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Abstract

As an organic combination of mean field theory in statistical physics and (non-zero
sum) stochastic differential games, Mean Field Games (MFGs) has become a very pop-
ular research topic in the fields ranging from physical and social sciences to engineering
applications, see for example the earlier studies by Huang, Caines and Malhamé (2003),
and that by Lasry and Lions (2006a, b and 2007). In this paper, we provide a compre-
hensive study of a general class of mean field games in the linear quadratic framework.
We adopt the adjoint equation approach to investigate the existence and uniqueness of
equilibrium strategies of these Linear-Quadratic Mean Field Games (LQMFGs). Due
to the linearity of the adjoint equations, the optimal mean field term satisfies a forward-
backward ordinary differential equation. For the one dimensional case, we show that
the equilibrium strategy always exists uniquely. For dimension greater than one, by
choosing a suitable norm and then applying the Banach Fixed Point Theorem, a suffi-
cient condition for the unique existence of the equilibrium strategy is provided, which is
independent of the coefficients of controls and is always satisfied whenever those of the
mean-field term are vanished (and therefore including the classical Linear Quadratic
Stochastic Control (LQSC) problems as special cases). As a by-product, we also estab-
lish a neat and instructive sufficient condition, which is apparently absent in the liter-
ature (see Freiling (2002)) and only depends on coefficients, for the unique existence
of the solution for a class of non-trivial nonsymmetric Riccati equations. Numerical
examples of non-existence of the equilibrium strategy will also be provided. It is re-
marked that the uniform agent case of Huang, Caines and Malhamé (2007a) serves as
an interesting comparison with our LQMFGs. We give an example (see Appendix) with
which existence can be covered by our theory while it needs not satisfy the sufficient
condition provided in their work; though in general, both approaches cover different fea-
sible ranges. Finally, similar approach has been adopted to study the Linear-Quadratic
Mean Field Type Stochastic Control Problems (see Andersson and Djehiche (2010))
and their comparisons with MFG counterparts.

Keywords: Mean Field Games; Mean Field Type Stochastic Control Problems; Adjoint
Equations; Linear-Quadratic
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1 Introduction

Modeling collective behaviors of individuals in account of their mutual interactions in various
physical or sociological dynamical systems has been one of the major problems in the history
of mankind. For instance, physicists were simply used to apply the traditional variational
methods from Lagrangian or Hamiltonian mechanics to study interacting particle system,
which left a drawback of extremely high computational cost that made this microscopic ap-
proach almost mathematically intractable. To resolve this matter, a completely different
macroscopic approach from statistical physics had been gradually developed, which eventu-
ally leads to the primitive notion of mean field theory. The novelty of this approach is that
particles interact through a medium, namely the mean field term, being aggregated by action
of and reaction on each particle. Moreover, by passing the number of particles to the infinity
in these macroscopic models, the mean field term will become a functional of the density
function which represents the whole population of particles that leads to much less computa-
tional complexity. In biological literature, similar tools have been applied to connect human
interactive motion with herding models for insects and animals. For example, the behavior
that ants secrete chemical substrates for leading mates to valuable food resources resulting
in a lane can be described by a mean-field model (see Kirman [26] for more details).

On economics side, due to the dramatic population growth and rapid urbanization, urgent
needs of in-depth understanding of collective strategic interactive behaviors of a huge group
of investors is crucial to maintaining sustainable economic growth. Since the vector of good
prices is determined by both demand and supply, it is natural to utilize the aggregation
effect from the investors’ states as a canonical candidate of mean-field term, and then em-
ploys the corresponding mean-field models in place of the classical equilibrium models in
economics; moreover, as the investors are usually smart in decision making (i.e. being not
of zero-intelligent), it is necessary to also incorporate the theory of stochastic differential
games (SDGs) in these mean-field models. Over the past few decades, SDGs has been a
major research topic in control theory and financial economics, especially in studying the
continuous-time decision making problem between non-cooperative investors; in regard to
the one-dimensional setting the theory of two person zero-sum games is quite well-developed
via the notion of viscosity solutions, see for example Elliott (1976), and Fleming and Sougani-
dis (1989). Unfortunately, most interesting SDGs are N -player non-zero sum SDGs. In this
direction we mention the works of Bensoussan and Frehse [6, 7] and Bensoussan et al. [8],
but there are still relatively few results in the literature.

As a macroscopic equilibrium model, Huang et al. [19, 25] investigated stochastic differ-
ential game problems involving infinitely many players under the name “Large Population
Stochastic Dynamic Games”. Independently, Lasry and Lions [30, 31, 32] introduced stud-
ied similar problems from the viewpoint of the mean-field theory and termed “Mean-Field
Games (MFGs)”. As an organic combination of mean field theory and theory of stochastic
differential games, MFGs provide more realistic interpretation of individual dynamics at the
microscopic level, so that each player are not of zero-intelligent and will be able to strategi-
cally optimize his prescribed objectives, yet with a mathematical tractability in a macroscopic
framework. To be more precise, the general theory of MFGs has been built by combining
various consistent assumptions on the following modeling aspects: (1) a continuum of play-
ers; (2) homogeneity in strategic performance of players; and (3) social interactions through
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the impact of mean field term. The first aspect is describing the approximation of a game
model with a huge number of players by a continuum one yet with a sufficient mathematical
tractability. The second aspect is assuming that all players obey the same set of rules of
the interactive game, which provide guidance on their own behavior that potentially leads
them to ultimate success. Finally, due to the intrinsic complexity of the society in which
the players participate in, the third aspect is explaining the fact that each player is so neg-
ligible who can only affect others marginally through his own infinitesimal contribution to
the society. In a MFG, each player will base his decision making purely on his own criteria
and certain summary statistics (that is, the mean field term) about the community; in other
words, in explanation of their interactions, the pair of personal and mean-field characteristics
of the whole population is already sufficient and exhaustive. Mathematically, each MFG
will possess the following forward-backward structure: (1) a forward dynamic describes the
individual strategic behavior; (2) a backward equation describes the evolution of individual
optimal strategy, such as those in terms of the individual value function via the usual back-
ward recursive techniques. For the detail of the derivation of this system of equations with
forward-backward feature, one can consult from the works of Huang et al. [25] and Lasry and
Lions [30, 31, 32].

Before introducing our proposed model, we first list out some relevant recent theoreti-
cal results in MFGs. (I) For problems over infinite-time horizon: Bardi [4], and Li and
Zhang [33] studied ergodic MFGs with different quadratic cost functionals and linear dy-
namics; Guéant [16] studied a specific MFG with a quadratic Hamiltonian and showed that
the density function for the population is Gaussian; Huang et al. [19, 22, 23, 24] consid-
ered MFGs with quadratic cost functional; Nourian et al. [35] extends the studies of MFGs
with ergodic cost functional to Cucker-Smale Flocking model; and Yin et al. [39] gave a
bifurcation analysis of an ergodic MFG with nonlinear dynamics. (II) For problems over
finite-time horizon: Guéant [17] applied a change-of-variable technique leading to separation-
of-variables to consider MFGs with quadratic Hamiltonian; Lachapelle [27] and Lachapelle
and Wolfram [29] extended MFGs to the setting involving 2-population dynamics; Lachapelle
et al. [28] investigated MFGs with reflection parts and quadratic cost functional; Tembine et
al. [37] considered the risk-sensitive MFGs; and Yang et al. [38] adopts the MFG approach to
construct a non-linear filter. (III) Various numerical approximation scheme can also be found
in Achdou et al. [1], and Achdou and Capuzzo-Dolcetta [2]. Because of the discretization
in the numerics, Gomes et al. [14] studied discrete time mean field game with finite state
space directly. For more recent development and its applications, please also refer to the lec-
ture notes Cardaliaguet [11], the surveys Guéant [15], Guéant et al. [18], and the references
therein.

In this paper, we study a subclass of Mean Field Games in which the cost functional is
quadratic in all state variables, control variables and the mean field terms; while the controlled
dynamics are linear and also consist of mean field terms. These Linear-Quadratic mean
field games (LQMFGs) have been previously considered in Huang et al. [21] by using the
common Riccati equation approach; in contrast, in this paper, the stochastic maximum
principle is adopted instead. Essentially, the equilibrium problem can be converted into
find a fixed point for a transformation defined by the solution of a control problem. For
the part of control problem, these two approaches are certainly equivalent. However, it is
not the case for the fixed point problem since a condition that is easier to be verified can
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be given1. Indeed, in our approach, thanks to the linearity of the adjoint equations, the
optimal mean-field term can be expressed as the solution of a forward-backward ordinary
differential equation. This method avoids us from solving the optimal trajectory as in the
Riccati equation approach and allows generalization to higher dimension, which is a crucial
setting in understanding the 2-population MFGs proposed in Lachapelle [27] and Lachapelle
and Wolfram [29]. More precisely, by choosing a suitable norm and applying the Banach
Fixed Point Theorem, we provide a more relaxed sufficient condition for the existence and
uniqueness of the equilibrium strategy, which is also independent of the coefficient of control
and always hold when the mean-field term is zero. Under the one-dimensional setting and
certain convexity assumption, we also prove that the equilibrium strategy always uniquely
exists. As a by-product, we also establish a neat and instructive sufficient condition, which
is apparently absent in the literature (see Freiling [13]) and only depends on coefficients,
for the unique existence of the solution for a class of non-trivial nonsymmetric Riccati
equations. Numerical examples showing the non-existence of any equilibrium strategy will
also be provided. Furthermore, in the Appendix, we compare explicitly our conditions with
those of Huang et al. [21]. In summary, our present work gives a novel and totally different
approach with several advantages in particular for the generalization of the classical Linear-
Quadratic Stochastic Control Problem in the MFG setting.

