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Abstract. In this paper, we develop two algorithms for globally optimizing a special
class of linear programs with an additional concave constraint. We assume that the
concave constraint is defined by a separable concave function. Exploiting this special
structure, we apply Falk-Soland’s branch-and-bound algorithm for concave minimization
in both direct and indirect manners. In the direct application, we solve the problem
alternating local search and branch-and-bound. In the indirect application, we carry
out the bounding operation using a parametric right-hand-side simplex algorithm.
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1. Introduction

In this paper, we consider a special class of linear programs with an addi-
tional concave constraint∣∣∣∣ maximize cTx

subject to x ∈ F \G,
(1.1)

where c is an n-vector, F ⊂ IRn is a polytope and G ⊂ Rn is an open convex
set. We assume on (1.1) that G possesses a kind of separability, i.e., G can
be represented as follows, by means of a sum of functions gj : S → IR,
j = 1, . . . , n, each of which is concave with respect to xj :

G =

x ∈ Sn

∣∣∣∣∣∣
n∑

j=1

gj(xj) > 0

 .

† Requests for reprints should be sent to Takahito Kuno, Institute of Information
Sciences and Electronics, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan.
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We call the complement of this set G a separable reverse convex set, fol-
lowing separable concave functions of the form g(x) =

∑n
j=1 gj(xj).

The separable concave function is certainly a special class of concave
functions, but involves a wide variety of functions unlike its appearance.
In fact, it is an elementary exercise in linear algebra that every concave
quadratic function can be reduced to a separable form; and the linear
multiplicative function

∏n
j=1(c

T
j x+dj) can be transformed into

∑n
j=1 log yj

with yj = cT
j x + dj for j = 1, . . . , n [11], [15]. These imply that there is

a certain amount of demand for the linear program with an additional
separable concave constraint (LPASC), as well as for the separable concave
minimization problem: ∣∣∣∣∣∣∣

minimize
n∑

j=1

gj(xj)

subject to x ∈ F.

(1.2)

The readers should remark that even this well-known global optimization
problem belongs to LPASC, because (1.2) is equivalent to∣∣∣∣∣∣∣

maximize −y

subject to x ∈ F,
n∑

j=1

gj(xj)− y ≤ 0.

The research on global optimization of the general linear program with an
additional concave constraint (LPAC) can be traced back to 1950’s, arising
from a location problem by Baumol-Wolfe [1]. The algorithms proposed
since then can be classified roughly into four classes. The first class consists
of algorithms based on the edge property of F \ G. As will be shown in
Section 2, at least one optimal solution to LPAC lies on the intersection of
the edges of F and the boundary of G. Exploiting this property, Hillestad
[5] proposed a simplex-type pivoting algorithm for searching an optimal
intersection point. Hillestad’s algorithm has been modified and still devel-
oped by Hillestad-Jacobsen [7] and Thuong-Tuy [17]. The second class is
outer approximation algorithms, which involves e.g., Hillestad-Jacobsen [6]
and Fülöp [4]. Hillestad-Jacobsen [6] developed a procedure for cutting off
a portion from F by a valid cut constructed at an infeasible vertex of F for
the associated concave minimization. The convergence of their algorithm
is not guaranteed; but Fülöp [4] improved this point later. The third class
is conical branch-and-bound algorithms, which involves e.g., a bisection al-
gorithm by Moshirvaziri-Amouzegar [12] and ω-subdivision algorithm by
Muu [13]. The last class is algorithms alternating local search and con-
cave minimization. This class is based on the concept of duality between
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LPAC and its associated concave minimization problem, studied by Tuy
[18] and Tuy-Thuong [20]. As reported by Pferschy-Tuy [14], algorithms of
this class are very efficient when the dual problem is easy to solve.

Since LPASC is a special class of LPAC, algorithms of the above classes
are naturally applicable to each instance of LPASC. Unfortunately, how-
ever, none of them exploits the special structure of the separable reverse
convex set, which must have potential for efficient solution by analogy with
the separable concave minimization (1.2). We can only see in a compre-
hensive survey on d.c. optimization by Tuy [19] a basic subdivision process
for minimizing a separable d.c. function over a rectangle. As is well known,
the separability of the objective function of (1.2) is one of the most use-
ful structures in designing efficient global optimization algorithms. Since
the pioneer work on (1.2) by Falk-Soland [3], a number of efficient rect-
angular branch-and-bound algorithms have been developed: Soland [16],
Horst-Thoai [9], Kuno [11], Ryoo-Sahinidis [15] to name but a few. The
purpose of this paper is to develop practical algorithms by making full use
of the separability of LPASC, together with the existing results on LPAC
and (1.2).

