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Abstract The most successful attacks on cryptographic hash functions are based
on differential cryptanalysis, where the main problem is to find a differential char-
acteristic. Finding a differential characteristic is equivalent to solving a system
of nonlinear equations. Solving these equations is usually done by a guess-and-
determine approach. Recently, automated tools performing a guess-and-determine
approach based on the concept of generalized conditions have been used to attack
many hash functions. The core part of such tools is the propagation of informa-
tion. In this paper, we propose a new approach to propagate information for affine
functions and compare it to the approach used in recent hash function attacks.
We apply our method to the linear functions σi and Σi used in SHA-2 and to the
linear layer of SHA-3. We show that our approach performs much better than the
previously used methods.

Keywords hash functions · differential cryptanalysis · automated tool · guess-
and-determine · linear functions · SHA-2 · SHA-3

CR Subject Classification Cryptography

1 Introduction

Finding collisions or preimages for hash functions is a special case of the gen-
eral problem of solving nonlinear equations. One of the general approaches for
solving nonlinear equations is the guess-and-determine approach. Many attacks
on cryptographic hash functions can be described as guess-and-determine attacks.
Depending on the function, attack setting and other properties, the system of
equations can be simplified such that a guess-and-determine approach can be suc-
cessful. The basic idea of a guess-and-determine approach is to perform a guessing
of certain bits before determining others. For instance, message modification and
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advanced message modification [14,15] and all their successors and variants perform
a guessing of certain bits before determining others.

With the selection of the AES, interest in cryptanalysis using algebraic methods
re-awakened, due to the simple algebraic structure of this cipher [3, 4]. After the
initial optimism, it became clear that although it is possible to construct relatively
simple sets of equations, one still needs efficient equation solving strategies. Several
attempts were made in that direction, one of the most promising being Multiple
Right-Hand Side equations [12,13].

The most successful attacks on hash functions are based on differential crypt-
analysis [2]. The original description of differential cryptanalysis assumes that a
good characteristic is given. However, it is often not feasible to find character-
istics by hand, in particular for hash functions. Cryptographers now use (semi-
)automated tools to find differential characteristics. Based on the concept of gen-
eralized conditions, De Cannière and Rechberger provided the first tool to find
automated differential characteristics for SHA-1 based on a guess-and-determine
approach [5]. Recently, this work was improved and extended, leading to attacks
on several hash functions [8–11]. A similar approach is followed by Leurent [6, 7].
The core part of these tools is the propagation of constraints on the variables.

In this paper, we propose a method to store and propagate linear relations
of variables efficiently. Since most cryptographic algorithms consist of large linear
parts, we show that storing linear relations on more than a single bit leads to
significantly better results.

In the following, we start with an introduction to guess-and-determine attacks
in differential cryptanalysis in Section 2 and review previous methods and their
limitations in Section 3. We continue with the main part of this paper, the linear
propagation of linear information in Section 4 and evaluate it in Section 5. Finally,
we conclude in Section 6.

2 Guess-and-Determine Attacks

On a high level, a guess-and-determine attack can be described as a repetition of
two steps until all unknown variables have been determined: first, guess the value of
some unknowns; second, determine the value of as many unknowns as possible. The
second step can be slightly generalized. Instead of outputting only the values of new
unknowns, it can also output simplified equations between remaining unknowns or
partial information (constraints) on the remaining unknowns. It can also announce
that for the currently guessed values, there is no solution to the system, signaling
that some of the guesses need to be changed. Therefore, we will refer here to the
second step using the more general term propagation of information.

A successful guess-and-determine attack employs a strategy to convert complex
and dense equations into a form that is more amenable to analyze. The following
elements need to be considered in such a strategy.

Choice of intermediate variables: By introducing additional intermediate variables,
it becomes possible to reduce the algebraic degree and/or improve the sparsity
of the equations. Of course, every newly introduced unknown also introduces
a new equation. Hence, there is a trade-off between the number of equations
and the simplicity of each equation.



Linear Propagation in Efficient Guess-and-Determine Attacks 3

Choice of information to store: Storing all information on each of the intermediate
variables would require too much effort to keep all information up-to-date and
consistent. Therefore, we store only a part of the information, and recreate the
rest if we need it.

Propagation of information: Every time a variable is guessed, we need to check
whether new information on other variables can be determined. There is a
trade-off between the effort we spend in this step and simply guessing more
bits.

Guessing strategy: We need a guessing strategy which can efficiently use the new
information generated by the propagation of information introduced by previ-
ous guesses.