In general, the computational complexity of calibrating a Nash equilibrium of an N -player
SDG (if it exists) is very high, especially for large values of N , it would be more convenient
to find a computable approximation of this Nash Equilibrium strategy. Since MFGs are
obtained by setting N →∞, the equilibrium strategy serves as a natural candidate as it can
be shown to be an “approximation”, or ε-Nash Equilibrium strategy for the corresponding
equilibrium for N -player SDG. The computability of this equilibrium strategy is justifiable
as it depends only on the state of the player and the mean-field term, which dramatically
reduces the problem dimension of the Nash Equilibrium strategy of the N -player SDG. For
more inspiring elaboration on the notion of ε-Nash Equilbrium, one can refer to, for example,
Cardaliaguet [11] and Huang et al. [19, 20, 25].

If one considers a centralized controlling interacting particle system, instead of every particle
having the free will to choose its own control as formulated in MFGs, a stochastic control
problem of mean field type would be resulted (see Andersson and Djehiche [3]). This mean-
field type optimization problem shares a similar mathematical form as proposed in MFG
problem, and the mean-field term is now uniformly controlled by a centralizing system instead
of being affected by the collective optimal trajectory. For more details about the existence
and convergence rate of the related mean-field backward stochastic differential equations,
one can refer to Buckdahn et al. [9] and Buckdahn et al. [10]. By using the adjoint equation
approach again, we characterize the optimal control, which exists and is unique in virtue of
the convex coercive property of the underlying cost functional. Finally, we also find that,
in general, this optimal control is different from the equilibrium strategy obtained in its
corresponding MFG counterpart.

In Section 2, we will formulate a Linear-Quadratic N -player nonzero-sum stochastic differ-
ential game and demonstrate how to obtain the corresponding mean field game formally. In
Section 3, we shall employ the adjoint equation approach in order to provide a thoughtful

1This does not mean that our condition is less restrictive. In general, both approaches cover different
feasible ranges.
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study of the the existence and uniqueness of LQMFGs. By choosing a suitable norm and
applying the Banach Fixed Point Theorem, an illuminating sufficient condition for the exis-
tence and uniqueness of the equilibrium strategy is provided; note that this new condition is
independent of the coefficients of the controls, and is always satisfied whenever the coefficients
of the mean-field terms are vanished. Relationship with nonsymmetric Riccati equations and
illustrative numerical examples will also be provided. We remark that these nonsymmetric
Riccati equations, appeared in the resolution of the fixed point problem, could not be found
in the literature including Huang et al. [21]; and most importantly, they are substantially
different from those symmetric Riccati equation commonly arisen from Control Theory. In
Section 4, we shall show that the equilibrium strategy is an ε-Nash Equilibrium of the N -
player SDG. In Sections 5 and 6, we shall adopt a similar adjoint equation approach to solve
the Linear-Quadratic Mean-Field Type Stochastic Control Problem and compare its optimal
control to the equilibrium strategy of the corresponding MFG counterpart. In Appendix, an
example is given which illustrates that its unique existence could be covered by our theory
but it fails to satisfy the sufficient condition as provided in Huang et al. [21]. It is noticed
that in some other cases, Huang et al. [21] may cover different possibilities from ours.

2 Problem Formulation

The present formulation of the Linear-Quadratic Mean Field Games will follow closely the
classical Linear-Quadratic Stochastic Control Problems, see for example Bensoussan [5]. Fol-
lowing Lasry and Lions [30, 31, 32], in order to formulate the Linear-Quadratic Mean Field
Game, we first state the corresponding N -player game for N ≥ 1.

Let (Ω,F ,P) be a complete probability space and T > 0 be the time horizon. Suppose
that W 1, . . . ,WN are N independent n-dimensional standard Wiener processes defined on
(Ω,F ,P) and x1

0, . . . , x
N
0 are N independent, identically distributed (i.i.d.) n-dimensional

random vectors. We also assume that xi0 is independent to (W 1, . . . ,WN) for each i, 1 ≤ i ≤
N . The dynamics of the player i is modeled by

dxit =

(
Atx

i
t +Btv

i
t + Āt ·

1

N − 1

N∑
j=1,j 6=i

xjt

)
dt+ σt dW

i
t , xi(0) = xi0,

where A, B, Ā are bounded deterministic matrix-valued functions in time of suitable sizes, σ
is a L2-function in time of suitable size, and the control vi in L2

G(0, T ;Rm), which is the L2-

space of stochastic processes adapted to the filtration Gt , σ((x1
0, . . . , x

N
0 ), (W 1

s , . . . ,W
N
s ), s ≤

t), with values in Rm. The present proposed (additive) model extends the classical linear
stochastic dynamical one, as expected, the coefficient A measures the effect brought by
the state variable and B measures the impact of the control; while the new ingredient Ā
summarizes the symmetric influence of the rest of the players. Even though this additional
term Ā is natural from the modeling perspective when one attempts to investigate interactive
real-time multi-player game, it causes a substantial mathematical difficulty in the discussion
on the existence and calibration of the corresponding Nash Equilibrium especially for large
values of N . Although the coefficients look the same for all players, it reflects that each
players obeys the same set of game rules and behaves based on the same collections of
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rationales. Their actual individual realized performances could be far different from each
other, in particular, their single dynamics are driven by independent Wiener processes.

The cost functional for each player i is assumed to be:

J i(v1, . . . , vN)

, E
[

1

2

∫ T

0

(xit)
∗Qtx

i
t + (vit)

∗Rtv
i
t dt+

1

2
(xiT )∗QTx

i
T

]
+ E

[
1

2

∫ T

0

(
xit − St ·

1

N − 1

N∑
j=1,j 6=i

xjt

)∗
Q̄t

(
xit − St ·

1

N − 1

N∑
j=1,j 6=i

xjt

)
dt

]

+ E

[
1

2

(
xiT − ST ·

1

N − 1

N∑
j=1,j 6=i

xjT

)∗
Q̄T

(
xiT − ST ·

1

N − 1

N∑
j=1,j 6=i

xjT

)]
,

where M∗ denotes the transpose of a matrix M , S (respectively, Q, Q̄ and R) are bounded,
deterministic (respectively, non-negative and positive definite) matrix-valued functions in
time of suitable sizes. We also suppose that R ≥ δI, for some δ > 0.

The reasons for the same form of the objective functional among different players are the same
as in the previous discussions on the modeling of individual dynamics. The first expectation
agrees with the corresponding cost functional in the classical Linear-Quadratic Stochastic
Control Problem; namely, it describes the sum of running expenses and the terminal costs
of each player himself. The other two expectations are specific in our present model setting,
they describe the extra costs incurred if a player shows deviated performance away from the
average behavior of the community. These two terms truly reflect the coalescence phenomena
commonly observed in the literature of socio-economics and finance, in the sense that, every
agent has to pay an additional transaction cost of collecting extra profitable information if he
aims to outperform from his peers. Along every direction of the deviation, the incorporated
additional cost has to be non-negative, this model constraint is ensured by the assumption
of the non-negative definiteness of Q̄.

The principal objective of each player is to minimize his own cost functional by properly
controlling his own dynamics. In this classical non-zero sum stochastic differential game
framework, we aim to establish a Nash equilibrium (u1, . . . , uN) (see for example, Bensoussan
and Frehse [6]):

Problem 2.1. Find a Nash Equilibrium (u1, . . . , uN) which satisfies the following comparison
inequalities:

J i(u1, . . . , ui−1, vi, ui+1, . . . uN) ≥ J i(u1, . . . , uN),

for 1 ≤ i ≤ N and any admissible control vi in L2
G(0, T ;Rm).