In Section 2, after describing the problem formally, we give two optimal-
ity conditions, both of which play one of the leading parts in the proposed
algorithms. Another leading part is played by Falk-Soland’s rectangular
branch-and-bound algorithm, which is also explained in detail. Sections 3
and 4 are devoted to the algorithms for LPASC. In Section 3, on the basis
of the duality by Tuy [18] and Tuy-Thuong [20], we develop an algorithm
alternating local search and rectangular branch-and-bound. In Section 4,
we try solving LPASC using a new rectangular branch-and-bound algo-
rithm. This algorithm has basically the same structure as Falk-Soland’s
one but contains some devices for improving the efficiency. Some conclud-
ing remarks are discussed in Section 5.

2. Basic Properties and Folk-Soland’s Algorithm

The problem we consider in this paper is of the form∣∣∣∣∣∣∣∣∣
maximize cTx
subject to Ax ≤ b, l ≤ x ≤ u

n∑
j=1

gj(xj) ≤ 0,
(2.1)
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where A ∈ IRm×n, b ∈ IRm, c ∈ IRn, and l,u ∈ IRm. For each j = 1, . . . , n,
the function gj : S → IR is concave, and can be affine or constant. Let

C = {x ∈ IRn | Ax ≤ b}, D = {x ∈ IRn | l ≤ x ≤ u}

g(x) =
n∑

j=1

gj(xj), G = {x ∈ Sn | g(x) > 0}.

Since each component of l and u is finite, D represents an n-dimensional
rectangle, which we assume to be included in the domain Sn of function
g. Using these notations, we can make it clear that the feasible set of (2.1)
is a d.c. set of the form C ∩D \ G, i.e., the difference of two convex sets
C ∩D and G.

2.1. Dual problem of LPASC

Let M denote the closure, and ∂M the boundary of a set M . We assume
the following hereafter:

Assumptions. Problem (2.1) satisfies

(a) C ∩D \G 6= ∅.
(b) max{cTx | x ∈ C ∩D \G} < max{cTx | x ∈ C ∩D}.

(c) C ∩D \G = C ∩D \G.

These assumptions are not specific to our problem but often imposed on
d.c. optimization problems. In fact, if (b) fails, then (2.1) is equivalent to
an ordinary linear program∣∣∣∣ maximize cTx

subject to Ax ≤ b, l ≤ x ≤ u.
(2.2)

We can compute an optimal solution x0 of (2.2) using any one of ordinary
algorithms because C∩D is nonempty by (a) and bounded. Assumption (c)
means that there is a point y ∈ C ∩D in any neighborhood of each feasible
solution such that g(y) < 0. Under Assumptions (a)–(c), we can obtain
two important theorems, even when g is inseparable (see e.g., [8], [10] for
their proofs).

Theorem 2.1 The boundary of G contains all optimal solutions to (2.1),
at least one of which lies on an edge of the polytope C ∩D.
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Theorem 2.2 Let x∗ ∈ C ∩ D \ G. Then x∗ is an optimal solution to
(2.1) if and only if min{g(x) | x ∈ C ∩D, cTx ≥ cTx∗} = 0.

The problem given in Theorem 2.2, i.e.,

PD(α)

∣∣∣∣∣∣
minimize g(x)
subject to Ax ≤ b, l ≤ x ≤ u

cTx ≥ α,

plays a crucial role in solution to (2.1) when we try to exploit the sepa-
rability of the side constraint g(x) =

∑n
j=1 gj(xj) ≤ 0. This problem is

called the dual problem of (2.1) because it has the same optimal solution
x∗ as the original problem (2.1) if α = cTx∗, though the objective and side
constraint are reversed.

2.2. Falk-Soland’s algorithm for PD(α)

Since PD(α) is a separable concave minimization, we can solve it using
the rectangular branch-and-bound algorithm by Falk-Soland [3], which is
well known as the most powerful tool in global optimization. We will run
through the mechanism of Falk-Soland’s algorithm. Let

A′ =
[

A
−cT

]
, b′ =

[
b
−α

]
, C ′ = {x ∈ IRn | A′x ≤ b′}. (2.3)

and rewrite PD(α) as follows

P(D)
∣∣∣∣ minimize g(x)
subject to x ∈ C ′ ∩D.

In the rectangular branch-and-bound algorithm, while subdividing the
rectangle D successively into

Dk = [lk1 , uk
1 ]× [lk2 , uk

2 ]× · · · × [lkn, uk
n], k ∈ K, (2.4)

we solve each subproblem P(Dk). Subdivision of D needs carrying out
in such a way that the set of resulting subrectangles Dk’s constitutes a
partition of D; hence, in the course of the algorithm, we always have

D =
⋃

k∈K

Dk, intDi ∩ intDk = ∅ if i 6= k, (2.5)

where intM denotes the interior of a set M .
The outline of the algorithm consists of three basic steps. Let ε ≥ 0 be a

given tolerance for the optimal value of PD(α).
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Let D1 := D, K := {1} and k := 1. Repeat Steps 1 – 3 until K = ∅.

