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ABSTRACT 
We address the narrow-band source localization problem 

for arbitrary arrays with known geometry in the presence 
of arbitrary noise of unknown spatial spectral density. Very 
few methods are able to handle this problem. We present 
a very unsophisticated approach whose algorithmic part re- 
lies on a standard linear programming algorithm (such as 
the simplex algorithm available in any scientific program li- 
brary). The computational complexity of the method is rea- 
sonable, the performances appear to be remarkable on sim- 
ulations. The justification of the procedure and the asymp- 
totic analysis is more complex and much work remains to 
be done. 

1. INTRODUCTION 

The source localization problem for passive arrays is mostly 
addressed in the case of linear arrays with equispaced sen- 
sors, in the presence of uncorrelated sources and spatially 
white additive noise. Most high resolution techniques are 
developped in this context and are quite sensitive to discrep- 
ancies with respect to these assumptions. We propose an 
approach that has performances that are similar to those 
of the HR techniques but that can handle arbitrary ar- 
rays (with known geometry) and arbitrary (unknown) noise 
characteristics. We only consider the case of uncorrelated 
sources. 
Among the methods that allow to handle arbitrary un- 
known noise one can distinguish those that use an unique 
parametric model [2], [3] (valid over the whole horizon) for 
the noise (a spatial AR model in general) and those that 
work on small spatial sectors [l] and adapt a different sim- 
ple noise model in each sector (the local contribution of the 
noise is modeled by a constant or a slope in the local esti- 
mate of the spectrum). The first approaches only apply to 
linear equispaced arrays while the second, working locally, 
have difficulties with even slightly resonant spectra. Both 
approaches are computationally intensive. 

2. THE PROPOSED APPROACH 

The approach we propose is easy to implement and has an 
extremely reasonable computation cost. After a modeling 
step, performed once for ever for a given array (geometry), 
it relies upon simple numerical algorithms and mainly upon 
a linear programming algorithm such as the simplex method 
available in any scientific program library. The recently 

developed interior point methods can also be used. We 
will consider for simplicity that the sources and the array 
are in the same plane and the sources are in the far-field. 
A source is then characterized by its power and bearing (or 
spatial frequency). 

For the source localisation problem, we start evaluating 
the outputs of a standard beamformer (taking into account 
the array geometry in the definition of the steering vector) 
at M equispaced spatial frequencies where M is the num- 
ber of degrees of freedom (d.0.f.) of the array (the number 
of real d.0.f. of the covariance matrix of the snapshots). 
The vector ir containing these outputs and an estimate 2 of 
the covariance matrix C of this vector (computed using the 
usual complex-gaussian-vector model for the snapshots) are 
the inputs to our algorithm. Note that for an equispaced 
linear array having N sensors, M is equal to 2N - 1 and 
there is a slight loss of information here since the transfor- 
mation going from the covariance matrix of the snapshots 
(a sufficient statistic) to the beams is not one-to-one. 

We then propose to find a parsimonious representation 
of the observed vector 8 on a basis or the association of 
different bases. Basis stays here for a set or collection of 
functions. While the Fourier representation is well adapted 
when one seeks to represent sinusoids, in our case different 
bases are obviously better adapted. 

2.1. The modeling step 
To represent the source-contributions to the w-vector, we 
take the basis whose elements (the %-vectors below) are the 
outputs of the beamformer to isolated unit-power sources 
in a large number of directions (the index I of the basis ele- 
ment 21 is linked to the spatial frequency of the source that 
produces it). If we denote dO(v) the steering vector associ- 
ated with spatial frequency v , the beamformer-output at 
spatial frequency f to an unique source at frequency v is 
simply : 

(1) 
1 W f )  = &Wf)*Wv)l2 

where N denotes the number of sensors. For a linear equi- 
spaced array, the beamformer-output is the discrete nor- 
malized and sampled Fejer kernel. 

To model the unknown noise contribution a specific ba- 
sis is associated to this fist one. Let bk denote an ele- 

approximate any spectral density and since in some sense 
any rational density can be modeled as the sum of spectral 

ment of this basis. Since rational spectral densities allow to 
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densities associated with essentially AR(1) and AR(2) (or 
ARMA(2,l)) processes, we built the b k  elements as the out- 
puts of the beamformer to a wide variety of spatial AR(1) 
and AR(2)-models. We typically parametrize the AR-model 
by their roots (poles) and consider an uniform grid in the 
magnitude-phase plane. To fix ideas, for the real AR(2)- 
part of this basis, we take five different magnitudes (which 
characterize the damping factor) and sixteen different equi- 
spaced phases in the simulations below. 

