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Abstract Digital documents are usually degraded dur-
ing the scanning process due to the contents of the back-
side of the scanned manuscript. This is often caused by
the show-through effect, i.e. the backside image that
interferes with the main front side picture due to the
intrinsic transparency of the paper. This phenomenon
is one of the degradations that one would like to re-
move especially in the field of Optical Character Recog-
nition (OCR) or document digitalization which require
denoised texts as inputs.

In this paper, we first propose a novel and gen-
eral nonlinear model for cancelling the show-through
phenomenon. A nonlinear blind source separation algo-
rithm is used for this purpose based on a new recursive
and extendible structure. However, the results are re-
stricted due to a blurring effect which appears during
the scanning process due to the light transfer function
of the paper. Consequently, for improving the results,
we introduce a refined separating architecture for si-
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multaneously removing the show-through and blurring
effects.
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1 Introduction

Archives usually need automatic methods for improv-
ing the readability of the digital versions of the ancient
or printed documents. This processing is also recom-
mended for the applications concerned with the produc-
tion of the machine-readable digital document from an-
cient handwriting for example by using character recog-
nition algorithms; these algorithms require clean ver-
sions of the original documents. In this paper, we con-
sider one of the most common degradations, usually
appearing in ancient documents which are written or
printed on both sides of the page: this phenomenon is
generally called print-through. Print-through is an un-
desired appearance of a printed image or text of the
reverse side of the paper and can be divided into three
additive components, each of them corresponding to a
physical phenomenon [1]:

– The show-through component related to the paper’s
intrinsic transparency or low thickness;

– The pigment penetration component;
– The vehicle oil component, which is related to the

loss of opacity due to the filling of pores with oil.

When the ink of the printer does not penetrate the
paper considerably, effects of pigment penetration and
of vehicle oil are negligible and print-through can be
approximated only by show-through. Show-through can
significantly impair the readability of the document and
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also cause visual fatigue for the reader. When the show-
through degradation is significant (the darkness of the
show-through is comparable to, or even greater than,
that of some parts of the desired writing), then it is
practically impossible to remove show-through by only
using a simple thresholding operation.

Several approaches for show-through reduction have
been already investigated. In [2,3], the authors used
various features in the document for distinguishing show-
through from the foreground image and presented show-
through removal techniques involving only one side of
the document. Although these methods certainly per-
form better than simple thresholding, there is no way
to unambiguously differentiate foreground from show-
through without comparing both sides of the docu-
ment especially in grayscale images. Other works pro-
cess both sides of the document simultaneously, in or-
der to identify regions that are mainly show-through,
and replace them by an estimate of the background [4,
5]. Most of these works deal with only text or hand-
writing and the original images are degraded after the
show-through removal procedure. Recent investigations
are applying Blind Source Separation (BSS) algorithms
for solving this problem. In [6,7], the authors assume
that the show-through effect can be modeled by lin-
ear superimposition of the back and front sides. Then,
the scanned front side image (corrupted by the back-
side) and the scanned back side image (corrupted by
the frontside) are linear mixtures of the pure front and
back images, assumed to be independent, which can be
estimated by BSS techniques. Tonazzini et al. in [8] rep-
resent an effective method for removing show-through
in color images by using only one side of the paper.
However, the method is not applicable for grayscale
images. Although these methods give good results, the
results are not perfect especially in regions where the
images of the front and back sides of the paper over-
lap and the front side’s image is nearly black. In such
regions, the recovered front image is whiter than other
sections where there is no overlap. The main reason of
these poor results is that show-through is a nonlinear
effect as we will show in the next section, and as it
has also been previously considered and modeled, e.g.
in [9]. Sharma in [10] considered a nonlinear model for
this phenomenon and proposed to compensate for this
effect by using adaptive filters. The main disadvantage
of using adaptive filters, as we will see later, is that the
Signal to Noise Ratio (SNR) of the outputs cannot be
more than the noise to signal ratio of the input images
(due to the power] inversion property in adaptive filters
[11, page 78]). Castro et al. [12] used fuzzy classifica-
tion for detecting degraded sections of the input im-
ages. The proposed algorithm is fully dependent on the

specific application (only applicable to ancient music
notes) and suffers from disadvantages of fuzzy classifica-
tion. Moreover, they did not consider the blurring effect
that we will point out in Section 4.1. By taking into ac-
count the nonlinearity of show-through, Almeida used
in [13] the MISEP method based on Multi-Layer Per-
ceptron (MLP) networks for separating the real-world
nonlinear image mixtures. The main drawback of us-
ing these kinds of “universal nonlinear networks” for
BSS is the separability issue: the Independent Compo-
nent Analysis (ICA) does not necessarily lead to BSS
using such networks. Note that based on the way that
the show-through phenomenon is modeled, this or other
nonlinear BSS techniques [14–17] may be applicable for
solving this problem. In fact, finding a suitable BSS
method for separating the show-through from the orig-
inal sources based on the acquired model is one of the
main goals of this paper.

Here it is worth to mention that although there
are some Markov Random Field (MRF) based show-
through removal methods [18,19], in this paper we only
focus on BSS-based algorithms and this is because of
the fact that in the framework of BSS, considering MRF
nature of images requires one to take into account the
joint distribution of neighbor pixels, which leads to very
tricky estimation problems and very cost consuming al-
gorithms. In fact, the Markovian nature has already
been considered in BSS, for instance by Hosseini et al.
[20]. In addition in the framework of hyperspectral pro-
cessing it has been shown that MRF and BSS, although
based on different properties, lead to very similar re-
sults [21].

