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1. Introduction

1.1 Definition

Linear programmings the name of a branch of applied mathematics that deals with solving
optimizationproblems of a particulaiorm. Linear programmingoroblems consist of a
linearcost functionconsisting of aertain number of variableg)hich is to beminimized

or maximized subject to a certairumber ofconstraints The constraintsare linear
inequalities of the variables used in the cost functidhe cost function is also sometimes
called theobjectivefunction Linear programming is closely related to linear algebra; the
most noticeable difference is that linear programming often uses inequalities in the problem
statement rather than equalities.

1.2 History

Linear programming is a relativelyoung mathematicaldiscipline, dating from the
invention of thesimplex methodby G. B. Dantzig inl947. Historically,development in
linear programming is driven by its applications in economics and managermantzig

initially developed the simplex method solve U.S. Air Force planningproblems, and
planning and scheduling problems still domintte applications of linegprogramming.
One reason that linear programming is a relatimely field is thatonly the smallest linear
programming problems can be solved without a computer.

1.3 Example

(Adapted from [1].) Linear programming problems arise naturally in produptéoming.
Suppose a particular Ford plant can build Escorts attheofone per minute, Explorer at
the rate of one every 2 minutes, and Lincoln Navigators attheofone every 3ninutes.
The vehicles get 25, 15, and 10 miles per gallon, respectively, and Comgiresdateshat
the average fuel economy of vehicles produced be at least 18 milgsllper Ford loses
$1000 on each Escort, but makes a profit of $5008amh Exploreand$15,000 oreach
Navigator. What is the maximum profit this Ford plant can make in one 8-hour day?

The cost functionis the profitFord can make byouilding x Escorts,y Explorers,and z
Navigators, and we want to maximize it:

—1000x + 5000y + 15000z (1.3.1)
The constraintsarise fromthe production times an€ongressionalmandate on fuel
economy. There are480 minutes in arB-hour day,and so the production timder the
vehicles lead to the following limit:

X + 2y + 3z< 480 (1.3.2)
The average fuel economy restriction can be written:
25X +15y + 102> 18(x +y + 2) (1.3.3)
which simplifies to:
7x-3y—-8z=0 (1.3.4)

There is an additional implicit constraint that the variables are all non-negatiyez > 0.
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This production planning problem can now be written succinctly as:
Maximize -1000x + 5000y + 15000z

subject to X + 2y + 3z< 480
7x-3y—-8z=20
X Y,220

(1.3.5)

The solution to this problem i8=132.41, y=0, and z=115.86, yielding a cost function
value of 1,605,517.24 Note thatfor some problemsjon-integer values of the variables
may not bedesired. Solving dinear programming problenfor integer values of the
variables only icalledinteger programmingnd is a significantly more difficufiroblem.
The solution to an integer programming problem is not necessarily closedoldkien of
the same problemsolved withoutthe integerconstraint. In this exampldéhe optimal
solution ifx, y, andz are constrained to be integersxsl32, y=1, and z=115 with a
resulting cost function value (profit) of $1,598,000.

2. Terminology
A linear programming problem is said to be in “standard form” when it is written as:

n
Maximize ch X
=
n

subject to zaijxjsb, i=1..m (2.1)
=1

szo, j=1..n

The problem ham variables and constraints. It may be writtemsing vector terminology
as:

Maximize  c'x
subjectto Ax<b (2.2)
x=0

Note that a problem where we would like to minimize the cost function insteadxirhize
it may be rewritten in standard form by negating the cost coeffi(:i]e(mfs).

Any vector x satisfyingthe constraints ofthe linear programming problem talled a
feasible solutiorof the problem. Every linear programming problem falls into ortareé
categories:

1. Infeasible A linear programming problem isfeasibleif a feasible solution to the
problem does not exist; that is, there is no vexttor which all the constraints of the
problem are satisfied.

2. Unbounded. A linear programming problem nboundedif the constraints do not
sufficiently restrain theost function sahat for any given feasiblesolution, another
feasible solution can be found that makes a further improvement to the cost function.

3. Has anoptimal solution Linear programmingproblemsthat arenot infeasible or
unboundechave an optimasolution;thatis, the cost function has a uniquainimum
(or maximum) cost function value. This does maan that thealues of the variables
that yield that optimal solution are unique, however.

The basic algorithnrmost oftenused to solvdinear programmingoroblems iscalled the
simplex methad Over thepast 50years, it hadeen developed to the point thgdod
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computer programs using the simplex method and its relativeseftised simplex method
and thenetwork simplex methddcan solve virtually any bounded, feasible linear
programming problem of reasonable size in a reasonable amount of@infein thepast
tenyears have other methods of solvimgar programmingoroblems (so-calledhterior

point methodsdeveloped to the point where they can be used to solve practical problems.

