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Abstract—In this paper, we review linear propagation effects in a
multimode fiber (MMF) and their impact on performance and com-
plexity in long-haul mode-division multiplexing (MDM) systems.
We highlight the many similarities to wireless multi-input multi-
output (MIMO) systems. Mode-dependent loss and gain (MDL),
analogous to multipath fading, can reduce average channel capac-
ity and cause outage in narrowband systems. Modal dispersion
(MD), analogous to multipath delay spread, affects the complexity
of MIMO equalization, but has no fundamental effect on perfor-
mance. Optimal MIMO transmission uses a basis of the Schmidt
modes, which may be obtained by a singular value decomposition
of the MIMO channel. In the special case of a unitary channel
(no MDL), an optimal basis is the set of principal modes, which
are eigenvectors of a group delay operator, and are free of signal
distortion to first order. We present a concatenation rule for the
accumulation of MD along a multisection link. We review mode
coupling in MMF, including physical origins, models, and regimes
of weak and strong coupling. Strong mode coupling is a key to
overcoming challenges in MDM systems. Strong coupling reduces
the group delay spread from MD, minimizing the complexity of
MIMO signal processing. Likewise, it reduces the variations of loss
and gain from MDL, maximizing channel capacity. In the strong-
coupling regime, the statistics of MD and MDL depend only on the
number of modes and the variance of accumulated group delay or
loss/gain, and can be derived from the eigenvalue distributions of
certain Gaussian random matrices.

Index Terms—Channel capacity, frequency diversity, MIMO,
mode-division multiplexing, multimode fiber.

I. INTRODUCTION

O PTICAL fiber communication systems have undergone
sustained and dramatic improvements in bit rate, reach,

and functionality since their origins in the 1960s [1]. In the
first few decades, the bit rate per fiber was increased by ex-
ploiting physical technologies. These include low-loss fibers,
active components operating at the low-loss window, such
as lasers, modulators and Erbium-doped fiber amplifiers, and
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the use of wavelength-division multiplexing [2], [3]. During
the past decade, coherent detection has been combined with
advanced signal processing techniques and powerful error-
correction codes to further improve transmission system per-
formance [4], [5].

All available degrees of freedom—time, frequency, phase,
and polarization—are exploited in current long-haul single-
mode fiber (SMF) systems, which achieve bit rates above
100 Gb/s per channel and spectral efficiencies exceeding
2 b/s/Hz [4], [5]. These systems are fundamentally limited only
by optical amplifier noise and fiber nonlinearities [6]–[8]. Tech-
nical options to further increase the capacity of SMF systems
are limited, and are reaching a point of diminishing return. Fu-
ture innovations in SMF systems are likely to emphasize cost
reduction, ease of deployment, and management flexibility.

Mode-division multiplexing (MDM) systems use a plurality
of modes in a multimode fiber (MMF) to transmit many in-
dependent parallel data streams [9]–[13]. The electric fields in
an MMF can be expressed in terms of a set of orthogonal spa-
tial and polarization modes. When all the degrees of freedom
exploited in SMF are used in each spatial mode of an MDM
system, the overall bit rate increases in proportion to the num-
ber of spatial modes. While long-distance propagation in MMF
inevitably causes coupling between different modes, leading to
crosstalk and interference [14], [15], multi-input multi-output
(MIMO) signal processing techniques can separate the parallel
data streams. As in MIMO wireless systems [16]–[18], the cou-
pled parallel channels can be used to either increase the data
rate or enhance system reliability, providing multiplexing or
diversity gain [17], [19].

MDM and wireless systems both use electromagnetic waves.
MIMO channels in these systems share many similarities, but
exhibit significant differences. This paper focuses on propa-
gation effects in MDM systems in the linear regime, where
the two major effects are modal dispersion (MD) [20] and
mode-dependent gains and losses (collectively referred to as
MDL) [21]. These effects are also inherent in wireless MIMO
systems, where they are typically described using different
terminology.

MD in MDM systems is analogous to the multipath delay
spread in wireless MIMO systems. In both types of systems,
MIMO equalizers must have sufficient memory to compensate
for the delay spread. Likewise, MDL is analogous to the mul-
tipath fading in wireless MIMO systems. In both types of sys-
tems, these effects cause variations among the gains of different
spatial channels and may degrade system performance. Wireless
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MIMO signals [22], [23] often occupy a narrow frequency band-
width, so that fading may be nearly flat (frequency-independent)
for all spatial channels. By contrast, MDM signals typically
occupy a very wide bandwidth, so modal gains and losses be-
come frequency-selective, yielding efficient frequency diversity
that potentially improves performance [24].

Mode coupling is typically beneficial in MDM systems [13].
Strong mode coupling reduces the delay spread from MD, min-
imizing MIMO signal processing complexity, and it reduces the
spread of modal gains/losses from MDL, minimizing any re-
duction of channel capacity. Strong mode coupling also enables
frequency diversity, which minimizes the probability of system
outage caused by MDL. Although outside the scope of this pa-
per, strong mode coupling also can reduce the impact of fiber
nonlinearities [25], [26]. MDM systems for long-haul transmis-
sion may not achieve practical, reliable operation without strong
mode coupling [13], [27].

In the strong-mode-coupling regime, end-to-end linear prop-
agation in an MDM system may be modeled using the product
of many random matrices [13], [21], [24], [28], [29]. This ran-
dom matrix model is helpful in deriving the statistics of MD and
MDL in the strong mode-coupling regime. Modal group delays
have the same distribution as the eigenvalues of a zero-trace,
zero-mean Gaussian random matrix [13], [20]. Modal gains,
measured in logarithmic units, have the same distribution as the
eigenvalues of a zero-trace Rician matrix [29], or a zero-trace,
nonzero-mean Gaussian random matrix.

The remainder of this paper is as follows. Section II describes
some general end-to-end characteristics of linear MIMO sys-
tems, which may include MDM or wireless MIMO systems,
and defines MD and MDL. Section III discusses the physical
origins of mode coupling in MMFs, a multisection model for
propagation in MMFs, and regimes of weak and strong mode
coupling. Section IV describes the statistics of MD in the strong-
coupling regime and computes the delay spread, which affects
signal processing complexity. Section V discusses the statistics
of strongly coupled MDL and how MDL affects the channel ca-
pacity of MDM systems. Section VI presents our conclusions.

II. LINEAR MIMO SYSTEMS

In this section, certain fundamental end-to-end properties of
linear MIMO systems are reviewed. These properties apply
equally to MDM or wireless MIMO systems, although the ter-
minology employed is somewhat specialized to MDM systems.
Two important sets of eigenmodes are described. The Schmidt
modes are eigenvectors of a phase-conjugate round-trip prop-
agation operator, and may obtained directly from the singular
value decomposition (SVD) of a MIMO channel. They gener-
ally represent an optimal basis for MDM transmission when
using coherent detection. The principal modes are eigenvectors
of a group delay operator, and may provide a suitable basis
for MDM transmission when using direct detection, assuming
MDL and higher-order MD are tolerably small.

A. Channel Decomposition and Optimal Transmission

We assume an MMF supporting D propagating modes, in-
cluding spatial and polarization degrees of freedom.

To fully utilize the available degrees of freedom and avoid
outage, an MDM system should excite and detect all D modes
[13], [28]. In this case, neglecting optical amplifier noise and
fiber nonlinearities [25], [26], end-to-end propagation can be
described by a frequency-dependent D × D matrix

M(t)(ω). (1)

The matrix M(t)(ω) can include the effects of modal
(de)multiplexers, fibers, amplifiers, reconfigurable add-drop
(de)multiplexers, and other linear components in the link, and
can account for arbitrary gain or loss, mode coupling, or dis-
persion. The input–output relationship of any noiseless, linear
MIMO system can be described by a frequency-dependent ma-
trix [13], [16], [22], [23], [28]. If unequal numbers of modes are
excited and detected, M(t)(ω) is not a square matrix.

Using an SVD [30, Sec. 2.5] at each angular frequency ω, the
propagation matrix (1) may be expressed as

M(t)(ω) = V(t)(ω)Λ(t)(ω)U(t)∗(ω) (2)

where U(t)(ω) and V(t)(ω) are frequency-dependent input and
output unitary matrices, respectively, ∗ denotes conjugate trans-
pose, and

Λ(t)(ω) =

⎛
⎜⎜⎝

e
1
2 g

( t )
1 (ω ) 0

. . .