In this paper, we first show that show-through is a
nonlinear phenomenon and introduce a nonlinear model
based on experiments. Then, we show that, in addi-
tion to nonlinear mixing models, we have to take into
account a blurring effect. Our method is derived from
the nonlinear BSS recursive structure presented by Hos-
seini and Deville [22,23], in which we add refinements
for jointly compensating for the degradation caused by
show-through and blurring effects, as it will be demon-
strated by some simulation results. Although the princi-
ples and preliminary results have briefly been presented
in [24], the current paper, both in theoretical and ex-
perimental parts, contains many new extensions.

The paper is organized as follows. In Section 2, we
experimentally show that show-through is a nonlinear
phenomenon and introduce our nonlinear model. Sec-
tion 3 describes a basic blind separation structure for
dealing with this nonlinear model. The blurring effect
and the usage of adaptive filters for its compensation,
and the combination of these filters with the non-linear
BSS structure are developed in Section 4. Finally, a few
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experimental results with real and artificial printed or
manuscript documents are presented in Section 5, be-
fore the conclusions and perspectives of Section 6.

2 Show-through nonlinear modeling

Show-through appears when a fraction of the verso is
mixed with the recto pixel by pixel in the scanning pro-
cess. However, as we will demonstrate in this section,
this fraction is proportional to the grayscale of the front
image, i.e. as the front image becomes darker, the show-
through will be lower. Therefore, the mixing model can-
not be linear. Figure 1 illustrates this claim based on
an experiment explained below.

In this experiment, the two images shown in Fig. 1(a)
are first printed on the two sides of a sheet of paper
and then scanned as illustrated in Fig. 1(b). Then, the
grayscales of the pixels on two scanning lines shown in
Fig. 1(b) (solid line in the region with show-through
and dashed line in the region without show-through)
are plotted in Fig. 1(c). It is obvious in this figure that
as the front image becomes darker, the difference be-
tween the pixels with show-through and the pixels with-
out show-through decreases with the pixel value. This
demonstrates that the appearance of the show-through
in the scanned image depends on the grayscale of the
front image of the paper. This means that the gain by
which the backside image is added to the front side im-
age is variable and it is proportional to the brightness
of the image printed on the front side of the paper. We
model this variable gain at any pixel of the scanned im-
age of the front side of the paper by g1

(
f i

r(m,n)
)

and
at any pixel of the back side by g2

(
f i

v(m,n)
)
, where

g1
(
f i

r(m,n)
)

and g2
(
f i

v(m,n)
)

represent the depen-
dency of the mentioned gain to the pixel values of the
front side and back side images, respectively.

Therefore, we model the show-through effect and its
dependency to the grayscale of the front image as

fs
r (m,n) = a1f

i
r(m,n) + b1f

i
v(m,n)× g1(f i

r(m,n)),

fs
v (m,n) = a2f

i
v(m,n) + b2f

i
r(m,n)× g2(f i

v(m,n)),
(1)

where

– m and n are the 2-D spatial coordinates on the pa-
per being scanned,

– the subscript r is related to the front side (recto),
– the subscript v is related to the back side (verso),
– the superscript i denotes the ideal (without show-

through) version of the image,
– the superscript s denotes the scanned image (having

show-through);
– the function gi for i = 1, 2 is a nonlinear function

representing the effect of the paper,

(a) Images which are
printed on the sides of a
paper.

(b) Scanned image with two
scanning lines.

(c) Plotting the grayscales of the pixels relied on two scanning lines
in (b).

Fig. 1 Experiment used for demonstrating the nonlinearity of
the show-through phenomenon. Grayscales of the pixels on two
scanning lines shown in Fig. 1(b) are plotted in Fig. 1(c). It shows
that, as the front image becomes whiter, show-through will be-
come more apparent. Therefore, show-through depends on the
properties of the front side image as well as the back side one.

– and f(., .) denotes a 2-D signal (image).

Note that if the function gi is cancelled, (i.e. if
gi(·) = 1), Eq. (1) becomes a simple linear mixing
model. Since the scanning process of both sides of a
paper is symmetric and usually done under the same
conditions, in [6] it has been assumed that a1 = a2,
b1 = b2 and g1(·) = g2(·) = 1 (because in [6] the au-
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(a) (b)

Fig. 2 Images used for experimentally modeling show-through.
These two images are printed on back and front sides, respec-
tively, of a sheet of paper and then scanned.

thors assumed the model was linear). However, in this
paper and for preserving the generality of our nonlin-
ear model as much as possible, we only assume that the
nonlinear functions g1 and g2 have the same shape. By
rewriting (1) we obtain

fs
r (m,n)− a1f

i
r(m,n)

b1f
i
v(m,n) + ε

= g1(f i
r(m,n)),

fs
v (m,n)− a2f

i
v(m,n)

b2f
i
r(m,n) + ε

= g2(f i
v(m,n)),

(2)

where ε is a small positive number inserted to avoid
division by zero. Note that adding ε is useful only if
b1f

i
v(m,n) never becomes negative. b1f i

v(m,n) is the at-
tenuated backside image which appears in the scanned
image of the front side of the paper. Since in the scanned
image it is possible to see the same image of the back-
side of the paper (and not its negative), it means that
b1f

i
v(m,n) has been added and not subtracted from

the image of the front side of the paper and there-
fore b1f i

v(m,n) is nonnegative. For another reason, if
b1f

i
v(m,n) is negative, in those areas where the front

side and backside printed images are white (have pixel
values near 255), the scanned image should be nearly
black which is not the case. By plotting the left hand
side of the first equation in (2) versus f i

r(m,n) for par-
ticular images having show-through, it is possible to
draw the general shape of the function gi(·). As an ex-
periment, we used images shown in Fig. 2 as f i

r(m,n)
and f i

v(m,n). These images were printed on sides of
a sheet of paper and then were scanned. By choosing
these images, we are sure that in the final scanned pic-
tures, we have all possible combinations of grayscales.