Finally, in order to be able to take into account the es- 
timation error present in 6 because only a finite number of 
snapshots is available, one can adjoin a further basis to the 
two previous ones. The elements {q} of this basis can be 
build using information coming from the covariance matrix 
E of 6. Each element {~j} can for instance be the contribu- 
tion to .it of one realization of the estimation error. 

We then seek a decomposition of 8 on these bases. 

I k j 

Obviously such a decomposition is far from unique since 
we merged several different bases and some elements of a 
basis do have representations in terms of other elements. 
To single out one representation and possibly the true one, 
we need to define a criterion and an associated optimisation 
procedure. The basic idea is that the true representation is 
the sparsest one, the one with the fewest significant weights. 

2.2. The optimisation step 
Since we reconstruct an observed positive spectrum from 
positive elementary spectra, we consider only those de- 
composition having non-negative weights. To guarantee 
the parsimony we seek, we minimize the l 1  norm of the 
weights. To potentially obtain even sparser solutions, one 
could consider minimizing the lp  quasi-norm of the weights 
for 0 < p < 1 but the optimization problem then becomes 
non-convex and no straightforward algorithms are available 
as opposed to the l ,  norm for which the optimum is simply 
obtained as the solution of a linear program : 

L K J 

Min + Cyj 
I=1 k = l  j = 1  

1 k j 

a1 2 0, Dk 2 0, ?j 2 0 
The theory behind linear programming is well established, 

let us simply say that there are no local minima and that if 
the global minimum is not an isolated point, all global min- 
ima belong to a convex set. Moreover the (global) minimum 
is always attained at an extreme point of the domain of solu- 
tions indicating that at most M components of the solution 
( M  weights) will be strictly positive at the optimum. This 
clearly guarantees some parsimony and is, besides the fact 
that algorithms solving LP's are easily available, the major 
reason for choosing this approach. 

AnotPer way to take into account the estimation errors is 
tp use C to whiten the observation vector 6. We define .ii = 
C-'/20 and change accordingly the formulation of the linear 
program. We drop the columns {q} and apply the same 

transformation 5-l'' to the remaining bases elements. We 
further replace the equality sign in the linear constraint 
(2) by upper and lower bounds. The linear program to be 
solved now is : 

M i n x a l  
I k 

where i denotes a column vector of one's. The idea be- 
hind this last modification is the following. Since 6 (and 
6) is corrupted by estimation errors there is no reason to 
ask the reconstructed model to fit exactly these observa- 
tions, it is more adequate to ask the reconstructed model to 
pass within e.g. one standard deviation of the observations. 
Putting such a tube around the whitened observations is an 
easy way to take into account the estimation errors and is 
the one that has been used in the simulations below. 

3. ANALYSIS 
There are a number of important theoretical issues one 
should answer to justify this approach which, looking at 
the simulation results, has quite remarkable results. 

The bases we introduced are redundant and as already 
indicated the solution is thus far from being unique. This 
non-uniqueness is important and indeed necessary. To solve 
two closely spaced sources the discretisation step in the spa- 
tial frequency domain has to be small and the number L of 
elements must thus be large meaning that the redundancy 
is unavoidable. Provided the bases are well chosen, one can 
however somehow expect that the true and exact represen- 
tation is the most parsimonious. 

The identifiability issue is particularly important. It is 
addressed in the Appendix. It requires that the dictionar- 
ies are built so that, in the absence of estimation errors, if 
v the second member in relation (2) is exactly obtained as 
a positive linear combination of a number of basis elements 
smaller than M ,  this sought-for solution is also the unique 
optimal solution (or at least belongs to  the convex set of 
optimal solutions) of the linear program. 

Another important issue concerns the theoretical evalu- 
ation of the asymptotic performances of this kind of ap- 
proach. In our context, if T denotes the number of snap- 
shots available and N being the number of sensors, the 
variance achievable for the bearing estimates is of order 
T - ' N P 3  and one can expect that this approach can at- 
tain a similar efficiency [SI. Assuming that the modeling 
step has been successful and thus that the optimum given 
by the solution to (3) is generically in the neighbourhood of 
the true value, one is of course interested in the statistical 
properties of this procedure. 