0 e
1
2 g

( t )
D (ω )

⎞
⎟⎟⎠ (3)

is a frequency-dependent real diagonal matrix quantifying
MDL, which becomes an identity matrix when MDL is absent.

The input unitary matrix U(t)(ω) comprises D column
vectors u1(ω),u2(ω), . . . ,uD (ω), each D × 1, which rep-
resent mutually orthogonal input eigenmodes of the sys-
tem, and are eigenvectors of a phase-conjugate round-trip
propagation operator M(t)∗(ω)M(t)(ω). Similarly, the out-
put unitary matrix V(t)(ω) comprises D column vectors
v1(ω),v2(ω), . . . ,vD (ω), each D × 1, which represent mu-
tually orthogonal output eigenmodes of the system, and are
eigenvectors of another phase-conjugate round-trip propagation
operator M(t)(ω)M(t)∗(ω). In various fields of physics, the
input and output eigenmodes may be referred to as Schmidt
modes [31], [32]. In the wireless literature, they may be re-
ferred to as spatial channels, and U(t)(ω) and V(t)(ω) may be
called transmit and receive beamforming matrices, respectively.
The input and output eigenmodes represent an optimal basis for
MIMO transmission without crosstalk at frequency ω.

The diagonal matrix Λ(t)(ω) can be described equiva-
lently by a 1 × D frequency-dependent real vector g(t)(ω),
whose components g

(t)
1 (ω), g(t)

2 (ω), ..., g(t)
D (ω) are the loga-

rithms of the eigenvalues of M(t)∗(ω)M(t)(ω) or, equivalently,
of M(t)(ω)M(t)∗(ω). These eigenvalues are the squares of the
singular values of M(t)(ω). Without loss of generality, we as-
sume an ordering g

(t)
1 (ω) ≥ g

(t)
2 (ω) ≥ · · · ≥ g

(t)
D (ω). We may

refer to g(t)(ω) as the MDL vector or as the spatial channel
gain vector, following the wireless literature. The components
of g(t)(ω) describe the gains between the input and output
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eigenmodes, and determine the capacity or performance of an
MDM system.

The SVD (2) can be rewritten as

M(t)(ω) =
D∑

m=1

e
1
2 g

( t )
k (ω )vm (ω)u∗

m (ω). (4)

In physical terms, the expansion (4) states that an MDM system
is equivalent to a mode converter that maps the mth input eigen-
mode um (ω) to the mth output eigenmode vm (ω) with a modal

power gain eg
( t )
m (ω ) [33]. The expansion (4) simply adds a fre-

quency dependence to the expansion given in [33]. The expan-
sion (4) is helpful in designing an optimal MDM system. In such
a system, input data streams are transmitted on input eigenmodes
u1(ω),u2(ω), . . . ,uD (ω) and the output data streams are
received from output eigenmodes v1(ω),v2(ω), . . . ,vD (ω).
Equivalently, in the terminology of wireless systems, input and
output data streams are mapped to and from the channel us-
ing transmit and receive beamforming matrices U(t)(ω) and
V(t)∗(ω), respectively. The data streams at each frequency ω are
free of crosstalk, since V(t)∗(ω)M(t)(ω)U(t)(ω) = Λ(t)(ω) is
diagonal [13], [17], [34].

In order to implement this optimal transmission scheme, the
receiver must estimate the propagation matrix M(t)(ω) at each
frequency, compute the SVD (2), and send channel state infor-
mation (CSI) to the transmitter. This CSI includes the transmit
beamforming matrix U(t)(ω) and the MDL vector g(t)(ω). The
transmitter precodes the data using U(t)(ω), allocating trans-
mit power and information bits to the spatial channels based
on the MDL vector g(t)(ω) [17], [21]. In practice, the transmit
beamforming matrix U(t)(ω) may be estimated imperfectly, and
feedback of CSI may be subject to error.

Assuming the components of g(t)(ω) are distinct, the SVD
(2) yields unique input and output eigenmodes up to multiplica-
tive phase factors of the form exp(jϕ(ω)). These phases on the
transmit eigenmodes can be adjusted to simplify the description
of U(t)(ω) for feedback of CSI. While unlikely, in the case that
some components of the MDL vector g(t)(ω) are degenerated
and correspond to more than one linearly independent eigen-
mode, the description of U(t)(ω) can be simplified further.

Feedback of CSI may become impractical if the MMF
changes on a time scale shorter than or comparable to the round-
trip propagation delay, which can be tens of milliseconds in a
long-haul system. When feedback becomes impossible, space-
time codes or error-correction codes across the spatial channels
can provide diversity [35]–[37]. In such cases, all spatial chan-
nels are allocated equal power. In MDM systems, the frequency
dependence of g(t)(ω) may be exploited to provide frequency
diversity [24] by using wideband single-carrier modulation or
multicarrier modulation with error-correction coding across fre-
quency.

The model given here, although described in the terminology
of MDM systems, is valid for any linear MIMO system. While
we have considered a D × D propagation matrixM(t)(ω) in (1),
a square matrix is not required, and wireless MIMO systems of-
ten use unequal number of transmit and receive antennas. As the
major goal of MDM systems is to increase system throughput,

a D × D propagation matrix with D parallel data streams rep-
resents the best utilization of available resources. Likewise, an
MDM system should be designed so that M(t)(ω) is full rank
with D nonzero singular values in the SVD (4). Any very small
or zero singular values represent a loss of available modes and
thus a loss of system throughput.

Aside from MIMO systems, SVD is used in principal com-
ponent analysis [38], discrete Karhunen–Loève transforms [39],
genome data processing [40], channel estimation [41], and many
other applications. Highly efficient numerical SVD algorithms
are available [30, Sec. 2.5], [42].

B. Schmidt Modes

The input and output unitary matrices U(t)(ω) and V(t)(ω)
appearing in (2) and their columns, which represent input and
output eigenmodes of a linear MIMO system, may be worthy of
more detailed discussion.

In SMF with two polarization modes, where D = 2, MDL is
called polarization-dependent loss (PDL) [43]–[45]. For D =
2, the 2 × 2 unitary matrices U(t)(ω) and V(t)(ω) represent the
two orthogonal eigenmodes [46] with maximum and minimum
gains, and may be represented as Stokes vectors on the Poincaré
sphere, unit-norm Jones vectors, or in other equivalent forms.

In MMF with MDL, where D > 2, the eigenmodes repre-
sent directions along which gain is an extremum, which may
be either a maximum or minimum when approached from dif-
ferent orientations. For D = 3, MDL may be visualized in a
three-dimensional space using a triaxial ellipsoid with three un-
equal semi-axes, where the distance from the origin to a point
on the surface represents modal gain. The directions of maxi-
mal and minimal gain are obvious. The triaxial ellipsoid has a
third extremum, which may be either a maximum or minimum,
depending on the direction from which it is approached.

In certain fields of physics, including optics and quantum
information, the SVD (2) is sometimes called a Schmidt decom-
position [31], [32], [47], and the eigenmodes described by the
columns of U(t)(ω) and V(t)(ω) may be called Schmidt modes.
Schmidt modes are a useful analytical tool, but their physical
interpretation requires some care.

The modes of a laser resonator [48] are eigenmodes of a sym-
metric, non-Hermitian operator describing forward and back-
ward propagation through the resonator, given in the notation
used here by M(t)T (ω)M(t)(ω), where T denotes transpose. By
contrast, the input Schmidt modes are eigenmodes of the Hermi-
tian operator M(t)∗(ω)M(t)(ω), which represents forward prop-
agation, phase conjugation, backward propagation, and phase
conjugation, and may be called a phase-conjugate round-trip
propagation operator. The operator M(t)(ω)M(t)∗(ω), whose
eigenmodes are the output Schmidt modes, has an analogous
physical interpretation. Either set of Schmidt modes reproduces
itself after phase-conjugate round-trip propagation with a scal-
ing given, in logarithmic units, by the components of the MDL
vector g

(t)
1 (ω), g(t)

2 (ω), ..., g(t)
D (ω).

