
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 4, APRIL 2007 659

Linear Programming-Based Cell Placement With
Symmetry Constraints for Analog IC Layout

Shinichi Koda, Chikaaki Kodama, Member, IEEE, and Kunihiro Fujiyoshi, Member, IEEE

Abstract—In recent high-performance analog integrated circuit
design, it is often required to place some cells symmetrically to
a horizontal or vertical axis. Balasa et al. proposed a method of
obtaining the closest placement that satisfies the given symmetry
constraints and the topology constraints imposed by a sequence-
pair (seq-pair). However, this method has the following defects:
1) Balasa’s necessary condition for existence of the cell placement
that satisfies the given constraints is incorrect; 2) some cells
overlap; 3) the closest placement of satisfying both the symmetry
and topology constraints is not always obtained; and 4) there
is no explanation of placing cells symmetrically to plural axes.
In this paper, we clarify the necessary and sufficient conditions
for the existence of the cell placement that satisfies the given
symmetry constraints and the topology constraints imposed by
a seq-pair, and we propose an efficient method of obtaining, by
linear programming, the closest cell placement that satisfies the
given constraints. Here, a simple constraint graph is obtained from
a seq-pair in order to derive a set of linear constraint expressions.
Then, to shorten the running time of linear programming, the
number of linear expressions is reduced by substituting the expres-
sions for dependent variables, and the solution is obtained. The
effectiveness of the proposed method was shown by computational
experiments.

Index Terms—Analog circuits, linear programming, placement,
sequence-pair (seq-pair), symmetry constraints.

I. INTRODUCTION

R ECENT consumer telecommunication ICs and wireless
communication devices, such as cell phone systems and

wireless local area network systems, require high-performance
analog ICs. In the design of such analog ICs, we take into
account the balance of layout-induced parasitic devices to avoid
both high-offset voltage and degradation of power supply rejec-
tion ratio [1], since analog circuits are very sensitive to parasitic
disturbance, crosstalk, and power supply noise. Therefore, it is
often required to place cells symmetrically, and this constraint
is called “symmetry constraint” [2].

Manuscript received May 3, 2006; revised September 7, 2006. This paper
was presented in part at the ISPD’06, San Jose, CA, April 9–12, 2006. This
paper was recommended by Guest Editor P. H. Madden.

S. Koda was with the Department of Electrical and Electronic Engineering,
Tokyo University of Agriculture and Technology, Koganei 184-8588, Japan.
He is now with Nintendo Company, Ltd., Kyoto 601-8116, Japan (e-mail:
kouda@fjlab.ei.tuat.ac.jp).

C. Kodama was with the Department of Electronic and Information Engi-
neering, Tokyo University of Agriculture and Technology, Koganei 184-8588,
Japan. He is now with Toshiba Microelectronics Corporation, Yokohama 247-
8585, Japan (e-mail: kodamada@fjlab.ei.tuat.ac.jp).

K. Fujiyoshi is with the Department of Electrical and Electronic Engineering,
Tokyo University of Agriculture and Technology, Koganei 184-8588, Japan
(e-mail: fujiyosi@cc.tuat.ac.jp).

Digital Object Identifier 10.1109/TCAD.2007.891365

So far, the layout of analog ICs has been manually designed
by experts. Recently, some automatic methods of symmetric
placement were proposed, where rectangle packing representa-
tions and stochastic search methods, such as simulated anneal-
ing (SA), were used.

Balasa et al. proposed a symmetric placement method [2], [3]
with a sequence-pair (seq-pair) which is a topological repre-
sentation of rectangular block placement [4]. They presented a
necessary condition for the existence of the cell placement that
satisfies both the given symmetry constraints and the topology
constraints imposed by a seq-pair [2]. They defined a seq-
pair that satisfies the aforementioned conditions as “symmetric-
feasible seq-pair” and proposed a method of obtaining nearly
optimum solutions by searching only a symmetric-feasible seq-
pair, using SA.

However, there is a case where any seq-pairs corresponding
to a certain placement that satisfies given symmetry constraints
are not symmetric-feasible. In addition, when a symmetric-
feasible seq-pair is decoded to a placement by Balasa’s method
[2], [3], there are some cases where cells overlap or the closest
packing that satisfies the symmetry and the topology constraints
cannot be obtained. This induces enlargement of die size and
increase of wire length; both of which are undesirable in the
layout design. Furthermore, how to handle more than one set of
cells with symmetry constraints is not clear in [2].

A method of solving 1-D compaction problem with symme-
try constraints was proposed [5]. However, when a given prob-
lem size is big, computational time becomes vast. Okuda et al.
proposed an improved method of solving this problem in
shorter time [6]. In this method, initially, a “simple constraint
graph” is made. The graph consists only of vertices corre-
sponding to cells with symmetry constraints. These constraints
are converted to linear constraint expressions to obtain the
coordinates of cells by linear programming. As for cells without
symmetry constraints, the coordinates can be obtained by the
topological constraint graph, but redundant linear expressions
may be derived. This will become a cause of redundant time to
solve by linear programming.

In this paper, we clarify the defects in Balasa’s method
and present the necessary and sufficient conditions for the
existence of the cell placement that satisfies the given symmetry
constraints and the topology constraints imposed by a seq-pair.
We define a seq-pair that satisfies the conditions as “symmetric-
real-feasible seq-pair.” Then, we propose an improved method
of symmetric placement [2]. In the proposed method, we ob-
tain a simple constraint graph [6] directly from a seq-pair
in O(sn log log n + es) time and derive a set of linear con-
straint expressions. Here, n, s, and e are the number of cells,

0278-0070/$25.00 © 2007 IEEE

660 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 4, APRIL 2007

Fig. 1. Packing represented by seq-pair (1 2 3 4; 2 4 1 3).

symmetry constraints, and linear constraint expressions, respec-
tively. Also, we propose a method of decreasing the number of
both linear constraint expressions and variables by substitut-
ing the expressions for dependent variables. Thus, the closest
placement that satisfies both the given symmetry constraints
and the topology constraints imposed by a seq-pair can be
obtained by solving linear constraint expressions, using linear
programming. The effectiveness of the proposed method is
confirmed by computational experiments.