An important parameter in this respect is 6, the radius of 
the tube in (3). Assume that the true scenario generating .it 
and thus s can be exactly described by our bases i.e. there 
are no discretization bias or errors. We then want that, with 
probability close to one, this exact representation belongs 
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to the solution set of our LP (3) despite the estimation 
errors. Since, asymptotically in T ,  the components of 5 
are samples from independent normalised gaussian random 
variables we have to take 6 so that the probability that the 
supremum of the difference of these M variables and their 
mean value be larger than d in absolute value is close to 
zero. For independent gaussian random variables, it is easy 
to show that 6 has then to be of the order of m. 

With probability close to- one -our vector of estimates, 
say 0, is then such that IC(0) - Cl 5 6, this implies, tak- 
ingainto account the fact that C is of o;der T-', that 
Iv(0) - 31 5 S/@ and the variance of .(e) thus of order 
S2/T. Working backwards, the value of 6 can then further 
be tuned according to the order of magnitude of the asymp- 
totic variance of the estimates one can expect (for instance 

). ~ - 1 ~ - 3  

This same 6 parameter also plays an important role in the 
sparsity issue. Obviously if it is taken very large, solutions 
using just one column of A i.e. with just one positive weight 
will exist, while if is taken very small the solutions, if any, 
will be non-degenerate i.e. will have M positive weights. 
This indicates that the value of 6 allows to tune the number 
of sources (positive weights) in the optimal solution. This 
is the case, indeed, and one imagines easily that the stabil- 
ity or robustness of the position of a source for 6 varying 
within reasonable bounds may be a good criterion to decide 
between true and spurious sources. Much work remains to 
be done along these issues. 

4. A SIMULATION RESULT 

To convince the reader of the interest of the proposed ap- 
proach, let us present a simulated example that follows the 
above philosophy. We consider a linear equispaced array 
having 16 sensors (the example is taken from the litter- 
ature [2], remember that we can consider any geometry). 
The number of snapshots is 300. There are 3 sources (this 
number is unknown and knowing it would be quite use- 
less in our approach) at spatial frequencies : -.17, ,3536, 
.409 ( -20, 45 and 55 degrees) and corresponding power, 
respectively, -10dB, -8dB, -5dB. The additive noise is sim- 
ulated using a real AR(2) model with parameters .4 and 
-.8 (a pair of quite resonant complex conjugate poles). The 
AR(2)-process variance is taken equal to 1. This fixes the 
S N R  which can be assessed from the beamformer output 
in figure 3. For this array there are 31 d.0.f. so that all 
the basis vectors are of dimension 31. The spatial frequen- 
cies were sampled at a 93 equispaced points (1 runs from 
1 to 93 in (3)). In the figures, we represent -as a function 
of the spatial frequency- the beamformer output 3 and the 
93 optimal values of the at's given by the LP algorithm 
represented by the *'S. 

First, we only simulate the AR(2) noise. We apply our 
algorithm to these source-less data. In figure 1, we repre- 
sent the output of the beamformer and the output of the 
algorithm, as far as the source localisation is concerned. 
The a1 weights are lower limited to lo-' = -20dB to draw 
the figure. Two weights only are greater than lo-' but are 
small enough not to be confused with a source since they 
lie below the detection threshold of the considered array. 

This means that our approach makes no confusion between 
sources and a resonant AR(2) spectrum. 

We then simulate the 3 sources in additive OdB white 
noise. In figure 2, we represent the output of the beam- 
former and the result of the algorithm when applied to these 
data. It locates the 3 sources without difficulty and an ad- 
ditional very low one around f = .27. 

In figure 3, we represent the output of the BF and our 
algorithm to a simulation of the complete scenario : the 
3 sources and the AR(2) noise. The 3 sources are located 
without any apparent bias and without getting misleaded 
by the unknown quite resonant AR( 2)-noise. 

We should emphasize that strictly the same algorithm, 
with no intermediate tuning, has been applied to the 3 sit- 
uations above. 

5. APPENDIX 
We investigate in this appendix the conditions on the ele- 
ments of the dictionnaries under which there is identifiabil- 
ity of any scenario. The meaning of this term will become 
clear below. Our linear program (LP) is in standard form 
and can be rewritten as: 

min f T x  
s.t .  AX = b 

2 2 0  
where 1 denotes the column vector filled with n one's. 