Step 1. Take an appropriate index ik out of K and let D := Dik .

Step 2. (Bounding operation) Compute a lower bound zk on the
optimal value z(D) of P(D). If zk + ε ≥ g(x∗) for the best
feasible solution x∗ to PD(α) obtained so far, discard D from
further consideration.

Step 3. (Branching operation) Otherwise, divide the rectangle D
into two subrectangles D2k and D2k+1. Add {2k, 2k + 1} to K.

There are two major advantages in this algorithm: (1) we need only two
vectors lk = (lk1 , . . . , lkn) and uk = (uk

1 , . . . , uk
n) to maintain and construct

each subproblem P(D); and (2) we can compute a tight lower bound zk by
solving a linear program.
Bounding operation (Step 2). To compute a lower bound zk in Step
2, we first determine the convex envelope of gi on the interval [lj , uj ] for
each j = 1, . . . , n:

hj(xj) =
gj(uj)− gj(lj)

uj − lj
xj +

ujgj(lj)− ljgj(uj)
uj − lj

. (2.6)

From the concavity of gj , we see that

hj(xj) ≤ gj(xj) if xj ∈ [lj , uj ], hj(xj) ≥ gj(xj) otherwise,

where we should remark that hj(xj) = gj(xj) if xj ∈ {lj , uj}. Since g is
the sum of gj ’s, this property is inherited to

h(x) =
n∑

j=1

hj(xj). (2.7)

Lemma 2.1 If x ∈ D, then

h(x) ≤ g(x),

where the equality holds when xj ∈ {lj , uj} for j = 1, . . . , n.

We should also note on h that it is an affine function of x. Hence,
replacing the objective function g of P(D) by h, we have a linear program
that provides a lower bound of P(D):

PL(D)
∣∣∣∣ minimize h(x)
subject to x ∈ C ′ ∩D.
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Let xk denote an optimal solution to PL(D) when C ′ ∩ D 6= ∅. Then we
see that h(xk) can be used as the lower bound zk in Step 2:

zk =
{

h(xk) if C ′ ∩D 6= ∅
+∞ otherwise.

Lemma 2.2 If zk = +∞, then P(D) is infeasible. Otherwise, among zk,
z(D) and g(xk) there is a relationship:

zk ≤ z(D) ≤ g(xk),

where the equalities hold when xk
j ∈ {lj , uj} for j = 1, . . . , n.

The rectangular branch-and-bound algorithm requires one to solve a se-
ries of linear programs of the form PL(D). These problems, however, differ
from one another in just h and D. Therefore, any optimal basis B of
A′ in the present problem can serve as the initial basis in solution to the
succeeding problem. Namely, we first restore B to a feasible one for the
new bounding constraints defining D; then we optimize it according to the
new objective function h (see e.g., [2] in further detail). This process can
usually be done in quite a few pivoting operations.
Branching operation (Step 3). In Step 3, we divide D in such a way
that the resulting sets D2k and D2k+1 satisfy (2.4) and (2.5). We can carry
out this as follows, given an index j ∈ {1, . . . , n} and a number mj ∈ [lj , uj ]:

D2k = [l1, u1]× · · · × [lj−1, uj−1]× [lj ,mj ]
×[lj+1, uj+1]× · · · × [ln, un]

D2k+1 = [l1, u1]× · · · × [lj−1, uj−1]× [mj , uj ]
×[lj+1, uj+1]× · · · × [ln, un]

 (2.8)

In general, no matter how we select j and mj , the algorithm is not ensured
to be finite if ε = 0. In that case, it generates an infinite sequence of
rectangles Dki , i = 1, 2, . . ., such that

Dk1 ⊃ Dk2 ⊃ · · · , C ′ ∩

( ∞⋂
i=1

Dki

)
6= ∅. (2.9)

Let us denote Dki simply by Di = [li1, u
i
1]×· · ·× [lin, ui

n] and the sequence
by L = {1, 2, . . . , i, . . .}. We assume that for each i ∈ L, rectangle Di+1 is
generated from Di via (2.8) for some pair (ji,m

i
ji

).

Lemma 2.3 There is an infinite subsequence Lq ⊂ L such that ji = q for
all i ∈ Lq, and we have iiq → l∗q , ui

q → u∗q and mi
q → m∗

q ∈ {l∗q , u∗q} as
i → +∞ in Lq.
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When ε > 0, the rules below of selecting (j, wj) guarantee the finiteness
of the algorithm by the next lemma.

Bisection. For each i ∈ L, letting

ji ∈ arg max{ui
j − lij | j = 1, . . . , n},

then the interval [liji
, ui

ji
] is divided at mi

ji
= (1 − λ)liji

+ λui
ji

, where
λ ∈ (0, 1) is a constant.