II. SEQUENCE-PAIR AND SYMMETRY CONSTRAINTS

A. Sequence-Pair (seq-pair)

A seq-pair [4] is an ordered pair of Γ+ and Γ−, where each
of Γ+ and Γ− is a permutation of names of given n blocks.
For example, (Γ+; Γ−) = (abcd; bdac) is a seq-pair of block
set {a, b, c, d}. If block x is the ith block from the head of Γ+,
we denote Γ−1

+ (x) = i. Similar notation is used for Γ−. To help
intuitive understanding, we use a notation such as (Γ+; Γ−) =
(· · a · ·b · ·; · · a · ·b · ·) by which we mean Γ−1

+ (a) < Γ−1
+ (b)

and Γ−1
− (a) < Γ−1

− (b). A seq-pair imposes a “horizontal/
vertical (H/V) constraint” on every block pair as follows: For
every block pair {a, b}, a is to the left of b (equivalently,
b is to the right of a) if (Γ+; Γ−) = (· · a · ·b · ·; · · a · ·b · ·).
Similarly, a is below b (equivalently, b is above a) if (Γ+; Γ−) =
(· · b · ·a · ·; · · a · ·b · ·). For example, seq-pair (1 2 3 4; 2 4 1 3)
has relative position like Fig. 1.
H/V Constraint Graph: Based on the horizontal (left of) con-

straint imposed by a seq-pair, a directed and vertex-weighted
graph GH(V,E) (V : vertex set, E: edge set) called horizontal
constraint graph is constructed as follows [4].

1) V : source s, sink t, and vertices labeled block names.
2) E: (s, x) and (x, t) for each block x, and (x, x′) if and

only if x′ is constrained to the right of x by the seq-pair.
This can be realized by checking all pairs of elements
on a seq-pair in O(n2) time, where n is the number of
elements.

3) Vertex-weight: zero for s and t, width of blocks for the
other vertices.

Similarly, the vertical constraint graph is constructed with
the vertical (below) constraint and the height of each block.
When the number of blocks is n, one of the optimal packings
under the H/V constraint can be obtained in O(n2) time by
applying the well-known longest path algorithm for directed
acyclic graphs [4].

Another method of obtaining the optimal packings under
the H/V constraint was proposed in [7]. In this method, a
bottom left corner packing can be obtained from one seq-pair
in O(n log log n) time without making H/V constraint graphs.

Fig. 2. Placement that satisfies symmetry constraints {(a�, ar), (b�, br)}.
Unique seq-pair (b� br c a� d ar; a� c b� br d ar) corresponding to this place-
ment is not symmetric-feasible.

B. Symmetry Constraints

A subset of cells is called a symmetry group if cells in the sub-
set exhibit a form of symmetry and share a common symmetry
axis. A symmetry constraint is represented by symmetry groups
and gives the constraint that each pair of cells in the group must
be placed symmetrically to a common vertical or horizontal
axis called symmetric axis. The symmetry group may include
self-symmetric cells, whose center must be placed on the
symmetric axis.

In a pair of cells placed symmetrically to a vertical symmetric
axis, one in the pair on the left (right) of the axis is called a left
cell (right cell) and denoted as a�(ar). A self-symmetric cell is
denoted as as. A symmetry group is represented by a set of cell
pairs in parentheses and self-symmetric cells like {(a�, ar), bs}.
We enumerate all symmetry groups and represent symmetry
constraints.

C. Balasa’s Cell Placement Method With
Symmetry Constraints

1) Symmetric-Feasible Seq-Pair: If cells x and y in a sym-
metry group in seq-pair S satisfy

Γ−1
+ (x) < Γ−1

+ (y) ⇐⇒ Γ−1
− (sym(y)) < Γ−1

− (sym(x)) (1)

where sym(x) and sym(y) are the cells symmetric to cells
x and y, respectively, the seq-pair S is said to be symmetric-
feasible [2]. The aforementioned definition of symmetric-
feasible seq-pair (1) is rewritten as follows when the axis of
a symmetry group is vertical:

Γ−1
+ (x�) < Γ−1

+ (y�) ⇐⇒ Γ−1
− (yr) < Γ−1

− (xr).

Balasa et al. mentioned in Lemma 1 of [2] that “Any
placement configuration containing a symmetry group can be
encoded with a symmetric-feasible sequence-pair.” This is the
necessary condition for any placement configuration to contain
a symmetry group.

A seq-pair corresponding to the placement of Fig. 2,
which satisfies symmetry constraints {(a�, ar), (b�, br)}, is
only (b� br c a� d ar; a� c b� br d ar). Here, Γ−1

+ (b�) < Γ−1
+ (a�)

but Γ−1
− (ar) �< Γ−1

− (br), so it is not symmetric-feasible. There-
fore, the necessary condition of a symmetric-feasible seq-pair is
not correct. Balasa and Lampaert [2] searched the optimum so-
lution with SA only in symmetric-feasible seq-pair. However, if
the optimum solution cannot be represented by any symmetric-
feasible seq-pair, to obtain it by Balasa’s method is impossible.