A is an (m,n) with n > m and even typically n >> m. 
Each column in A is a element of a dictionary, we will de- 
note them by A,. We assume from the beginning that any 
subset of m columns of A is full rank. This precludes, for 
instance, ambiguous array geometries, a difficulty that can- 
not be handled by linear algebra. 

Let us consider a second member b obtained as a positive 
linear combination of a number k 5 m of columns of A : 

k 

b = Y 3 . 4 .  

I=1 
In our context, k will in general be much smaller than 

m. For simplicity, we assume that j ,  = i in the sequel. 
Decomposing then the matrix A into two matrices B and 
N : A = [B N 1, and the x-vector correspondingly into 
X B  and X N ,  we rewritte the previous relation as b = By or 
else b = Ax0 = By -+ NO with 0 a column vector of n - k 
zeros. 

By identifiablity we then mean that the basic (and in 
general degenerate) admissible solution xo that perfectly 
describes the scenario is also the optimal solution to the LP 
(or at least belongs to the convex set of global minima). A 
priori nothing guaranties this property and the elements of 
the dictonnaries have to be built to satisfy it. 

In the case where k = m, i.e. when xo in a non-degenerate 
basic feasible solution the necessary and sufficient condition 
for this solution to be also optimal is that for any vector n 
of N ,  one must have : 

1 -f TB-ln 2 0 

An interpretation of this condition is as follows. Define 
z as the solution (un-restricted in sign) of Bz = n, then 
z = B-'n, and the condition above becomes f TB-ln = 
f T~ = c z ,  5 1. All the columns n E N must be such 
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that n = z;B; with z; 5 1. Elom a geometrical point 
of view this means that all the vectors n have to belong 
to the negative closed half-space defined by the hyperplane 
{yly = Bjy;, c y ;  = 1) or, in a more standard form for 
an hyperplane, by {ylaTy = l , a T  = iTB- ' } .  Since this is 
to hold for any choice of b built as a positive linear combina- 
tion of columns of A it implies that all the columns vectors 
A; of A have to belong to a same hyperplane (defined by 
any subset of m of them). 

This same conclusion is arrived to if one seeks an ana- 
loguous condition for IC = l above i.e. when b is simply 
any column A; of A. One then wishes that B y  = b implies 
l T y  2 1. Again, since this has to hold for any choice of 
b = Ai and B a square submatrix of A it implies that all 
the columns of A have to belong to a same hyperplane. 

One can, for instance, choose the columns to satisfy : 
i T A ;  = 1 or else eTA; = 1 with el the first column of the 
identity matrix. 

Unfortunatly, if the A matrix satisfies this condition, one 
easily checks that all the admissible solutions have the same 
cost. This is, of course, a bad situation. Since it means that 
no optimization has to be performed and the simplex algo- 
rithms simply searches for a feasible point which has no 
reason to be close to the true (quite degenerate) sought-for 
solution unless it is the unique feasible point which is the 
case in the Pisarenko-Caratheodory situation [5]. 

In practice, the linear program we solve (3)) is fortunatly 
not the one described above. Instead of imposing A z  = b, 
we replace this equality constraint by b - S i <  Ax 5 b + d f  
to allow for estimation errors. Then, even if the columns 
of A belong to the same hyperplane, the feasible solutions 
have not the same cost. Performing an analoguous investi- 
gation as above for this new formulation has little meaning 
unless one introduces a probabilistic model for the estima- 
tion errors. Indeed, in the absence of estimation errors, the 
exact solution passes exactly through the middle of the tube 
and obviously does not take advantage of the flexibility it 
offers as does the optimal solution which is thus a biased 
estimate. 

Note that one can further decide to minimize only the C1 

norm of part of the unknowns, for instance the cq's. 
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Figure 1. The real AR(2)-noise only. The algorithm 
does not confuse noise and sources, it  detects two 
spurious sources of negligible amplitude. 
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Figure 2. The 3 sources in white noise. The algo- 
rithm detects the 3 sources and does not confuse 
them with noise. 
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Figure 3. The complete scenario : the AR(2)-noise 
and the 3 sources . The algorithm detects correctly 
the 3 sources despite the presence of a quite reson- 
nant noise spectrum. 
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