB (k-percent best) heuristic attempts to
combine elements from both the MET and the MCT
heuristics [14]. When a task arrives, the mapper
picks the (kM/100) best machines based on the ex-
ecution times for the task, where 100/M ≤ k ≤ 100.
Then, the mapper assigns the task to the machine
that has the earliest expected completion time in the
subset. The KPB heuristic does not only attempt to
assign an arriving task to a superior machine based
on execution times for the task, it also attempts to
avoid assigning the task to a machine that could do
better for tasks that arrive later. This foresight is
not present in the MCT heuristic. Another advan-
tage of the KPB heuristic is that the mapper needs
only to communicate with a subset of the machines,
rather than with all machines in the HC system.
Note that the KPB heuristic may achieve very poor
performance relative to the MCT heuristic in cases
where some machines are not among the best k% for
any class.

4 The LPAS Heuristic

Our proposed heuristic is similar to the KPB heuris-
tic in that the mapper needs only to consider a sub-
set of the machines for each class, however, the de-
termination of this subset requires solving a linear
programming (LP) problem [1]. Then, the mapper
assigns the task to the machine that has the earliest
expected completion time in the subset.

The LPAS heuristic requires solving the following
allocation LP, where the decision variables are λ and
δi,j for i = 1, . . . , N , j = 1, . . . ,M (recall that µi,j

and αi are the execution rates and arrival rates for
the HC system, respectively). The variables δi,j are
to be interpreted as the proportional allocation of
machine j to class i.

max λ

s.t.
M∑

j=1

δi,jµi,j ≥ λαi, i = 1, . . . , N, (1)

N∑

i=1

δi,j ≤ 1, j = 1, . . . ,M, (2)

δi,j ≥ 0, i = 1, . . . , N , j = 1, . . . ,M. (3)

The left-hand side of (1) represents the total pro-
cessing capacity assigned to class i by all machines
in the HC system. The right-hand side represents
the arrival rate of tasks that belong to class i. Thus,
(1) enforces that the total execution allocated for a
class should be at least as large as the arrival rate for
that class. This constraint is needed to have a stable
system. The constraint (2) prevents overallocating a
machine and (3) states that negative allocations are
not allowed.

Let λ∗ and {δ∗i,j}, i = 1, . . . , N , j = 1, . . . ,M , be
a solution to the allocation LP. The value λ∗ can
be interpreted as the maximum capacity of the HC
system. We define the maximum capacity as fol-
lows. Consider an HC system with given values for
αi (i = 1, . . . , N) and λ∗. If λ∗ ≤ 1, then the system
is unstable. Thus, the system will be overloaded and
tasks queue indefinitely. If, however, λ∗ > 1, then
the system can be stabilized if each arrival rate is in-
creased by a factor less than or equal to λ∗ (i.e. the
same HC system with arrival rates α′

i ≤ λ∗αi, for all
i = 1, . . . , N , can be stabilized). The values {δ∗i,j},
i = 1, . . . , N , j = 1, . . . ,M , can be interpreted as
the long-run fraction of time that machine j should
spend on class i in order to stabilize the system under
maximum capacity conditions. Thus, if the arrival
rates do not exceed the maximum system capacity,
then the system can be stabilized. The {δ∗i,j}’s indi-
cate how much each machine should allocate of its
capacity to each class. This is guaranteed to stabi-
lize the system [1]. Let δ∗ be the machine allocations
matrix where the (i, j) entry is δ∗i,j .

The LPAS heuristic can be stated as follows.
Given an HC system, solve the allocation LP to find



{δ∗i,j} , i = 1, . . . , N , j = 1, . . . ,M . When a new task
of class i arrives, let Si denote the set of machines
whose δ∗i,j is not zero (Si = {j : δ∗i,j $= 0}). The
mapper assigns the task to the machine j ∈ Si that
has the earliest expected completion time among the
subset of machines Si. Again, ties are broken arbi-
trarily.

The LPAS heuristic considers both the arrival
rates and execution rates and their relative val-
ues in deciding the allocation of machines to tasks.
Furthermore, by solving the allocation LP, the
LPAS heuristic provides a systematic approach for
setting parameters that guarantee the stability of
the system. This is an advantage over the KPB
heuristic where figuring the correct value for k may
not be a trivial task. The following example clar-
ifies this point and provides some intuition for the
LPAS heuristic.