3 Bitsliced Propagation of Information

In efficient guess-and-determine attacks, we propagate information by solving
equations. The complexity and difficulty of this equation solving step depends
on several factors as mentioned in the previous section. In the case of crypto-
graphic primitives, these equations are usually large, complex and hard to solve.
Therefore, we split these equations into easier parts which can be solved more
efficiently.

Recent guess-and-determine attacks on hash functions split the equations into
small bitslices and store information on intermediate variables using generalized
conditions [5, 8–11]. The subproblem of propagating information within bitslices
is small enough to be solved efficiently using exhaustive search.

3.1 Generalized Conditions

In classical differential cryptanalysis, only one bit of information is stored for
each pair of bits (xj , x

∗
j ): the difference ∆xj = xj ⊕ x∗j . Inspired by signed-bit

differences [14], De Cannière and Rechberger introduced generalized conditions [5],
where all information on one pair of bits (xj , x

∗
j ) is taken into account.

Definition 1 Let (xj , x
∗
j ) be a pair of bits. The generalized condition ∇(xj , xj

∗) is
a subset of all pairs {(0, 0), (0, 1), (1, 0), (1, 1)} of (xj , x

∗
j ).

In total, we get 16 possible generalized conditions. We use the same notation
as in [5] (see Table 1). To specify differences and conditions on word level, we
group generalized conditions as follows. Let x, x∗ ∈ {0, 1}n and cj = ∇(xj , xj

∗).
Then, the notation ∇(x, x∗) = [cn−1 . . . c0] provides a compact specification of all
n generalized conditions of the pair (x, x∗). Let ∇(x, x∗) = [cn−1 . . . c0]. Then

|∇(x, x∗)| =
n−1∏
i=0

|ci|

denotes the number of pairs fulfilling all generalized conditions in ∇(x, x∗).
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3.2 Bitsliced Propagation

In the bitslice approach, information is propagated only between bits of a bitslice.
A bitslice is defined as follows.

Definition 2 Let f : {0, 1}m → {0, 1}n be a function with y = f(x). One out-
put bit yj depends on |I| inputs with I ⊆ {0, . . . ,m − 1}. Then the set Bj =
{yj , xi0 , . . . , xi|I|} is called a bitslice.

In a guess-and-determine attack, new conditions are imposed on bits of a bitslice.
These new conditions affect at least the bits in the same bitslice. Hence, the
generalized conditions of a bitslice need to be updated. This propagation of new
information is done as described in Algorithm 1.

Algorithm 1 Propagation

Input: ∇(xi, xi
∗)

Output: Updated conditions on bits in all bitslice pairs (Bj ,B∗j ) containing xi, xi
∗

for each pair of bitslices (Bj ,B∗j ) containing xi and xi
∗ do

Test all possibilities allowed by the generalized conditions
Remove cases which are not possible any more

Algorithm 1 provides an optimal propagation for bitwise Boolean functions,
where each bitslice is independent of each other. Examples are the bitwise Boolean
functions IF and MAJ used in many hash function designs of the MD4-family.
Furthermore, it has been shown in recent attacks on the MD4-family of hash
functions [5,8–11] that the bitslice approach also works quite well for the modular
addition. However, it has significant shortcomings when applied to more complex
(linear) functions as shown in the next section.

3.3 Example for Bad Propagation

The shortcomings of the bitsliced approach can be illustrated best by means of an
example. We consider the linear Σ0 function which is used in the hash function
SHA-2.

Example 1 Let Σ0 : {0, 1}32 → {0, 1}32 be a linear function with

Σ0(x) = (x≫ 2) + (x≫ 13) + (x≫ 22) = y, (1)

which is equivalent to yj = xj+2 + xj+13 + xj+22, for j = 0, . . . , 31. Hence, Σ0

defines 32 bitslices Bj = {yj , xj+2, xj+13, xj+22}. Note that the additions in the
indices are modulo 32. Assume that we start with the following information:

∇(x, x∗) = [??????????????????-??????????-??]

∇(y, y∗) = [--------------------------------].

By filling in the information for bitslice B0 we get

∇(x2, x2
∗) = [-]

∇(x13, x13
∗) = [-]

∇(x22, x22
∗) = [?]

∇(y0, y0
∗) = [-].
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We can then propagate information according to Algorithm 1 by exhaustively
searching over all possible pairs defined by the input generalized conditions, to
check which output pairs are possible (see Table 1). It follows that ∇(x22, x22

∗) =
[-]. Note that in all the other cases no information is propagated and applying
the algorithm to all other indices gives the following propagated information:

∇(x, x∗) = [?????????-????????-??????????-??]

∇(y, y∗) = [--------------------------------].

However, for the invertible linear function Σ0 we know that ∇(xj , xj
∗) = [-] must

hold for all j.