ω-division. For each i ∈ L, letting

ji ∈ arg max{gj(xi
j)− hj(xi

j) | j = 1, . . . , n},

then the interval [liji
, ui

ji
] is divided at mi

ji
= xi

ji
.

Lemma 2.4 If L is generated according to either bisection of ratio λ ∈
(0, 1) or ω-division, then there is a subsequence L′ ⊂ L such that

g(xi)− zi → 0 as i → +∞ in L′,

where xi is an optimal solution to PL(Di) and zi the optimal value.

The rest to be discussed is how to select an index ik from the set K in
Step 1. Usually, either of the following rules is adopted:

Depth first. The set K is maintained as a list of stack. An index ik is taken
from the top of K; and 2k + 1, 2k are added to the top.

Best bound. The set K is maintained as a list of priority queue. An index
ik of least zik is taken out of K.

If we adopt the latter, even when ε = 0, the sequence of xk’s generated
by the rectangular branch-and-bound algorithm has accumulation points,
each of which is a globally optimal solution to PD(α).

3. Direct Application of Falk-Soland’s Algorithm

A straightforward way to solve our problem (2.1) by exploiting its separa-
bility is to apply Falk-Soland’s algorithm to the dual problem PD(α) for
an appropriate α. To fix the value of α, Tuy [18], Tuy-Thuong [20] and
Pferschy-Tuy [14] have suggested the following approach. First, we gener-
ate a locally optimal solution x∗ using any one of available algorithms, and
then check its global optimality by solving PD(α) with α = cTx∗. If the
optimal value of PD(cTx∗) is zero, then x∗ is a globally optimal solution
to (2.1); otherwise, we try checking another locally optimal solution.
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3.1. Local search

According to their approach, the first thing we have to do is to search a
locally optimal solution x∗. We can use the simplex algorithm on problem
(2.1) since the objective and constraints except for the last one are all
linear. The simplex algorithm may start from any feasible vertex v1 6∈ G
of the polytope C ∩ D. If no feasible vertex is on hand, we may solve
PD(−∞), using Falk-Soland’s algorithm. Since the objective function g of
PD(−∞) is concave, it achieves the minimum at some vertex v1 ∈ C ∩D.
By Assumption (c), we must have g(v1) < 0. To be precise, Falk-Soland’s
algorithm might not yield a vertex of C ∩D when its tolerance ε > 0; but
how to cope with that case will be discussed later.

Starting from v1, we generate a sequence of adjacent vertices v2,v3, . . .
of C ∩D such that cTv1 < cTv2 < · · · , using the simplex algorithm, with
some anticycling pivoting rule if necessary (see [2]). In this process, we
must encounter a vertex v` satisfying

g(vi) < 0, i = 1, 2, . . . , `− 1, g(v`) ≥ 0,

before reaching an optimal vertex x0 of the linear program (2.2). Then we
compute an intersection point x∗ of the edge v`−1–v` and ∂G. This point
x∗ ∈ ∂G is given as (1− λ∗)v`−1 + λ∗v` for

λ∗ = min{λ ∈ [0, 1] | g[(1− λ)v`−1 + λv`] ≥ 0}. (3.1)

Since (3.1) is a convex minimization and besides univariate, computation
of λ∗ is inexpensive. From Theorem 2.1, we see that x∗ is a nominee for
solution to the target (2.1).

In this local search procedure, we should remark that an edge vi−1–vi

for some i < ` can intersects ∂G. More precisely, there might be at most
two points x′ and x′′ on edge vi−1–vi such that g(x′) = g(x′′) = 0. In that
case, however, both x′ and x′′ cannot be optimal for (2.1) because

cTvi−1 < cTx′ ≤ cTx′′ ≤ cTvi,

and vi ∈ C ∩ D \ G by assumption. Even if we neglect such intersection
points, we never lose any optimal solution to (2.1).

3.2. Global optimality check

If we obtain the nominee x∗ ∈ C ∩ D ∩ ∂G, the next thing is to check
whether x∗ satisfies the optimality condition of (2.1) given by Theorem
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2.2. We can accomplish it, in theory, applying Falk-Soland’s algorithm to
PD(cTx∗). If the algorithm yields x∗ as an optimal solution to PD(cTx∗),
we can conclude from Theorem 2.2 that x∗ is optimal for (2.1) as well. In
practice, however, Falk-Soland’s algorithm might not terminate in finite
time, without a positive tolerance ε. We therefore need some additional
devices.