In a laser resonator, the lasing mode is equivalent to the eigen-
mode of a round-trip propagation operator M(t)T (ω)M(t)(ω)
that has the largest eigenvalue. The numerical method for
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computing resonator modes in [48] is similar to the power
method used to find the eigenmode having the largest singu-
lar value or eigenvalue [30, Sec. 7.3], which finds application
in the Google Pagerank algorithm [49] and beamforming [50].
In an MDM system, the dominant Schmidt mode may be found
using a similar power method, and would provide the best per-
formance for transmission of a single data stream.

The condition number of the propagation matrix M(t)(ω) is
defined as the ratio between the maximum and minimum singu-
lar values. In logarithmic units, the condition number equals the
maximum MDL difference g

(t)
1 (ω) − g

(t)
D (ω). When the condi-

tion number is high, MIMO system capacity tends to be reduced,
and the MIMO channel is difficult to numerically invert (equal-
ize by zero-forcing).

In wireless MIMO systems, it is difficult or impossible to
control the channel properties and thus control the condition
number. Wireless MIMO systems often use the condition num-
ber as a metric to determine operating mode (choice of modu-
lation and code rate) [51], [52]. By contrast, in MDM systems,
MDL can be controlled by careful design of link components,
up to physical and economic limits, of course. The design goal
for MDM systems is to reduce MDL, such that the propagation
matrix M(t)(ω) is close to unitary.

In MDM systems, transmission fibers typically have small
MDL, and the dominant source of MDL is likely to be from
optical amplifiers that compensate for fiber loss [53], [54].
Wavelength-selective switches may also induce MDL, espe-
cially at frequencies near the passband edge. In any case, the
design goal is to reduce the MDL of each component and thus
minimize the MDL of the overall system.

C. Principal Modes

The SVD (2) has a clear physical interpretation and clear
implications for MDM system performance. As stated above, a
system design goal is to make the propagation operatorM(t) (ω),
given by (1), close to unitary (apart from a multiplicative factor).
IfM(t)(ω) is indeed unitary, the SVD (2) is not uniquely defined,
and there are an infinite number of choices for the input and
output unitary matrices U(t)(ω) and V(t)(ω). Unitary matrices
are generalized rotation matrices, and any arbitrary “rotation”
incorporated in U(t)(ω) can be compensated by incorporating
the inverse “rotation” in V(t)(ω).

In the special case of a unitary propagation operator M(t)(ω),
the input unitary matrix U(t)(ω) can be defined uniquely by a
further constraint that it be independent of frequency to first
order, i.e., dU(t)(ω)/dω = 0. With this constraint, the columns
of U(t)(ω) are input principal modes, which are eigenvectors
of a group delay operator [13], [20], [55], [56]

G (ω) = j
dM(t)∗(ω)

dω
M(t) (ω) . (5)

If M(t)(ω) is unitary, G(ω) is Hermitian with real eigenval-
ues τ (t) = (τ (t)

1 , τ
(t)
2 , ..., τ

(t)
D ), representing the group delays of

the different principal modes. We assume that the principal mode
group delays are ordered as τ

(t)
1 ≥ τ

(t)
2 ≥ · · · ≥ τ

(t)
D . The output

principal modes are given by the columns of V(t)(ω), which are

eigenvectors of a group delay operator jdM(t)(ω)/dωM(t)∗(ω)
with the same group delays.

We restrict attention to optical signals occupying a narrow
bandwidth near frequency ω. If an input principal mode um

is launched, the field at the fiber output is described by the
corresponding output principal mode vm = M(t)(ω)um . Each
of the input principal modes is defined such that if we fix the
input field pattern to be um and vary ω slightly, the output field
pattern vm remains unchanged to first order in ω. The input and
output principal modes form the columns of the unitary matrix
of U(t) and V(t) that are independent of frequency (to first
order, and dropping the frequency dependence here). For signals
occupying a sufficiently narrow bandwidth near frequency ω, the
overall input–output relationship of the MMF can be expressed
as:

M(t) (ω) = V(t)Λ(t) (ω)U(t)∗ (6)

where the matrix

Λ(t) (ω) =

⎛
⎜⎜⎝

e−jωτ
( t )
1 0

. . .

0 e−jωτ
( t )
D

⎞
⎟⎟⎠ (7)

describes propagation of the principal modes. The diagonal ma-
trix (7) represents signal propagation with no crosstalk, and
describes differential delay but no distortion, since its phase de-
pends linearly on ω. Many factorizations of the form (6) like (2)
are possible mathematically, but this choice is unique in yielding
frequency-independent U(t) and V(t) (to first order only), and a
diagonal Λ(t)(ω) with well-defined group delays. The principal
modes in (6) are a special case of the SVD (2).

This description of MD in MMF is consistent with
polarization-mode dispersion (PMD) in SMF [46], [57], [58],
which is a special case with D = 2. The PMD operator is a spe-
cial case of (5), and the two principal states of polarization (PSP)
are given by a decomposition like (6). The PSPs have group de-
lays τ

(t)
1 = −τ

(t)
2 = Δτ/2, where Δτ is the differential group

delay.
In direct-detection systems in SMF, the PSPs form the basis

for optical methods to avoid or compensate PMD [58]. The
performance of these methods is limited by higher order PMD
[58] and PDL [43]–[45]. Likewise, in direct-detection systems in
MMF, the decomposition (6) implies that principal modes may
form the basis for optical signal processing methods to avoid or
compensate MD and modal crosstalk, which might enable MDM
without coherent detection and MIMO digital signal processing.
The performance of such methods is expected to be limited by
higher-order MD and by MDL [13].

In MDM systems using coherent detection with MIMO signal
processing, MD is not fundamentally a performance-limiting
factor. The MIMO equalizer must have sufficient complexity to
equalize the channel [13], [27], which depends on the maximum
group delay spread τ

(t)
1 − τ

(t)
D (see Section IV below). It is also

imperative that the group delay spread be far smaller than the
time constants for temporal variation of the transmission fiber
and of laser phase noise.
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The group delay operator G(ω) (5) can be defined generally
for any propagation operator M(t)(ω) (1), even one that is not
unitary because of MDL [55]. If M(t)(ω) is not unitary, the
eigenvalues of G(ω) (5) are typically complex. While the input
principal modes are mutually orthogonal, propagation described
by the operator M(t)(ω) does not typically map them to orthogo-
nal output principal modes. In general, using principal modes, it
is impossible to simultaneously avoid MD and modal crosstalk,
potentially impairing MDM systems using direct detection, as
noted previously [13], [59].

If the propagation operator M(t)(ω) (1) is close to unitary, the
group delay operator G(ω) is close to Hermitian and has eigen-
values with small imaginary parts. The principal modes become
a good approximation to the Schmidt modes. In an MDM sys-
tem using coherent detection, if the input principal modes are
fed back to the transmitter as CSI and used as a transmit basis,
then the receiver’s MIMO signal processing could be simplified.
As noted in Section II-A, however, CSI feedback is not feasi-
ble in long-haul systems, and such a feedback is not absolutely
reliable.

In a system with MDL, it is mathematically possible for the
propagation operator M(t)(ω) to have degenerate singular val-
ues in (3). Schmidt modes with degenerate singular values form
a subspace, and a set of principal modes may be found within
that subspace. Below, after discussing mode coupling effects,
we explain why the propagation operator M(t)(ω) with MDL
is unlikely to have degenerate singular values.

In wireless MIMO systems, a group delay operator like
(5) can be defined. In a typical wireless system, the chan-
nel impulse response resembles a train of impulses, each
corresponding to a physical scatterer or reflector [22], [23].
The delay spread is equivalent to the maximum path dif-
ference between scatterers. To some extent, an MDM sys-
tem in MMF is analogous to a wireless MIMO link having
one scatterer corresponding to each nondegenerate principal
mode. However, the principal modes are mutually orthogo-
nal, and are without obvious analogues in wireless MIMO
systems.

III. MODE COUPLING

In MMFs, signals propagating in different modes are cou-
pled by random or intentional perturbations. In this section, we
discuss mode coupling, including its physical origins, its im-
pact on systems, and power- and field-coupling models used
to describe it. We review a multisection field coupling model
used to describe propagation in long MMFs. We compare the
regimes of weak and strong mode coupling, and describe the
scaling of group delay spread and the loss or gain spread in the
strong-coupling regime of interest for long-haul MDM systems.