In accordance with the permutation symmetry of index i, it suffices to consider the case for
i = 1. In general, the computational complexity of calibration of a Nash equilibrium (if it
exists) is high, especially for large values of N . Due to the large number of participants
in most game theoretical models in practice, a convenient computable approximation of the
Nash Equilibrium strategy is usually demanded. By formally passing N → ∞, Lasry and
Lions [30, 31, 32] introduced the notion of Mean Field Games. Now, the Mean Field Game
associated with Problem 2.1 can be obtained as follows:
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Problem 2.2. Find an equilibrium strategy u in L2
F(0, T ;Rm), with x0 , x1

0, W , W 1 and
Ft , σ(x0,Ws, s ≤ t), which minimizes the cost functional

J(v) , E
[

1

2

∫ T

0

x∗tQtxt + v∗tRtvt + (xt − StE[yt])
∗Q̄t(xt − StE[yt]) dt

]
+ E

[
1

2
x∗TQTxT +

1

2
(xT − STE[yT ])∗Q̄T (xT − STE[yT ])

]
,

where the dynamics is given by

dxt =
(
Atxt +Btvt + Āt E[yt]

)
dt+ σt dWt, x(0) = x0,

v is an admissible control in L2
F(0, T ;Rm) and y is the trajectory corresponding to the equlib-

rium strategy u (if it exists).

Remark 2.3. An interesting example of our proposed one-dimensional LQMFGs has been
considered earlier in Huang et al. [21]. In this paper, we shall provide a complete picture of
the resolution of the problem by using adjoint equation approach, which results in a different
sufficient condition for the unique existence of the underlying equilibrium strategy.

In comparison with the N -player game, in order to avoid confusion, the notations for the
dynamics x and y stated in Problem 2.2 will be changed to x̂ and ŷ respectively. For if
Problem 2.2 were solvable, then for each i, 1 ≤ i ≤ N , we could obtain a strategy ui in
L2
F i(0, T ;Rm), where F it , σ(xi0,W

i
s , s ≤ t). Since E[yt] is a deterministic process, it is clear

that u1, . . . , uN are i.i.d.. As the Mean Field Game is obtained from the N -player game,
it is expected that (u1, . . . , uN) is an ε-Nash Equilibrium when N → ∞, see for example
Cardaliaguet [11] and Huang et al. [19, 20, 25] for more detail. We shall first present an
informal description here, rigorous arguments will be provided later in Section 4. Again, it
suffices to consider Player 1.

For any admissible control v1, let (x1, . . . , xN) (respectively, (y1, . . . , yN)) denote the dynamics
in Problem 2.1 controlled by (v1, u2, . . . , uN) (respectively, (u1, . . . , uN)). By the definition
of ε-Nash Equilibrium, u1 will “approximately” minimize J 1(v1, u2, . . . , uN). As N → ∞,
for i 6= 1, we have

1

N − 1

N∑
j=1,j 6=i

xjt −
1

N − 1

N∑
j=2,j 6=i

xjt → 0.

By the McKean-Vlasov argument, xit → ŷit. As an application of the Strong Law of Large
Numbers (SLLN), x1

t → x̂1
t as ŷ1

t , . . . , ŷ
N
t are i.i.d., which is a consequence of the i.i.d. nature

of u1, . . . , uN . By applying SLLN again to the cost functional, we deduce that

J 1(v1, u2, . . . , uN)→ J1(v1).

Similarly, we also have
J 1(u1, u2, . . . , uN)→ J1(u1),

and it shows heuristically that (u1, . . . , uN) is an ε-Nash Equilibrium.
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3 Solution of the Mean Field Game

To motivate for solving Problem 2.2, we first lay down some classical results in the literature
of Linear-Quadratic Stochastic Control Theory but from a new perspective which aids for
the development of our new methodology to tackle Problem 2.2.

Problem 3.1. Given a continuous deterministic process z with values in Rn. Find an optimal
control u in L2

F(0, T ;Rm) which minimizes

J(v) , E
[

1

2

∫ T

0

x∗tQtxt + v∗tRtvt + (xt − Stzt)∗Q̄t(xt − Stzt) dt
]

+ E
[

1

2
x∗TQTxT +

1

2
(xT − ST zT )∗Q̄T (xT − ST zT )

]
,

where the dynamics is given by

dxt = (Atxt +Btvt + Ātzt) dt+ σt dWt, x(0) = x0,

and v is an admissible control in L2
F(0, T ;Rm).

Theorem 3.2. Problem 3.1 is uniquely solvable and the optimal control u is −R−1B∗p, where
(y, p) satisfy the stochastic maximum principle relation

dyt = (Atyt −BtR
−1
t B∗t pt + Ātzt) dt+ σt dWt,

y0 = x0,

−dωt
dt

= A∗tωt + (Qt + Q̄t)yt − (Q̄tSt)zt,

ωT = (QT + Q̄T )yT − (Q̄TST )zT ,

(1)

such that pt = E[ωt|Ft].

Proof. It is clear that Problem 3.1 is a strictly convex coercive optimization problem in the
sense that J(v) → ∞ as ‖v‖ → ∞. In order to derive the stochastic maximum principle
relation, we first consider the Euler Equation:

d

dθ
J(u(·) + θ v(·))

∣∣∣∣
θ=0

= 0.

To explicitly express the dependence of the state x(·) on v(·) (recall that z(·), zT are fixed),
we adopt the notation x(t; v(·)). Note that, by linearity,

x(t;u(·) + θv(·)) = y(t) + θx̃(t; v(·)),

where
dx̃

dt
= Atx̃t +Btvt, x̃(0) = 0.

On the other hand, we can write J(v(·)) as

J(v(·)) = E
[∫ T

0

1

2
(x∗t (Qt + Q̄t)xt + v∗tRtvt)− x∗t (Q̄tSt)zt +

1

2
z∗t (S

∗
t Q̄tSt)zt dt

]
+ E

[
1

2
x∗T (QT + Q̄T )xT − x∗T (Q̄TST )zT +

1

2
z∗T (S∗T Q̄TST )zT

]
,
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and therefore the Euler Equation becomes

E
[∫ T

0

x̃∗t (Qt + Q̄t)yt − x̃∗t (Q̄tSt)zt + v∗tRtut dt

]
+ E[x̃∗T (QT + Q̄T )yT − x̃∗T (Q̄TST )zT ] = 0. (2)

Define the adjoint process ωt (need not adapted to Ft) by−
dωt
dt

= A∗tωt + (Qt + Q̄t)yt − (Q̄tSt)zt,

ωT = (QT + Q̄T )yT − (Q̄TST )zT ,

we obtain

d

dt
(x̃∗tωt) = (x̃∗tA

∗
t + v∗tB

∗
t )ωt − x̃∗t (A∗tωt + (Qt + Q̄t)yt − (Q̄tSt)zt)

= v∗tB
∗
t ωt − x̃∗t ((Qt + Q̄t)yt − (Q̄tSt)zt),

and hence

E
[∫ T

0

v∗tB
∗
t ωt dt

]
= E[x̃∗T ((QT + Q̄T )yT − (Q̄TST )zT )] + E

[∫ T

0

x̃∗t ((Qt + Q̄t)yt − (Q̄tSt)zt) dt

]
,

and from (2) we obtain

E
[∫ T

0

v∗t (B
∗
t ωt +Rtut) dt

]
= 0. (3)

Set pt = E[ωt|Ft] then (3) becomes E[
∫ T

0
v∗t (B

∗
t pt + Btut) dt] = 0. Since v is arbitrary in

L2
F(0, T ;Rm), we deduce that u = −R−1B∗p.

Remark 3.3. The optimal control u can be written as −R−1B∗(Ξy + ζ), where Ξ and ζ
satisfies 

dΞt

dt
+ ΞtAt + A∗tΞt − Ξt(BtR

−1
t B∗t )Ξt +Qt + Q̄t = 0,

ΞT = QT + Q̄T ,

dζt
dt

= −A∗t ζt + Ξt(BtR
−1
t B∗t )ζt + (Q̄tSt − ΞtĀt)zt,

ζT = −Q̄TST .

According to Theorem 3.2, for fixed z, we shall obtain the pair (y, p) and the optimal control
is u = −R−1B∗p. Hence u is an equilibrium strategy of Problem 2.2 if and only if there
is a continuous function z such that E[y] = z. We denote the expected values ȳt , E[yt],
p̄t , E[ωt] = E[pt], the stochastic maximum principle relation (1) implies that

d

dt

(
ȳt
−p̄t

)
=

(
At −BtR

−1
t B∗t

Qt + Q̄t A∗t

)(
ȳt
p̄t

)
+

(
Ātzt

−(Q̄tSt)zt

)
,

ȳ0 = E[x0],

p̄T = (QT + Q̄T )ȳT − (Q̄TST )zT .
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Hence, Problem 2.2 is solvable if and only if (ξ, η) = (ȳ, p̄) solves the following system of
ordinary differential equations:

d

dt

(
ξt
−ηt

)
=

(
At + Āt −BtR

−1
t B∗t

Qt + Q̄t(I − St) A∗t

)(
ξt
ηt

)
,

ξ0 = E[x0],

ηT = (QT + Q̄T (I − ST ))ξT ,

(4)

where I is the identity matrix.