For a sufficiently small δ > 0, let x′ be a point on the line including edge
v`−1–v` such that

cTx′ = cTx∗ + δ < cTx0,

where x0 is an optimal solution to the linear program (2.2). Also letting

ε = g(x′),

we see that ε > 0. Instead of solving PD(cTx∗), we solve PD(cTx′) using
Falk-Soland’s algorithm with this ε as tolerance. Then the algorithm must
terminate in finite time and yield an ε-optimal solution to PD(cTx′). If the
output solution is x′, then it satisfies g(x′) ≤ g(x) + ε for any x ∈ C ∩D
satisfying cTx ≥ cTx∗ + δ. Since g(x′) = ε by definition, we have

g(x) ≥ 0, ∀x ∈ C ′ ∩D,

where C ′ is set to C ∩ {x ∈ IRn | cTx ≥ cTx∗ + δ}. If there is a point
x′′ ∈ C ′ ∩D satisfying this with equality, then x′′ is an optimal solution to
(2.1) and the optimal value is cTx∗ + δ by Theorem 2.2. Hence, we have

cTx∗ ≥ cTx− δ, ∀x ∈ C ∩D \G,

which means that x∗ ∈ C∩D∩∂G is a globally δ-optimal solution to (2.1).
Next, suppose that Falk-Soland’s algorithm yields x∗ 6= x′ with g(x∗) < ε.

This point x∗ is a vertex of C ′∩Dk for some k ∈ K but might not be a vertex
of C ′∩D. However, since g achieves each local minimum at some vertex of
C ′ ∩D, finding a vertex w1 of C ′ ∩D with g(w1) ≤ g(x∗) is not expensive
if we locally minimize g on C ′ ∩D starting from x∗. Once we obtain such
a point w1 with g(w1) ≤ g(x∗) < ε, we may again generate a sequence of
adjacent vertices w2,w3, . . . of C ′∩D such that cTw1 < cTw2 < · · · , until
some edge w`−1–w` intersects ∂G.

3.3. Description of the algorithm

Let us summarize the algorithm alternating local search and concave min-
imization, where δ > 0 is a given tolerance.
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Algorithm 1

begin

let w 6∈ G be a vertex of C ∩D; optimal := false; C ′ := C; k := 1;
while optimal = false do begin

repeat

v := w; find a vertex w of C ′ ∩D adjacent to v such
that cTv < cTw

until g(v) < 0 and g(w) ≥ 0;
let xk be an intersection point of edge v–w and ∂G;
let α := cTxk +δ and x′ be a point on the line including v–w
such that cTx′ = α;
C ′ := C ∩ {x ∈ IRn | cTx ≥ α};
solve PD(α) using Falk-Soland’s algorithm with tolerance
ε := g(x′) and let x∗ denote its output;
if g(x∗) < ε then

find a vertex w of C ′ ∩D with g(w) ≤ g(x∗) in a
neighborhood of x∗

else optimal := true;
k := k + 1

end;
x∗ := xk

end;

Theorem 3.1 When δ > 0, Algorithm 1 terminates in a finite number of
iterations and yields a globally δ-optimal solution x∗ to (2.1).

Proof: For each iteration k > 1, we see that

cTxk ≥ cTxk−1 + δ > cTxk−1.

Since cTxk has an upper bound cTx0, the finiteness of Algorithm 1 follows
this.

4. Indirect Application of Falk-Soland’s Algorithm

In the previous section, to solve (2.1) we apply Falk-Soland’s branch-and-
bound algorithm in a rather direct manner. This solution method, however,
has a weak point that we have to solve a class of concave minimization prob-
lems repeatedly, even though the class is rather easy to solve in comparison
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with other multiextremal global optimization problems. In this section, we
will develop a method that computes an upper bound on the optimal value
of (2.1), not a lower bound on that of the dual problem, in the bounding
operation. Therefore, once we call this branch-and-bound algorithm, it
generates a globally optimal solution to the original problem (2.1).

As in Falk-Soland’s algorithm, we subdivide the rectangle D into subrect-
angles Dk, k ∈ K, which constitutes a partition of D. However, the problem
to be solved for each partition set Dk is not P(Dk) but a subproblem of
(2.1), i.e., we solve a problem of the following form with D = Dk:

Q(D)
∣∣∣∣ maximize cTx
subject to x ∈ C ∩D \G.

Of course, Q(D) belongs to the same class as (2.1), and hence cannot be
solved directly. Instead, we compute an upper bound wk on Q(D) in each
iteration and narrow partition sets down to the one containing an optimal
solution to (2.1). Let ε ≥ 0. The outline of the algorithm is as follows:

Let D1 := D, K := {1} and k := 1. Repeat Steps 1 – 3 until K = ∅.

Step 1. Take an appropriate index ik out of K and let D := Dik .

Step 2’. (Bounding operation) Compute an upper bound wk on the
optimal value w(D) of Q(D). If wk − ε ≤ cTx∗ for the best
feasible solution x∗ to (2.1) obtained so far, discard D from
further consideration.

Step 3. (Branching operation) Otherwise, divide the rectangle D
into two subrectangles D2k and D2k+1. Add {2k, 2k + 1} to K.