A. Origins and Models

In an idealized fiber, the waveguide modes propagate without
cross-coupling such that the propagation operator M(t)(ω) is
diagonal, assuming those waveguide modes are chosen as bases
at both the input and output. In real fibers, perturbations, whether
intended or not, can induce coupling between spatial and/or

polarization modes [14], [15]. Only coupling between forward-
propagating modes is considered here, since it has a dominant
effect on the system properties of interest, including MD and
MDL.

In MMFs, mode coupling can arise from several unintended
sources. These include manufacturing variations causing non-
circularity of the core, roughness at the core-cladding bound-
ary, variations in the core radius, or index-profile variations in
graded-index fibers. They also include stresses induced by the
jacket, or by thermal mismatches between glasses of different
compositions. Finally, mode coupling can arise from micro-
bending, macro-bending, or twists.

Mode coupling can have various impacts on transmission
systems in MMF [13]. In short-range systems using direct de-
tection, mode coupling is mainly deleterious. In a conventional
single-input single-output link, even if a signal is launched into
one mode, it becomes coupled into other modes, making MD
unavoidable and limiting achievable bit rates in direct-detection
links. On the other hand, in plastic MMFs, mode coupling re-
duces the group delay spread [60], [61] and enables higher
bit rates, although it greatly increases loss. If MDM is at-
tempted using direct detection [62]–[64], mode coupling can
cause crosstalk between data streams. Such mode coupling must
be prevented or compensated by adaptive optical signal pro-
cessing, since it cannot be fully undone by electrical signal pro-
cessing after direct detection. By contrast, in long-haul MDM
systems using coherent detection, mode coupling is mainly ben-
eficial. It seems virtually impossible to avoid mode coupling in
a long-haul system, so full-rank MIMO signal processing be-
comes necessary [65]. But strong mode coupling minimizes
the group delay spread from MD, minimizing the complexity
of MIMO signal processing [13], [27]. Similarly, strong mode
coupling minimizes the variation of gain or loss from MDL,
minimizing any loss of capacity and minimizing the potential
for outage [24].

Mode coupling can be described by field coupling models
or power coupling models [13], [66]. Field coupling models
describe phase-dependent coupling between complex-valued
electric field amplitudes, and are necessary to describe how
mode coupling affects the eigenmodes and eigenvalues of cer-
tain operators of interest. For example, field coupling models
are required in studying the phase-conjugate round-trip oper-
ator M(t)∗(ω)M(t)(ω) or the group delay operator G(ω) and
their corresponding eigenmodes, the Schmidt modes or princi-
pal modes. Thus, field coupling models are essential for a full
description of MDM systems. Power coupling models describe
coupling between real-valued modal powers by nonnegative real
coupling coefficients, a type of diffusion process, and cannot de-
scribe changes in eigenmodes and their associated eigenvalues
caused by mode coupling. Nevertheless, power coupling models
are still useful in giving some qualitative insights into certain
aspects of MDM systems.

In field coupling models, a refractive index perturbation in-
ducing mode coupling is often factored to separate its de-
pendence on transverse and longitudinal coordinates. Given
a longitudinal dependence f(z), the complex-valued pairwise
coupling coefficient between two modal fields is proportional
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to [13], [15], [66, eq. 3.4–10]

F (Δβ) =
∫

f (z)e−jΔβz dz (8)

where the integration is performed over the propagation interval
of interest, and Δβ is the difference between the propagation
constants of the two modes. The expression (8) can be inter-
preted as the Fourier transform of f(z) evaluated at spatial fre-
quency Δβ. In power coupling models, the longitudinal depen-
dence f(z) is interpreted as a stationary random process, rather
than a fully specified function, and the real-valued pairwise cou-
pling coefficient between two modal powers is proportional to
〈|F (Δβ)|2〉, where the brackets 〈〉 denote an ensemble average
[66, eq. 5.2–20].

In typical glass MMFs, most random perturbations have lon-
gitudinal power spectra that are low pass. Depending on the auto-
correlation function assumed for the perturbations, one finds that
〈|F (Δβ)|2〉 ∝ Δβ−4 to Δβ−8 [15] or 〈|F (Δβ)|2〉 ∝ Δβ−2

[67] (a constant deterministic coupling coefficient also yields
〈|F (Δβ)|2〉 ∝ Δβ−2 if not modeled using local normal modes
[13, sec. 11.2.3.1], [66, sec 6.3]). As a consequence, typical
random perturbations strongly couple modes that are nearly de-
generate (small Δβ), but only weakly couple modes that are
strongly nondegenerate modes (large Δβ). Similarly, in typical
SMFs, the two nearly degenerate polarization modes (Δβ ≈ 0)
are strongly coupled by random birefringence, which has a low
pass power spectrum.

These considerations can be used to explain the evolution of
coupling between a set of MDM signals as they propagate along
a MMF. This discussion assumes the fiber has small MDL, as is
typical of glass fibers, and assumes a basis of ideal waveguide
modes.

If the MMF is very short (less than few meters), the prop-
agation matrix M(t)(ω) should be close to an identity matrix
I, apart from a possible rotation between the input and output
coordinate system.

After 5 to 15 meters, the two polarization modes of each
spatial mode strongly couple with each other and the MMF
enters the polarization coupling state [68], [69]. The propagation
matrix M(t)(ω) becomes block diagonal, with a sequence of
D/2 submatrices along the diagonal. Each of these 2 × 2 unitary
submatrices is equivalent to a PMD transfer matrix [46].

After a distance typically less than 100 to 300 meters, all spa-
tial modes within a spatial mode group, which have nearly equal
propagation constants, become fully coupled, and the MMF is
in the mode-group coupling state [63], [70]. For example, in a
graded-index MMF, the gth group has 2g modes. The fiber has
total of g(g + 1) modes up to the gth mode group, including two
polarization modes per spatial mode. Each mode group may be

considered together as a tubular mode based on the power flow
model [14], [62], [63].

In the mode-group coupling state, the propagation matrix
M(t)(ω) is block diagonal, with submatrices along the diag-
onal of size 2 × 2, 4 × 4, 6 × 6, . . . . , each of which is a ran-
dom unitary matrix. Mode-group division multiplexing assumes
the propagation matrix has this block-diagonal structure, with
crosstalk within each group but not between groups [62], [63].
Either angle [71] or radially offset [62] launching can launch sig-
nals preferentially to specific mode groups. Coupling between
groups remains small for distances up to 300 m [72].

After propagation of several km to hundreds of km, if prop-
agation constant differences between mode groups are suffi-
ciently small, all modes fully couple with each other [65], [73],
[74]. For typical MMFs with small MDL, the propagation matrix
M(t)(ω) approaches a D × D unitary matrix.

B. Multisection Model

The multisection model is useful in studying the effect of ran-
dom inhomogeneity and mode coupling on properties of interest,
including modal gains and losses or group delays. Multisection
models have been widely used in studying PMD and PDL in
SMF [43]–[46]. A MMF link is subdivided into K shorter
sections, represented by propagation matrices M(k)(ω), k =
1, . . . ,K. Propagation through the cascade of K fiber sections
is represented by a total propagation matrix M(t)(ω), which is
the product of the K matrices [13], [20], [21], [27]–[29]

M(t)(ω) = M(K )(ω)M(K−1)(ω) · · ·M(2)(ω)M(1)(ω). (9)

Propagation and mode coupling in the kth section is modeled
by a product of three D × D matrices:

M(k)(ω) = V(k)Λ(k)(ω)U(k)∗ , k = 1, . . . , K (10)

where Λ(k)(ω) is a frequency-dependent diagonal matrix repre-
senting uncoupled propagation in the kth section. The matrices
U(k) and V(k) are frequency-independent unitary matrices rep-
resenting mode coupling at the input and output of the kth
section, respectively.

The matrix model (9) and (10) can describe signal propaga-
tion through any cascade of linear elements, including fibers,
optical amplifiers, optical filters, and modal (de)multiplexers.
Difference between various components is mainly reflected
in the diagonal matrix Λ(k)(ω). Including MDL, MD, and
mode-dependent chromatic dispersion (MDCD), uncoupled
propagation in the kth section is described by a diagonal
matrix (11) as shown at the bottom of the page, where
g(k) = (g(k)

1 , g
(k)
2 , . . . , g

(k)
D ) specifies the uncoupled modal

gains, τ (k) = (τ (k)
1 , τ

(k)
2 , . . . , τ

(k)
D ) specifies the uncoupled

modal group delays, and Δβ
(k)
2 = (Δβ

(k)
2,1 ,Δβ

(k)
2,2 , . . . ,Δβ

(k)
2,D )

Λ(k) (ω) =

⎛
⎜⎜⎜⎝

e
1
2 g

(k )
1 −jωτ

(k )
1 − j

2 ω 2 Δβ2 , 1 L (k )
0

. . .