In this case, the bitslice approach of propagating information performs very poor.
Therefore, we present in the following section a different approach which produces
optimal results for affine functions and linear conditions.

4 Linear Propagation

The constraints defined by generalized conditions and the function f can also
be expressed as a system of equations involving the input and output bits as
variables (see Table 1). Propagating conditions then corresponds to manipulating
this system in order to bring it to a more useful form. If all involved equations
are linear, methods like elementary row and column operations can be applied to
simplify the system. Unfortunately, it is not possible to translate all generalized
conditions into linear equations. Furthermore, hash functions contain nonlinear
building blocks such as modular additions or other nonlinear Boolean functions
which cannot be expressed as linear equations.

However, large parts of cryptographic algorithms consist of affine (linear) func-
tions. Furthermore, most generalized conditions are linear (only 7, B, D, and E are
nonlinear). In the following, we show a general method to efficiently extract linear
information on the variables and propagate this information.

4.1 Affine Functions

Let f : {0, 1}m → {0, 1}n be an affine function. Such a function can be described
by a matrix L ∈ {0, 1}n×(m+n), where

y = f(x)⇔ L

[
x

y

]
= d

and d = f(0). When considering input pairs x and x∗, the same affine function
is applied to both inputs. Denoting the vector [x y]T by z and [x∗ y∗]T by z∗

respectively, the whole system of linear equations can then be written as follows:[
L

0
0
L

]
·
[
z

z∗

]
=

[
d

d

]
. (2)
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Table 1 Notation and equations of the 16 generalized conditions. For linear conditions, matrix
coefficients Cij , C

∗
ij are given. The elements in rows Ci and Ci

∗ are zero except for the given
positions.

∇(zj , zj
∗) (1, 1) (0, 1) (1, 0) (0, 0) Equations Cij C∗

ij bi

# − − − − contradiction 0 0 1

0 − − − × zj = 0 1 0 0
z∗j = 0 0 1 0

u − − × − zj = 1 1 0 1
z∗j = 0 0 1 0

3 − − × × z∗j = 0 0 1 0

n − × − − zj = 0 1 0 0
z∗j = 1 0 1 1

5 − × − × zj = 0 1 0 0
x − × × − zj + z∗j = 1 1 1 1

7 − × × × zjz
∗
j = 0

1 × − − − zj = 1 1 0 1
z∗j = 1 0 1 1

- × − − × zj + z∗j = 0 1 1 0

A × − × − zj = 1 1 0 1
B × − × × zjz

∗
j + z∗j = 0

C × × − − z∗j = 1 0 1 1

D × × − × zjz
∗
j + zj = 0

E × × × − zjz
∗
j + zj + z∗j = 1

? × × × × no constraints 0 0 0

4.2 Linear Conditions

Definition 3 A linear generalized condition ∇l(zj , zj
∗) is a generalized condition

that is an affine space.

A set of linear generalized conditions on several bits can be expressed as[
C C∗

] [ z
z∗

]
= b , (3)

where C,C∗ ∈ {0, 1}c×(m+n) are binary matrices with c linear equations on m+ n

bits z, z∗ ∈ {0, 1}m+n and b ∈ {0, 1}c. Table 1 shows how the matrices C and C∗

are constructed from the linear generalized conditions.

4.3 Linear Propagation of Information

In order to propagate linear information, we perform the following three steps:

1. Construct the combination of (2) and (3).
2. Use Gauss-Jordan elimination to create sparse equations (rows).
3. Convert equations only on zj and z∗j back to generalized conditions.

We combine the two systems (2) and (3) such that the resulting matrices A,A∗ ∈
{0, 1}(2n+c)×(m+n) represent the columns corresponding to z and z∗ respectively:

 L 0
0 L

C C∗

[ z
z∗

]
=
[
A A∗

] [ z
z∗

]
=

 dd
b

 . (4)
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To propagate linear information we simply perform Gauss-Jordan elimination and
get a matrix in reduced row-echelon form. If the system is inconsistent, we know
that the generalized conditions at the input and output of the affine function
contradict each other. If the system is consistent, we can extract new information in
form of generalized conditions. Since a generalized condition consists of equations
involving only zj and z∗j , we get this information by a linear combination of at
most two rows.

5 Comparison of Propagation Methods

In this section, we compare the different information propagation methods. We
show that in the majority of cases the linear propagation described in Section 4.3
performs much better than the bitslice approach described in Section 3.2. For the
rare cases where the bitslice approach performs better, a combination of both ap-
proaches results in the best propagation performance. To compare and evaluate
the different propagation methods, we need to measure how well they propagate.
Propagation corresponds to narrowing down the solution space, or gaining infor-
mation about the solution.