We next address the uniqueness issue of the Nash Equilibrium. According to the previous
discussion, if Equation (4) has at most one solution, at most one possible E[yt] could be found.
Together with the uniqueness result in Theorem 3.2, there is at most one equilibrium strategy
u. Conversely, suppose that there is at most one equilibrium strategy in Problem 3.2. For
each solution (ξ, η) of Equation (4), we can associate the corresponding y and p with z = ξ.
By the construction, we have E[y] = ξ and E[p] = η and hence −R−1B∗p is an equilibrium
strategy. Due to the uniqueness of equilibrium strategy, there is at most one possible choice
for −R−1B∗ E[p]. Hence, the solution ξ is uniquely determined by

dξt
dt

= (At + Āt)ξt −BtR
−1
t B∗t E[pt], ξ0 = E[x0].

Similarly, η can also be uniquely determined and the uniqueness result follows. The following
theorem summarizes the previous discussion.

Theorem 3.4. There is a (unique) equilibrium strategy u of Problem 2.2 if and only if there
is a (unique) pair (ξ, η) of the following system of ordinary differential equations (4):

d

dt

(
ξt
−ηt

)
=

(
At + Āt −BtR

−1
t B∗t

Qt + Q̄t(I − St) A∗t

)(
ξt
ηt

)
,

ξ0 = E[x0],

ηT = (QT + Q̄T (I − ST ))ξT .

Moreover, this equilibrium condition depends on Q̄ and S only through S , Q̄(I − S).

Since S could be quite arbitrary, −BR−1B∗, Q+ Q̄(I −S) may not often be of opposite sign
and hence the sinusoidal functions serve as the standard example that Equation (4) does not
admit a solution if T is sufficiently large. Even under the assumption of the convexity of
Q+ Q̄(I − S), Equation (4) is still not in a canonical form commonly found in the literature
of the classical optimal control theory and the existence of solution is not guaranteed in our
present context. To overcome this hurdle, we first define

L , T (‖QT + ST‖2 + ‖Q+ S‖T )‖BR−1B∗‖T
· exp((2‖A+ Ā‖T + 2‖A∗‖T + ‖BR−1B∗‖T + ‖Q+ S‖T )T ),

where ‖M‖T denotes the supremum norm of the deterministic matrix-valued function M on
[0, T ]. By applying Gronwall’s inequality and Banach Fixed Point Theorem, we first have
the following standard existence result when T is sufficiently small, see for example Ma and
Yong [34]:
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Proposition 3.5. If L < 1, then there exists a unique solution of (4).

However, in general, the supremum norm of BR−1B∗ could be large and the condition that
L < 1 is too restrictive. By the specific form of Equation (4), a more relaxed condition can
be provided as follows:

Theorem 3.6. Assume that the matrix-valued function Qt is invertible. Let φ(t, s) be the
fundamental solution associated with At and

9φ9T , sup
0≤t≤T

√∥∥∥φ∗(T, t)Q1/2
T

∥∥∥2

+

∫ T

t

∥∥∥φ∗(s, t)Q1/2
s

∥∥∥2

ds.

Also, we define that 9Ā9T , sup0<t<T

∥∥∥ĀtQ−1/2
t

∥∥∥ and 9S9T , sup0<t≤T

∥∥∥Q−1/2
t Q̄t(I − St)Q−1/2

t

∥∥∥.

Suppose that 9Ā9T <∞, 9S9T <∞ and
√
T 9 φ 9T 9Ā 9T (1 + 9S9T ) + 9S9T < 1.

Then there exists a unique solution of (4).

Proof. Let L2
Q(0, T ;Rm) be the Hilbert space of functions endowed with the inner product

〈z, z′〉Q , z∗TQT z
′
T +

∫ T

0

z∗tQtz
′
t dt.

Given a function z in L2
Q(0, T ;Rm) and there is a pair (ξ, η) satisfying

dξt
dt

= Atξt −BtR
−1
t B∗t ηt + Ātzt,

ξ0 = E[x0],

−dηt
dt

= A∗tηt +Qtξt + Q̄t(I − St)zt,

ηT = QT ξT + Q̄T (I − ST )zT ,

(5)

since it corresponds to a well-defined control problem (by referring to the deterministic analog
of Theorem 3.2). We remark that Equation (5) is different from the deterministic counterpart
of Equation (1). The mapping z 7→ ξ defined in this way is affine and maps L2

Q(0, T ;Rm)
into itself. Our objective is to show that it admits a fixed point. To apply Banach Fixed
Point Theorem, it suffices to show that the mapping z 7→ ξ is a contraction if E[x0] = 0. By
considering the dynamics of ξ∗t ηt, we have the following equality:

ξ∗TQT ξT +

∫ T

0

ξ∗tQtξt dt+

∫ T

0

η∗tBtR
−1
t B∗t ηt dt

=

∫ T

0

η∗t Ātzt dt− ξ∗T Q̄T (I − ST )zT −
∫ T

0

ξ∗t Q̄t(I − St)zt dt.
(6)

Moreover, let φ(t; s) be the fundamental solution associated with At, and we get

ηt = φ∗(T, t)(QT ξT + Q̄T (I − ST )zT )

+

∫ T

t

φ∗(τ, t)(Qτξτ + Q̄τ (I − Sτ )zτ ) dτ.

11



By the Cauchy-Schwarz inequality, we have

‖ηt‖ ≤ 9φ 9T

(
‖ξ‖Q +

∥∥Q−1/2Q̄(I − S)z
∥∥)

≤ 9φ 9T

(
‖ξ‖Q + 9S 9 ‖z‖Q

)
.

Therefore, from (6),

‖ξ‖2
Q ≤
√
T 9 φ 9T (‖ξ‖Q + 9S 9T ‖z‖Q) 9 Ā 9T ‖z‖Q + ‖ξ‖Q 9 S 9T ‖z‖Q,

which shows that z 7→ ξ is a contraction if
√
T 9 φ 9T 9Ā 9T (1 + 9S9T ) + 9S9T < 1.

Corollary 3.7. If S = I, then S = 0 and the previous condition reduces to

√
T 9 φ 9T 9Ā9T < 1.

Remark 3.8. For a single person optimization problem (i.e. the classical Linear-Quadratic
Stochastic Control Problem), that is Ā = S = 0, we recover the standard existence and
uniqueness result in the literature.

Remark 3.9. Assume that ST = 0. Then the non-singularity of QT is not necessary and the

norm 9S9T can be weaken to sup0<t<T

∥∥∥Q−1/2
t Q̄t(I − St)Q−1/2

t

∥∥∥ in applying Theorem 3.6.

Remark 3.10. Suppose that Q+S can be written as Q+(Q+S−Q), where Q > 0 (that is, Q
is positive definite) is chosen to satisfy suitable conditions stated in Theorem 3.6. Replacing
Q, S by Q and Q + S − Q respectively in the iterative scheme (5) in the proof, a different
sufficient condition for the unique existence of the equilibrium strategy is obtained:

√
T 9 φ 9Q,T 9Ā 9Q,T (1 + 9S9Q,T ) + 9S9Q,T < 1,

where

9φ9Q,T , sup
0≤t≤T

√∥∥∥φ∗(T, t)Q1/2
T

∥∥∥2

+

∫ T

t

∥∥∥φ∗(s, t)Q1/2
s

∥∥∥2

ds,

9Ā9Q,T , sup
0<t<T

∥∥∥ĀtQ−1/2
t

∥∥∥ ,
9S9Q,T , sup

0<t≤T

∥∥∥Q−1/2
t (Qt + St −Qt)Q−1/2

t

∥∥∥ .
For example, if all the coefficients are constants and Ā = 0, then the condition Q+Q̄(I−S) >
0 provides the desired unique existence by setting Q , Q+ Q̄(I − S) and Q+ S −Q , O.

Remark 3.11. In Appendix, an example will be constructed which illustrates that its unique
existence could be covered by our theory but it fails to satisfy the sufficient condition as stated
in Huang et al. [21].

12



3.1 Relationship with Nonsymmetric Riccati Equation

We can look for a solution of Equation (4) in the form p̄t = Γtȳt. Hence we get the following
Nonsymmteric Riccati Equation:

dΓt
dt

+ Γt(At + Āt) + A∗tΓt − ΓtBtR
−1
t B∗t Γt +Qt + St = 0, ΓT = QT + ST . (7)

If it is solvable, using Remark 3.3, we have Γtȳt = p̄t = Ξtȳt + ζt. Therefore, the optimal
control u is −R−1B∗(Ξy + (Γ− Ξ)ȳ) and the optimal trajectory y satisfies{

dyt = [(At −BtR
−1
t B∗t Ξt)yt + (Āt −BtR

−1
t B∗t (Γt − Ξt))ȳt)] dt+ σt dWt,

y0 = x0.

