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Linear programming over exponent pairs

Andrew V. Lelechenko
I. I. Mechnikov Odessa National University, Russia

email: 1@dxdy.ru

Abstract. We consider the problem of the computation of infp θp over
the set of exponent pairs P 3 p under linear constrains for a certain class
of objective functions θ. An effective algorithm is presented. The output
of the algorithm leads to the improvement and establishing new estimates
in the various divisor problems in the analytical number theory.

1 Introduction

Exponent pairs are an extremely important concept in the analytical number
theory. They are defined implicitly.

Definition 1 ([8, Ch. 2]) A pair (k, l) of real numbers is called an exponent
pair if 0 6 k 6 1/2 6 l 6 1, and if for each s > 0 there exist integer r > 4 and
real c ∈ (0, 1/2) depending only on s such that the inequality∑

a<n6b

e2πif(n) � zkal

holds with respect to s and u when the following conditions are satisfied:

u > 0, 1 6 a < b < au, y > 0, z = ya−s > 1;

f(t) being any real function with differential coefficients of the first r orders
in [a, b] and ∣∣∣∣f(ν+1)(t) − y dνdtν t−s

∣∣∣∣ < (−1)νcy
dν

dtν
t−s

for a 6 t 6 b and 0 6 ν 6 r− 1.
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But for the computational purposes more explicit construction is needed.

Proposition 2 The set of the exponent pairs includes a convex hull conv P of
the set P such that

1. P includes a subset of initial elements P0, namely

(a) (0, 1) [8],

(b) (2/13+ε, 35/52+ε), (13/80+ε, 1/2+13/80+ε), (11/68+ε, 1/2+
11/68+ ε) [3],

(c) (9/56+ ε, 1/2+ 9/56+ ε) [5],

(d) (89/560+ ε, 1/2+ 89/560+ ε) [11],

(e) H05 := (32/205+ ε, 1/2+ 32/205+ ε) [4].

2. A(k, l) ∈ P and BA(k, l) ∈ P for every (k, l) ∈ P, where operators A
and B are defined as follows:

A(k, l) =

(
k

2(k+ 1)
,
k+ l+ 1

2(k+ 1)

)
, B(k, l) = (l− 1/2, k+ 1/2) .

Possibly the set of the exponent pairs includes elements (k, l) 6∈ conv P, but
at least conv P incorporates all currently known exponent pairs. Everywhere
below writing “a set of exponent pairs” we mean P in fact.

Denote by Pp a set of exponent pairs, generated from the pair p with the
use of operators A and BA. One can check that currently

conv P = conv
(
PH05 ∪ {(0, 1), (1/2, 1/2)}

)
.

Many asymptotic questions of the number theory (especially in the area of
divisor problems) come to the optimization task

inf
(k,l)∈conv P

{
θ(k, l)

∣∣ Ri(αik+ βil+ γi), i = 1, . . . , j
}
, (1)

where αi, βi, γi ∈ R, Ri ∈ R>, R≥, predicate R> checks whether its argument
is a positive value and R≥ checks whether its argument is non-negative, i =
1, . . . , j.

Graham [2] gave an effective method, which in many cases is able to deter-
mine

inf
(k,l)∈conv P(0,1)

θ(k, l)
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with a given precision (for certain θ—even exactly), where

θ ∈ Θ :=

{
(k, l) 7→ ak+ bl+ c

dk+ el+ f

∣∣∣∣∣ a, b, c, d, e, f ∈ R,
dk+ el+ f > 0 for (k, l) ∈ conv P

}
.

We shall refer to this result as to Graham algorithm. Unfortunately, for some
objective functions θ ∈ Θ the algorithm fails and, as Graham writes, we should
“resort to manual calculations and ad hoc arguments”. We discuss possible
improvements in Section 4.

The primary aim of the current paper is to provide an algorithm to deter-
mine

inf
(k,l)∈P

θ(k, l) (2)

under a nonempty set of linear constrains (thus j 6= 0) and

θ = max{θ1(k, l), . . . , θm(k, l)}, θ1, . . . , θm ∈ Θ. (3)

In Section 2 a useful computational concept of projective exponent pairs is
explained. Section 3 is devoted to the exploration of the geometry of P and its
results are of separate interest. In Section 4 Graham algorithm is discussed.
Section 5 contains the description of the proposed algorithm to solve (2) under
linear constrains and (3). In Section 6 new estimates and theoretical results on
various divisor problems are given, derived from the observation of particular
cases of the output of our algorithm.