Consider an HC system with two machines and
two classes of tasks (M = 2, N = 2). The arrival
and execution rates are given as follows:

α =
[

2.45 2.45
]
, µ =

[
9 5
2 1

]
.

We obtain the following solution for the allocation
LP:

λ∗ = 1.0204, δ∗ =
[

0 0.5
1 0.5

]
.

A mapper using the LPAS heuristic maps all arriving
tasks that belong to class 1 to machine 2. At the
times of their arrivals, tasks that belong to class 2
are mapped to the machine, either machine 1 or 2,
that has the earliest expected completion time.

Even though machine 1 has the fastest rate for
class 1, the mapper does not assign any class 1 tasks
to it. Since the system is highly loaded, and since
µ1,1
µ2,1

< µ1,2
µ2,2

and α1 = α2, the performance would
be improved significantly if machine 1 only executes
class 2 arriving tasks. In fact, the performance of
the LPAS heuristic is better than that of the MCT
heuristic. For this particular HC system, both the
MET heuristic and the KPB heuristic (with k = 1)
would result in an unstable system. This is because
both heuristics map class 2 tasks to machine 1 only,
and the system will be unstable since α2 > µ2,1.

In the LPAS heuristic, the mapper considers a
subset of the machines for each class. Ideally, the
size of each subset should be much smaller than M .
Similar to the KPB heuristic, this has the advantage
of requiring less communication between the map-
per and the machines. Furthermore, degradation in
performance due to outdated information is mini-
mized. To achieve this, the δ∗ matrix should contain
a large number of elements that are equal to zero. In
fact, there could be many solutions to an allocation
LP, and a solution with a larger number of zeros is
preferred. The following proposition gives the num-
ber of zero elements in the δ∗ matrix that could be
achieved (the proof can be found in [1]):

Proposition 4.1 There exists a solution to the al-
location LP with at least NM +1−N −M elements
in the δ∗ matrix equal to zero.

The LPAS heuristic can be considered as a dy-
namic mapping heuristic [4, 14]. As the heuristic
only involves solving an LP, it is suited for scenar-
ios when machines are added and/or deleted from
the system. On each of these events, one needs to
simply solve a new LP and go from there.

5 Simulation Results and Dis-
cussion

5.1 Overview

We use simulation to compare the performance of the
mapping heuristics. The task arrivals are modeled
by independent Poisson random processes, each with
rate αi, i = 1, . . . , N . Unless otherwise stated, the
execution times are exponentially distributed with
rates µi,j , where 1

µi,j
represents the mean execution

time of a task of class i at machine j, i = 1, . . . , N ,
j = 1, . . . ,M .

Each simulation experiment models a particular
HC system, characterized by the values of M , N , αi,
and µi,j , i = 1, . . . , N , j = 1, . . . ,M . Each exper-
iment simulates the execution of the corresponding
HC system for 20,000 time-units.

There are several performance metrics that could
be used to compare the performance of the mapping
heuristics [14]. We have chosen the long-run average
number of tasks in the HC system, L, as a metric
for performance comparison. This includes the tasks
that are waiting for execution at a particular ma-
chine and tasks that are executing.

Each experiment is repeated 30 times. In each ex-
periment, the actual simulated interarrival times and
execution times are generated independently. All
confidence intervals are at the 95%-confidence level.

5.2 Comparison of the Mapping
Heuristics

Table 1 lists simulation results for different HC
systems. These systems are discussed in Subsec-
tions 5.2.1 to 5.2.5. For each system, the table shows
the 95%-confidence interval for L when the corre-
sponding mapping heuristic is used. If a system be-
comes unstable due to the mapping heuristic used
by its mapper, the table just indicates that the sys-
tem is unstable. Since the MET heuristic results in
unstable systems in most of the HC systems in Ta-
ble 1, we do not include it here. The table also shows
the results of using the KPB heuristic with different
values for k.