However, because of the non-zero term Āt and St, Equation (7) is not the standard Riccati
Equation. Hence, it is not always solvable and no natural sufficient condition for the exis-
tence of the solution is known (see Freiling [13]). Moreover, Γt is not necessarily symmetric.
Nevertheless, when n = 1 and Q+ S ≥ 0, the Nonsymmetric Riccati Equation becomes

dΓt
dt

+ Γt

(
At +

1

2
Āt

)
+

(
At +

1

2
Āt

)∗
Γt − ΓtBtR

−1
t B∗t Γt +Qt + St = 0,

ΓT = QT + ST ,

which is of the standard form and the existence result holds. The explicit form of the solution
Γt can be established in this special case as follows. For the sake of simplicity, assume that
all the coefficients are time-independent and our Riccati Equation can be simplified as:

dΓt
dt

+ (2A+ Ā)Γt −B2R−1Γ2
t +Q+ S = 0, ΓT = QT + ST .

1. For B = 0, we have

Γt =

(
QT + ST +

Q+ S
2A+ Ā

)
exp((2A+ Ā)(T − t))− Q+ S

2A+ Ā
,

when 2A+ Ā 6= 0 and
Γt = (Q+ S)(T − t) +QT + ST ,

when 2A+ Ā = 0.

2. For B 6= 0, let α ≥ 0 and −β ≤ 0 be the two distinct roots of the quadratic equation

Q+ S + (2A+ Ā)γ −B2R−1γ2 = 0,

and the solution can be explicitly written as

Γt − α =
(QT + ST − α)(α + β)

(QT + ST + β) exp(B2R−1(α + β)(T − t))− (QT + ST − α)
,

which is well-defined.
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We remark that for n = 1, Q + S is not always nonnegative, and hence the Nonsymmetric
Riccati Equation is not always solvable, the sufficient condition provided in Theorem 3.6
may have to be invoked. The following proposition, Radon’s lemma in Freiling [13], or a
time-dependent version of Theorem 4.3 on page 48 in Ma and Yong [34], justifies this claim.

Proposition 3.12. Suppose that the following system of ordinary differential equations
d

dt

(
ξt
−ηt

)
=

(
At + Āt −BtR

−1
t B∗t

Qt + St A∗t

)(
ξt
ηt

)
,

ξt0 = 0,

ηT = (QT + ST )ξT ,

admits a unique solution for any t0 ∈ [0, T ]. Then there is a unique solution Γt of the
Nonsymmetric Riccati Equation (7).

Proof. We first rewrite the system of ordinary differential equations as
d

dt

(
ξt
ηt

)
=

(
At + Āt −BtR

−1
t B∗t

−Qt − St −A∗t

)(
ξt
ηt

)
,

ξt0 = 0,

ηT = (QT + ST )ξT .

Let Φ(t, s) be the fundamental solution of this system of forward-backward ordinary differ-
ential equations. Then we have

0 =
(
QT + ST , −I

)(ξT
ηT

)
=
(
QT + ST , −I

)
Φ(T, t0)

(
0
ηt0

)
=
(
QT + ST , −I

)
Φ(T, t0)

(
O
I

)
ηt0 .

By the unique existence of the solution, the matrix
(
QT + ST , −I

)
Φ(T, t0)

(
O
I

)
is invertible

for any t0 ∈ [0, T ]. By setting

Γt , −
[(
QT + ST , −I

)
Φ(T, t)

(
O
I

)]−1 [(
QT + ST , −I

)
Φ(T, t)

(
I
O

)]
,

it can be checked that it solves for the Nonsymmetric Riccati Equation (7).

Corollary 3.13. Assume that 9Ā9T0 < ∞ and 9S9T0 < ∞. The Nonsymmetric Riccati
Equation (7) is solvable if either one of following conditions is satisfied:

1. 9Ā9T0 = 0 and 9S9T0 < 1,

2. 9Ā9T0 6= 0 and

T <

(
1− 9S9T0

9φ 9T0 9Ā 9T0 (1 + 9S9T0)

)2

∧ T0.
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In particular, if all the coefficients are time-independent, then the Nonsymmetric Riccati
Equation (7) is solvable if either one of following conditions is satisfied:

1. 9Ā9 = 0 and 9S9 < 1,

2. 9Ā9 6= 0 and

T <

(
1− 9S9

9φ 9 9Ā 9 (1 + 9S9)

)2

.

3.2 The case that n = 2

When n = 2, in general, the existence and uniqueness result of Equation (4) cannot be guar-
anteed. For the ease of computation, in this subsection, we will assume that all coefficients
are constant matrices of suitable sizes and S = I. The latter assumption implies that the
existence and uniqueness of the equilibrium do not depend on Q̄ and the non-singularity of
QT is not required in Theorem 3.6. We denote the zero matrix by O.

3.2.1 When Ā = −A

Let

A =

(
−2.1 −1.9
−1.2 1.7

)
, R−1 =

(
2 3.1

3.1 4.9

)
, Q =

(
3.6 −0.6
−0.6 0.2

)
,

Ā = −A, B = I and QT = O. Equation (4) becomes

d

dt

(
ξt
ηt

)
= Π

(
ξt
ηt

)
,

ηT = 0 and ξ0 = E[x0], where

Π ,


0 0 2 3.1
0 0 3.1 4.9

3.6 −0.6 2.1 1.2
−0.6 0.2 1.9 −1.7

 .

We denote the fundamental solution of this system by

Φt ,

(
Φ11
t Φ12

t

Φ21
t Φ22

t

)
= exp(Π · t).

This equation is (uniquely) solvable if and only if there is a (unique) η0 such that

0 =
(
O I

)(Φ11
T Φ12

T

Φ21
T Φ22

T

)(
E[x0]
η0

)
= Φ21

T · E[x0] + Φ22
T · η0. (8)

Numerically, the determinant of Φ22
0.83 and Φ22

0.86 are approximately equal to 0.1244555 and
−0.1295142 respectively. Since the function

t 7→ det

{(
O I

)
exp(Π · t)

(
O
I

)}
= det(Φ22

t )
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is a continuous function, there is a scalar T0 ∈ (0.83, 0.86) such that det(Φ22
T0

) = 0 and
hence Equation (4) does not have any unique solution when T = T0. In fact, the singularity
of Φ22

T0
shows that Equation (8) cannot be solvable for any E[x0] when T = T0. Assume

otherwise, that is, R(Φ21
T ) ⊆ R(Φ22

T ), where the range and the null space of a matrix M are
denoted by R(M) and N (M) respectively. By the standard result in Linear Algebra, we have
N ((Φ22

T )∗) ⊆ N ((Φ21
T )∗). Choose T = T0 as defined above and hence N ((Φ22

T0
)∗) is non-empty.

It shows that

rank(ΦT0) = rank

(
Φ11
T0

Φ12
T0

Φ21
T0

Φ22
T0

)
= rank

(
(Φ11

T0
)∗ (Φ21

T0
)∗

(Φ12
T0

)∗ (Φ22
T0

)∗

)
≤ 2n− 1,

which contradicts the invertibility of ΦT0 , and the claim holds.

For the general existence issue, it suffices to show that Φ21
T0

is non-singular. In fact, we can
choose E[x0] such that Φ21

T0
· E[x0] is not in the range of Φ22

T0
and hence Equation (8) is not

solvable. Figure 1 shows the relationship between the time variable t and D(t) , det(Φ21
t )

on the interval [0, 1] and demonstrates the non-singularity of Φ21
T0

.

Figure 1: The relationship between t and D(t)

3.2.2 An arbitrary case, when Ā 6= −A

Let

A =

(
−0.4 −0.6
0.4 −0.1

)
, Ā =

(
1.5 0.7
−0.1 −0.3

)
R−1 =

(
1.2 2.2
2.2 4.4

)
, Q =

(
6.6 −2.8
−2.8 1.2

)
,

B = I and QT = O. Equation (4) becomes

d

dt

(
ξt
ηt

)
= Π

(
ξt
ηt

)
,
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ηT = 0 and ξ0 = E[x0], where

Π ,


1.1 0.1 1.2 2.2
0.3 −0.4 2.2 4.4
6.6 −2.8 0.4 −0.4
−2.8 1.2 0.6 0.1

 .

Numerically, the determinant of Φ22
1 is approximately equal to −0.3582768. Similar to the

previous discussion, there is a scalar T0 > 0 such that Equation (4) does not have any unique
solution and there is no existence result for all initial points E[x0].