We will begin by explaining how to compute the upper bound wk in Step
2’ of this scheme.

4.1. Linearization and its solution

As shown in Lemma 2.1, the convex envelope h of g defined in (2.6) and
(2.7) satisfies h(x) ≤ g(x) for all x ∈ D. Hence, by letting

H = {x ∈ IRn | h(x) ≤ 0},

we have
D \G ⊂ D ∩H.
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This immediately implies that the optimal value w(D) of Q(D) is bounded
from above by that of

QL(D)
∣∣∣∣ maximize cTx
subject to x ∈ C ∩D ∩H.

Let xk denote an optimal solution to QL(D) when it is feasible. Also, let

wk =
{

cTxk if C ∩ C ∩H 6= ∅
−∞ otherwise.

Lemma 4.1 If wk = −∞, then Q(D) is infeasible. Otherwise, the follow-
ing relationship holds:

wk ≥ w(D). (4.1)

Since h is an affine function, QL(D) is a linear program with the set of
constraints

A′′x ≤ b′′, l ≤ x ≤ u,

where

A′′ =

 A
g1(u1)− g1(l1)

u1 − l1
· · · gn(un)− gn(ln)

un − ln


b′′ =

 b
n∑

j=1

ljgj(uj)− ujgj(lj)
uj − lj

 .

Therefore, if we try to use wk as the upper bound in Step 2’, we need to
solve a series of linear programs different from one another just in the last
rows of A′′ and b′′. However, this structure of A′′ causes a serious disad-
vantage when we solve them using the revised simplex algorithm where the
inverse of each basis is maintained in a compact form such as a product
of eta matrices (see e.g., [2]). Even if we keep an optimal basis of A′′ in
such a form for the present problem, it is of no use in solving the succeed-
ing problems. To improve this, we propose to solve QL(D) in two stages
starting from an optimal solution xk−1 of the proceeding linear program.
In both stages, the matrix we mainly deal with is not A′′ but A′ defined
in (2.3).

First stage of solution to QL(D). Let

φ(α) = min{h(x) | x ∈ C ∩D, cTx = α}.
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It is known that φ is a convex piecewise affine function of α (see e.g., [2]).
We see from the following that QL(D) amounts to locating the maximum
of α satisfying φ(α) ≤ 0.

Lemma 4.2 Let x′ be a point in C∩D∩H. Then x′ is an optimal solution
to QL(D) if and only if cTx′ is the maximum value of α satisfying φ(α) ≤ 0.

Proof: Note that φ(cTx′) ≤ h(x′) ≤ 0 since x′ ∈ C ∩D ∩H. Therefore,
if either holds, we have cTx′ ≥ cTx for any x ∈ C ∩D satisfying h(x) ≤ 0,
which implies the other.

If cTx 6= α for any x ∈ C ∩D, then φ(α) is understood to be +∞. For a
given xk−1 optimal for the preceding linearized subproblem, we first check
the value of φ at cTxk−1. This can be done by solving the following linear
program: ∣∣∣∣ minimize h(x)

subject to x ∈ C ∩D, cTx ≥ cTxk−1.
(4.2)

Three cases can occur:

Case 1: Problem (4.2) is infeasible. In this case, φ(cTxk−1) = +∞ and
QL(D) can provide no better solution than xk−1. Hence, we can exclude
the rectangle D from further consideration.

Case 2: Problem (4.2) has an optimal solution x′ such that cTx′ = cTxk−1.
The value φ(cTxk−1) is given by h(x′). If h(x′) = 0, then cTxk−1 is the
maximum of α; but QL(D) can provide no better solution than xk−1

as long as h(x′) ≥ 0. If h(x′) < 0, let α1 = cTxk−1.

Case 3: Problem (4.2) has an optimal solution x′ such that cTx′ > cTxk−1.
Let α1 = cTx′. Then we have φ(α1) = h(x′). If h(x′) vanishes, then
α1 is the maximum of α; hence, xk and wk can be set to x′ and α1,
respectively.

Second stage of solution to QL(D). If φ(α1) 6= 0, then we adjust the
value of α to restore φ(α) = 0. Suppose that φ(α1) < 0. In this case, as
increasing the value of α from α1, we solve

PQ(α)

∣∣∣∣∣∣
minimize h(x)
subject to Ax ≤ b, l ≤ x ≤ u

cTx = α,

using the parametric right-hand-side simplex algorithm [2]. Then it gener-
ates a sequence of intervals [α1, α2], [α2, α3], . . . , and a sequence of bases
B1, B2, . . . of A′ such that Bi is optimal for PQ(α) when α ∈ [αi, αi+1].
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The optimal value φ(α) of PQ(α) is affine on each interval [αi, αi+1]. If we
find a break point α` satisfying

φ(αi) < 0, i = 1, . . . , `− 1, φ(α`) ≥ 0, (4.3)

we can easily compute a point α′ ∈ [α`−1, α`] such that φ(α′) = 0. Then we
have wk = α′ and xk as an optimal solution to PQ(α′). If no break point
satisfies (4.3), then α reaches its maximum αq = max{cTx | x ∈ C ∩ D}
and still satisfies φ(αq) < 0. In that case, we have C ∩ D ⊂ H; since
h(x) ≤ 0 is redundant to QL(D), we may set αq to wk.