KODA et al.: LINEAR PROGRAMMING-BASED CELL PLACEMENT WITH SYMMETRY CONSTRAINTS 661

2) Algorithm of Determining x Coordinates of Cells: The
algorithm of determining the x coordinate of each cell was
proposed in [2]. It outputs x coordinates from the width of cells,
symmetry constraints, and symmetric-feasible seq-pair.

First, cells are packed leftward based on a given seq-pair,
and the x coordinate of each cell is obtained. Next, we focus
on cells with symmetry constraints. Among x coordinates of
the center of self-symmetric cells and of the center between
each cell pair with symmetry constraints, the maximum value
is determined as the x coordinate of the vertical symmetric axis.
Then, right cells and self-symmetric cells are moved rightward
one by one in order of Γ+ of the input seq-pair if cells can be
placed symmetrically. While each cell is moved rightward, the
cells constrained to be on the right of it by the input seq-pair are
also moved rightward by the same distance.

Finally, left cells are moved leftward one by one in reverse
order of Γ+ of the input seq-pair, and they are placed symmetri-
cally. While each cell is moved leftward, the cells constrained to
be on the left of it by the input seq-pair are also moved leftward
by the same distance.

For example, when square-shaped cells of the same size
{as, b�, br, c�, cr}, symmetry constraints {as, (b�, br), (c�, cr)},
and symmetric-feasible seq-pair (b� as c� cr br; b� c� cr as br)
are given, the x coordinate of the center between c� and cr is
determined as the x coordinate of the vertical symmetric axis
after the cells were packed leftward based on the input seq-pair.
The placement shown in Fig. 3(a) is obtained. Then, the self-
symmetric cell as is moved rightward to place it symmetrically,
but the cell br constrained to be on the right of as by the input
seq-pair is also moved rightward by the same distance, as shown
in Fig. 3(b). Since the cell b� is moved leftward to place it
symmetrically, the placement shown in Fig. 3(c) is obtained.

However, Fig. 3(c) has larger width than the closest place-
ment shown in Fig. 3(d). Therefore, the algorithm of determin-
ing x coordinates [2] has no guarantee to obtain the closest
placement.
3) Algorithm of Determining y Coordinates of Cells: The

algorithm of determining the y coordinate of each cell proposed
in [2] outputs y coordinates from the height of cells, symmetry
constraints, and a symmetric-feasible seq-pair.

These y coordinates are determined one by one in reverse or-
der of Γ+ of input seq-pair by moving either the left or the right
cell in the pair in order to make the y coordinate of the other
have the same value.

For example, when symmetry constraints {(a�, ar)} and
symmetric-feasible seq-pair (a� b c ar; b a� ar c) are inputted in
the algorithm, the y coordinate of ar is determined first, and that
of a� is determined accordingly. Then, cell c is placed above
ar, as shown in Fig. 4(a). After this, the y coordinate of b is
determined, and a� moves above b, as shown in Fig. 4(b). Then,
the y coordinate of ar is determined to have the same coordinate
as a� but ar and c overlap, as shown in Fig. 4(c).

Therefore, in spite of the existence of a placement that
satisfies all constraints as shown in Fig. 4(d), the algorithm [2]
obtains different placements, where the topology constraints are
not satisfied or cells overlap.
4) Handling of Plural Symmetry Groups: It was described

in [2] that the algorithms of determining x and y coordinates

Fig. 3. Decoding process and resultant placement when symmetry constraints
{as, (b�, br), (c�, cr)} and symmetric-feasible seq-pair (b� as c� cr br;
b� c� cr as br) are input in the algorithm of determining x coordinates [2].
Note that y coordinates were already calculated and satisfy the above con-
straints. (a) Cells are packed leftward based on a given seq-pair to determine
the x coordinate of a symmetric axis. (b) as is placed symmetrically to the
axis, and br moves according to the move of as. (c) b� moves symmetrically
to br (the output of the algorithm of determining x coordinates). (d) Closest
placement satisfies all constraints.

can be easily extended to plural symmetry groups, but how to
extend the algorithms was not mentioned.

For example, when we try to place the cells based on
symmetry constraints {(a�1, ar1)} and {(b�2, br2)} and seq-pair
(a�1 b�2 br2 ar1; b�2 a�1 ar1 br2), the seq-pair is symmetric-
feasible, but the placement that satisfies all constraints never
exists since cell b�2 is constrained to be below a�1, and cell br2

is constrained to be above ar1. Balasa and Lampaert [2] did
not mention the unrealizable seq-pair like this. When a seq-pair
with the given symmetry constraints is unrealizable, that should
be output by the algorithm.

D. Method of Solving Compaction Problem With
Symmetry Constraints

A method of solving 1-D compaction problem with symme-
try constraints by linear programming was proposed [5]. If a
given problem size is big, the computational time becomes vast.

Okuda et al. took notice of the fact that the number of
symmetry constraints is smaller than the number of other
constraints. They proposed an improved method of solving the

662 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 4, APRIL 2007

Fig. 4. Decoding process and resultant placement when symmetry constraint
{(a�, ar)} and symmetric-feasible seq-pair (a� b c ar; b a� ar c) are input in
the algorithm of determining y coordinates [2]. Note that x coordinates were
already calculated and satisfy the above constraints. (a) y coordinate of ar is
determined first, and that of a� is determined to have the same coordinate as
ar . Then, c is placed above ar . (b) y coordinate of b is determined, and a� is
placed above b. (c) Cells overlap each other after changing the y coordinate of
ar to be the same as a�. (d) Placement to satisfy all constraints.

problem speedily [6]. In the whole problem, linear program-
ming is applied only to a part of symmetry constraints, and
graph algorithms are applied to the rest. The sketch of the
improved method is as follows.