Figure 3 shows the plot of g1(f i
r(m,n)) versus f i

r(m,n).
Note that for plotting this image, parameters a1 and b1
are needed. Since in this experiment, we have the orig-
inal pure sources, i.e. f i

v(m,n) and f i
r(m,n), these pa-

rameters are not unknown and by using equation (1),
they can be estimated from the images used for per-

Fig. 3 Scatter plot of g(f i
r(m, n)) versus f i

r(m, n). The shape of
gi(·) suggests an exponential function.

forming this simulation. For example, a1 can be ap-
proximated by comparing f i

r(m,n) and fs
r (m,n) where

there is no image printed on the backside. Similarly, b1
can be estimated by comparing f i

v(m,n) and fs
r (m,n)

where this time, there is no image printed on the front
side. Based on Fig. 3, we propose to model the func-
tion gi(u) as an exponential function gi(u) = γie

βiu

for i = 1, 2 where βi and γi are constant. This model
implies that as the front image becomes whiter, the
backside image will be added to the front image with a
higher gain. Note that if show-through was a linear phe-
nomenon then g would be a constant, i.e. a horizontal
line in Fig. 3.

By replacing g1(·) by γ1e
β1(·) in (1) we get

fs
r (m,n) = a1f

i
r(m,n)+b′1f

i
v(m,n)×e(β1f

i
r(m,n)), (3)

where b′1 = b1×γ1. Equation (3) can be simplified by re-
placing the exponential function by its first order Tay-
lor expansion. As it will be seen in the experimental
results, this approximation works well. Moreover, the
experiments also show that β1 is usually small for doc-
uments having show-through, which is consistent with
the first order expansion. This can also be justified by
Fig. 3, which shows that g is close to being linear, i.e.
β1 is small. Using this approximation we obtain

fs
r (m,n) ≈ a1f

i
r(m,n) + b′1f

i
v(m,n)× [1 + β1f

i
r(m,n)]

= a1f
i
r(m,n) + b′1f

i
v(m,n) + d1f

i
r(m,n)f i

v(m,n),
(4)

where d1 = b′1 × β1. Similar to (4), the scanned image
of the back side can be written as

fs
v (m,n) = a2f

i
v(m,n) + b′2f

i
r(m,n)× e(β2f

i
v(m,n))

≈ a2f
i
v(m,n) + b′2f

i
r(m,n)× [1 + β2f

i
v(m,n)]

= a2f
i
v(m,n) + b′2f

i
r(m,n) + d2f

i
v(m,n)f i

r(m,n).

(5)
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Fig. 4 Basic linear-quadratic blind source separating structure
proposed in [22,23].

Finally, since the gains a1 and a2 are undetermined,
equations (4) and (5) can be simplified as follows [22,
23]:

fs
r (m,n) = f i

r(m,n)− l1f
i
v(m,n)− q1f

i
r(m,n)f i

v(m,n),

fs
v (m,n) = f i

v(m,n)− l2f
i
r(m,n)− q2f

i
v(m,n)f i

r(m,n).
(6)

For separating the sources in the above model, we
first have to find the mixing coefficients and then to
solve the nonlinear system of equations (6) numerically.
This will be done using nonlinear BSS techniques, as
explained in the next sections.

3 Basic linear-quadratic blind source
separation structure

The nonlinear model (6) actually is a linear-quadratic
(or bilinear) mixing model, whose blind separation has
already been addressed by Hosseini and Deville [22,23]
based on the recurrent separating structure of Fig. 4,
which is inspired from the early work of Hérault and
Jutten [25]. Note that (i) by setting q1 = 0 and q2 = 0
in (7) and in Fig. 4, this structure is reduced to the basic
linear network proposed by Hérault and Jutten and (ii)
this structure has the capability to be generalized to
arbitrary polynomial models [22,23].

The computation of the outputs of the structure re-
quires the realization of the following recurrent iterative
expression

y
(t+1)
1 (·, ·) = fs

r (·, ·) + l1y
(t)
2 (·, ·) + q1y

(t)
1 (·, ·)y(t)

2 (·, ·),
y
(t+1)
2 (·, ·) = fs

v (·, ·) + l2y
(t)
1 (·, ·) + q2y

(t)
2 (·, ·)y(t)

1 (·, ·),
(7)

where t is the iteration index. It has been shown in [26]
that the necessary and sufficient condition for local sta-
bility of this model at the separating point (y1, y2) =
(f i

r, f
i
v) is that the absolute values of the two eigenval-

ues of J1 be smaller than one where J1 is the Jacobian

matrix of (7) at [f i
v, f

i
r]

T . By defining s1 = fs
r (m,n)

and s2 = fs
v (m,n), the Jacobian matrix can be written

as

J1 =
[

q1s2 l1 + q1s1
l2 + q2s2 q2s1

]
, (8)

and its eigenvalues are

λ1,2 =
1
2

(q1s2 + q2s1)±
1
2

([
(q1s2 + q2s1)2 + 4(l1l2 + l1q2s2 + l2q1s1)

] 1
2
)
.