0 e
1
2 g

(k )
D −jωτ

(k )
D − j

2 ω 2 Δβ2 , D L (k )

⎞
⎟⎟⎟⎠ (11)
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specifies the uncoupled modal group-velocity dispersion varia-
tions. The length of the kth section is L(k) . In analyzing statis-
tical variations of MDL, MD and MDCD, we set the average
values of gain, delay and dispersion to zero: g(k)

1 + g
(k)
2 + · · · +

g
(k)
D = 0, τ

(k)
1 + τ

(k)
2 + · · · + τ

(k)
D = 0 and Δβ

(k)
2,1 + Δβ

(k)
2,2 +

· · · + Δβ
(k)
2,D = 0. If it is desired to include mode-averaged

gains, delays and dispersions, we can multiply (11) by a constant
factor

exp
(

1
2
ḡ(k) − jωτ̄ (k) − j

2 ω2 β̄
(k)
2 L(k)

)
(12)

where ḡ(k) , τ̄ (k) and β̄
(k)
2 are the mode-averaged gain, group

delay and group-velocity dispersion in the kth section.
The number of sections K and the properties of unitary matri-

ces U(k) and V(k) , k = 1, . . . , K are important in determining
the regime of mode coupling, and are addressed in this and the
following subsection.

For correlation of fields propagating along the link, the unitary
matrices U(k) and V(k−1) defined in (10) are correlated. If two
adjacent sections are highly correlated, we have U(k)V(k−1) ≈
ID . Combining sections k − 1 and k is equivalent to multiplying
the two diagonal matricesΛ(k)(ω) andΛ(k−1)(ω), so both MDL
and MD accumulate linearly.

In the polarization-coupled state, the product U(k)V(k−1) is
a block diagonal matrix with 2 × 2 unitary submatrices along
the diagonal, and the product Λ(k)(ω)U(k)V(k−1)Λ(k−1)(ω) is
block diagonal. In the mode group-coupled state, the product
U(k)V(k−1) is block diagonal with submatrices along the diag-
onal whose sizes correspond to the number of modes within the
mode groups.

If the product U(k)V(k−1) is block diagonal, the product
M(k)(ω)M(k−1)(ω) becomes V(k)Λ(k,k−1)(ω)U(k−1) , where
Λ(k,k−1)(ω) is block diagonal. For the case D = 6, for
example, we may have (13) as shown at the bottom of the
page, where A2 and A4 are 2 × 2 and 4 × 4 matrices, which
are approximately unitary, representing the mode groups with
2 and 4 modes, respectively. Because there is a larger group
delay difference between mode groups than within each one,
the group delays τ

(k,k−1)
i , i = 1, 2 are very close to the sums

of the corresponding group delays in τ (k−1) and τ (k) . The
modal gains g

(k,k−1)
i i = 1, 2 are also close to the sums of the

corresponding gains in g(k−1) and g(k) . For all cases in which a
MMF is not fully coupled, both MD and MDL increase linearly
with the number of sections or the total fiber length.

Physically, two successive sections are independent of each
other if there is complete mode coupling between them (for ex-
ample, if a mode scrambler is inserted in between them). Math-
ematically, they are independent of each other if U(k)V(k−1)

is statistically the same as a random unitary matrix. With suffi-
cient mode coupling, the product U(k)V(k−1) will simply be a
random unitary matrix.

In Section II-C, we discussed the possibility that the end-to-
end propagation matrix (1) or (9) may have MDL but degenerate
singular values, such that principal modes exist in the subspaces
of Schmidt modes with degenerate singular values. If Λ(k)(ω)
and Λ(k−1)(ω) have MDL, even with just two degenerate sin-
gular values each, the product Λ(k)(ω)U(k)V(k−1)Λ(k−1)(ω)
has nondegenerate singular values if U(k)V(k−1) is statistically
the same as a random unitary matrix. As an example of de-
generate singular values, assume that Λ(k)(ω) = Λ(k−1)(ω) =
diag[1, 2, 1, 2] and that U(k)V(k−1) = diag[U1 ,U2 ] is a 4 × 4
block unitary matrix in which U1 and U2 are independent
2 × 2 unitary matrices. The products diag[2, 1]U1diag[2, 1]
and diag[2, 1]U2diag[2, 1] have independent singular values
that depend only on U1 and U2 . In this example, the prod-
uct diag[2, 1, 2, 1]diag[U1 ,U2 ]diag[2, 1, 2, 1] is not likely to
have degenerate singular values. A general unitary matrix
U(k)V(k−1) gives more randomness than the more restricted
case of diag[U1 ,U2 ]. In practice, in the presence of MDL,
with sufficiently random mode coupling between sections, the
end-to-end propagation operator is not likely to have degenerate
singular values.

C. Weak- and Strong-Coupling Regimes

Modal fields propagating along a MMF are assumed to be
strongly correlated over distances less than or equal to a cor-
relation length, and weakly correlated over distances far larger
than the correlation length. This correlation length is a gen-
eralization of the polarization correlation length used in the
study of PMD [46], [68], [69]. In the context of the multisec-
tion model, the correlation length corresponds to the minimum
section length such that successive unitary matrices U(k) and
V(k−1) are mutually uncorrelated.

Different regimes of mode coupling are familiar from the
study of randomly coupled birefringence and PMD, and apply
as well to mode coupling in MMF [13], [56]. These regimes are
especially relevant in studying key effects, such as MD or MDL.

In the weak-coupling regime, the correlation length is com-
parable to, or slightly shorter than, the total system length [13],
[57], [75]. In this regime, signal propagation can be modeled
using a small number of sections K (only 1 or 2), where each
section should be slightly longer than the correlation length. In
the weak-coupling regime, the spread of eigenvalues describ-
ing quantities of interest, such as modal group delays or modal
gains, scales linearly with the total system length [13], [73], [75],
and each coupled eigenmode is a linear combination of a small
number of uncoupled waveguide modes. If a large number of
sections K is used, successive unitary matrices U(k) and V(k−1)

should be highly correlated with each other.
In the strong-coupling regime, the correlation length is far

shorter than the total system length [13], [57], [58], [75]. In
this regime, signal propagation must be modeled using a large

Λ(k,k−1)(ω) =

⎛
⎝ e

1
2 g

(k , k −1 )
1 −jτ

(k , k −1 )
1 ωA2(ω) 0

0 e
1
2 g

(k , k −1 )
2 −jτ

(k , k −1 )
2 ωA4(ω)

⎞
⎠ (13)
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number of sections K, where each section should be slightly
longer than the correlation length. The unitary matrices U(k)

and V(k−1) should be statistically independent. In the strong-
coupling regime, the spread of eigenvalues describing quantities
of interest, such as modal group delays or modal gains, scales
with the square-root of the number of sections K or the square-
root of the total system length and, statistically speaking, each
coupled eigenmode is a linear combination of all uncoupled
modes.

When all K sections are statistically independent of each
other, the end-to-end propagation matrix M(t)(ω) (1) and (9) is
the products of K independent random matrices. In the strong-
coupling regime, the number of sections K becomes large, and
many properties of the propagation matrix M(t)(ω) may be
studied based on random matrix theory [76].

Assuming all fiber sections have identical statistical proper-
ties, the overall group delay variance is

σ2
gd = Kσ2

τ (14)

where σ2
τ = 〈(τ (k)

m )2〉 is the group delay variance in each sec-
tion. Regardless of number of modes, the overall group de-
lay standard deviation (STD) among modes is always given
by σgd =

√
Kστ , which increases with the square-root of the

number of sections or the square-root of the total system length.
In the strong-coupling regime with many independent sec-

tions, the group delay operator (5) becomes a zero-trace (trace-
less) Gaussian unitary ensemble. The group delay vector τ (t) =
(τ (t)

1 , τ
(t)
2 , ..., τ

(t)
D ) has the same distribution as the eigenval-

ues of the zero-trace Gaussian unitary ensemble. The statistics
of MD may be studied using many results already known for
Gaussian unitary ensembles [76]. Section IV summarizes the
statistics of strongly coupled MD.