4 ε-Nash Equilibrium

In this section, we shall show that the equilibrium strategy ui of Problem 2.2 is an ε-Nash
Equilibrium of Problem 2.1. For more inspiring elaboration on the notion of ε-Nash Equil-
brium, one can refer to, for example, Cardaliaguet [11] and Huang et al. [19, 20, 25]. Because
of the permutation symmetry, it suffices to consider Player 1. In this section, K will denote a
generic constant, being independent of time, which may be different in line by line. In order
to show that (u1. . . . , uN) is an ε-Nash Equilibrium, it is crucial to prove that for any ε > 0,
there is a positive integer N0 such that when N ≥ N0, we have

J 1(v1, u2, . . . , uN) ≥ J 1(u1, . . . , uN)− ε, (9)

for any admissible control v1.

To begin with, we first approximate yi, 1 ≤ i ≤ N , where
dyit =

(
Aty

i
t +Btu

i
t + Āt ·

1

N − 1

N∑
j=1,j 6=i

yjt

)
dt+ σt dW

i
t ,

yi0 = xi0.

Proposition 4.1. As N →∞, we have

sup
1≤i≤N

E
[

sup
0≤t≤T

‖yit − ŷit‖2

]
= O

(
1

N

)
.

Proof. Recall that ŷ is defined right after Problem 2.2, we first note that
d(yit − ŷit) =

(
At(y

i
t − ŷit) + Āt ·

1

N − 1

N∑
j=1,j 6=i

(yjt − E[ŷit])

)
dt,

yi0 − ŷi0 = 0,

as ŷ1, . . . , ŷN are i.i.d.. Taking square on both sides, we have

‖yit − ŷit‖2 ≤ K

∫ t

0

‖yis − ŷis‖2 +
1

(N − 1)2

∥∥∥∥∥
N∑

j=1,j 6=i

(yjs − ŷjs)

∥∥∥∥∥
2
 ds

+K

∫ t

0

1

(N − 1)2

∥∥∥∥∥
N∑

j=1,j 6=i

(ŷjs − E[ŷjs])

∥∥∥∥∥
2

ds.
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By first applying Jensen’s inequality to the second term in the first integrand and taking
expectations on both sides, as y1− ŷ1, . . . , yN − ŷN are identically distributed and ŷ1, . . . , ŷN

are i.i.d., we have

E[‖yit − ŷit‖2] ≤ K

∫ t

0

(
E[‖yis − ŷis‖2] +

1

N − 1
E[‖ŷis − E[ŷis]‖2]

)
ds.

By the Gronwall’s inequality,

E[‖yit − ŷit‖2] ≤ K · 1

N − 1

∫ T

0

E[‖ŷis − E[ŷis]‖2] ds,

as desired and note that the value of the last integral is independent of i.

Note that the previous estimates are standard in the McKean-Vlasov Model, see for example
Sznitman [36]. The following corollary is crucial in proving that (u1, . . . , uN) is an ε-Nash
Equilibrium.

Corollary 4.2. As N →∞, we have

E
[

sup
0≤t≤T

|‖y1
t ‖2 − ‖ŷ1

t ‖2|
]

= O

(
1√
N

)
.

Proof.

E
[

sup
0≤t≤T

|‖y1
t ‖2 − ‖ŷ1

t ‖2|
]

≤ E
[

sup
0≤t≤T

‖y1
t − ŷ1

t ‖2

]
+ 2

√
E
[

sup
0≤t≤T

‖ŷ1
t ‖2

]√
E
[

sup
0≤t≤T

‖y1
t − ŷ1

t ‖2

]
,

by the Cauchy-Schwarz Inequality and the result follows by applying Proposition 4.1.

Similarly, we have

E

 sup
0≤t≤T

∣∣∣∣∣∣
∥∥∥∥∥y1

t − St ·
1

N − 1

N∑
j=2

yjt

∥∥∥∥∥
2

− St ·

∥∥∥∥∥ŷit − 1

N − 1

N∑
j=2

ŷjt

∥∥∥∥∥
2
∣∣∣∣∣∣
 = O

(
1√
N

)
,

as ŷ1, . . . , ŷN are i.i.d.. Combining, we have

J 1(v̂1, . . . , v̂N) = J1(v̂1) +O

(
1√
N

)
. (10)

Because of the positive (non-negative) definiteness of the matrix-valued parameters,

J 1(v1, u2, . . . , uN) ≥ E
[

1

2

∫ T

0

(v1
t )
∗Rtv

1
t dt

]
≥ δ

2
E
[∫ T

0

‖v1
t ‖2 dt

]
,

it suffices to consider the admissible controls v1
t satisfying

E
[∫ T

0

‖v1
t ‖2 dt

]
≤ 2

δ
(J1(u1) + 1),
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otherwise the inequality (9) holds trivially.

Having the L2-boundedness of the admissible controls, we are now ready to estimate J 1(v1, u2, . . . , uN).
Recall that 

dx1
t =

(
Atx

1
t +Btv

1
t + Āt ·

1

N − 1

N∑
j=1,j 6=i

xjt

)
dt+ σt dW

1
t ,

x1
0 = ξ1,

and for i 6= 1,
dxit =

(
Atx

i
t +Btu

i
t + Āt ·

1

N − 1

(
N∑

j=2,j 6=i

xjt + x1
t

))
dt+ σt dW

i
t ,

xi0 = ξi.

For i 6= 1, we claim that xit can be approximated by x̌it, where
dx̌it =

(
Atx̌

i
t +Btu

i
t + Āt ·

1

N − 1

N∑
j=2,j 6=i

x̌jt

)
dt+ σt dW

i
t ,

xi0 = ξi.

The following proposition justifies this claim.

Proposition 4.3. As N →∞, we have

sup
2≤i≤N

E
[

sup
0≤t≤T

‖xit − x̌it‖2

]
= O

(
1

N2

)
.

Proof. For each i 6= 1,

‖xit‖2 ≤ K‖ξi‖2 +K

∫ t

0

‖xis‖2 + ‖uis‖2 +
1

(N − 1)2

∥∥∥∥∥
N∑

j=1,j 6=i

xjs

∥∥∥∥∥
2
 ds

+K

∥∥∥∥∫ t

0

σs dW
i
s

∥∥∥∥2

,

and

‖x1
t‖2 ≤ K‖ξ1‖2 +K

∫ t

0

‖x1
s‖2 + ‖v1

s‖2 +
1

(N − 1)2

∥∥∥∥∥
N∑
j=2

xjs

∥∥∥∥∥
2
 ds

+K

∥∥∥∥∫ t

0

σs dW
1
s

∥∥∥∥2

.

Taking the summation of i from 1 to N on both sides and then using the same argument as
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in the proof of Proposition 4.1, we have

E

[
N∑
i=1

‖xit‖2

]
≤ K E

[
N∑
i=1

‖ξi‖2

]

+K

∫ t

0

(
E

[
N∑
i=1

‖xis‖2

]
+ E[‖v1

s‖2] +

[
N∑
i=2

E[‖uis‖2]

])
ds

+K
N∑
i=1

E

[∥∥∥∥∫ t

0

σs dW
i
s

∥∥∥∥2
]
,

which shows that E
[∑N

i=1 ‖xit‖2
]

= O(N) uniformly for all t. Therefore, E
[
sup0≤t≤T ‖x1

t‖2
]

is bounded uniformly with respect to N .

Now, for i 6= 1,
d(xit − x̌it) = At(x

i
t − x̌it) dt

+

(
Āt ·

1

N − 1

N∑
j=2,j 6=i

(xjt − x̌
j
t) + Āt ·

1

N − 1
· x1

t

)
dt,

xi0 − x̃i0 = 0.

Therefore,

‖xit − x̌it‖2 ≤ K

∫ t

0

‖xis − x̌is‖2 ds

+K

∫ t

0

 1

(N − 1)2

∥∥∥∥∥
N∑

j=1,j 6=i

(xjs − x̌js)

∥∥∥∥∥
2

+
1

(N − 1)2

∥∥x1
s

∥∥2

 ds

≤ K

∫ t

0

‖xis − x̌is‖2 ds

+K

∫ t

0

(
1

N − 1

N∑
j=1,j 6=i

∥∥xjs − x̌js∥∥2
+

1

(N − 1)2

∥∥x1
s

∥∥2

)
ds.

Taking summation over i from 2 to N , by applying Gronwall’s inequality again, we have

E

[
N∑
i=2

‖xis − x̌is‖2

]
≤ K · 1

N − 1

∫ T

0

‖x1
s‖2 ds.

As xi − x̌i, i 6= 1, are identically distributed, we have E[‖xit − x̌it‖2] = O
(

1
N2

)
uniformly for

all i and t, as desired.

Similarly, we can approximate x1 by x̌1, where

dx̌1
t =

(
Atx̌

1
t +Btv

1
t + Āt ·

1

N − 1

N∑
j=2

x̌jt

)
dt+ σt dW

1
t ,

x̌1
0 = ξ1,
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in the sense that

E
[

sup
0≤t≤T

‖x1
t − x̌1

t‖2

]
= O

(
1

N2

)
.