(9)

The Maximum Likelihood (ML) estimate of the pa-
rameter vector p = [l1, l2, q1, q2]T is obtained using the
updating rule

p(j+1) = p(j) + µ
∂L

∂p
, (10)

where L denotes the likelihood of p based on the given
samples of the mixtures fs

r and fs
v . By defining J2 as

the Jacobian of the mixing model (6), ∂L
∂p can be written

as [22,23]:

∂L

∂p
= −E

[
A

J2
,
B

J2
,
C

J2
,
D

J2

]T

, (11)

where

A =ψ1(s1)(1− q2s1)s2 + ψ2(s2)(l2 + q2s2)s2−
(l2 + q2s2)− (q2 + l2q1)(1− q2s1)s2/J−
(q1 + l1q2)(l2 + q2s2)s2/J,

B =ψ1(s1)(l1 + q1s1)s1 + ψ2(s2)(1− q1s2)s1−
(l1 + q1s1)− (q1 + l1q2)(1− q1s2)s1/J−
(q2 + l2q1)(l1 + q1s1)s1/J,

C =ψ1(s1)(1− q2s1)s2s1 + ψ2(s2)(l2 + q2s2)s2s1−
(l2s1 + s2)− (q2 + l2q1)(1− q2s1)s1s2/J−
(q1 + l1q2)(l2 + q2s2)s1s2/J,

D =ψ1(s1)(l1 + q1s1)s1s2 + ψ2(s2)(1− q1s2)s1s2−
(s1 + l1s2)− (q1 + l1q2)(1− q1s2)s1s2/J−
(q2 + l2q1)(l1 + q1s1)s1s2/J,

J2 =1− l1l2 − (q2 + l2q1)s1 − (q1 + l1q2)s2. (12)

In (11), E denotes the spatial averaging operation
on all of the samples and ψi(·), i = 1, 2 are the score
functions [22,23] of the source images (original images
without show-through, i.e. f i

r and f i
v).

Here, it is worth mentioning that as explained and
proved in [22,23], the linear-quadratic mixing model
of (6) is not bijective in general. Consequently, the re-
current structure shown in Fig. 4 has two equilibrium
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points corresponding to a non-permuted solution and a
permuted one, while only one of them is stable. More-
over, if the Jacobian of the mixing model, J2, is al-
ways positive or always negative for all of the values
of the sources, the recurrent structure leads to the en-
tirely permuted or entirely non-permuted sources for
all of the image pixels and therefore, it can be used
for separating the sources. On the other hand, if J2

is positive for some values of the sources and nega-
tive for other values, the recurrent structure leads to
the non-permuted sources for some image pixels and
to the permuted sources for other pixels. In this case,
although the sources are separated “sample by sam-
ple”, each retrieved image contains samples of the two
image sources. From the explanations provided in this
section, it should become clear that the recurrent net-
work generally may diverge in many cases. But fortu-
nately, using this structure for show-through removal
adds some constraints (which come from the physics
of the problem) on the sources and parameter values
which can somehow relax this drawback. For example,
since in this particular application, the sources are im-
ages, they can only have bounded non-negative values.
In addition, by referring to (6) and considering the ex-
planations provided in the previous section about the
signs of coefficients, e.g. b1 and b2, it is clear that l1
and l2 are always negative and their values are close
to each other, i.e. l1 ≈ l2 (because of the symmetric
nature of the scanning process in scanning two sides of
the paper). Moreover, we know that q1 ≈ q2 and both
of them have a small positive value as will be seen in
the experimental results. Applying these constraints to
the above mentioned conditions may reduce the diver-
gence probability of the recurrent structure when it is
used for this application.

Eventually, the show-through cancellation algorithm
based on the structure of Fig. 4 can be summarized as
follows:

1. align the front side and the back side scans by a
registration method.

2. Initialize the structure of Fig. 4 with (y(t)
1 , y

(t)
2 )|t=0 =

(0,0) and p = [l1, l2, q1, q2]T = [0, 0, 0, 0]T .
3. Apply the registered front and back side images to

the inputs of the structure of Fig. 4.
4. Compute the outputs of the structure, i.e. y1 and
y2, by repeating (7) until convergence. The final
outputs are assumed to be the independent original
sources which are needed for updating the parame-
ter vector in the next step.

5. Update the parameter vector p by iterating (10).
Note that for calculating ∂L

∂p in (10), the original
sources, i.e. s1 and s2, are needed. These sources

(a) Input recto image with
show-through.

(b) Input verso image with
show-through.

(c) Recovered recto image. (d) Recovered verso image.

Fig. 5 Results obtained with the structure shown in Fig.4 for
removing show-through. (a) and (b): original scanned images
obtained from http://www.site.uottawa.ca/∼edubois/documents.
(c) and (d): outputs of the separating structure shown in Fig. 4.

are approximated by the outputs of the structure
which are computed in the previous step.

6. Repeat steps 4 and 5 until convergence is achieved
(for instance, if the difference of two successive pa-
rameter vectors becomes less than a predetermined
value).

For experimentally validating this approach, we ap-
plied this structure and the algorithm of Hosseini and
Deville [22,23] to the scanned image of Figs. 5(a) and 5(b).
The result of the algorithm is shown in Figs. 5(c) and 5(d).
The result proves a certain capability of the structure
of Fig. 4 in removing show-through, but it also empha-
sizes residual errors, i.e. show-through is not perfectly
cancelled by the above nonlinear model.

4 Adaptive linear-quadratic blind source
separation structure

In this section, we first explain that the poor results
obtained with the previous nonlinear model can be due
to a blurring effect. We then propose a new structure
based on a modification on the structure of Fig. 4 for
jointly removing the show-through and blurring effects.
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Fig. 6 Simplified bilinear blind source separating structure pro-
posed for removing show-through and enhancing blurring effect.
In this separating structure, filtering blocks are simply fixed av-
eraging filters.

4.1 Blurring effect

Figures 5(c) and 5(d) show that the show-through has
not been removed perfectly in regions where there is no
text or image in one of the two sides.

In fact, during the scanning process, if the page is
not completely opaque and the scanner uses a white
backing behind the page, the sensor of the scanner re-
ceives a light which is reflected from the backing and
transmitted back through the paper. Thus, the light
may scatter in different directions especially due to an
unsmooth surface of the paper. This scattering phe-
nomenon, which acts as a low-pass filter, is known as
the blurring effect and some methods for its compen-
sation have already been studied in the literatures [7,
10,27]. However, the blurring effect changes the nonlin-
ear model that we considered previously. In fact, when
scanning the recto, the scanned image is not a mixture
of the front and back side images, but it is a mixture of
the front side image and of the low-pass filtered image
of the back side image. Clearly, this filtering cannot be
cancelled with the separating structure of Fig. 4.