In the case that φ(α1) > 0, we may solve PQ(α) as decreasing the value
of α from α1. Again, we have a sequence of intervals [α2, α1], [α3, α2], . . . ,
and the piecewise affine function φ(α) for α ≤ α1. If we can find a break
point α` satisfying

φ(αi) > 0, i = 1, . . . , `− 1, φ(α`) ≤ 0,

the rest of the procedure is the same as before. Otherwise, α reaches its
minimum αr = min{cTx | x ∈ C ∩ D} and still satisfies φ(αr) > 0. This
implies C ∩D ∩H = ∅, and hence wk = −∞.

In these stages, we should remark that (4.2) is of the same form as PL(D),
the linearized subproblem in Falk-Soland’s algorithm. While α in PL(D)
is treated as just a constant, (4.2) is solved via PQ(α) parametrically as
changing the value of α from cTxk−1. In this connection, we also note that
(4.2) is dual for the linearization QL(D) in the sense of Theorem 2.2 if xk−1

is optimal for the latter. This branch-and-bound algorithm, therefore, can
be thought of as a method for solving the dual problem of each subproblem
while Algorithm 1 tries to solve the dual problem of the original problem.

Let us summarize the above procedure, which receives h, xk−1, and re-
turns the optimal value wk of the linearized subproblem QL(D):

Procedure 2

begin

/∗ Stage 1 ∗/
construct problem (4.2) of minimizing h(x) on
C ∩D ∩ {x ∈ IRn | cTx ≥ cTxk−1};
if (4.2) is infeasible then return wk := −∞
else begin

let x′ be an optimal solution to (4.2);
if cTx′ = cTxk−1 then
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if h(x′) ≥ 0 then return wk := −∞
else α1 := cTxk−1

else begin

if h(x′) = 0 then return xk := x′ and wk := cTx′

else α1 := cTx′

end;
/∗ Stage 2 ∗/

if φ(α1) < 0 then begin

solve PQ(α) parametrically as increasing α from α1;
let α2, . . . , αq be break points of the optimal value
function φ of PQ(α);
if φ(αi) < 0 for i = 1, . . . , `− 1 and (α`) ≥ 0
then begin

compute wk ∈ [α`−1, α`] such that φ(wk) = 0;
let xk be an optimal solution to PQ(wk) and
return xk and wk

end

else let xk be an optimal solution to PQ(αq) and
return xk and wk := αq

end

else begin

solve PQ(α) parametrically as decreasing α from α1;
let α2, . . . , αr be break points of φ;
if φ(αi) > 0 for i = 1, . . . , `− 1 and φ(α`) ≤ 0
then begin

compute wk ∈ [α`−1, α`] such that φ(wk) = 0;
let xk be an optimal solution to PQ(wk) and return xk

and wk

end

else return wk := −∞
end

end;
4.2. Bounding and Branching

If an optimal solution xk to QL(D) is not a point in G, then xk is also
an optimal solution to Q(D) and (4.1) holds with equality. Unfortunately,
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in general, xk is not even a feasible solution to Q(D). To perform the
bounding operation efficiently, however, we need a feasible solution giving
a lower bound on (2.1) and have to update it timely. One way to find a
feasible solution to (2.1) is to check if each solution to PQ(α) lies on G or
not, in the second stage of solution to QL(D). Here, we will give a more
handy approach.

Suppose that a feasible solution x̃ to the original problem (2.1) is given
and satisfies g(x̃) < 0. If g(xk) ≥ 0 holds, the line segment connecting xk

and x̃ intersects ∂G at x′ = (1 − λ)xk + λx̃ for some λ ∈ [0, 1]. Such a
number λ can be computed in a way similar to (3.1). This boundary point
x′ of G is a feasible solution to (2.1) because the segment xk–x̃ is entirely
included in the convex set C ∩ D1. We compute x′ in each iteration if
possible, and then update the incumbent and lower bound with x′. The
point x̃ need not be determined beforehand. As the rectangular subdivision
advances, some vertex of Dk, k ∈ K, becomes feasible for (2.1). Hence, we
may check if each vertex of D is feasible for (2.1) in each iteration. Since g
is concave, checking requires O(2n) time. In the usual application, however,
each gj constituting g represents a cost of xj and is nondecreasing. In that
case, we need only to check the feasibility of vertex l.