3. The Simplex Method

3.1 How It Works

The simplex method has two basic steps, often called “phases.” The first phase is to find a
feasible solution to the problem. For small problems, or larger problepestainforms,

this is not at all difficult. Often, a trivial solution suchxas 0 is a feasiblsolution, as in

the production planning problem described earlier. Weaniit the details okolving the

first phase to find a feasible solution for now.

After a feasible solution to the problemf@ind, the simplex methoavorks byiteratively
improving the value of the cost function. This is accomplished by finding a variable in the
problem that can be increased, at the expense of decreasing another variable, in such a way
as to effect an overall improvement in the cost function. ddisbe visualized graphically

as moving along thedges of a feasible set from cornerctwner. Atwo-dimensional
example follows.

3.2 Geometric Interpretation of the Simplex Method
Consider the linear programming problem:

Maximize X +y

subjectto X+ y < 14
X+ 2y < 8 (3.2.1)
2X -y < 10
x=20,y=20

Thefeasible sebf this problemcan be graphed itwo dimensions as shown in Figure 1.
The non-zero constrainks> 0 andy = 0 confine the feasible set tioe first quadrant. The

other three constraints are lines in xheplane, as shownThe cost functionx + y, can

be represented asline of slope —1with any intercept The value of the intercept of the

cost function line is the value of tlwest function for any solutiothat lies along thdine.

The heavy line in Figure 1 represents the optimal solution of the problem, since line the
with slope —1 with the maximum intercept (10) that intersects the feasible set. The value of
the cost function for this optimal solution is 10, and the cost funétierx + y = 10 has
exactly one point in the feasible setr 4,y = 6.

The simplex method works by finding a feasible solution, and then movingttiadrpoint
to any vertex of the feasible siat improvesthe cost function. Eventually a corner is
reached from which any movement does not improve the cost function. Timesaptimal
solution. In this examples = 0 andy = 0 is atrivial feasiblesolution, and has a cost
function value of 0. This is vertex A in Figure 1. From this pointca either move to
point B or point E. Point EO, 4) increases theost function to 4, while point B5, 0)
increases it to 5. Since point B gives us more improvement, weellit it asour first
iteration (although we could just as well have chosen E afatinvould reach the optimal
solution more quickly if we did). The valuexincreases from 0 to 5, whiferemains 0.
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Figure 1. Graphical solution of a linear programming problem.

From point B, we check whether a move to point Cadantageous.(We know that
moving back to A isnot.) Point C(6, 2) has a cost functionalue of 8,which is an
improvement. Therefore we increasdrom 5 to 6, which meanthat because of the
constraints  —y <10 and x + 2y < 8, we mustalso increasg from 0 to 2. From
point C, wenow check whether a move to point D improvée situation. The cost
function at D (4, 6) is 10, so we accept the moveiaagasey from 2 to 6. This means
thatx must decrease from 6 to 4 because ofcthrestraints. Nowsince a move teither
point E (cost functiorvalue of 4) or point Gcost functionvalue of 8) decreases the cost
function, we know that point D is the optimal solution to this problem.

3.3 Algebraic Solution using the Simplex Method

The same problem illustrated graphically above cansdlged using onlyalgebraic
manipulations. First, we rewrite equation3.2.1) addingslack variablesto convert the
inequality constraints into equalities:

Maximize X +y = z

subject to 2+ y +r = 14
X + 2y + s = 8 (3.3.1)
2X — Yy + t = 10
XY rst=0

The simplex method starts by fixing enoughtleé variables at O (thelower bound) and
“remove” them from the problem so that the sys#&r = b is square. In this caseijth

the slack variables added there are 5 variables atmhS8traints, so waeed to set two
variables to 0 and remove their coefficients friba problem to make the matux into a

3x3 matrix. The solution of the system in this instance represents one of the vertices of the
feasibleset, asllustrated geometrically ifrigure 1. An obviougeasible solution to this
problem isx = 0,y = 0. These are the two variables set to zew “removed” from the
problem. Such variables are caltesh-basicvariables. The solution to this systenthien
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r=14, s=8, t=10. These three variables aoalled thebasic variablesfor this
solution.

Now, we rewrite the problem with the constraints as equationddpasic variables, s,
andt:

z = X + vy

rr-= 14 - X-y

s =8 + x — 2% (3.3.2)
t = 10- X+ vy

XY, r,st=0

To begin iterating the simplex method, we look for a wantoease theost functionz.
Looking at thenon-basic variables andy, we try to increase one ttiem whileholding
the other at zero. However, the amounto&a increasa is limited by thenon-negativity
constraints orthe basicvariables. Looking athe reformulatedonstraintsshown above,
we see that for the first constraint foe 0, we mushavex < 7. Thesecond constraint
does nofimit x since an increase i increases, while the third constrainimposes the
restriction thatx < 5. Therefore, we choose itcreasex from zero to 5, andecalculate
the values of, s, andt from the above equations: = 4, s =13, andt = 0. Sincex
goes from zero to non-zero, it is saicetder the basiand is called thentering variabldor
this iteration. Sincégoes from non-zero to zero, it is saiddave thebasisand iscalled
theleaving variable Our basis now consists of the variabiles andx and the variables
andy are non-basic and therefore zero. Our objective funztimw has a value of 5.