Therefore, to take into account the blurring effect in
our model, we modify the show-through model of (6)
as follows

fs
r ≈ f i

r − l1f
i
v ∗H1 − q1f

i
r × (f i

v ∗H1),

fs
v ≈ f i

v − l2f
i
r ∗H2 − q2f

i
v × (f i

r ∗H2),
(13)

where ∗ denotes the convolution operator, while H1 and
H2 are the point spread functions of the paper which
are unknown. Therefore, the computation of the struc-
ture outputs requires the realization of the following
recurrent iterative expression

y
(t+1)
1 = fs

r + l1y
(t)
2 ∗H1 + q1y

(t)
1 × (y(t)

2 ∗H1),

y
(t+1)
2 = fs

v + l2y
(t)
1 ∗H2 + q2y

(t)
2 × (y(t)

1 ∗H2).
(14)

(a) Output of the structure
shown in Fig. 6.

(b) Output of the structure
shown in Fig. 6.

(c) Output of a linear sepa-
rating structure with averag-
ing filters.

(d) Distortion introduced by
the use of a linear separation
structure.

Fig. 7 Cancellation of show-through and blurring effects using
the structure of Fig. 6, based on nonlinear structure and fixed
filters. The results show that a linear separation model cannot
provide perfect results, even if the errors are weak.

Usually, as is confirmed by our simulations, q1 and
q2 are very small. Moreover, noting also that y(t)

i and
y
(t)
i ∗ Hi, although different, are in fact very similar,

(only here and for illustrating the effectiveness of this
new model by an example) we ignore the filtering oper-
ation in the quadratic part of (14), and we obtain [24]:

y
(t+1)
1 = fs

r + l1y
(t)
2 ∗H1 + q1y

(t)
1 × y

(t)
2 ,

y
(t+1)
2 = fs

v + l2y
(t)
1 ∗H2 + q2y

(t)
2 × y

(t)
1 .

(15)

Figure 6 shows the structure associated with this
recurrent iterative expression with fixed and known av-
eraging filters. Here, we simplified the model and used
fixed averaging filters as an approximation of the point
spread function of the paper only for demonstrating
the excellence of this new configuration. The validity of
this model will be illustrated by an experiment. Note
that, as we used fixed and known filters and because of
the similarities between y

(t)
i and y

(t)
i ∗Hi, the param-

eter vector p can be updated using equations derived
in Section 3. Figures 7(a) and 7(b) show the results ob-
tained by using this separating structure on images of
Figs. 5(a) and 5(b). The results demonstrate the ability
of this structure to reduce the blurring effect even by
using these approximations.
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Figure 7(c) shows one of the outputs of the struc-
ture of Fig. 6 when it is configured as a linear separation
structure (enforcing q1 = 0 and q2 = 0). An interesting
part of the figure is magnified in Fig. 7(d) to better un-
derstand the problem associated with linear modeling
of show-through. Arrows emphasize the whitening ef-
fect produced by using linear mixing models discussed
in the introduction. This figure confirms that the av-
eraging filters (in the structure of Fig. 6) are not suffi-
cient and that a nonlinear modeling of show-through is
required.

The disadvantage of using fixed filters (and the ap-
proximations we did in the above experiment) is that
it requires prior knowledge about the shape of these fil-
ters. In addition, especially in ancient documents and
due to the heterogeneity transparency of the paper, the
filter can vary according to the location on the page.
Therefore, it will be appropriate to determine the fil-
ter coefficients based on the actual shape of the point
spread function of the paper which is proportional to
the type of the paper. In this case, since the nonlinear
mixing model in (13) is different from (6), we must find
a new way to estimate the parameter vector, p, and
to find the coefficients of the filters, H1 and H2. The
nonlinear mixing model (13) is not an instantaneous
mixture, therefore its blind separation is much more
difficult. However, by adding some simplifying assump-
tions it will be possible to estimate the shape of these
filters as explained in the next subsection.

4.2 Estimating the shapes of the filters

If we assume that show-through is a linear phenomenon
(i.e. q1 = q2 = 0) and also assume that we are near the
convergence which implies y(t)

1 |t→∞ to be almost equal
to f i

r (or f i
v) and y(t)

2 |t→∞ to be almost equal to f i
v (or

f i
r) in (14), then the filter coefficients (entries of H1

and H2) can be determined through the minimization
of the following cost functions with respect to the filter
coefficients. Note that in these cost functions, fs

r , fs
v ,

f i
v and f i

r are the image matrices

F1 = ‖fs
r + l1f

i
v ∗H1‖2 = ‖fs

r + l1H1 ∗ y(t)
2 |t→∞‖2

= ‖e1‖2,
F2 = ‖fs

v + l2f
i
r ∗H2‖2 = ‖fs

v + l2H2 ∗ y(t)
1 |t→∞‖2

= ‖e2‖2. (16)

These equations are inspired from (13) by setting q1
and q2 to zero. In addition, it is worth mentioning that
by considering (13) and the fact that f i

r and f i
v are

independent from each other, the minimum values of

these two cost functions are equal to f i
r and f i

v respec-
tively. However, since the original images f i

v and f i
r are

unknown (actually it is our aim to determine them), it
will be impossible to estimate the filter coefficients ac-
curately by this way. However, from the show-through
model of (13), it is obvious that the amplitude of the
filters can be changed by the parameter vector, p, so
it will be sufficient to only estimate the shape of these
filters up to a gain indeterminacy. By considering the
fact that, as the iteration number (t) increases, outputs
of the structure are expected to be closer to the origi-
nal independent sources, we propose to approximately
estimate the shape of the filters in each iteration by
minimizing the following cost functions

F1 = ‖fs
r + l1H

(t)
1 ∗ y(t)

2 ‖2 = ‖e(t)1 ‖2,
F2 = ‖fs

v + l2H
(t)
2 ∗ y(t)

1 ‖2 = ‖e(t)2 ‖2.
(17)

Note that we ignored the quadratic parts of the
show-through model for estimating the shape of the fil-
ters because they are only used for modeling the non-
linearity of this phenomenon and therefore have a weak
contribution in the final scanned images (which means
q1 and q2 have small values as we can check in the ex-
perimental results). Thus, using the linear model for
show-through provides accurate enough estimation of
the shape of the deblurring filters (point spread func-
tions of the paper).