Table 1: Comparison of the Mapping Heuristics
System MCT KPB LPAS

k = 1
A (85.68, 110.23) Unstable (62.56, 82.01)

k = 1
B (20.05, 21.10) (5.65, 5.73) (5.21, 5.26)

k = 14
C (53.99, 54.98) (75.26, 79.13) (47.39, 47.72)

k = 2
(14.75, 14.89)

k = 3
D (22.68, 23.21) (11.00, 11.04) (10.55, 10.59)

k = 5
E (27.71, 28.20) (51.65, 55.60) (36.54, 37.07)

k = 4
F1 (19.09, 19.44) (20.77, 21.07) (28.71, 29.05)

k = 4
F2 (46.36, 49.49) (73.44, 81.75) (34.27, 34.89)

k = 4
G (37.91, 40.43) (42.21, 43.54) (42.05, 43.09)

k = 5
H (3648.48, 4086.54) (888.62, 1319.97) (131.08, 150.15)

k = 14
I1 (64.20, 66.32) (86.65, 94.15) (50.83, 38)

k = 14
I2 (41.56, 41.82) (53.69, 55.19) (40.57, 40.69)

5.2.1 Small Systems

System A in Table 1 is the system that is discussed
in Section 4. This is a highly loaded system as shown
by the large values for L. As shown in the table, the
MCT heuristic performs poorly with respect to the
LPAS heuristic. This is because the MCT heuristic
assigns some class 1 tasks to machine 1, although it
is more advantageous to dedicate machine 1 for class
2 tasks.

System B is another HC system, where M = 2
and N = 2. The arrival and execution rates are as
follows:

α =
[

5 8
]
, µ =

[
8 3
4 10

]
.

A solution to the allocation LP is:

δ∗ =
[

0.8333 0
0.1667 1

]
.

As indicated by the δ∗ matrix, the LPAS heuristic
assigns all class 1 tasks to machine 1. Thus, ma-
chine 2 becomes dedicated to execute class 2 tasks.
This results in significant performance improvement
since, in this case, class 2 tasks have a higher arrival
rate and they run much faster on machine 2 than on
machine 1.

5.2.2 Large Cluster Systems

System C is a large system with M = 30 and N =
3. The machines are grouped into four groups, and

each group consists of machines with identical per-
formance. Thus, if two machines are in the same
group, then they have the same execution rates. Ta-
ble 2 shows the execution rates of the groups.

Table 2. Execution rates for System C

Group
Task P Q R S

1 8 4 4 4
2 1 4 1 2
3 4 2 8 4

Groups P , Q, R, and S, consist of 10 machines, 9
machines, 6 machines, and 5 machines, respectively.
As Table 2 shows, the groups vary in performance.
For instance, a machine in group P is twice as fast
as a machine in group S on tasks of class 1, however,
for tasks of class 2, the opposite is true. The arrival
rates are given by α = [45 45 40].

Since machines that belong to the same group
have identical values for δ∗, we represent the δ∗ ma-
trix as in Table 3. Note that the δ∗ matrix contains
44 elements that are equal to zero.

Table 3. The machine allocations matrix for

System C

Group
Task P Q R S

1 0.6270 0 0 0
2 0.3730 0.3730 0.0712 1
3 0 0 0.9288 0



As shown in Table 1, the LPAS heuristic achieves
the best results. Note that the KPB heuristic is un-
stable for k < 14.

5.2.3 Task and Machine Heterogeneity

Systems D to G model different kinds of HC system
heterogeneity. Machine heterogeneity refers to the
average variation along the rows, and similarly task
heterogeneity refers to the average variation along
the columns [2]. Heterogeneity can be classified into
high heterogeneity and low heterogeneity. Based on
this, we simulate the following four categories for
heterogeneity [2, 14]: (a) high task heterogeneity
and high machine heterogeneity (HiHi), (b) high task
heterogeneity and low machine heterogeneity (HiLo),
(c) low task heterogeneity and high machine hetero-
geneity (LoHi), and (d) low task heterogeneity and
low machine heterogeneity (LoLo). Due to space lim-
its, we only provide the arrival and execution rates
for System E.

System D models a HiHi system with M = 7
and N = 4. The LPAS heuristic outperforms the
other heuristics. It maps the tasks of each class to
at most two machines, except for class 2 tasks that
are mapped to four machines. The LPAS heuristic
has a better performance than the KPB heuristic
with k = 3.

System E is a LoHi system. The system contains
7 machines and 4 classes. The arrival and execution
rates are given by α = [10 10 8 8] and µ given by




2.2 7 10.25 1 5.7 0.5 12
1.95 7.05 9.78 0.95 5.65 0.56 11.85
2 7.25 10.02 0.98 5.75 0.67 11.8

2.05 6.75 9.99 1.02 5.82 0.49 12.05



 .

The associated δ∗ matrix is:

δ∗ =





1 0 0.8433 0 0 0 0
0 0 0 0 0 0 0.9151
0 1 0.0754 0 0 1 0
0 0 0.0813 1 1 0 0.0849



 .