Having these approximation results, similar to Corollary 4.2, we have

E
[

sup
0≤t≤T

∣∣‖x1
t‖2 − ‖x̌1

t‖2
∣∣] = O

(
1

N

)
,

E

 sup
0≤t≤T

∣∣∣∣∣∣
∥∥∥∥∥x1

t − St ·
1

N − 1

N∑
i=2

xjt

∥∥∥∥∥
2

−

∥∥∥∥∥x̌1
t − St ·

1

N − 1

N∑
i=2

x̌jt

∥∥∥∥∥
2
∣∣∣∣∣∣
 = O

(
1

N

)
.

By using an essentially the same approach in the proof of Proposition 4.1, we also have

sup
2≤i≤n

E
[

sup
0≤t≤T

‖x̌it − ŷit‖2

]
= O

(
1

N

)
.

Moreover, we have

E
[

sup
0≤t≤T

‖x̌1
t − x̂1

t‖2

]
= O

(
1

N

)
.

Indeed,  d(x̌1
t − x̂1

t ) =

(
At(x̌

1
t − x̂1

t ) + Āt ·
1

N − 1

N∑
i=2

(x̌i − E[ŷit])

)
dt,

x̌1
0 − x̂1

0 = 0,

and hence

‖x̌1
t − x̂1

t‖2 ≤ K

∫ t

0

(
‖x̌1

s − x̂1
s‖2 +

1

N − 1

N∑
i=2

‖x̌js − ŷis‖2

)
ds

+K

∫ t

0

1

(N − 1)2

∥∥∥∥∥
N∑
i=2

(ŷis − E[ŷis])

∥∥∥∥∥
2

ds.

By applying Gronwall’s inequality, the claim can be deduced. In conclusion, by combining
all these estimates, the main claim in this section follows.

Theorem 4.4. (u1, . . . , uN) is an ε-Nash Equilibrium of Problem 2.1.

Proof. First recall that we have proved

J 1(u1, . . . , uN) = J1(u1) +O

(
1√
N

)
in Equation (10). Based on the above estimates, we have

E
[

sup
0≤t≤T

‖x1
t − x̂1

t‖2

]
= O

(
1

N

)
,

E
[

sup
0≤t≤T

‖xit − ŷit‖2

]
= O

(
1

N

)
,
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for i 6= 1. Using a similar argument as in the proof of Equation (10), we have

J 1(v1, u2, . . . , uN) = J1(v1) +O

(
1√
N

)
≥ J1(u1) +O

(
1√
N

)
= J 1(u1, . . . , uN) +O

(
1√
N

)
,

as required.

5 Mean Field Type Linear-Quadratic Stochastic Con-

trol Problems

In this section, we will use the technique employed in the previous section to find the optimal
control of the Mean Field Type counterpart of Problem 2.2.

Problem 5.1. Let ξ be a random vector that is identically distributed to ξ1 and independent
to W . The objective is to find an optimal control u which minimizes

J(v) , E
[

1

2

∫ T

0

x∗tQtxt + v∗tRtvt + (xt − St E[xt])
∗Q̄t(xt − St E[xt]) dt

]
+ E

[
1

2
x∗TQTxT +

1

2
(xT − ST E[xT ])∗Q̄T (xT − ST E[xT ])

]
,

where the dynamics is given by

dxt =
(
Atxt +Btvt + Āt E[xt]

)
dt+ σt dWt, x(0) = x0,

and v is a control in L2
F(0, T ;Rm).

In order to solve this optimization problem, we still adopt the adjoint equation approach.

Theorem 5.2. Problem 5.1 is uniquely solvable if there is a unique solution (y, p) of the
following linear mean-field FBSDE:

d

(
yt
−pt

)
=

(
At −BtR

−1
t B∗t

Qt + Q̄t A∗t

)(
yt
pt

)
dt

+

(
Āt E[yt]

−Q̄tSt E[yt]− S∗t Q̄t(I − St)E[yt] + Ā∗t E[pt]

)
dt+

(
σt
qt

)
dWt,

y0 = x0

pT = (QT + Q̄T )yT − Q̄TST E[yT ]− S∗T Q̄T (I − ST )E[yT ].

In this case, the optimal control is given by u = −R−1B∗p.

Proof. It is an immediate consequence of Theorem 4.1 in Andersson and Djehiche [3]. Note
that the assumption of non-negativity is not needed because of the linearity of the mean field
term. See also our Theorem 3.2.
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By Theorem 3.2, Equation (11) is uniquely solvable if and only if there is an unique pair
(ȳ, p̄) solving the following system of ordinary differential equations:

d

dt

(
ȳt
−p̄t

)
=

(
At + Āt −BtR

−1
t B∗t

Qt + (I − St)∗Q̄t(I − St) A∗t + Ā∗t

)(
ȳt
p̄t

)
,

ȳ0 = x̄0,

p̄T = (QT + (I − ST )∗Q̄T (I − ST ))ȳT ,

where x̄0 is defined to be E[x0]. Unlike to Equation (4), it is standard in Optimal Control
Theory from the nonnegative definiteness of (QT + (I − ST )∗Q̄T (I − ST )) and hence there
is a unique solution. Therefore, the Mean Field Type Linear-Quadratic Stochastic Control
Problem is uniquely solvable.

6 Comparison of Problem 2.2 and Problem 5.1

We will now compare the equilibrium strategy of Mean Field Game and the optimal control
of Mean Field Type Stochastic Control Problem when n = 1 and S = I. We assume that all
the coefficients are constant. Since the equilibrium strategy and the optimal control are of
the same form, they are different if we can show that ψ1(T ) 6= ψ2(T ), where (ϕ1, ψ1) satisfies

d

dt

(
ϕ1

−ψ1

)
=

(
A+ Ā −BR−1B∗

Q A∗

)(
ϕ1

ψ1

)
,

ϕ1(0) = x̄0,

ψ1(T ) = QTϕ1(T ),

and (ϕ2, ψ2) satisfies 
d

dt

(
ϕ2

−ψ2

)
=

(
A+ Ā −BR−1B∗

Q A∗ + Ā∗

)(
ϕ2

ψ2

)
,

ϕ2(0) = x̄0

ψ2(T ) = QTϕ2(T ).

To illustrate their differences, we suppose that Q = Q̄ = 0, Ā 6= 0, R = 1, QT = 1 and
B 6= 0. Solving the equations, we have ψ1(t) = ψ1(0)e−At and ψ2(t) = ψ2(0)e−(A+Ā)t, and the
condition that ψ1(T ) 6= ψ2(T ) is reduced to ϕ1(T ) 6= ϕ2(T ).

Solving
dϕ1

dt
= (A+ Ā)ϕ1 −B2ϕ1(T )eA(T−t),

we have

e−(A+Ā)Tϕ1(T )− x̄0 = −B2ϕ1(T )eAT
1

2A+ Ā
(1− e−(2A+Ā)T ).

In a similar fashion, solving

dϕ2

dt
= (A+ Ā)ϕ2 −B2ϕ2(T )e(A+Ā)(T−t),
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we have

e−(A+Ā)Tϕ2(T )− x̄0 = −B2ϕ2(T )e(A+Ā)T 1

2A+ 2Ā
(1− e−(2A+2Ā)T ).

Therefore, the condition that ϕ1(T ) 6= ϕ2(T ) is reduced to

1

2A+ Ā
(1− e−(2A+Ā)T ) 6= eĀT

1

2A+ 2Ā
(1− e−(2A+2Ā)T ).

It can be seen that this condition holds if we choose A sufficiently large and we conclude that
the equilibrium strategy is in general different from the optimal control.

7 Concluding Remarks

In summary, we provided a comprehensive study of the unique existence of equilibrium strate-
gies of LQMFGs by adopting the adjoint equation approach. In virtue of the linear structure
of the adjoint equations, the optimal mean field term satisfies the forward-backward ordinary
differential equation (4) in which, unlike the classical Riccati equation approach, the argu-
ment could be much easier to be extended in the higher dimensional settings. It is remarked
that most existing literature, such as Huang et al. [21], only considered a particular exam-
ple of an one dimensional problem in our LQMFGs in which they even failed to provide a
complete solution except under a restrictive technical condition that excludes a large class
of classical Linear Quadratic Stochastic Control problems. For the one dimensional case, we
showed that the equilibrium strategy always exists uniquely; while for dimension greater than
one, a sufficient condition for the unique existence of the equilibrium strategy is provided,
which is independent of both the solutions of any Riccati equations and the coefficients of
controls and is always satisfied whenever those of the mean-field term are vanished (and
therefore including the classical LQSC problems as special cases). Finally, we also illustrate
the fundamental differences between Linear-Quadratic Mean Field Type Stochastic Control
Problems and MFGs.
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A Appendix: Comparison of the Approaches of Huang

et al. [21] and the Present Paper

We consider the single agent problem studied by Huang et al. [21] (HCM), that is, the
distribution F (a) in HCM is now a Dirac distribution, to compare the approaches of HCM
and the present paper (BSYY) on the same problem. More precisely, we want to find the
optimal control u which minimizes the cost functional

J(u) = E
[∫ T

0

|zt − γ(z̄t + η)|2 + ru2
t dt

]
, (11)

where
dzt = (azt + but) dt+ αz̄t dt+ σ dwt, z(0) = z0, (12)

z̄t is fixed, deterministic and z0 is a random variable with zero mean, independent of the
Wiener process. At the second stage, we consider a fixed point problem

z̄t = E[zt], (13)

where zt is the optimal state of the control problem (11), (12). In the sequel, we shall describe
both approaches in detail to make the comparison explicit. As in HCM, we use the notation
z∗t , γ(z̄t + η).