For minimizing the cost functions of the first equa-
tion in (17) with respect to the coefficients of the filter
H1, we used the adaptive structure shown in Fig. 8. In
this structure, the output is the filtered version of y(t)

2

since we need it for calculating the output in (14). A
similar structure can be used for estimating H2. Figure
9 shows the final Least Mean Square (LMS) algorithm
for minimizing these cost functions and estimating the
filter coefficients. To avoid divergence of the adaptive
filters, the input images are normalized (such that they
have zero mean with a unit variance) before being ap-
plied to the structure.

Since the SNR of e(t)1 (or e(t)2 ) cannot be more than
the noise to signal ratio of the input images (due to the
power inversion property in adaptive filters) [11, page
78], we cannot use this adaptive method by itself for
separating the sources (as done by Sharma [10]), since
it will not lead to good separation results.

4.3 A modified structure

In the previous subsection, we proposed to use an adap-
tive filter to estimate the point spread functions of the
paper in each iteration. The new separating structure
associated with (14) is shown in Fig. 10. In this figure,
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Fig. 8 Adaptive structure for estimating the shape of the point
spread function of the paper.

each filtering block is the same as the adaptive filter de-
tailed in Fig. 8. In this structure and at each iteration,
we apply first the algorithm shown in Fig. 9 to the out-
put images of the structure in the previous iteration.
During the computation of the outputs of the filters,
the coefficients of the filters are also updated to be used
in the next iteration. Then, using the current value of
the parameter vector, the outputs of the structure are
calculated for all of the input pixels through the recur-
rent iterative expression of (14). Finally, the parame-
ter vector of the structure is updated by using these
new outputs. As we mentioned earlier, a new method
should normally be introduced for updating the param-
eters vector in each iteration since we have changed the
mixing model (compared to the show-through model
represented in (6)). However, because the effect of re-
gions belonging to the blurring effect is small compared
to the image itself, we propose to use the followings ap-
proximations: H2∗y(t)

1 ≈ y
(t)
1 and H1∗y(t)

2 ≈ y
(t)
2 . Thus,

the method designed for updating the parameter vec-
tor of the structure of Fig. 4 can be used for updating
the parameter vector of the structure of Fig. 10. The
approximation leads to a simplified algorithm.

Figure 11 shows the final show-through (and blur-
ring) removal algorithm which we used for obtaining
the results presented in Section 5. Note that since we
do normalization at the beginning of this algorithm,
there is no need to normalize the inputs of the algo-
rithm described in Fig. 9 again. Applying this algorithm
to Figs. 5(a) and 5(b) leads to results shown in Figs.
12(a) and 12(b), and demonstrates the effectiveness of
our method in removing the blurring effect as well as
the show-through.

5 Experimental results

In this section, we will demonstrate the advantages of
the proposed algorithm for jointly removing the show-
through and the blurring effects by performing experi-
ments on real and artificial images. In the field of im-
age processing, it is well-known that usually subjective

1. Initialization:

– Denote the input images by fs
r and fs

v .
– choose the size of the 2-D adaptive filters H1 and

H2 and let the initial value of them to be equal to
0.

– Choose a suitable value for the step-size of the adap-
tive LMS algorithm, µadaptive.

2. Compute the errors of the adaptive filters at pixel (m, n)
with the current values of H1 and H2

e
(t)
1 (m, n) = fs

r (m, n)

+

K∑
k=−K

L∑
l=−L

l1H
(t)
1 (k, l)y

(t)
2 (m− k, n− l),

e
(t)
2 (m, n) = fs

v (m, n)

+

K∑
k=−K

L∑
l=−L

l2H
(t)
2 (k, l)y

(t)
1 (m− k, n− l),

where (2K + 1)× (2L + 1) is supposed to be the size of

the 2-D adaptive filters and y
(t)
1 and y

(t)
2 are the output

images of the structure in the previous iteration.
3. Update the coefficients of the adaptive filters in that

pixel.
for k = −K . . . K, l = −L . . . L :

H
(t+1)
1 (k, l) = H

(t)
1 (k, l)

+ µadaptivef
s
r (m− k, n− l)e

(t)
1 (m, n),

H2(k, l) = H2(k, l)

+ µadaptivef
s
v (m− k, n− l)e

(t)
2 (m, n).

4. If there is any other pixel, go to step 2 otherwise finish
the loop.

5. y
(t)
1 ∗ H2 and y

(t)
2 ∗ H1 images are the outputs of the

filtering blocks.

Fig. 9 Algorithm for estimating the adaptive filters of Fig. 8

Fig. 10 Adaptive linear quadratic separating structure for re-
moving show-through and blurring effects simultaneously.
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1. Initialization:

– Normalize the input images and denote them by

f
(s,N)
r (m, n) and f

(s,N)
v (m, n) where superscript N

represents Normalization.
– choose the size of the 2-D adaptive filters H1 and H2

and let the initial value of them to be equal to 0.
– Let the initial value of parameter vector p be equal to

0.
– Choose suitable values for the step-size of the LMS

adaptive algorithm µadaptive and for µML which is
needed for maximizing likelihood cost function in (10).