We now rewrite the entire problem so that the objectivaction and constraints are
expressed only as functions of the non-basic variataedy, by rearranging the constraint
equationfor t from above to bex = 5 — 0.5 + 0.5y and substituting intdhe other
equations:

z = 5 - 08+ 1%

rr-=4 +t -2

s = 13- 08- 1Y% (3.3.3)
X =5 — 08+ 0.5

XY, r,st=20

Now we iterate thesimplex methodagain. Toincreasez, we must increasg this time.

The constraint om limits y to be lesghan 2, the constraint anlimits y to be lesghan

8.67, and the constraint oxi does notlimit y. Therefore, we choosg as the entering

variable with a value of 2, ando be the leaving variable. The equationrfoearranges to

y=2-0.5 + 0.5. Substituting in yields:
z - 0.7% + 0.28

- 0.5 + 0.5.

0.75 — 1.28 (3.3.4)

+
- 025 - 0.28
>0

I an
nornNo
o

X X n<
—

=<
=

Note thatwhenthe problem is irthis form, we can read the current values of the basic
variables and the objective function from the constants just to the right of the siguals
The variables on the right of the equations arenthrebasic variables arall have value
zero. To increasefor the next iteration, we have no otleoice than to increase The
constraintfor s limits t to 8, while the constrairfor x limits t to 24. Thereforef enters
with a value of 8 and leaves the basis. The rearranged equatibrFi8 + 0.6 — 0.8s.
Substituting, we have:
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z = 10- 0.6 - 0.5

y = 6 - 02 - 04

t = 8 + 06 - 0.8 (3.3.5)
X = 4 — 04 - 0.4

X, Y, r,st=20

Now the objective functiom has valuel0. Examining the equatiofor z, we sedhat we
cannot raise eitharor s above zero without decreasimg This means therare no more
advantageous changes we can make t@dhéion, so it must be optimal. Therefore, the
solution to thidinear programming problem s = 4, y = 6, with anobjective function
value of 10.

4. The Revised Simplex Method

The revised simplex method is thame of an implementation of the simplex mettiat

uses aslightly different method of updating the problem at each iteration: instead of
updating the problerasingthe results ofthe previous iteration, it usethe originaldata.
Each iteration is still thesame,but the revised simplex method is more computationally
efficient, especially for large and sparse problems. de&ribed irdetail in thebook by
Chvatal [2].

5. Pitfalls

There are three major pitfalls thatesent themselveshen solvinglinear programming

problems by the simplex method. They are:

1. Initialization. This isthe problem of finding amitial feasiblesolution with which to
start the simplex method.

2. lteration. There may be difficulties in choosing an entering or leaving variable.

3. Termination This isthe problem ofnsuringthat the simplex method terminates and
does notmerely continuethrough an endless sequence of iterations withewar
reaching an optimal solution.

5.1 Initialization

For many linear programming problems, finding an initial feasible solutitnvial; often,
an all-zero solution is feasible and may be used as a starting'qrainé simplexmethod.
If an initial feasiblesolution is not readily available, orman befound by solving an
auxiliary linear programming problem formulated by subtracting additional variables from
the originalproblem’s constraints and changitiige cost function taminimize thesum of
these new variables. The auxiliary problemrsa$ved,and wherall of theadded variables
are zero, the values of the original variables represenintial feasiblesolution. The
original linear programming problem is thaolved using thignitial solution. If the
solution to the auxiliary problemioes notyield a solutionwherethe new variables are all
zero, then a feasible solution to the original problem does not exist. This stratagwis
as thetwo-phase simplexnethod The first phase sets up and solvése auxiliary
problem, and the second phase solves the problem itself.

5.2 lIteration

There is usually no difficulty in selecting an entering or leaving variable for each iteration of
the simplexmethod. There is often more than one candidfte the entering or leaving
variable, but any variable which satisfies the requiremfentsntering or leaving thbasis

may be chosen subject to termination considerations (discussed in tisectext). When
choosing aleaving variable,the only pitfall that endangers finding a solution is
unboundednessvhenthe entering variable is not constrained in value by any of the
candidate leavingariables. This mearthere is no candidateor the leaving variable
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(which ismeant to be theasic variablevhich imposedhe most stringent bound on the
increase of the enteringariable). The problem inthis case is unbounded amés no
optimal solution.