To study MDL in the strong-coupling regime, assuming all
K sections have statistically identical MDL, the accumulated
MDL is defined as

ξ2 = Kσ2
g (15)

where σ2
g = 〈(g(k)

m )2〉 is the variance of the uncoupled MDL

in each section. This accumulated MDL ξ =
√

Kσg increases
with the square-root of number of sections or the square-root of
the total system length.

As explained above, propagation matrices M(t)(ω) in well-
designed systems should be close to unitary, i.e., they have small
MDL. In the small-MDL regime, the distribution of the over-
all MDL (measured in units of the logarithm of power gain or
decibels) is well-approximated by the eigenvalue distribution
of a zero-trace Gaussian unitary ensemble. In the large-MDL
regime, MDL has the same distribution as the eigenvalues of a
Rician random matrix or a nonzero-mean Gaussian unitary en-
semble. Furthermore, the STD of the overall MDL σmdl depends
solely on the accumulated MDL ξ via [29]

σmdl = ξ

√
1 +

ξ2

12(1 − D−2)
. (16)

In (16), both σmdl and ξ are measured in units of the logarithm
of power gain. Quantities measured in units of log power gain
can be converted to decibels by multiplying by γ = 10/ln10 ≈
4.34, i.e., σmdl (dB) = γσmdl (log power gain). Unless noted
otherwise, all expressions in this paper assume that both ξ and
σmdl are expressed in log-power-gain units.

The statistics of MDL can be studied using some known
results on the products of random matrices [21], [29], [77]. The
statistics of strongly coupled MDL are summarized in Section
V-A.

Both MD and MDL become frequency-dependent, which can
be understood to arise from the different modal group delays ap-
pearing in the exponents in (11). In the strong-coupling regime,
both the MD and the MDL become correlated with a correlation
bandwidth of the order of 1/σgd . Frequency-dependent MD can
be described as higher-order MD, which can has been studied
in [24], [78]. Higher-order MD can limit the effectiveness of MD
compensation or avoidance using any frequency-independent
optical device [13]. Frequency-dependent MDL leads to fre-
quency diversity [24], which averages different random realiza-
tions of MDL over the bandwidth of a signal, reducing capacity
fluctuations and the associated outage probability. Frequency
diversity is discussed in Section V-B below.

IV. MODAL DISPERSION

While MD impairs traditional MMF transmission systems
using direct detection, it has no fundamental effect on perfor-
mance in MDM systems using coherent detection and MIMO
digital signal processing. Nevertheless, the group delay spread
from MD affects the complexity of MIMO signal processing.

The principal modes associated with MD have a clear physical
interpretation. MD can be described easily in the multisection or
matrix product model (9), and derivation of its statistics in the
strong-coupling regime is straightforward. For these reasons,
MD is discussed here, and MDL is deferred to the following
section.

A. Concatenation Rule and Group Delay Statistics

For simplicity, we neglect mode-averaged loss and MDL, so
all K matrices in the product (9) are unitary, and the overall
propagation operator M(t)(ω) is unitary. We further assume the
strong-coupling regime, so all K matrices in (9) are indepen-
dent. If the product (9) is substituted into group delay operator
G(ω) given by (5), G(ω) is the summation of K independent
Hermitian matrices:

G = j
dM(1)∗

dω
M(1) + M(1)∗

(
j
dM(2)∗

dω
M(2)

)
M(1)

+ M(1)∗M(2)∗
(

j
dM(3)∗

dω
M(3)

)
M(2)M(1) + · · ·

(17)

In (17) and throughout this section, we suppress the frequency
dependence to simplify notation.

Before proceeding to derive the group delay statistics, we
pause to observe that (17) represents the concatenation rule
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of MD for MMF. On the right-hand side, the first term is the
group delay operator of the first section, the parenthesis in the
second term is the group delay operator of the second section,
and so on. The total group delay operator is the sum of these
individual group delay operators, each transformed by unitary
similarity. The second section is transformed by the unitary
matrix M(1) , the third section is transformed by the unitary
matrix M(2)M(1) , and so on. This concatenation rule holds true
even if the individual sections are not statistically independent
or are deterministic.

Returning to the derivation of the statistics of strongly coupled
MD, if all K matrices M(k)(ω), k = 1, . . ., K, are statistically
identical and independent, all matrices in the summation (17)
are independent and statistically the same as the first term

U(1)diag
[
τ (1)

]
U(1)∗ , (18)

where diag[τ (1) ] is a diagonal matrix with diagonal ele-
ments from the vector τ (1) . The matrix U(1)diag[τ (1) ]U(1)∗

has zero trace because diag[τ (1) ] is zero trace. The first
term of (17) gives (18). The second term of (17) is
M(1)∗U(2)diag[τ (2) ]U(2)∗M(1) , which is statistically the same
as (18) because diag[τ (2) ] and M(1)∗U(2) are statistically the
same as diag[τ (1) ] and U(1) , respectively. Following the same
logic, all terms in (17) are statistically the same as (18).

Based on Central Limit Theorem, the summation of many in-
dependent identically distributed random variables has a Gaus-
sian distribution. All elements of G given by (17) are Gaussian
distributed. Because all K matrices in the summation (17) have
zero trace, group delay operator G (17) has zero trace. Here, we
will evaluate the variance of the elements of G (17).

As in [79]–[81], averaging over the elements of a random
unitary matrix U gives

〈uklu
∗
mnuabu

∗
cd〉 =

δmkδnlδcaδdb + δmaδnbδck δdl

D2 − 1

− δmaδnlδck δdb + δmkδnbδcaδdl

D(D2 − 1)
(19)

where ukl are the elements of the random unitary matric U,
δkl is the Kronecker delta function, which equals unity if
k = l and zero otherwise. To find the variance of the ele-
ments U(1)diag[τ (1) ]U(1)∗ requires taking into account D4

different combinations in the form (19). After some alge-
bra, the elements of U(1)diag[τ (1) ]U(1)∗ are found to have
a variance of σ2

τ D/(D + 1)/(D + δkl − 1). The elements of
U(1)diag[τ (1) ]U(1)∗ are uncorrelated with each other. The ele-
ments of G (17) have variance

KDσ2
τ

(D + 1)(D + δkl − 1)
. (20)

The group delay variance is the same as (14) and given by

σ2
gd = 1

D

∑
m

〈
(τ (t)

m )2
〉

= 1
D 〈tr [GG∗]〉 = Kσ2

τ (21)

where tr[·] denote the trace of a matrix.
If the zero-trace Gaussian unitary ensemble G is studied by

a Gaussian unitary ensemble A via G = A − tr(A)I/D, the

Fig. 1. Probability density of strongly coupled group delay, normalized by the
STD of group delay, in MMFs with various numbers of modes. The semicircle
distribution is shown as a dashed curve.

Gaussian unitary ensemble A without trace constraint should
have a variance of DKσ2

τ /(D2 − 1) or Dσ2
gd/(D2 − 1). Com-

paring Gaussian unitary ensembles with and without zero-trace
constraint, for the same overall variance as represented by
〈tr[AA∗]〉 and 〈tr[GG∗]〉, the off-diagonal elements of G are
a factor

1
1 − D−2 (22)

larger than those of A, while the diagonal elements of G are a
factor

1
1 + D−1 . (23)

smaller than those of A.
As derived in [13], [20], in normalized form, the eigenvalue

distribution for a zero-trace Gaussian unitary ensemble is

fD (x) =
exp

(
− D

D−1 x2
)

√
πD(D − 1)

×
D−1∑
n=0

1
2nn!