– Let y
(t)
i |t=0 = 0 for i = 1, 2.

2. For t = 1, 2, . . . until convergence:
– Apply the adaptive filter algorithm described in Fig. 9

to the images y
(t)
i for i = 1, 2 by using the final

values of H1 and H2 in the previous iteration as initial
values.

– Compute the output images of the structure shown in
Fig. 10 by using Equation (14) and the current value
of the parameter vector.

– Update the parameter vector p by maximizing the
likelihood cost function as follows

p(j+1) = p(j) + µML
∂L

∂p
.

3. y
(t)
1 and y

(t)
2 will be the final results.

Fig. 11 proposed algorithm for removing show-through and
blurring effect.

(a) (b)

Fig. 12 Output results obtained by applying the algorithm of
Fig. 11 to Figs. 5(a) and 5(b) that show the capability of our pro-
posed method in reducing those degradations which are caused
by show through and blurring effect during the scanning process.

measures are better than quantitative measures (like
SNR) for comparing the quality of two images. In ad-
dition, it is very hard to find a unique quantitative cri-
terion for evaluating the performance of show-through
removal algorithms and this is because of the fact that
in almost all of the experiments performed on real de-
graded manuscripts or documents, original pure sources
are not available. Therefore, quantitative criteria such
as SNR are not always applicable. As a consequence,
for comparing our method to previously developed al-
gorithms qualitatively, we use the same images utilized
in those works. In all of the following experiments, the

initial value for parameters vector p and the coefficients
of the adaptive filters are zero. In addition, µadaptive and
µML are set to 0.00001 and 0.005 respectively. Registra-
tion of the input images is done simply by shifting and
rotating one of the input images with respect to the
other one and minimizing the mean square error be-
tween them. Note also that in nonlinear BSS based on
ICA, each source is retrieved at best up to an unknown
nonlinear function [14,28]. Since for the recurrent struc-
ture utilized in this work the separability analysis has
not yet be performed, indeterminacies involved in this
problem are unknown. Nevertheless, we know that the
two stable points of this recurrent structure differ from
each other in scaling, permutation and additive con-
stant [26]. Therefore, at the end of each simulation, we
should adjust the DC and scaling of the output images.
Since the retrieved images are similar to the scanned
images except in those areas having show-through, the
DC and scale of the images should not change signifi-
cantly during the show-through removal process. As a
result, in all of the following experiments, we change
the DC and the scale of the output images so they will
be equal to the DC and the scale of the input scanned
images. As it is seen in (11) and (12), maximizing the
likelihood needs estimation of the score functions. For
this purpose, we used polynomial estimation of score
functions [29] instead of the kernel estimation method
used in [22], to obtain a fast and still accurate algo-
rithm.

We use two criteria for stopping the iterations: we
can stop the algorithm (i) when the changes in the co-
efficients of the adaptive filters are less than a specific
amount or (ii) when the changes in the parameter vec-
tor, p, is small enough. Experimentally, the second op-
tion works better than the first one (because the second
one is related to the show-through removal algorithm).
However, since the two optimization algorithms (the
one for obtaining the coefficients of the filters and the
one for determining the parameter value) are working
independently, it is relevant to check both criteria as
we have done in our simulations.

In the following experiments, we ran the algorithm
described in Fig. 11 in MATLAB 7.1 on a Windows XP
PC with a 1.7 GHz CPU and 256 MB of RAM.

The results of the first simulation that we performed
by using the structure shown in Fig. 10 are shown in
Figs. 13(c) and 13(d). The original images (Figs. 13(a)
and 13(b)) with show-through are obtained from the
paper [27]. These images have been produced artificially
by adding a blurred version of the original images and
then noise. Therefore, it is obvious that here the images
have been mixed linearly, and not bilinearly.
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The size of the input images is 99 × 98 pixels. The
size of the adaptive filters was 9×9 and after the conver-
gence of the structure, the final parameter vector was
p = [−0.454,−0.42, 0.007, 0.012]T which confirms the
approximate symmetry property assumed in Section 2.
The very small values of q1 and q2 confirms that this
mixture is almost perfectly linear. For these particular
input images, the algorithm converged after 26 itera-
tions and each iteration took about 14 seconds. Out-
put results are as perfect as the ones presented in [27]
in removing show-through. Outputs of the structure
of Fig.4 for these input images are shown in Figs. 13(e)
and 13(f). In these images, show-through has been re-
moved almost completely but the blurring effect does
still exist. Note that in this and all of the following
experiments, absolute values of l1 and l2 are less than
unity. By considering (6), this is because of the fact
that the strength of the show-through is less than the
strength of the image which is printed on the backside
of the paper. Moreover, these parameters have negative
signs which shows that the backside image is added to
and not subtracted from the front side image. The most
time consuming part of the algorithm is the calculation
of the score functions of the sources which are needed
in (12). In addition, as the size of the input images
or adaptive filters increases, computational time of the
proposed algorithm increases as well.

In the next experiment, we considered the images
previously used in [7]. These are real data obtained
through the scanning process, with an image size equal
to 401×401 pixels. In this case, the structure of Fig. 10
converged after 29 iterations and the final parameter
vector equals to p = [−0.311,−0.287, 0.024, 0.031]T .
In this experiment, the size of the adaptive filters in
that structure was 11 × 11. Each iteration took about
57 seconds. Figures 14(c) and 14(d) show the final re-
sults. It is obvious especially in the right black part of
the recovered image that the estimated front image has
not become whiter in regions where the two (front and
back) images have overlap, like what had been seen in
Figs. 7(c) and 7(d). Finally, Figs. 14(e) and 14(f) show
the results obtained using the structure of Fig. 4, which
demonstrate the relevance of adaptive filters in improv-
ing the quality of the output images.