When symmetry constraints for a vertical symmetry axis and
a horizontal constraint graph are given, from the constraint
graph, pick up source, sink, and vertices corresponding to cells
with symmetry constraints. Assume vertices a and b are picked
up. If there is a path from a to b, set the directed edge (a, b) with
the weight of the longest path value from a to b. By applying
this operation to vertices with symmetry constraints, obtain a
directed graph called simple constraint graph. A compaction
problem represented by a simple constraint graph is called
core problem. The core problem is equal to the original com-
paction problem.

The core problem can be obtained from a given horizontal
constraint graph in O(snm) time [6], since the longest path
value from one vertex can be obtained in O(nm) time by
applying Ford’s shortest path algorithm.1 Here, s, n, and m
are the number of given symmetry constraints, cells, and edges,
respectively, in a given constraint graph.

Linear programming is used only for the core problem,
and the longest path algorithm is applied to the rest, so the
computational time relating to linear programming is cut down
drastically, and the coordinates of all cells are obtained in
shorter time.

1The given horizontal constraint graph may contain cycles.

III. PROPOSED METHOD OF CELL PLACEMENT WITH

SYMMETRY CONSTRAINTS

As mentioned in Section II-C, the method proposed in [2]
has the following defects.

1) Some cells overlap.
2) The closest cell placement that satisfies the symmetry and

topology constraints is not always obtained.
3) How to handle more than one symmetry group is not

clear.
4) There exists a placement that is impossible to represent

by any symmetric-feasible seq-pair.

We expect that the cell placement with symmetry constraints
can be solved efficiently and quickly if Okuda’s approach
to 1-D compaction problem with symmetry constraints [6] is
applied together with a seq-pair. So, in this paper, we propose
an improved method of obtaining linear constraint expressions
from the given symmetry constraints and a seq-pair and solve
them by linear programming. The proposed method does not
cause the aforementioned defects 1), 2), and 3).

As for 4), we present the necessary and sufficient conditions
for the existence of the cell placement that satisfies the given
symmetry constraints and the topology constraints imposed by
a seq-pair. We define a seq-pair that satisfies the conditions as
“symmetric-real-feasible seq-pair” in Section III-A.

A. Symmetric-Real-Feasible Seq-Pair

Definition 1: For one symmetry group to the vertical sym-
metry axis, a seq-pair to satisfy the following two expressions
is defined as symmetric-real-feasible seq-pair:

Γ−1
+ (x) < Γ−1

+ (y)
and

Γ−1
− (x) < Γ−1

− (y)

⇒

Γ−1
+ (sym(x)) �< Γ−1

+ (sym(y))
or

Γ−1
− (sym(x)) �< Γ−1

− (sym(y))
(2)

Γ−1
+ (x) < Γ−1

+ (y)
and

Γ−1
− (x) > Γ−1

− (y)

⇒

Γ−1
+ (sym(x)) �> Γ−1

+ (sym(y))
or

Γ−1
− (sym(x)) �< Γ−1

− (sym(y))
.

(3)

Expression (2) represents that when left cells are in horizon-
tal relative positions, right cells do not have the same relative
positions. Expression (3) represents that when left cells are in
vertical relative positions, right cells do not have the reverse
relative positions.

Similarly, we can define symmetric-real-feasible seq-pair for
one symmetry group to the horizontal symmetry axis. �

Then, the following theorem is obtained.
Theorem 1: There is a placement that satisfies both H/V

constraints of a given seq-pair and a symmetry constraint of
one symmetry group if and only if the seq-pair is symmetric-
real-feasible.

Proof: When there is a placement that satisfies both H/V
constraint of a given seq-pair and a symmetry constraint of one
symmetry group, it is obvious that the seq-pair is symmetric-
real-feasible. Hence, in the following, we show constructively
that there is a placement that satisfies both H/V constraint of

KODA et al.: LINEAR PROGRAMMING-BASED CELL PLACEMENT WITH SYMMETRY CONSTRAINTS 663

symmetric-real-feasible seq-pair and a symmetry constraint of
only one symmetry group to a vertical axis.

First, the vertical constraint graph is obtained from the
seq-pair by the method mentioned in Section II-A. Then, the
constraint graph GV is obtained by merging vertices, each
corresponding to a left cell and a right cell of a cell pair. If
directed cycles do not exist in GV , we obtain the longest path
value of each vertex and determine the value as the y coordinate
of the lower edge of the corresponding cell. Then, it is clear
that the y coordinates satisfy both a symmetry constraint for
vertical direction and the vertical constraint of a given seq-pair.
However, the placement obtained is not always closest for the
y direction.

If there is a directed edge from left cell a� to b� in the hor-
izontal constraint graph obtained from the seq-pair, a directed
edge is set from right cell br to ar. Also, if there is a directed
edge from right cell ar to br, a directed edge is set from left cell
b� to a�, and graph GH is obtained. (Note that this operation of
setting edges was also carried out in [11].)

If there are no directed cycles in GH , by utilizing the
graph with a slightly complicated procedure, we can obtain a
placement that satisfies both a symmetry constraint for the x
direction and the horizontal constraint of the seq-pair.