2 Projective exponent pairs

Let us map exponent pairs into the real projective space (the concept of such
mapping traces back to Graham [2]):

µ : R2 → R3/(R \ {0}), (k, l) 7→ (k : l : 1).

For the set of the exponent pairs the inverse mapping

µ−1 : (k : l : m) 7→ (k/m, l/m)

is also well-defined.
Operators A and BA are mapped by µ into linear operators over projective

space:

A(k, l) 7→ A(k : l : 1), A =

1 0 0

1 1 1

2 0 2

 , A(k : l : m) =

 k

k+ l+m
2k+ 2m
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and

BA(k, l) 7→ BA(k : l : 1), BA =

0 1 0

2 0 1

2 0 2

 , BA(k : l : m) =

 l

2k+m
2k+ 2m

 .
Thus A = µ−1Aµ and BA = µ−1BAµ

Such projective mappings are very useful to achieve better computational
performance.

Firstly, we replace fractional calculations with integer ones.
Secondly, let M be a fixed composition of A and BA. We can evaluate Mp

for a set of points p effectively: once precompute the matrix of the projective
operator M and then just calculate µ−1Mµp for each point p.

3 Exploring exponent pairs

Let us split Pp into generations Pnp such that

P0p = {p}, Pnp = APn−1p ∪ BAPn−1p, n > 0.

Let us investigate properties of P(0, 1). As soon as

A(0, 1) = (0, 1), BA(0, 1) = (1/2, 1/2),

A(1/2, 1/2) = BA(1/2, 1/2) = (1/6, 2/3),

we obtain
P(0, 1) =

{
(0, 1), (1/2, 1/2)

}
∪ P(1/6, 2/3).

So it is enough to study P(1/6, 2/3).
All initial exponent pairs satisfy inequalities

k+ l 6 1, k 6 1/2, l > 1/2.

One can check that if (k, l) satisfies such inequalities, then A(k, l) and BA(k, l)
also do. Thus all exponent pairs fits into the triangle

T := 4
(
(1/2, 1/2), (0, 1), (0, 1/2)

)
. (4)

Lemma 3 Denote

P ′ = (0, 1/6)× (2/3, 1), P ′′ = (1/6, 1/2)× (1/2, 2/3).

Let p := (k, l) be the exponent pair such that Ap ∈ P ′. Then

APp ⊂ P ′, BAPp ⊂ P ′′, Pp ⊂ {p} ∪ P ′ ∪ P ′′. (5)
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Proof. Suppose that (5) is true for all generations Pm, m < n. Let us prove
that it is also true for generation Pn.

We have BP ′ = P ′′, so it is enough to prove that APn−1p ⊂ P ′. Let (k, l)
be an arbitrary element of Pn−1p and let (κ, λ) = A(k, l). There are three
possibilities:

1. (k, l) = p. Then (κ, λ) ∈ P ′ by conditions of the lemma.

2. (k, l) ∈ P ′. Then

κ =
1

2
−

1

2(k+ 1)
<
1

2
−
3

7
=
1

14
,

λ =
1

2
+

l

2(k+ 1)
>
1

2
+
2/3

7/3
=
11

14
.

3. (k, l) ∈ P ′′. Then

κ =
1

2
−

1

2(k+ 1)
<
1

2
−
1

3
=
1

6
,

λ =
1

2
+

l

2(k+ 1)
>
1

2
+
1/2

3
=
2

3
.

�

An exponent pair (1/6, 2/3) satisfies conditions of Lemma 3, because

A(1/6, 2/3) = (1/14, 11/14).

We note that the statement of Lemma 3 can be refined step-by-step, ob-
taining 4, 8, 16 and so on rectangles, covering Pp more and more precisely.

Remark 4 There exists another approach to cover Pp or the whole P. For a
set of pairs (αi, βi) determine with the use of Graham algorithm

θi = inf
(k,l)∈conv Pp

(αik+ βil).

Then Pp is embedded into a polygonal area, constrained with the set of inequal-
ities

αik+ βil > θi

from the bottom and left (together they form a hyperbola-like line) and by the
segment from (0, 1) to (1/2, 1/2).
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Let us introduce an order ≺ on P(1/6, 2/3), defined as

(k, l) ≺ (κ, λ) ⇐⇒ k < κ, l > λ.

Theorem 5 Let p be the exponent pair from the statement of Lemma 3. Then
the order ≺ is a strict total order on Pnp and this order coincides with the
order of the binary Gray codes [7, Ch. 7.2.1.1] over an alphabet {A,BA}.