H2
n

(
−t

2
√

D − 1

) ∣∣∣∣
tk ←Hk

(
D x√
D −1

)(24)

where the summation gives a 2(D-1)-degree polynomial in t.
In (24), the power tk is algebraically substituted by the Hermite
polynomial Hk (Dx/

√
D − 1). The variance of the normalized

probability density (24) is 1
2 (D − D−1). Scaling it to have the

same variance as (14) yields the probability density function of
the strongly coupled group delay:

pD (x) =

√
D2 − 1
2σ2

gdD
fD

(√
D2 − 1x

σgd
√

2D

)
. (25)

Fig. 1 shows the probability density of group delay, normal-
ized by the STD of group delay, for MMFs with different number
of modes. As the number of modes increases, the probability
density approaches the well-known Wigner semicircle distribu-
tion, denoted by a dashed line in Fig. 1. Only the positive-delay



HO AND KAHN: LINEAR PROPAGATION EFFECTS IN MODE-DIVISION MULTIPLEXING SYSTEMS 623

Fig. 2. Complementary cumulative distribution of group delay spread, nor-
malized by the STD of group delay, in MMFs with different numbers of modes.

side is shown in Fig. 1, since all the densities are even about the
origin. The number of peaks in each probability density is the
same as number of modes D.

B. Delay Spread and Signal Processing Complexity

In an MDM system using digital MIMO equalization, in order
to fully compensate MD and modal crosstalk, the equalizer must
span a temporal memory at least as long as the system group de-
lay spread τ

(t)
1 − τ

(t)
D . Here we focus on computing the required

equalizer memory length. Detailed studied [13], [27] have ad-
dressed the computational complexity and hardware complexity
of time-domain or frequency-domain MIMO equalizers, taking
account of the memory length and the number of modes D.

From Fig. 1, we expect the group delay spread to approach
4σgd as the number of modes D becomes large. For finite D,
the distribution is known for the difference between two group
delays τ

(t)
m − τ

(t)
n with random selection of m and n [82]. How-

ever, only numerical results are available for the difference be-
tween the maximum and minimum group delays τ

(t)
1 − τ

(t)
D .

Fig. 2 shows the complementary cumulative distribution func-
tion (CCDF) Pr((τ (t)

1 − τ
(t)
D )/.σgd > x) for MMFs with D =

6, 12, 20, and 30 modes. CCDFs calculated numerically us-
ing the Andréief identity [83]–[85] are in excellent agreement
with numerical simulations from [27]. For a large number of
modes D, the maximum and minimum group delays follow
the well-known Tracy–Widom distribution [86], [87] and are
independent of each other [88], [89]. Fig. 2 shows CCDFs ap-
proximated based on the difference between two independent
Tracy-Widom random variables. The Tracy-Widom approxima-
tion always overestimates the CCDF, but is sufficiently accurate
for most engineering purposes for D ≥ 12.

Following [27], given a value of D and a probabil-
ity p, we define uD (p) to be the value of x such that
Pr((τ (t)

1 − τ
(t)
D )/.σgd > x) = p. An equalizer memory length

of uD (p)σgd is sufficient to span the channel memory with
probability 1 − p. For the values of D shown in Fig. 2 and for

p of order 10−4 to 10−6 , uD (p) is of order 4 to 5, depending on
the number of modes D.

The delay spread was studied in [90], which generalized
the concept of Stokes space to D > 2 and showed that in the
strong-coupling regime, the distribution of the delay spread
τ

(t)
1 − τ

(t)
D is well-approximated by a chi distribution. This

is justified heuristically by the observation that the square-
root of

∑
m (τ (t)

m )2 = tr[GG∗] is rigorously chi-square dis-
tributed [90].

In practice, system end-to-end group delay spread may be
minimized by designing fibers with minimal uncoupled delay
spread, and relying on mode coupling to further reduce the
delay spread. First proposed in [75], the reduction of delay
spread by mode coupling is well-known in the study of PMD
in SMF [57], [58] and plastic MMF [60], [61], and has been
verified by simulation in [56], [91], [92] for MDM systems.
The delay spread of MMF may possibly be reduced by some
generalization [93] of spinning, which is used in minimizing
PMD in SMF [94], [95].

In the study of MD, the group delay operator is a Gaussian
random matrix. However, the overall propagation matrix (1)
or (9) is not likely to be Gaussian-distributed, unlike channel
models for wireless MIMO systems [17]–[19].

V. MODE-DEPENDENT GAINS AND LOSSES

Unlike MD, MDL can fundamentally degrade the perfor-
mance of an MDM system using coherent detection. Moreover,
MDL can make MDM channels ill-conditioned, creating diffi-
culties for digital MIMO equalization.

The Schmidt modes associated with MDL are not amenable
to a simple physical interpretation, in contrast to the principal
modes for MD. The statistics of MDL are more difficult to
study than those of MD. In the strong-coupling regime, the MDL
operator is modeled as the product of many random matrices (9),
whose statistics are difficult to derive [77], [96]. By contrast,
the MD operator can be modeled as the summation of many
random matrices (17). Matrix multiplication is noncommutative,
whereas matrix summation is commutative.

A. Mode-Dependent Loss/Gain Statistics

We begin by studying MDL at a single frequency, suppressing
the frequency dependence in (11). MDL from optical amplifiers
typically dominates over that from transmission fibers, so the
number of sections K can be taken to equal the number of
amplifiers. The propagation operator for each section becomes

M(k) = V(k)diag
[
exp(1

2 g
(k))

]
U(k)∗ . (26)

In each section, the effect of MMF spans before or after the
optical amplifiers can be included in either U(k) or V(k) . The
end-to-end MDL g(t) is the same as the g(t)(ω) introduced in
Section II-A, but with the frequency dependence suppressed.

In the strong-coupling regime, the MDL g(t) (expressed in
logarithmic or decibel units) has the same statistical properties
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as the eigenvalues of the summation of two matrices [29]

ξG +
D

2(D + 1)
ξ2F (27)

where ξ =
√

Kσg is the accumulated MDL defined in (15), G
is a zero-trace Gaussian unitary ensemble similar to that used
to describe MD in Section IV, except it has unit eigenvalue
variance, and F is a deterministic uniform matrix. The uniform
matrix F has its eigenvalues deterministically and uniformly
distributed between −1 and +1. As an example for D = 2, we
can choose F = diag[1, −1] or another unitary similar matrix
having the same eigenvalues. The factor D/2/(D + 1) in the
second term of (27) is between 1/3 for D = 2 and 1/2 for
D → ∞.

Like the group delay matrix (17), the matrix (27) is an Her-
mitian Gaussian random matrix with nonzero-mean diagonal
elements. In wireless communications, a random channel in the
form (27) is called a Rician MIMO channel [51], [97]. Because
g(t) is measured in logarithmic or decibel units, the MDL chan-
nel is a log-Rician MIMO channel.

From the theory of MD given by (17), the summation (27)
represents the concatenation of two MMFs: the first with strong
mode coupling represented by ξG and the other with determin-
istic and uniform MD represented by the scaling of the matrix
F = diag[1, 1 − 2/(D − 1), . . . ,−1].

Because matrix multiplication is not commutative, i.e., AB
is not generally equal to BA, even for square matrices, the log-
arithm of the product of two matrices, logAB, is not equal
to the sum of logA and LogB. The product of positive-definite
random matrices (those with positive eigenvalues) does not gen-
erally have its central limit as the exponent of a Gaussian unitary
ensemble.

For any matrix X and a very small number δ, we have
log(I + δX) ≈ δX, where I + δX is intended to describe a
matrix M(k) when the gain vector g(k) has small norm. If
both matrices A and B are positive-definite and both logA
and logB are small, log AB ≈ log A + log B. As an approx-
imation, the product of positive-definite random matrices with
small logarithm has a central limit as the exponential of a
Gaussian ensemble. When applied to the overall product ma-
trix M(t) = M(K ) · · ·M(2)M(1) , if all gain vectors g(k) are
small, the matrix M(t) is the exponential of the Gaussian en-
semble, which yields the first term of (27) without the second
term. The nonlinearity in (27) relates to the second-order term
in the approximation log(I + δX) ≈ δX − 1

2 δ2X2 . The factor
of 1/2 in this approximation is difficult to relate to the factor
between 1/2 and 1/3 in (27), however. In any case, the second
term of (27) is very small when ξ is far less than unity.

When the propagation operators for the sections M(k) , given
by (26), have independent and identically statistics, the second
term of (27) is the Lyapunov exponent [98]

lim
K→∞

1
K

log Λ(t) =
Dσ2

g

2(D + 1)
F (28)

where Λ(t) , appearing in (3) but with frequency dependence
suppressed here, is obtained by the SVD (2). If we express

Fig. 3. Probability density of strongly coupled MDL, normalized by the STD
of overall MDL, for D = 6 modes for various values of the accumulated
MDL ξ =

√
Kσg . The exact distribution (27) is shown by solid curves. The

approximation based on a Gaussian unitary ensemble is shown by dashed curves.
Numerical simulations are shown as markers. The y-axis is in arbitrary linear
units, with different curves shifted to improve visibility.

the propagation operators as M(k) = exp(1
2 C

(k)) with C(k) =
V(k)diag[g(k) ]U(k)∗ , the statistics of C(k) are the same as those
of (18) in the study of MD, where the off-diagonal elements have
larger variance than the diagonal elements. Using the theory
of [98], the Lyapunov exponent (28) can be derived1.