Accordingly, we can obtain a placement that satisfies both a
symmetry constraint and H/V constraints of the seq-pair if there
are no directed cycles in both GV and GH . Here, as shown
in the following lemma, if there are vertex disjoint directed
cycles in GV and GH , it is easily understood that the seq-pair
is not symmetric-real-feasible since the minimum cycles have
two edges. �
Lemma 1: Assume that there are two seq-pairs S1 and S2,

which have the same elements. We obtain vertical constraint
graphs Gv1(Vv, Ev1) and Gv2(Vv, Ev2) from S1 and S2, re-
spectively. Then, Gv(Vv, Ev1 ∪ Ev2) is obtained by merging
directed edges of both Gv1(Vv, Ev1) and Gv2(Vv, Ev2). Also,
we obtain horizontal constraint graphs Gh1(Vh, Eh1) and
Gh2(Vh, Eh2) from S1 and S2, respectively. After reversing
the direction of edges on Gh2(Vh, Eh2), Gh(Vh, Eh1 ∪ Eh2) is
obtained by merging directed edges of both Gh1(Vh, Eh1) and
Gh2(Vh, Eh2). If there are vertex disjoint directed cycles in GV

and GH , the minimum one has two edges.
Proof: All of Gv1, Gv2, Gh1, and Gh2 are transitive

closure since these constraint graphs are obtained from a seq-
pair, so it is clear that there is no self-loop on both Gv and Gh.
Therefore, assuming that directed cycles with more than two
edges exist on either Gv or Gh, we can prove the above propo-
sition by contradiction using the fact that these four graphs are
transitive closure. �

B. Linear Constraint Expressions Obtained From Symmetry
Constraints and Given Seq-Pair

We discuss how to obtain the linear constraint expressions
from H/V constraints of a given seq-pair. If the horizontal
constraints of a seq-pair that “a is to the left of b” is given,
the following inequality for the x direction can be derived [8]:

x(a) + w(a) ≤ x(b).

Fig. 5. Placement that satisfies symmetry constraints {(a�, ar), bs} and seq-
pair (a� bs c ar; a� c bs ar).

Here, x(a) and x(b) are x coordinates of the left edge of cells a
and b, respectively, and w(a) is the width of a.

We convert symmetry constraints into linear constraint ex-
pressions. When a cell pair a� and ar is symmetrical to a
vertical symmetric axis, the linear constraint expression for the
x direction is

Axisx − (x(a�) + w(a�)) = x(ar) − Axisx

where Axisx is the x coordinate of a vertical symmetric axis
of a symmetry group. The linear constraint expression for the
y direction is

y(a�) = y(ar).

For self-symmetric cell as, the linear constraint expression
for the x direction is

Axisx − (x(as) + w(as)) = x(as) − Axisx

and that for the y direction cannot be obtained.

C. Set of Linear Constraint Expressions Obtained From a
Simple Constraint Graph

In order to obtain the set of linear constraint expressions from
a simple constraint graph, we can easily convert H/V constraint
graphs to simple constraint graphs by the method proposed in
[6]. Assume the number of cells is n and that of symmetry
constraints is s. It takes O(n2) time to obtain H/V constraint
graphs from a given seq-pair, and the longest path value can be
calculated in O(n2) time by the well-known longest path al-
gorithm mentioned in Section II-A. Therefore, at least O(sn2)
time is required to obtain a simple constraint graph.

However, if we utilize the method of obtaining the lower left
corner packing from a seq-pair in O(n log log n) time without
making H/V constraint graphs [7], we can quickly obtain a
simple constraint graph. So, we use this method [7] to obtain
all the longest path values in O(sn log log n) time.

In a simple constraint graph, there are both necessary and
unnecessary transitive edges. For example, when we obtain
a simple constraint graph from seq-pair (a� bs c ar; a� c bs ar)
and if w(c) > w(bs), not only edges (a�, bs) and (bs, ar) but
also transitive edge (a�, ar) is required to avoid overlap of c
and ar. The placement corresponding to the seq-pair is shown
in Fig. 5.

We will remove unnecessary transitive edges. Let one vertex
pair be vi and vj among all vertex pairs of source, sink,
and vertices corresponding to cells with symmetry constraints.

664 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 4, APRIL 2007

Fig. 6. Algorithm SP-Core.

In the method proposed in [6], the longest path from vi to vj is
obtained if it exists. If there is a vertex corresponding to a
cell with symmetry constraints on one of the longest paths
from vi to vj , the method judges the edge (vi, vj) unnecessary.
Since judgment on the necessity of the longest path requires
linear time of the number of topology constraints (assume m)
obtained from a seq-pair, the time complexity is O(s2m) in
total [6]. If this method is applied to H/V constraint graphs of a
seq-pair, it takes O(s2n2) time because the number of topology
constraints obtained from a seq-pair is O(n2).

By utilizing the method of obtaining the lower left corner
packing [7], all the longest paths and their values between
two vertices among source, sink, and vertices with symmetry
constraints are obtained and recorded. If each recorded longest
path value is equal to the longest path value via another vertex,
the recorded longest path can be considered unnecessary. This
method is carried out in O(s3) time. Note that s ≤ n.

Additionally, whether transitive edges are necessary or not
is judged in O(se) time in the proposed method. Here, e is
the number of linear constraint expressions obtained by the
proposed algorithm SP-Core (Fig. 6). SP-Core calculates the
longest path values and outputs linear constraint expressions if
necessary. The time complexity is O(sn log log n + se).

For example, when seq-pair (a� bs c ar; a� c bs ar), symmetry
constraints {(a�, ar), bs} to a vertical symmetric axis, and the
width of cells w(a�) = 1, w(ar) = 1, w(bs) = 1, and w(c) = 3

Fig. 7. Vertical constraint graph obtained from symmetry constraint
{(a�, ar)} and seq-pair (a� b c ar; b a� ar c). h(a) is the height of cell a, and
S is the source.

are given (shown in Fig. 5), SP-Core outputs the following
expressions for the x direction:

0 ≤x(a�)

x(a�) + 1 ≤x(bs)

x(a�) + 4 ≤x(ar)

x(bs) + 1 ≤x(ar)

x(ar) + 1 ≤x(sink).

Note that x(source) = 0.
The following expressions are also obtained by converting

the given symmetry constraints:

Axisx − x(a�) = (x(ar) + 1) − Axisx

Axisx − x(bs) = (x(bs) + 1) − Axisx.