Proof. One can directly check that operator A saves the order:

p1 ≺ p2 ⇒ Ap1 ≺ Ap2

and operator B reverses it, so BA reverses it too:

p1 ≺ p2 ⇒ BAp1 � BAp2.

Lemma 3 implies that for every p1, p2 ∈ Pn−1p

Ap1 ≺ BAp2. (6)

Combining these facts we obtain the statement of the theorem. �

In the case of P(1/6, 2/3) inequality (6) can be refined up to

Ap1 ≺ (1/6, 2/3) ≺ BAp2. (7)

Thus ≺ is a strict total order over the whole P(1/6, 2/3).

Fig. 1 illustrates our results. Point (1/6, 2/3) divides the set into rectan-
gles P ′ and P ′′. These rectangles consists of pairs, where the last applied op-
erator was A, and pairs, where the last applied operator was BA, respectively.
All plotted points are total-ordered by ≺. Writing out points of the same gen-
eration from the left top corner to the right bottom corner we obtain a list of
Gray codes. E. g., for the generation 3 we obtain a sequence of 8 codes:

A A A,
A ABA,
ABABA,
ABA A,
BABA A,
BABABA,
BA ABA,
BA A A.
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Figure 1: First six generations of P(1/6, 2/3) plotted in shifted coordinates
(k, l− 1/2).
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As soon as

An(1/6, 2/3)→ (0+ , 1− 0) as n→∞
we obtain

pn := A · BA ·An(1/6, 2/3) → (1/6− 0, 2/3+ 0),

BA · BA ·An(1/6, 2/3) → (1/6+ 0, 2/3− 0) as n→∞.
So no point from P(1/6, 2/3) is isolated: for every p ∈ P(1/6, 2/3) and ev-
ery ε > 0 there exist p1, p2 ∈ P(1/6, 2/3) such that p1 ≺ p ≺ p2, |p − p1| < ε
and |p− p2| < ε.

We are even able to compute the slopes of left-hand and right-hand “tan-
gents” at (1/6, 2/3). Namely, using Section 2 and denoting dn = pn−(1/6, 2/3)
we get

dn/|dn|→ (−2/
√
5, 1/
√
5) as n→∞,

so the left-hand “tangent” at (1/6, 2/3) has a slope arctan(−1/2). The right-
hand “tangent” has a slope arctan(−2).

What about sets generated from other known initial exponent pairs, listed
in Proposition 2? Lemma 3 and Theorem 5 remains valid. But inequality (7)
does not hold and so ≺ is not a strict total order. E. g., for

p = A · BA ·A4H05 =
(
8083

50342
,
1

2
+
4304

25171

)
neither p ≺ H05, nor p � H05.

As opposed to P(1/6, 2/3), each point of the set Pp, p 6= (1/6, 2/3), is iso-
lated, because the initial point is. But for every such p each point of P(1/6, 2/3)
has an arbitrary close to it point from Pp.

Lemma 6 Operators A and BA are contractions over the triangle T , which
was defined in (4).

Proof. It is enough to prove that A is a contraction. Let us check that there
exists α < 1 such that for each p1, p2 ∈ T we have∣∣Ap1 −Ap2∣∣ 6 α∣∣p1 − p2∣∣.
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Let (k1, l1) := p1 and (k2, l2) := p2. Then

∣∣Ap1 −Ap2∣∣2 = 1

4

((
1

k1 + 1
−

1

k2 + 1

)2
+

(
l1

k1 + 1
−

l2
k2 + 1

)2)
=

=
1

4

((
k2 − k1

(k1 + 1)(k2 + 1)

)2
+

(
(l1 − l2)(k2 + 1) + l2(k2 − k1)

(k1 + 1)(k2 + 1)

)2)
.

But k1, k2 > 0, so∣∣Ap1 −Ap2∣∣2 6 1
4

(
(k1 − k2)

2 + (|l1 − l2|+ |k1 − k2|)
2
)
.

Applying inequality (x+ y)2 6 2(x2 + y2) we finally obtain

∣∣Ap1 −Ap2∣∣2 6 3
4

(
(k1 − k2)

2 + (l1 − l2)
2
)
=
3

4

∣∣p1 − p2∣∣2.
�

4 Notes on Graham algorithm

Below GX means a reference to [2, Step X at p. 209].

1. Graham algorithm is designed to search infp∈P(0,1) θp and relies on the
fact that

P(0, 1) = AP(0, 1) ∪ BAP(0, 1).