The MCT heuristic has the best performance for
System E. This is not an unexpected result as sug-
gested by the following argument. Due to the very
low task heterogeneity of system E, one can think of
it as a system with one class of arriving tasks (α =
[36]) and the execution rate of each machine is the
average of the execution rates of the four classes in
System E on the machine, µ = [2.05 7.0125 10.01
0.9875 5.73 0.555 11.925]. In this case, assigning an
arriving task to the machine that has the minimum
expected completion time (the MCT heuristic) is the
best strategy. In fact, solving the allocation LP cor-
responding to the similar system above results in the
following value for δ∗: [1 1 1 1 1 1 1]. Thus, in this
case, the LPAS heuristic reduces to the MCT heuris-
tic.

Even though the MCT heuristic is the best heuris-
tic for System E, the LPAS heuristic has the advan-
tage of mapping each class to a smaller number of
machines. The LPAS heuristic performs much bet-
ter than the KPB heuristic even for k = 5. The KPB
heuristic is unstable for k < 5.

Systems F1 and F2 are HiLo systems (M = 7, N
= 4). Both have the same execution rates and only
differ in the arrival rates vector α. Due to the very
low machine heterogeneity of both systems, one can
think of them as consisting of identical machines.
The LPAS heuristic compares well with the other
heuristics in HiLo environments, and it achieves the
best performance in many such systems as in System
F2.

System G is a LoLo system with M = 7 and N
= 4. The MCT heuristic has slightly better perfor-
mance than the other heuristics. The KPB heuris-
tic (k = 4) has performance close to that of the
LPAS heuristic, however, the mapper is required to
obtain the expected completion times from four ma-
chines at each task arrival as compared to at most 3
machines in the case of the LPAS heuristic.

5.2.4 Special Systems

Consider System H with M = 7 and N = 4.
The arrival and execution rates are given by α =
[8.5 8.5 9.6 8.6] and µ given by





5 5.02 4.95 0.001 4.7 5.2 5.25
0.001 5.09 4.9 4.92 5 5.13 5.14
4.45 5 0.001 4.45 4.9 5 5.1
5.02 4.95 5 5.02 5.25 4.75 0.001



 .

The system contains a few machines that have very
poor performance when executing tasks that belong
to particular classes. While such values would most
likely not arise in practice, we have chosen these val-
ues to magnify the point that assigning a task to a
machine that is very poor executing its class may
result in significant performance degradation. Since
the MCT heuristic does not prevent this from hap-
pening, it can result in very poor performance. The
LPAS heuristic is the best heuristic for System H,
and the δ∗ matrix is as follows:

δ∗ =





1 0 0 0 0 0.6881 0
0 0.0824 0.3344 1 0 0.3110 0
0 0.9176 0 0 0 0 1
0 0 0.6656 0 1 0 0



 .

The KPB heuristic performs poorly and is only sta-
ble for k ≥ 5. For k < 5, instability results. For k
≥ 5, the system becomes stable, however the perfor-
mance is poor and it worsens as k increases since it
becomes more likely that some tasks are assigned to
the poor machines.



5.2.5 Other Execution-time Distributions

To test the effect of execution-time distribution on
the performance of the mapping heuristics, all of
the previous experiments were re-run with non-
exponential execution-time distributions. In partic-
ular, two distributions were used to study lower and
higher variances than the exponential case: the first
is a deterministic distribution with a mean execu-
tion time 1

µi,j
for machine j executing class i tasks,

and the second is a hyper-exponential distribution
with mean 1

µi,j
for the execution times and twice the

variance as the exponential case.
Our results indicate that the relative perfor-

mance of the heuristics has not been affected by
the execution-time distribution. System I1 has
the same configuration as system C, but with a
hyper-exponential execution-time distribution. Sys-
tem I2 also has the same configuration as system C,
but with a deterministic execution-time distribution.
Table 1 shows the performance of the different map-
ping heuristics for Systems I1 and I2. For the KPB
heuristic, both systems are unstable for k < 14.

6 Acknowledgements

The first author was supported by an Ontario Grad-
uate Scholarship in Science and Technology. This
research is also supported by grants from the Nat-
ural Sciences and Engineering Research Council of
Canada.

References

[1] S. Andradóttir, H. Ayhan, and D. G. Down. Dy-
namic server allocation for queueing networks with
flexible servers. Operations Research, 51(6):952–
968, 2003.