Another difficulty that may be encounteredlring iteration is the phenomenon of
degeneracy Degeneracy is not harmful to the simplaethod, but it doefiave some
annoying consequences; notablycdin cause the simplex method to @pwough many
successive iteratiorthat donot change the value of tismlution (and therefore do not
change the value of the cost function eithddegeneracyarises from solutions where one

or more basic variables arero, calleddegeneratesolutions When a basic variable with

zero value is replaced in the basis with an entering variable tivaitéesl to zerovalue, the

solution does not change value at all (although the variables in the basis do change) and the
iteration just performed is calleddagenerate iteratian This is illustrated byhe following
example.

z = 4 + X-y - 4

r = 0.5 - 0.5

t = - X+ 4y + 3s (5.2.1)
u = X — 3y + 2s

XY rstu=0

Iterating this problem and choosirgs the entering variable ahds the leavingariable,
we get:

4 + Y- s -t

0.5 - 0.5

(5.2.2)

c X =N

0.5
-y + 35- 0%
XY r,stu=0

Note thatfor both solutionsthe objective value is 4 and the variable= 0.5 while all

other variables areero. This is alegenerate iteration. Eventualthe simplex method
becomes “unstuck” and the iterations am-degenerate. lilme aboveexample the next
iteration is also degenerate, but the iteration after that is not and yields the optimal solution.

Although degeneracy itselfloes not endangethe simplex method, it doeshave
consequences faermination that ardiscussed irthe nextsection. Virtually all practical
linear programming problems are degenerate.

5.3 Termination

The simplex method terminates by finditihgit the problem is infeasible anbounded, or

by finding theoptimal solution. The only other possibility ighat the simplex method
cycles thatis, it goes through an endlesgpeating sequence of non-optinsalutions
(which must all have the same cost function value). Note that cycling can only occur in the
presence of degeneracy, sineach iteration of a cyclemust be degenerate. There are
several strategigf®r selecting either the entering or leaving varigloleboth) that ensure

that cyclingdoes notoccur. The simplest of these is the “smallest-subscripk®, which

states that ties in the choice of entering and leaving variabledvaags broken in favor of

the variable with the smallest subscript.

6. Speed

Studies onpractical linearprogramming problems of various sizes ham@wn that the
simplex method typically terminates after betweenriand 3n iterations, wheren is the
number of constraints ithe problem. The generalconsensus ighat the number of
iterations increases linearly with the number of constraints but only logarithmically with the
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number of variables. Theoretical studies of the efficiency of the simplex method are much
less satisfactory, however. The worst casthefsimplex methodequires 2-1 iterations,
wheren is the number of variables. However, problems where thibéws demonstrated

are considered pathologic, and a differembice of entering and leaving variables reduces
the number of iterationsom 2'-1 to one! Thereforethe most practicalway to ensure
termination in a reasonable number of iterations is to pay careful attentiarteso for
selecting the entering and leavingriables. Theoretically satisfactory algorithms for
solving linear programming problems are navailable(known generally asnterior point
method}¥ but they are notiseful for solvingpractical problems. The simplexmethod,
despite its theoretical shortcomings, is still the method of choice.

7. Duality

Every linear programming problem where we seek to maximize the objective function gives
rise to a related problem, called theal problemwhere we seek tminimize the objective
function. The two problemimiteract in an interestinggay: every feasible solution to one
problem gives rise to a bound on the optimal solution in the other problem. If one problem
has anoptimal solution, so doethe other problem and the/o objective function values

are the same. The equations below show a problem in standard formwaithbles and

m constraints on the left, and its corresponding dual problem on the right.

max c'x minb'y
st.Ax<b = st.Aly=c
xz0 y=0 (7.1)
[ variables [ [m variables

Em constrai ntsE En constrai ntsE

If the original orprimal problemhasthe optimalsolution x*, its dual problemhas an

optimal solutiony* and c'x* =b"y*. If the primal problem is infeasible anbounded,
then the dual problem is infeasible or unbounded.

Duality is mostly of theoreticalimportance, although sonimear programming problems
may be solved much more easily by converting them to their dual form.

8. Conclusions

Linear programming is an important branch of appimedathematics thasolves a wide
variety of optimization problems. Itis widely used in production planning and scheduling
problems. Many recentadvances in the field hawome from the airlineindustry where
aircraft and crew scheduling have been great improved bysieflinear programming.
It has alsdbeenused to solve aariety of assignmergroblems, such ake karyotyping
problem where 46 chromosomes are assigned to 24 classes. Altheughised simplex
method is not theoretically satisfactory from a computational poiate®d, it is byfar the
most widely usednethod to solvdinear programmingproblems and only rarelgre its
limitations encountered in practicapplications. The biggest advantage dfnear
programming as an optimization methodhat it always achieveshe optimalsolution if
one exists.
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