This kind of decomposition does not hold for the whole P. Instead we have

P = AP ∪ BAP ∪
(
P0 \ {(0, 1)}

)
.

Thus in order to run Graham algorithm over P, not just over P(0, 1), it should
be changed in following way. Establish a variable r to keep a current minimal
value, setting it initially to +∞. Add an additional step before G5: apply
current θ on elements of P0 and set r ← min(r,min θP0). At the end of the
algorithm output r instead of simply min θP0.

2. Unfortunately, Graham algorithm over P is infinite: no analog of halting
conditions at G3 provided by [2, Th. 3] can be easily derived. So we should
stop depending on whether the desired accuracy is achieved. Cf. Step 2 in the
Section 5 below.
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3. Bad news: if [2, Th. 1, 2] does not specify the branch to choose at G4 then
the original Graham algorithm halts. Good news: [2, Th. 2] can be generalized
to cover a wider range of cases. In notations of the mentioned theorem for a
given finite sequence M ∈ {A,BA}n if inf θBA = inf θBAM and if

min(rw+ v− u,αw+ v− u) > 0

then inf θ = inf θA, where

α := max
{
k+ l

∣∣ (k, l) ∈ AM{(0, 1), (1/2, 1/2), (0, 1/2)}
}
.

4. For the case of linearly constrained optimization one can build a “greedy”
modification of Graham algorithm: if at G5 one of the branches is entirely out
of constrains then choose another one; otherwise choose a branch in a normal
way. Such algorithm executes pretty fast, but misses optimal pairs sometimes.

5 Linear programming algorithm

Now let us return to the optimization problem (2). We will attack it with the
use of backtracking.

Operators A and BA perform projective mappings of the plane R2, so both
of them map straight lines into lines and polygons into polygons.

Let θ be as in (3) and a set of linear constrains LC be as in (1).
Denote

θ+(V) = max
{

sup
p∈V

θip
}m
i=1
, θ−(V) = max

{
inf
p∈V

θip
}m
i=1
.

Then

θ−(V) 6 inf
p∈V

θp 6 θ+(V)

and these bounds embrace infp∈V θp tighter and tighter as V becomes smaller.
Both θ+ and θ− can be computed effectively by simplex method.

Let V be a polygon (or a set of polygons, lines and points) such that P ⊂ V.
See Lemma 3 and paragraphs above and below it for possible constructions
of V. For a set of linear constrains LC let R(V, LC) be a predicate, which is
true if and only if there exists a point p ∈ V, which satisfies all constrains
from LC. This predicate can be computed effectively using algorithms for line
segment intersections [1, p. 19–44].
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The proposed algorithm consists of a routine L(θ, LC, r,M), which calls itself
recursively. Here r keeps a current minimal value of θ(k, l) andM is a current

projective transformation matrix. Initially r← +∞ and M← (
1 0 0
0 1 0
0 0 1

)
.

On each call routine L performs following steps:

1. Compute t ← min{θµ−1Mµp}, where p runs over all known initial
pairs p. If we get t < r then update current minimal value: r← t.

2. Check whether the desired accuracy is achieved, comparing r with the
values of θ+(µ

−1MµV) and θ−(µ
−1MµV). If yes then return r and abort

computations.

3. Set LC ′ ← LC∪ {θi(k, l) < r}mi=1. Due to the nature of θi ∈ Θ a constrain
of form θi(k, l) < r is in fact a linear constrain.

4. If R(µ−1MAµV, LC ′) (that means that there is at least a chance to
meet exponent pair p ∈ µ−1MAµV, which satisfies LC and on which
objective function is less than yet achieved value) then compute t ←
L(θ, LC, r,MA). If t < r set r← t and recompute LC ′ as in Step 3 using
the new value of r.

5. If R(µ−1MBAµV, LC ′) then compute t ← L(θ, LC, r,MBA). If t < r

set r← t.

6. Return r.

The algorithm executes in finite time, because due to Lemma 6 both A

and BA are contractions and sooner or later (depending on required accuracy)
recursively called routines will abort at Step 2.

Step 3 plays a crucial role in chopping off non-optimal branches of the
exhaustive search and preventing exponential running time. We are not able
to provide any theoretical estimates, but in all our experiments (see Section 6
below) the number of calls of L(·, ·, ·, ·) behaved like a linear function of the
recursion’s depth.

We have implemented our algorithm as a program, written in PARI/GP [10].
It appears that it runs pretty fast, in a fraction of a second on the modern
hardware.