We can obtain the width of cell placement by solving these
expressions for the x direction. The height can be obtained
similarly but independently from the x direction by solving
expressions for the y direction. Then, the area of placement is
obtained from the width and the height.

D. Removal of Dependent Variables by
Substitution of Expressions

Linear constraint expressions obtained from symmetry con-
straints are in equality, which means the distances from one cell
in the pair to the symmetry axis and from the other cell to the
axis are equal. Here, we focus on the variable corresponding
to the right cell or self-symmetric cell and transpose it to the
left side of the expression and the others to the right side of it.
Then, we can decrease the number of variables and expressions
by substitution.

For example, we focus on the variables x(ar) and x(bs) in
the following expressions shown in Section III-C:

Axisx − x(ar) = (x(a�) + 1) − Axisx

Axisx − x(bs) = (x(bs) + 1) − Axisx.

The following expressions are obtained by transposing x(ar)
and x(bs) to the left side of the expressions:

x(ar) = 2 ∗ Axisx − (x(a�) + 1)

x(bs) = Axisx − 0.5.

KODA et al.: LINEAR PROGRAMMING-BASED CELL PLACEMENT WITH SYMMETRY CONSTRAINTS 665

TABLE I
COMPARISON OF RUNNING TIME OF OBTAINING THE SOLUTION BY THE PROPOSED METHODS WITH SA ON PENTIUM IV 2.4 GHz. METHOD 1: A

METHOD OF USING THE LINEAR CONSTRAINT EXPRESSIONS OF A SIMPLE CONSTRAINT GRAPH. METHOD 2: METHOD 1 WITH

DEPENDENT VARIABLES REMOVAL BY SUBSTITUTING EXPRESSIONS. METHOD 3: METHOD 2 WITH UTILIZATION

OF A VERTICAL CONSTRAINT GRAPH TO OBTAIN y COORDINATES

TABLE II
EXPERIMENTAL COMPARISONS BETWEEN THE RESULTS OF THE PROPOSED METHOD (PENTIUM IV 3.2 GHz), BALASA’S RESULTS

(SUN BLADE 100), AND NONCONSTRAINED RESULTS (PENTIUM IV 3.2 GHz)

We substitute the aforementioned expressions for the other
expressions shown in Section III-C and obtain

0 ≤x(a�)

x(a�) − Axisx ≤ − 1.5 (4)

x(a�) − Axisx ≤ − 2.5 (5)

x(a�) − Axisx ≤ − 1.5 (6)

2 ∗ Axisx − (x(a�) + 1) + 1 ≤ x(sink)

where two variables and two expressions are removed.
Furthermore, (4) and (6) are redundant since there is (5) in

the aforementioned constraint expressions. We can decrease
constraint expressions by removing the redundant expressions
like this.

Finally, we remove redundant expressions and obtain

0 ≤x(a�)

x(a�) − Axisx ≤ −2.5

2 ∗ Axisx − (x(a�) + 1) + 1 ≤x(sink)

where two expressions are removed, and we obtained the
set of constraint expressions with three variables and three
expressions.

E. Calculation of y Coordinates With Vertical
Constraint Graph

If only symmetry groups to the vertical symmetric axes are
given, we can quickly obtain y coordinates by utilizing the
vertical constraint graph obtained from a given seq-pair as
mentioned in Section II-A.

First, we obtain a vertical constraint graph. If a directed
weighted edge from vertex x to the vertex corresponding to the
left (right) cell with symmetry constraint exists, we append a
directed edge with the same weight from vertex x to the vertex
corresponding to the right (left) cell. y coordinates of each cell
is obtained in O(n2) time by calculating the longest path value

from the source to each vertex [9] using the well-known longest
path algorithm for directed acyclic graphs.

In Fig. 7, the vertical constraint graph obtained from seq-pair
(a� b c ar; b a� ar c) is drawn in directed solid edges. Since sym-
metry constraint {(a�, ar)} is given, we append edge (b, ar)
with weight h(b) (drawn in directed broken edge) since edge
(b, a�) with the same weight h(b) exists.

IV. EXPERIMENTAL RESULTS

In order to confirm the improvement of running speed, we
implemented the proposed method with SA in C language.
The MOVE operation to make an adjacent solution for SA is
as follows. Choose two elements randomly from a given seq-
pair (Γ+; Γ−) and exchange each other in both Γ+ and Γ−
or in either of them. When an obtained adjacent solution is
symmetric-real-infeasible, it is abandoned, and another one is
obtained from the present solution.

Initial temperature and final temperature in the annealing
schedule are determined properly by the preliminary run. The
initial temperature is determined at the accepted ratio of more
than 70% in deteriorated solutions. When the evaluation of
solutions does not get worse nor better and seems to be settled,
the temperature is determined as the final one. The ratio of
falling temperature is determined in view of the runtime of
experiments.

The following three methods are implemented to compare
the running time:

Method 1: A method of using the linear constraint expres-
sions of a simple constraint graph.

Method 2: Method 1 with removal of dependent variables
by substitution of expressions.

Method 3: Method 2 with utilization of the vertical con-
straint graph to obtain y coordinates.

We use the simplex method for linear programming problem
and five kinds of cell sets, each with the different number of
cells and symmetry constraints. The symmetric axis in every
symmetry group is vertical only.

666 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 4, APRIL 2007

Fig. 8. Result of “biasynth_2p4g” obtained by the proposed method with SA
(time: 205.86 s, packing ratio: 105.65%).

Table I shows the comparison of running time of obtaining
the solution by three methods on the same annealing schedule.

Note that every method obtains the same solution but each
requires different time. The speed-up by substitution and uti-
lization of the constraint graph to obtain y coordinates is
confirmed from Table I.