Let∇(z, z∗)′ denote the generalized conditions obtained by propagating∇(z, z∗)
by means of propagation method M . Then we take as figure of merit for M :

IM (z) = log2
|∇(z, z∗)|
|∇(z, z∗)′|

.

If ∇(z, z∗) is a contradiction, then |∇(z, z∗)| = |∇(z, z∗)′| = 0 and we set IM (z) = 0.
If |∇(z, z∗)′| = 0 but |∇(z, z∗)| 6= 0, then IM (z) is undefined, which we denote by
IM (z) = #. To compare the two propagation methods and measure the gain of the
linear method (L) over the bitslice method (B) for one specific condition ∇(z, z∗),
we compute the difference of the two methods’ figures of merit:

Idiff(z) = IB(z)− IL(z).

If IL(z) = # but IB(z) 6= #, the linear method detects the contradiction but the
bitslice method does not. In this case, we set Idiff(z) = #L. If IL(z) 6= # but
IB(z) = # we set Idiff(z) = #B . If both are #, we set Idiff(z) = 0.

5.1 Applications

We evaluate the propagation methods for different functions f by computing
Idiff(z) for a large number of randomly drawn samples ∇(z, z∗). Choosing ran-
dom generalized conditions at the input and output of one of the functions results
in impossible characteristics with a high probability. Since such cases are less likely
to occur in a guess-and-determine attack, we have performed a search for differen-
tial characteristics in SHA-2 and Keccak (SHA-3) and extracted random samples
from this search. The results show the empiric distribution function of the random
variable Idiff(z).
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Fig. 1 Comparison of propagation methods for 32-bit and 64-bit Σ0 and σ0. Higher values
correspond to better propagation.

5.1.1 Linear Functions of SHA-2.

Figure 1 shows the results for the 32-bit (SHA-256) and 64-bit (SHA-512) linear
functions Σ0 and σ0 of SHA-2. The figure shows a comparison for samples, which
commonly occur in a search for differential characteristics in SHA-2. The linear
propagation performs significantly better than the bitslice approach for σ0 which
is used in the message expansion of SHA-2. Since Σ0 is used in the state update
transformation where other functions influence the propagation as well, the gain
is limited.

5.1.2 Linear Layer of Keccak.

Finally, we apply the different propagation methods to the linear layer used in
Keccak [1] which is significantly larger than the linear functions used in SHA-2.
In more detail, the linear layer in Keccak updates 25 lanes, each of length w.
Since in Keccak lane lengths of 8, 16, 32 and 64 bits are defined, we can compare
the propagation methods for different sizes of the linear layer. Using Keccak we
can show, that for larger affine functions the linear propagation method tends to
perform better. Note that for SHA-3 only a length of 64 bits is defined.

Figure 2 shows the comparison of the bitslice approach with the linear ap-
proach for different lane lengths in Keccak. Most notably, for w = 64, the linear
approach performs better in more than 97% of the samples, and significantly more
contradictions are detected by the linear approach.
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Fig. 2 Comparison of propagation methods for different lane lengths (w = {8, 16, 32, 64}) of
the whole linear layer used in Keccak. Higher values correspond to better propagation.

6 Conclusions

In recent years, many differential attacks on hash functions are using automated
tools to find differential characteristics. These tools are performing a guess-and-
determine attack to solve the resulting nonlinear equations. The basic idea of a
guess-and-determine attack is to perform a guessing of certain bits before deter-
mining others. The core part of such tools is the propagation of (new) information.
Usually, a trade-off between the performance of the propagation and the amount
of propagated information is made. Hence, information is lost and a better prop-
agation method can significantly improve these tools.

We investigated how the propagation for certain functions can be improved.
We focused on affine functions, since most cryptographic algorithms consist of
large linear parts. We showed that the approach used in the recent attacks has
some significant drawbacks. As a solution to this problem, we proposed a linear
information propagation method and showed that it performs significantly better.

In our approach, we store linear relations on more than a single bit. Further-
more, instead of propagating information only within a single bitslice, we propagate
information wordwise by considering the whole system of linear equations derived
from the affine function and generalized conditions. Using an efficient algorithm
to extract new information from this system, we achieve optimal results for linear
functions and linear generalized conditions. Furthermore, we gave a detailed de-
scription of the approach and compared it to the approach used in the recent hash
function attacks. For the comparison, we applied our method to the linear func-
tions Σ0 and σ0 used in SHA-2 and to the linear layer of Keccak (SHA-3). We have
shown that our method performs much better than previously published methods,
making it possible to apply the recent techniques to more complex functions like
SHA-3.
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