During computations elements of M can grow enormously. As soon as ma-
trix M is applied on projective vectors we can divide M on the greatest
common divisor of its elements to decrease their magnitude.
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Now, under which circumstances an equality

inf
p∈P

θp = inf
p∈conv P

θp

holds? Certainly it is true for θ ∈ Θ and j = 0, because sets {θp = const} are
straight lines; this is the case of Graham algorithm.

Consider the case θ ∈ Θ and j 6= 0. Constraining lines are specified by
equations

li = {αik+ βil+ γi = 0}, i = 1, . . . , j.

Then

inf
p∈conv P

θp = min

{
inf
p∈P

θp, inf
p∈l1∩conv P

θp, . . . , inf
p∈lj∩conv P

θp

}
.

But conv P is approximated by a polygon as in Remark 4, so li ∩ conv P can
be approximated too and consists of a single segment. Thus infp∈li∩conv P θp
is computable.

The case when θ is as in (3) with m > 1 is different. Even without any con-
strains the value of infp∈conv P θp may be not equal to infp∈P θp. For example,
take

θ(k, l) = max
{
11k/10, l− 1/2

}
.

Then

inf
p∈P

θp =
176

1025
at p = H05.

But

inf
p∈conv P

θp =
176

1057
at p = (160/1057, 1409/2114) := q,

and q is owned by a segment from (0, 1) to H05. However, in not-so-synthetic
cases the proposed algorithm produces results, which are closer to optimal.

6 Applications

One can run algorithm from the previous section to obtain numerical results
in partial cases for different objective functions and constrains. It gives us a
way to catch site of some patterns and to suppose general statements on them.
Nevertheless these patterns should be proved, not only observed. This is the
main theme of the current section.
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Consider the asymmetrical divisor problem. Denote

τ(a1, . . . , ak;n) =
∑

d
a1
1 ···d

ak
k =n

1,

which is called an asymmetrical divisor function. Let ∆(a1, . . . , am; x) be an er-
ror term in the asymptotic estimate of the sum

∑
n6x τ(a1, . . . , am;n). (See [8]

for the form of the main term.) What upper estimates of ∆ can be given? The
following result is one of the possible answers.

Theorem 7 ([8, Th. 5.11]) Let a < b and let (k, l) = A(κ, λ) be an expo-
nent pair. Then the estimate

∆(a, b; x)� xα log x, α =
2(k+ l− 1/2)

(a+ b)

holds under the condition (2l − 1)a > 2kb. Here f(x) � g(x) denotes f(x) =
O
(
g(x)

)
. If otherwise (2l− 1)a < 2kb, then

∆(a, b; x)� xα log x, α =
k

(1− l)a+ kb
.

Taking into account Lemma 3 the condition (k, l) = A(κ, λ) can be rewritten
as k < 1/6 and l > 2/3. Thus

θ1 =
2(k+ l− 1/2)

a+ b
, LC1 =

{
(2l− 1)a > 2kb, k < 1/6, l > 2/3

}
,

θ2 =
k

(1− l)a+ kb
, LC2 =

{
(2l− 1)a < 2kb, k < 1/6, l > 2/3

}
.

Using proposed algorithm we can compute inf θ1 under constrains LC1 (which
refers to the first case of Theorem 7), compute inf θ2 under constrains LC2
(which refers to the second case) and take lesser of the obtained values. Ob-
served results shows that for a = 1, b = 2r, r > 10, the second case provides
better results and exponent pair has form

Ar−1BAAr−4BABA . . . .

This leads us to the following statement.

Theorem 8 For a fixed integer r > 5 we have ∆(1, 2r; x)� xα log x, where

α =
2r − 2r

22r − r · 2r − 2r2 + 2r− 4
<

1

2r + r
.
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Proof. Consider an exponent pair

(kr, lr) := A
r−1BAAr−4(1/6, 2/3).

We have

A = S

1 1 0

0 1 0

0 0 2

S−1, S =

0 −1 0

1 0 1

0 2 1

 .
Thus An = S

(
1 n 0
0 1 0
0 0 2n

)
S−1. Note that µ(1/6, 2/3) = (1 : 4 : 6) and

Ar−1BAAr−4(1 : 4 : 6) =

 2r − 2r
22r+1 − (3r+ 4) · 2r + 2r2 + 2r+ 4

22r+1 − (2r+ 4) · 2r + 4r

 .
Applying µ−1 we get

kr =
2r − 2r

22r+1 − (2r+ 4) · 2r + 4r
, lr = 1−

r · 2r − 2r2 + 2r− 4
22r+1 − (2r+ 4) · 2r + 4r

.