In order to obtain nearly optimum solution, we carried out
experiments on Pentium IV 3.2 GHz by Method 3 with SA.
The MOVE operation is the same as mentioned previously,
and the annealing schedule is determined as above too. Two
input data sets are extracted from [10] for experiments. One
is named “biasynth_2p4g” and consists of 65 cells with three
symmetry groups (four pairs, six pairs, and two pairs with one
self-symmetric cell) extracted from [10, Fig. 9]. The other is
named “lnamixbias_2p4g” and consists of 110 cells with five
symmetry groups (eight pairs, three pairs, three pairs, six pairs,
and two pairs) extracted from [10, Fig. 10]. Just for reference,
we also carried out experiments on the aforementioned two data
sets without symmetry constraints.

Fig. 9. Result of “lnamixbias_2p4g” obtained by the proposed method with
SA (time: 3026.91 s, packing ratio: 107.95%).

Table II shows the experimental comparisons between the
proposed method (Method 3), the method in [2], and the no-
symmetry constraints. “Area [%]” is obtained by dividing the
area of bounding box by the total area of all cells. Note that
each “area [%]” in the table is manually calculated based on
[10, Figs. 9 and 10]. The results in [10] were obtained by Sun
Blade 100. Therefore, we cannot simply compare the results,
but both in “biasynth_2p4g” and “lnamixbias_2p4g,” the pro-
posed method obtained closer results than [10]. The pack-
ing results with symmetry constraints of “biasynth_2p4g” and
“lnamixbias_2p4g” are shown in Figs. 8 and 9, respectively.

The runtime of experiments without symmetry constraints is
much faster than that with symmetry constraints, since linear
expressions solved by the simplex method are very few. From
this matter, we find the simplex method very slow, but if we
can use the state-of-the-art linear programming solvers, we can
expect to obtain the results with symmetry constraints in much
shorter time.

V. CONCLUSION

In this paper, we present the necessary and sufficient con-
ditions for the existence of the cell placement that satisfies
the given symmetry constraints and the topology constraints

KODA et al.: LINEAR PROGRAMMING-BASED CELL PLACEMENT WITH SYMMETRY CONSTRAINTS 667

Fig. 10. (a) Placement based on seq-pair (a�1 ar1 d�2 dr2 c�2 cr2 b�1 br1;
c�2 cr2 b�1 br1 a�1 ar1 d�2 dr2). (b) Graph used for infeasible judgment.

imposed by a seq-pair. We defined a seq-pair that satisfies
the conditions as “symmetric-real-feasible seq-pair.” Then, we
proposed an efficient method of obtaining the cell placement
that satisfies the given constraints. In the proposed method, a
simple constraint graph [6] is obtained directly from a seq-
pair in O(sn log log n + es) time, and a set of linear constraint
expressions is derived from the graph. In order to shorten the
time required by linear programming, the number of linear
expressions is decreased by substituting the expressions for
dependent variables. We used linear programming to solve
the linear expressions and obtained the resultant placement. If
the symmetry axis is vertical only, the placement is obtained
more quickly by the vertical constraint graph based on a seq-
pair. Our future problems are experiments on industrial data of
analog circuits, evaluation of wirelength, more speed-up of the
proposed method, and follow-up of other constraints in analog
circuits.

APPENDIX

EFFICIENT JUDGMENT OF INFEASIBLE SEQ-PAIR

In the proposed method of using linear programming, when
there is a placement to satisfy both a given seq-pair and sym-
metry constraints, the seq-pair is said to be feasible (otherwise
infeasible), and the proposed method can necessarily obtain the
closest placement based on it. However, the method requires
long time since linear programming is used.

Hence, we consider to speedily remove infeasible seq-pairs
as many as possible before judgment on infeasible or feasible
is done and, if infeasible, to do so before determining x and
y coordinates. The discussion is based on the assumption that
there are no cells, which belong to plural symmetry groups, that
is, each cell belongs to at most one symmetry group.

When there are plural symmetry groups, infeasible seq-
pair overlooked by the condition of symmetric-real-feasible
seq-pair mentioned in Section III-A exists. For example,

Fig. 11. Algorithm Infeasible-check.

Fig. 12. Placement based on seq-pair (a�1 c�2 d�2 b�1 e�3 br1 ar1 f�3

dr2 fr3 er3 cr2; a�1 c�2 d�2 b�1 e�3 br1 ar1 f�3 dr2 fr3 er3 cr2).

assume seq-pair (a�1 ar1 d�2 dr2 c�2 cr2 b�1 br1; c�2 cr2 b�1 br1

a�1 ar1 d�2 dr2) is given under two symmetry groups
{(a�1, ar1), (b�1, br1)} and {(c�2, cr2), (d�2, dr2)}. From
this seq-pair, y coordinates can be easily obtained like the
lower left corner placement obtained by ignoring symmetry
constraints, as shown in Fig. 10(a), where there are two rows
of cells. However, the relative position of two symmetric axes
on the x direction obtained from two cell pairs on the upper
row and that obtained from two cell pairs on the lower row
contradicts. Therefore, there is no placement that satisfies all
constraints.

As mentioned before, in order to judge infeasible seq-pair,
where the relative position of two symmetric axes on the x
direction contradicts, we can use the method that is shown in
Fig. 11. For example, if we apply the aforementioned seq-pair
to the method of Fig. 11, the graph, as shown in Fig. 10(b), is
obtained. There is a cycle (u1, ar1, d�2, u2, cr2, b�1, u1) in this
graph, so the seq-pair is judged as infeasible.