The overall MDL variance σ2
mdl , which is the square of (16),

can be derived as the sum of the eigenvalue variances of the first
term of (27), which gives ξ2 , and second term of (27), which
gives ξ4/12/(1 − D−2). The scale-up factor 1/(1 − D−2) is
the same as (22), evidently due to the zero-trace constraint. The
nonlinear term in (16) decreases from 1/9 to 1/12, a factor of
3/4, with an increase from D = 2 to D → ∞. In practice, this
factor reduces to 1/12 rapidly with an increase in the number of
modes.

The second term of (27) can also be approximated as a zero-
trace Gaussian unitary ensemble, especially for systems with
small MDL of ξ ≤ 10 dB. Under this assumption, MDL has the
same distribution as the zero-trace Gaussian unitary ensemble
with STD given by (16). This approximation reduces the anal-
ysis of MDL statistics to the analysis of MD statistics given in
Section IV. With minor modifications, all results in Section IV
and those in [76] are applicable to MDL.

Fig. 3 shows the probability density of MDL normalized by
the STD of overall MDL for D = 6 modes for various values

1Model d or Eq. (15) of [98] shows that the Lyapunov exponent is uniformly
distributed with a maximum given by (D−1)σ2 where the σ2 is the variance of
the elements of the matrix, using the notation here, Ck . However, if the diagonal
and off-diagonal elements have different variances, the step to derive Eq. (15) of
shows that σ2 is the variance of the off-diagonal elements. Equivalently, from
Sec. IV, σ2 = σ2

g D/(D + 1)/(D − 1). The maximum (D−1)σ2 becomes

σ2
g D/(D + 1) in (28). The additional factor of 1

2 comes directly from the

factor of 1
2 in M(k ) = exp( 1

2 C(k ) ).
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Fig. 4. Average channel capacity of MDM systems without CSI as a function
of overall SNR ρt . Different numbers of modes D and different values of accu-
mulated MDL ξ are represented by different line colors and styles, respectively.

of the accumulated MDL ξ =
√

Kσg . Fig. 3 compares the ex-
act model (16) as in [29] and the zero-trace Gaussian unitary
ensemble approximation of [21] to numerical simulations of a
multisection model. The exact model agrees well with simu-
lations, whereas the zero-trace Gaussian unitary ensemble ap-
proximation is valid when ξ ≤ 13 dB [21].

In an MDM system, the condition number of a MIMO chan-
nel (expressed in logarithmic units or dB) equals the maximum
MDL difference g

(t)
1 − g

(t)
D . The Gaussian unitary ensemble

approximation can be used to show that the maximum MDL
difference g

(t)
1 − g

(t)
D is 4 to 5 times σmdl , depending on the

number of modes D, similar to Fig. 2. To limit the maximum
MDL difference to within 30 dB (condition number not exceed-
ing 1000), the accumulated MDL ξ must not exceed 7 dB.

B. System Capacity and Frequency Diversity

MDL fundamentally limits the performance of long-haul
MDM systems using coherent detection. MDL and its impact
on channel capacity were studied in [13], [21], [24], [28], [92].
The effectiveness of mode coupling in reducing MDL and in-
creasing channel capacity were confirmed in [92], [99]–[101]
by simulation.

Due to the difficulty of feeding back reliable CSI to the trans-
mitter, a system must typically allocate equal power to each
mode. At a single frequency, the average channel capacity with-
out CSI is [21]

C =

〈
D∑

m=1

log2

[
1 +

χ

D
exp

(
g(t)

m

)]〉
(29)

where χ is ratio of the total transmitted signal power in all modes
to the received noise power in one mode. The signal-to-noise
ratio (SNR) is defined as the ratio of total received signal power
in all modes to the received noise power in one mode, and is
equal to ρt = χ/〈exp g

(t)
m 〉. Fig. 4 shows the average channel

capacity for MDM links with D = 2, 6, and 12 modes, with
accumulated MDL values ξ = 0, 5, and 10 dB. When CSI is not
available, the average channel capacity increases monotonically

with SNR but decreases with MDL. At low SNRs, the average
channel capacity is proportional to the total power and almost
independent of number of modes and MDL. At high SNRs, the
average channel capacity is reduced by MDL. At ρt = 20 dB
and MDL ξ = 10 dB, the average channel capacity is reduced
about 40% by MDL, independent of the number of modes.

The instantaneous channel capacity is a random variable that
depends on the instantaneous realization of the MDL vector
g(t)(ω). The system may experience outage if the instanta-
neous channel capacity drops below a certain value. In gen-
eral, the MDL vector g(t)(ω) is frequency-dependent, so the
instantaneous channel capacity is also frequency-dependent. If
an MDM system transmits signals occupying a sufficiently wide
bandwidth, the MDL vector and the channel capacity will be av-
eraged over frequency, an effect called frequency diversity. In
a system with sufficient frequency diversity, the instantaneous
channel capacity approaches the average channel capacity (29)
and the outage probability approaches zero, which are conse-
quences of the law of large numbers.

Numerical results show that the correlation bandwidth of the
channel capacity is approximately equal to the reciprocal of the
STD of the group delay, 1/σgd [24]. As shown in Section IV-B,
the peak-to-peak group delay spread is 4 to 5 times the STD of
group delay σgd . If an MDM system is designed with a group
delay spread spanning several hundred symbol intervals [27], the
correlation bandwidth of channel capacity is of the order of 1%
of the signal bandwidth, providing sufficient frequency diversity
to essentially eliminate outage [24], assuming realistically small
values of accumulated MDL. Such a delay spread is acceptable
from the standpoint of signal processing complexity [13], [27].

In MDM systems with a very small number of amplifiers
(e.g., 1 or 2), because of MDL, the noises in different modes
can be highly correlated, and may have different variances [28].
In systems using a large number of amplifiers (e.g., in long-haul
systems), the noises in different modes become independent
and identically distributed [21], i.e., spatially white, as a conse-
quence of the law of large numbers. This greatly simplifies sys-
tem analysis in the linear regime, allowing all noise to be added
right before the receiver, and is assumed in (29) and Fig. 4.

VI. CONCLUSION

MIMO channels in MDM systems exhibit many similarities
to wireless MIMO channels. MDL, arising mainly from opti-
cal amplifiers, is analogous to spatial channel variations due
to multipath fading. By causing fluctuations in gains of differ-
ent spatial channels, it can reduce average capacity and cause
outage in narrowband systems. Likewise, it can increase the
MIMO channel condition number, complicating equalization.
MD, arising from transmission fibers, is analogous to multipath
delay spread. It affects the complexity of MIMO equalization,
but has no fundamental impact on performance.

Mode coupling is mainly beneficial in long-haul MDM sys-
tems. In the strong-coupling regime, an end-to-end system can
be modeled as the concatenation of many uncorrelated sections.
Strong mode coupling reduces the variance of modal group
delays from MD, minimizing signal processing complexity.
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Likewise, it minimizes the variance of modal gains/losses from
MDL, improving system performance. In wideband systems
with MD, strong coupling leads to frequency diversity, which
reduces the probability that the outage channel capacity differs
significantly from the average channel capacity.

In the strong-coupling regime, the statistics of MD and MDL
are the same as the eigenvalue distribution of zero-trace Hermi-
tian Gaussian random matrices. Modal group delays can be de-
scribed by zero-mean Gaussian random matrices. Modal gains
and losses (in logarithmic units) have the same statistics as
the eigenvalue distribution of Gaussian random matrices with
nonzero-mean diagonal elements. Alternatively, MDL has the
same statistics as the concatenation of two MMF sections: the
first is strongly coupled and the second is uniformly distributed.
In the low-MDL regime, MDL statistics can be approximated as
the eigenvalue distribution of a zero-mean zero-trace Gaussian
random matrix.
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