Now for r > 5

2lr − 2 · 2rkr − 1 =
2r2 + 4− 2r+1

22r − (r+ 2) · 2r + 2r
< 0.

This proves that (kr, lr) satisfies the second case of Theorem 7 and finally

α =
kr

2rkr − lr + 1
.

�

In the same manner one can estimate ∆(a, 2r; x) for odd a. Here is one more
example.

Theorem 9 For a fixed integer r > 1 we have ∆(3, 2r; x)� xα+ε, where

α =
1

2r + 3r− 88/17
.

Proof. Consider an exponent pair (k, l) := Ar−3BAA(9/56+ ε, 37/56+ ε). �

In the case of ∆(a, b, c) one can derive objective function and constrains
from [8, Th. 6.2, 6.3] and observe the output of the algorithm.



Linear programming over exponent pairs 285

a b (k, l) Ξ(a, b)
1 2 BAH05 269/1217

1 3 (BA)2ABAH05 1486/8647

1 4 H05 111/790

1 5 ABAA2BAA(BA)2A2M∞(0, 1) (15921− 2c)/30437
1 6 (ABA)3(BA)3A3BA(0, 1) 669/6305

1 7 A(BA)2BAA(BA)2A2M∞(0, 1) (9370− c)/34469

1 8 A(BA)4(A2BAA)∞(0, 1) (5+
√
809)/392

1 9 A(BA)2AM∞(0, 1) (10551− c)/56976
1 10 A(BA)2(A2(BA)2)2ABAH05 150509/2096993

2 3 BAA(BA)2A2M∞(0, 1) (c− 4047)/15688
2 4 BAH05 269/2434

2 5 M∞(0, 1) (c− 4311)/18672
3 4 BAAH05 1819/19369

3 5 BAA(BA)3A2(BA)3A(BA)5A2BA(0, 1) 63916/774807

4 5 BAAH05 1819/24903

Table 1: Estimates of Ξ. Here M = (BA)6(ABA)2BAA2 and c =
√
37368753.

Theorem 10 For a fixed integer r > 10 we have

θ(1, 2r, 2r) =
26 · 22r − (29r+ 41)2r + 16r2 + 12r+ 32

26 · 23r − (16r+ 41)22r + (24r− 3)2r + 16r+ 12
<

1

2r + 1
.

Proof. Follows from [8, Th. 6.2] with (k, l) = Ar−1BAr−2BABA2 · B(0, 1). �
Finally, consider the asymmetric divisor problem with congruence conditions

on divisors. Namely, let τ(a,ma, ra;b,mb, rb;n) be the number of (da, db) such
that

daad
b
b = n, da ≡ ra (mod ma), db ≡ rb (mod mb).

Menzer and Nowak showed in [9] that if a < b then the error term in the
asymptotic estimate of ∑

n6x

τ(a,ma, ra;b,mb, rb;n)

has form
(
x/ma

am
b
b

)Ξ(a,b)+ε
, where

Ξ(a, b) := inf
(k,l)∈conv P

max

{
k+ l

(k+ 1)(a+ b)
,

k

kb+ a(1+ k− l)

}
,
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σ µ(σ) Depth 100 Depth 1000
3/5 1409/12170 10 10
2/3 0.0879154 154 1609
3/4 0.0581840 154 1610
4/5 0.0422535 103 1003

Table 2: Estimates for µ(σ) and the number of calls to L.

where ε > 0 is arbitrary small. They also listed estimates of Ξ(a, b) for 1 6
a < b 6 5. As soon as Ξ(a, b) is of form (3) we can refine all their results. See
Table 1.

Various estimates of the Riemann zeta function depends on optimization
tasks (1). The following theorem seems to be the simplest example.

Theorem 11 ([6, (7.57)]) Let ζ denote the Riemann zeta function and σ >
1/2. Further, let µ(σ) be an infimum of all x such that ζ(σ+ it)� tx. Then

µ(σ) 6
k+ l− σ

2
.

for every exponent pair (k, l) such that l− k > σ.

Better results on µ leads to better estimates for power moments of ζ, and
the last are helpful to improve estimates in multidimensional divisor problem.
See [6, Th. 8.4, 13.2, 13.4].

Table 2 contains several results on µ(σ) obtained with the use of the pro-
posed algorithm. Results are accompanied with the number of calls to L(·, ·, ·, ·)
up to the given depth of search.
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