When there are plural symmetry groups, there are
complicated cases where a seq-pair becomes infeasible even if
there is no contradiction in the relative position between each
coordinate of the symmetry axis. As an example, we consider
whether the placement is possible or not when seq-pair (a�1 c�2

d�2 b�1 e�3 br1 ar1 f�3 dr2 fr3 er3 cr2; a�1 c�2 d�2 b�1 e�3 br1 ar1

f�3 dr2 fr3 er3 cr2) and three symmetry constraints {(a�1, ar1),

668 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 4, APRIL 2007

(b�1, br1)}, {(c�2, cr2), (d�2, dr2)}, and {(e�3, er3), (f�3, fr3)}
are given.

Here, y coordinates are easily determined to have the same
value since all cells are aligned in a row like the place-
ment obtained by ignoring symmetry constraints, as shown in
Fig. 12. However, in this example, it is impossible to deter-
mine x coordinates, and the seq-pair is judged to be infea-
sible since “c�2, d�2” comes between a�1 and b�1, “er3, fr3”
comes between cr2 and dr2, and “ar1, br1” comes between
e�3 and f�3.

ACKNOWLEDGMENT

The authors would like to thank Assistant Professor F. Balasa
of the University of Illinois at Chicago and Associate Professor
Y. Takashima of the University of Kitakyushu for their kind
support.

REFERENCES

[1] J. Cohn, D. Garrod, R. Rutenbar, and L. Carley, Analog Device-Level
Layout Automation. Norwell, MA: Kluwer, 1994.

[2] F. Balasa and K. Lampaert, “Symmetry within the sequence-pair repre-
sentation in the context of placement for analog design,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 19, no. 7, pp. 721–731,
Jul. 2000.

[3] K. Krishnamoorthy, S. C. Maruvada, and F. Balasa, “Fast evaluation of
symmetric-feasible sequence-pairs for analog topological placement,” in
Proc. 5th IEEE Int. Conf. ASICON, 2003, pp. 71–74.

[4] H. Murata, K. Fujiyoshi, S. Nakatake, and Y. Kajitani, “Rectangle-
packing-based module placement,” in Proc. IEEE/ACM Int. Conf.
Comput.-Aided Design, 1995, pp. 472–479.

[5] L. Rijnders, P. Six, and H. J. De Man, “Design of a process-tolerant
cell library for regular structures using symbolic layout and hierarchical
compaction,” IEEE J. Solid-State Circuits, vol. 23, no. 3, pp. 714–721,
Jun. 1988.

[6] R. Okuda, T. Sato, H. Onodera, and K. Tamaru, “An algorithm for layout
compaction problem with symmetry constraint,” IEICE Trans. Fundam.,
vol. J70-A, no. 3, pp. 536–543, 1990. (in Japanese).

[7] X. Tang, R. Tian, and D. F. Wong, “Fast evaluation of sequence pair in
block placement by longest common subsequence computation,” IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 20, no. 12,
pp. 1406–1413, 2001.

[8] J.-G. Kim and Y.-D. Kim, “A linear programming-based algorithm for
floorplanning in VLSI design,” IEEE Trans. Comput.-Aided Design In-
tegr. Circuits Syst., vol. 22, no. 5, pp. 584–592, May 2003.

[9] H. Saito and K. Fujiyoshi, “The improved method of L-shaped block
packing,” in Proc. 13th Workshop Circuits and Syst. Karuizawa, 2000,
pp. 245–250. (in Japanese).

[10] F. Balasa, S. C. Maruvada, and K. Krishnamoorthy, “On the exploration
of the solution space in analog placement with symmetry constraints,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 23, no. 2,
pp. 177–191, Feb. 2004.

[11] Y.-X. Pang, F. Balasa, K. Lampaert, and C.-K. Cheng, “Block placement
with symmetry constraints based on the O-tree non-slicing representa-
tion,” in Proc. ACM/IEEE Des. Autom. Conf., 2000, pp. 464–467.

Shinichi Koda received the B.E. and M.E. degrees
in electrical and electronic engineering from Tokyo
University of Agriculture and Technology, Koganei,
Japan, in 2005 and 2007, respectively.

He is currently with Nintendo Company, Ltd.,
Kyoto, Japan. His research interests include VLSI
layout design, especially floor planning and packing
for analog IC design.

Chikaaki Kodama (S’04–M’06) received the B.E.,
M.E., and D.E. degrees in electronic and information
engineering from Tokyo University of Agriculture
and Technology, Koganei, Japan, in 1999, 2001, and
2006, respectively.

He was with Fujitsu Ltd., Kawasaki, Japan, from
2001 to 2003, where he worked on custom computer-
aided design (CAD) development for processor de-
sign of the SPARC architecture. He is currently with
Toshiba Microelectronics Corporation, Yokohama,
Japan. His research interests include VLSI layout

design, especially floor planning and packing, and apparel CAD systems.
Dr. Kodama is a member of the Institute of Electronics, Information and

Communication Engineers.

Kunihiro Fujiyoshi (M’96) received the B.E., M.E.,
and D.E. degrees in electrical and electronic engi-
neering from Tokyo Institute of Technology, Tokyo,
Japan, in 1987, 1989, and 1994, respectively.

From 1992 to 1996, he was a Research Asso-
ciate at the School of Information Science, Japan
Advanced Institute of Science and Technology,
Ishikawa, Japan. In 1997, he joined Tokyo University
of Agriculture and Technology, Koganei, Japan, as a
Lecturer and has been an Associate Professor since
2000 at the Department of Electrical and Electronic

Engineering, Tokyo University of Agriculture and Technology. His research
interests include combinatorial algorithms and VLSI layout design.

Dr. Fujiyoshi is a member of the Institute of Electronics, Information and
Communication Engineers and the Information Processing Society of Japan.