[2] R. Armstrong. Investigation of effect of differ-
ent run-time distributions on SmartNet perfor-
mance. Master’s thesis, NAVAL POSTGRADU-
ATE SCHOOL, 1997.

[3] A. Arpaci-Dusseau and D. Culler. Extending
proportional-share scheduling to a network of work-
stations. In Proceedings of the International Con-
ference on Parallel and Distributed Processing Tech-
niques and Applications, pages 1061–1070, 1997.

[4] T. Braun, H. Siegel, N. Beck, L. Bni, M. Mah-
eswaran, A. Reuther, J. Robertson, M. Theys, and
B. Yao. A taxonomy for describing matching and
scheduling heuristics for mixed-machine heteroge-
neous computing systems. In Proceedings of the 17th
IEEE Symposium on Reliable Distributed Systems,
pages 330–335, 1998.

[5] I. Foster, C. Kesselman, and S. Tuecke. The
anatomy of the Grid: Enabling scalable virtual or-
ganizations. International Journal of High Per-
formance Computing Applications, 15(3):200–222,
2001.

[6] H. Franke, J. Jann, J. E. Moreira, P. Pattnaik, and
M. A. Jette. An evaluation of parallel job schedul-
ing for ASCI Blue-Pacific. In Proceedings of the
ACM/IEEE Conference on Supercomputing, pages
11–18, 1999.

[7] R. Freund, M. Gherrity, S. Ambrosius, M. Camp-
bell, M. Halderman, D. Hensgen, E. Keith, T. Kidd,
M. Kussow, J. D. Lima, F. Mirabile, L. Moore,
B. Rust, and H. J. Siegel. Scheduling resources in
multi-user, heterogeneous, computing environments
with SmartNet. In Proceedings of the 7th Heteroge-
neous Computing Workshop, pages 184–199, 1998.

[8] R. Freund, T. Kidd, and L. Moore. SmartNet: a
scheduling framework for heterogeneous computing.
In Proceedings of the 2nd International Symposium
on Parallel Architectures, Algorithms and Networks,
pages 514–521, 1996.

[9] A. Giersch, Y. Robert, and F. Vivien. Schedul-
ing tasks sharing files on heterogeneous master-
slave platforms. Journal of Systems Architecture,
52(2):88–104, 2006.

[10] K. Huang and H. Chang. Performance evaluation
of load sharing policies on computing grid. In Pro-
ceedings of the International Conference on Parallel
and Distributed Processing Techniques and Applica-
tions, pages 217–223, 2005.

[11] H. D. Karatza and R. C. Hilzer. Parallel and dis-
tributed systems: load sharing in heterogeneous dis-
tributed systems. In Proceedings of the 34th Con-
ference on Winter Simulation, pages 489–496, 2002.

[12] A. Keller, M. Brune, and A. Reinefeld. Re-
source management for high performance PC clus-
ters. In Proceedings of the 7th International High-
Performance Computing and Networking Confer-
ence, pages 270–280, 1999.

[13] L. Kontothanassis and D. Goddeau. Profile driven
scheduling for a heterogeneous server cluster. In
Proceedings of the 34th International Conference
on Parallel Processing Workshops, pages 336–345,
2005.

[14] M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen,
and R. F. Freund. Dynamic matching and schedul-
ing of a class of independent tasks onto heteroge-
neous computing systems. In Proceedings of the 8th
Heterogeneous Computing Workshop, pages 30–44,
1999.

[15] M. Mitzenmacher. How useful is old information?
IEEE Transactions on Parallel Distributed Systems,
11(1):6–20, 2000.

[16] T. Sterling, E. Lusk, and W. Gropp, editors. Be-
owulf Cluster Computing with Linux. MIT Press,
Cambridge, MA, USA, 2003.

[17] A. Stolyar. Optimal routing in output-queued flex-
ible server systems. Probability in the Engineering
and Information Sciences, 19(2):141–189, 2005.

[18] K. Wasserman, G. Michailidis, and N. Bambos.
Optimal processor allocation to differentiated job
flows. Performance Evaluation, 63(1):1–14, 2006.

[19] Y. Zhang, M. S. Squillante, A. Sivasubramaniam,
and R. K. Sahoo. Performance implications of fail-
ures in large-scale cluster scheduling. In Proceedings
of the Job Scheduling Strategies for Parallel Process-
ing Workshop, pages 233–252, 2004.