Figure 15 illustrates the convergence of the coeffi-
cients of one of the adaptive filters through the run of
the algorithm.

In the above experiments, the two input images were
almost text and have little overlap with each others.
Consequently, we performed another experiment on two
real pictures strongly distorted by show-through as shown
in Figs. 16(a) and 16(b). These scanned images are ob-
tained by scanning both sides of a paper on which the

(a) Recto of the paper with
show-through.

(b) Verso of the paper with
show-through.

(c) Recovered image with
adaptive filter.

(d) Recovered image with
adaptive filter.

(e) Recovered image without
filtering.

(f) Recovered image without
filtering.

Fig. 13 Show-through and blurring cancellation on simulated
linear mixtures. (a) and (b): original scanned images. (c) and
(d): outputs of the separating structure of Fig. 10. (e) and (f):
output images of the structure of Fig. 4. We note that the quality
is poor due to blurring effect which is not cancelled.

images shown in Figs. 16(c) and 16(d) had been printed.
The image size is 326×242 and the algorithm converged
after 71 iterations, and each iteration took about 35 sec-
onds. The size of the adaptive filters was 5 × 5. After
the convergence of the structure, the estimated param-
eter vector was p = [−0.476,−0.46, 0.041, 0.045]T . The
outputs of the algorithm are shown in Figs. 16(e) and
16(f). It is seen that the proposed structure removed
the show-through considerably.

Another experiment is presented in Fig. 17. The
recto and verso images with the size of 570×698 are ob-
tained from http://www .site.uottawa.ca/∼edubois/doc-
uments. However, to improve visual quality, only parts
of them are shown in Figs. 17(a) and 17(b). These
are real ancient manuscripts whose readability is de-
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(a) Recto of the paper with show-through after scanning
the paper.

(b) Verso of the paper with show-through after scanning the
paper.

(c) Original image printed on one side of the paper. (d) Original image printed on the other side of the paper.

(e) First recovered image by using the structure of Fig. 10. (f) Second recovered image by using the structure of Fig. 10.

Fig. 16 Show-through and blurring cancellation on actual scanned images. (a) and (b) show the scanned input images applied to
the structure of Fig.10. (c) and (d) are the original images. Images shown in (e) and (f) are the outputs estimated by our algorithm,
where show-through has been reduced significantly, even if the nonlinear mixture has not been perfectly cancelled.

graded due to the presence of show-through. The re-
sult of applying our show-through removal method to
these figures is shown in Figs. 17(c) and 17(d). The
amount of enhancement achieved in the readability of
the manuscripts is evident in these figures. In this sim-

ulation, adaptive filters of size 3 × 3 have been used.
Execution time of this experiment was about 2163 sec-
onds and the values of parameters vector converged to
p = [−0.301,−0.318, 0.027, 0.032]T .
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(a) Recto of the paper with show-through. (b) Verso of the paper with show-through.

(c) First recovered image. (d) Second recovered image.

Fig. 17 Removing show-through from ancient real manuscripts. (a) and (b) show the scanned input images applied to Fig.10. Output
images of Fig.10 in (c) and (d) show that the proposed method can increase the readability of the documents considerably.

In all of these simulations, the approximate size
of the filters is determined heuristically based on the
severity of the blurring effect that we visually observed
in scanned images: as the blurring effect becomes worse,

the filter size should be increased. Then, the exact size
of the filters are determined by trial and error.
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(a) Recto of the paper with
show-through.

(b) Verso of the paper with
show-through.

(c) Recovered image with
adaptive filter.

(d) Recovered image with
adaptive filter.

(e) Recovered image without
filtering.

(f) Recovered image without
filtering.

Fig. 14 Show-through and blurring cancellation of real world
scanned images, mainly containing text. (a) and (b): original
scanned images. (c) and (d): outputs of the separating structure
of Fig. 10. (e) and (f): output images of the structure of Fig. 4.

6 Conclusion

In this paper, we experimentally showed that show-
through is a nonlinear phenomenon and can be approx-
imately represented by a linear-quadratic model. For
such a mixing model, based on [22,23], we first used a
linear-quadratic separating structure which is able to
extract the original sources. Simulations show that this
structure can remove show-through but cannot cancel
the blurring effect implied by the scanning process due
to the paper’s intrinsic transparency. Therefore, we pro-
posed a newer adaptive linear-quadratic blind source
separating structure, in which one adds adaptive filters
to estimate the shape of the point spread function of
the paper. Therefore, using this separating structure,
one can simultaneously remove show-through and blur-
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Fig. 15 Evolution of the coefficients of the adaptive filters dur-
ing the convergence of the structure of Fig. 10 for our second
experiment.

ring effects. Finally, we justified the effectiveness of this
new method with a few experiments on simulated mix-
tures and real-world scanned images. The results were
very satisfactory in comparison to other current show-
through removal methods.

The main advantages of this show-through removal
method can be summarized as:

– It may be extended to more complicated polynomial
models [22,23];

– Filter coefficients are updated adaptively. Therefore,
the structure is able to estimate the point spread
function of the paper and remove the blurring effect
as well, without priors on the paper properties;

– This structure is also applicable to linear mixtures:
in this case, the parameters q1 and q2 will become
zero.

For the near future, we are planning to complete
our study about the theoretical invertibility of bilinear
mixing models. In addition, investigating of the effects
of those simplifying assumptions that we used in our
method can be useful for improving the performance
of the proposed algorithm. Another problem to be ad-
dressed is to find a procedure to evaluate the quality
of the output results. By these objective performance
indexes, we can provide more consistent comparisons
between show-through removal algorithms.
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