A.1 HCM approach

For given z̄, one solves the stochastic control problem (11), (12) by the Riccati differential
equation approach. The optimal control is given by

ut = − b
r

(Πtzt + st), (14)

where Πt is the positive solution of the Riccati equation

dΠt

dt
+ 2aΠt −

b2

r
Π2
t + 1 = 0, ΠT = 0, (15)

and st solves the linear differential equation

dst
dt

+

(
a− b2

r
Πt

)
st + αΠtz̄t − z∗t = 0, sT = 0. (16)

Therefore, from (12), the optimal trajectory satisfies

dzt =

(
a− b2

r
Πt

)
zt dt+

(
−b

2

r
st + αz̄t

)
dt+ σ dwt, z(0) = z0.
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Furthermore, to satisfy (13), we must have

dz̄t
dt

=

(
a− b2

r
Πt

)
z̄t −

b2

r
st + αz̄t, z̄(0) = 0, (17)

and it suffices to find a solution of the deterministic system (16), (17). We now state the
sufficient condition in HCM that guarantees the unique solution for the system (16), (17).

A.2 HCM proof

Introduce

Φ(t, τ) = exp

(
−
∫ t

τ

(
a− b2

r
Πσ

)
dσ

)
,

and note that t is not necessarily greater than τ . Solving (16) by the formula

st =

∫ T

t

Φ(t, τ)((αΠτ − γ)z̄τ − γη) dτ,

and substituting in (17) yields

z̄t =

∫ t

0

Φ(σ, t)

{
αz̄σ −

b2

r

∫ T

σ

Φ(σ, τ)(αΠτ − γ)z̄τ − γη dτ
}
dσ. (18)

Remark A.1. There is a typo in HCM, on page 171, where the integral sign
∫ T
σ

is written

as
∫ T

0
.

The problem is reduced to find a fixed point of equation (18) and HCM uses the contraction
principle to solve for it in the space C(0, T ).

Consider a continuous function ϕ and the linear map

Γϕ(t) =

∫ t

0

Φ(σ, t)

{
αϕσ −

b2

r

∫ T

σ

Φ(σ, τ)(αΠτ − γ)ϕτ dτ

}
dσ,

then the norm ‖Γ‖ must be required to be strictly less than 1. Since Φ and Π are positive,
we have

|Γϕ(t)| ≤ ‖ϕ‖
∫ t

0

Φ(σ, t)

{
|α|+ b2

r

∫ T

σ

Φ(σ, τ)(|α|Πτ + |γ|) dτ
}
dσ,

and thus the assumption

‖Γ‖ ≤ sup
0<t<T

∫ t

0

Φ(σ, t)

{
|α|+ b2

r

∫ T

σ

Φ(σ, τ)(|α|Πτ + |γ|) dτ
}
dσ < 1, (19)

guarantees the contraction property.

Remark A.2. There are two typos in the statement of the condition in HCM, on page 170
(although the previous one is corrected): b2

r
appears as a multiplicative factor for the whole

right hand side of (19), which should not be. Also the integral sign
∫ t

0
is written as

∫ T
0

.

Correcting these typos, this is the HCM result in the present framework.
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A.3 BSYY approach

The present paper uses the stochastic maximum principle to solve (11), (12). The optimal
control is

ut = − b
r
pt, (20)

where pt = E[ωt|Ft], Ft is the filtration generated by z0 and the Wiener process up to time t
and ωt solves the adjoint equation

−dωt
dt

= aωt + zt − z∗t , ωT = 0.

Combining, the following system of necessary conditions holds:

dzt =

(
azt −

b2

r
pt + αz̄t

)
dt+ σ dwt,

z(0) = z0,

−dωt
dt

= aωt + zt − z∗t ,

ωT = 0,

(21)

where pt = E[ωt|Ft]. It is well-known that pt = Πtzt + st and (14), (20) coincide. The
difference concerns the fixed point argument.

In our approach, we define z̄t = E[zt] and p̄t = E[pt] = E[ωt]. Therefore (21) becomes

dz̄t
dt

= (a+ α)z̄t −
b2

r
p̄t,

z̄(0) = 0,

−dp̄t
dt

= ap̄t + (1− γ)z̄t − γη,

p̄T = 0,

(22)

which we shall solve. Again, p̄t = Πtz̄t+st, and the systems (22) and (16), (17) are equivalent.

A.4 BSYY proof and Nonsymmetric Riccati Equation

The trouble with the relation p̄t = Πtz̄t + st is that it does not express the adjoint variable p̄t
as an affine function of z̄t alone. In fact, we need both z̄t and st, which is a coupled system,
to be solved first, as done in HCM. Our approach is to express p̄t as an affine function on z̄t
only. We write

p̄t = Ptz̄t + ρt (23)

and by identification, we obtain:

dPt
dt

= −(2a+ α)Pt +
b2

r
P 2
t − 1 + γ, PT = 0, (24)

dρt
dt

= −
(
a− b2

r

)
ρt + γη, ρT = 0.
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The Riccati equation (24) is different from (15) and it is called a nonsymmetric Riccati
equation because in dimension larger than 1, it leads to (non-standard) nonsymmetric Riccati
equatons. Solving (22) amounts to solve the Riccati equation (24), since using (23) in (22),
z̄t is a solution of linear equation.

If we assume that
γ ≤ 1 (25)

(which is independent of the choice of b), then the second order equation

−b
2

r
ς2 + (2a+ α)ς + 1− γ = 0

has two roots ς1 ≥ 0, ς2 ≤ 0 and the solution of the Riccati equation is

Pt =
(1− γ)r

b2

exp
(

(ς1 − ς2) b
2

r
(T − t)

)
− 1

ς1 − ς2 exp
(
(ς1 − ς2) b

2

r
(T − t)

) .
We can compare assumption (25) with respect to assumption (19), in obtaining the fixed
point property. For instance, take a = 0, α = 0 and r = 1, Condition (19) means that

sup
0<t<T

b2|γ|
∫ t

0

Φ(σ, t)

(∫ T

σ

Φ(σ, τ) dτ

)
dσ < 1 (26)

where

Φ(t, τ) = exp

(
b2

∫ t

τ

Πσ dσ

)
and

dΠt

dt
− b2Π2

t + 1 = 0, ΠT = 0.

Thus,

bΠt + 1 =
2

1 + e−2b(T−t) ,

and from (26),

sup
0<t<T

b2|γ|
∫ t

0

exp

(∫ σ

t

b2Πλ dλ

){∫ T

σ

exp

(∫ σ

τ

b2Πµ dµ

)
dτ

}
dσ < 1,

which means that

sup
0<t<T

b2|γ|
∫ t

0

exp

(
−
∫ t

σ

b2Πλ dλ

){∫ T

σ

exp

(
−
∫ τ

σ

b2Πµ dµ

)
dτ

}
dσ < 1. (27)

Since

bΠt =
1− e−2b(T−t)

1 + e−2b(T−t) < 1,
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from (27), we obtain

1 > sup
0<t<T

b2|γ|
∫ t

0

e−b(t−σ)

{∫ T

σ

e−b(τ−σ) dτ

}
dσ

= sup
0<t<T

b|γ|
∫ t

0

e−b(t−σ)(1− e−b(T−σ)) dσ

= |γ| sup
0<t<T

(
1− e−bt − 1

2
e−b(T−t) +

1

2
e−b(T+t)

)
,

which amounts to
|γ| (1− e−bT ) < 1. (28)

Obviously, (25) and (28) are not equivalent. We remark that in order to guarantee the
existence uniformly for arbitrarily choice of b, (28) only holds when |γ| ≤ 1.

A.5 Generalization to n dimensions

Both approaches can be considered in n dimension. However, the condition for the existence
and uniqueness of the fixed point in the HCM approach becomes extremely difficult to be
checked, since it involves the solution of Riccati equations. Our approach leads to conditions
which are much easier to be verified, and also introduces an interesting and new direction
for solvable nonsymmetric Riccati equations that do not correspond to any usual control
problems at all. The contribution of BSYY provides a complement to HCM theory, with
insights which deserve to be known.
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