The branching operation can be performed in the same way as in Falk-
Soland’s algorithm, i.e., we can use both bisection and ω-division for select-
ing (j,mj) in (2.8). Since the convergence by the bisection rule is obvious,
we briefly discuss the case of ω-division. Let L denote the nested sequence
of Dki , i = 1, 2, . . ., as defined in (2.9). If we generate the sequence L
according to the ω-division rule, for each i ∈ L we select

ji ∈ arg max{gj(xi
j)− hj(xi

j) | j = 1, . . . , n}, (4.4)

and divide the interval [liji
, ui

ji
] at

mi
ji

= xi
ji

, (4.5)

where xi is an optimal solution to QL(Di). From (4.4) and Lemma 2.3,
there is a subsequence L′ ⊂ L such that lij → l∗j and ui

j → u∗j for each
j as i → +∞ in L′; and besides, l∗j and u∗j are accumulation points of
mi

j . This, together with (4.5), implies that xi has an accumulation point
among the vertices of D∗ = [l∗1, u

∗
1] × · · · × [l∗n, u∗n]. From Lemma 2.1,

however, the convex envelope h agrees with g at each of these vertices; and
hence the optimal values of Q(D∗) and QL(D∗) coincide. Thus, we have
the following:
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Lemma 4.3 If L is generated according to either of the bisection and ω-
division rules, then there is a sequence L′ ⊂ L such that

wi − w(Di) → 0 as i → +∞ in L′.

4.3. Description of the algorithm

Lastly, we need to decide the rule of selecting an index ik from the set K
in Step 1. As in Falk-Soland’s algorithm, we can adopt either of the depth
first and best bound rules. We are now ready to describe the algorithm,
where ε > 0 is a given tolerance.

Algorithm 3

begin

construct the linearized problem QL(D) of (2.1) and solve it to
obtain x1;
select j ∈ {1, . . . ,m} and mj ∈ [lj , uj ] by a fixed rule
(bisection or ω-division);
D2 := [l1, u1]× · · · × [lj ,mj ]× · · · × [ln, un];
D3 := [l1, u1]× · · · × [mj , uj ]× · · · × [ln, un];
D1 := D; K := {2, 3}; k := 2; w∗ := −∞;
while K 6= ∅ do

/∗ Step 1 ∗/
select an index ik from K by a fixed rule
(depth first or best bound);
K := K \ {ik}; D := Dik ;
if w∗ := −∞ and some vertex v of D lies on C ∩D1 \G

then begin x̃ := v; w∗ := cTx̃
end;

/∗ Step 2’ ∗/
construct a subproblem Q(D) and its linearization QL(D);
compute an optimal solution xk and the value wk of QL(D)
using Procedure 2;
if wk − ε > w∗ then begin

/∗ Step 3 ∗/
if w∗ > −∞ then begin

let x′ be an intersection point of xk–x̃ and ∂G;
if cTx′ > w∗ then update w∗ := cTx′ and x∗ := x′
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end;
select j ∈ {1, . . . , n} and mj ∈ [lj , uj ] by a fixed rule;
D2k := [l1, u1]× · · · × [lj ,mj ]× · · · × [ln, un];
D2k+1 := [l1, u1]× · · · × [mj , uj ]× · · · × [ln, un];
K := K ∪ {2k, 2k + 1}; k := k + 1

end

end

end;

The following results are analogous to those of Falk-Soland’s algorithm.

Theorem 4.1 When ε > 0, Algorithm 3 terminates in a finite number of
iterations and yields a globally ε-optimal solution x∗ to problem (2.1).

Corollary 4.1 Suppose ε = 0. If the best bound rule is adopted in Step
1, the sequence of xk’s generated by Algorithm 3 has accumulation points,
each of which is a globally optimal solution to problem (2.1).

5. Concluding Remarks

We have seen that Falk-Soland’s rectangular branch-and-bound algorithm
can serve as a useful procedure in solving linear programs with an addi-
tional separable reverse convex constraint (LPASC). Since we have not yet
compared Algorithm 1 and 3 with other algorithms, we can make no final
conclusions about their computational properties. However, if we think
of the success of Falk-Soland’s algorithm in concave minimization, we can
strongly expect Algorithms 1 and 3 using it in a direct or indirect manner
to be reasonably practical.

As stated in Section 1, the rectangular branch-and-bound algorithm has
made great progress since Falk-Soland [3]. Although we have used Falk-
Soland’s classical branch-and-bound in Algorithm 1, we can instead employ
modern algorithms of this kind such as [11], [15]. These are reported to be
more efficient than Falk-Soland’s original algorithm. Therefore, such modi-
fication will improve the efficiency of Algorithm 1 considerably. In addition,
we could incorporate devices of [11], [15] into Algorithm 3 because its struc-
ture is basically the same as Falk-Soland’s branch-and-bound algorithm.
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