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Abstract. We propose a simple implementation of the bare raising operator on
coherent states via conditional measurement, which succeeds with high probability
and fidelity. This operation works well not only on states with a Poissonian photon
number distribution but also for a much wider class of states. As a part of this
scheme, we highlight an experimentally testable effect in which a single photon
is induced through a highly reflecting beamsplitter by a large amplitude coherent
state, with probability 1/e (≈ 37%) in the limit of large coherent state amplitude.
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1. Introduction

Operations on quantum states of light have a wide range of applications in quantum
information processing and communication [1], as well as being of fundamental
interest [2]. However, the operations that are easily implemented are limited to
the class of Gaussian or linear operations [1]. Conditional evolution overcomes this
limitation and provides a richer set of operations useful for manipulating continuous
variable systems [3, 4, 5, 6]. Here, we show how to mimic the application of the bare
raising operator to coherent state inputs using a beamsplitter, a single photon source,
and a detector. In doing so we exploit a process that we call the quantum carburettor
effect, whereby a strong coherent beam entrains the passage of a single photon (from
an independent source) through a highly reflective beamsplitter with high probability,
thereby elegantly highlighting the bosonic nature of light.

Conditional measurement-based evolution is a useful tool in discrete variable
systems, such as the scheme by Knill, Laflamme and Milburn for efficient linear optical
computing [7]. Discrete systems have been extensively studied [8], but have limitations
particularly apparent in communications, where loss may be significant. Continuous
variable schemes show greater promise here [1], but while Gaussian states such as
coherent or squeezed states are relatively well understood, non-Gaussian states and
operations have been less well-studied [9]. Non-Gaussian operations are required for
tasks such as entanglement distillation and error correction, essential to the use of
continuous variables in information processing protocols. In the continuous variable
regime conditional evolution allows non-Gaussian operations [1]. There has significant
interest in this approach [10, 12, 13, 11, 14, 15, 16], as the alternative of using nonlinear
optics typically succeeds with low probability due to the weakness of nonlinear
susceptibilities. Operations based on conditional measurement can be concatenated
and this can allow operations which would not be possible deterministically, such as
probabilistic state amplification [17, 18, 19, 20, 21, 22, 23, 24]. Here we look at a
different way to increase the energy of a quantum state, by implementing the ladder
or bare raising operator [25].

We first introduce the bare raising operator, then describe the basic setup for
photon addition using a beamsplitter. In contrast to previous work [26, 27], our
method works on an easily-generated state with Poissonian photon number statistics
such as the coherent state. The reflectivity of the beamsplitter is chosen to shape the
photon number basis amplitudes of the output state to best match a photon-shifted
coherent state. Our approach is not limited to coherent states as it does not rely on
coherence between the input and the single-photon ancilla, and it will also provide a
high fidelity implementation of the required operator on any state with similar support
to a coherent state. We show that the probability of successful implementation of the
operation remains high even for large coherent state amplitudes – the beamsplitter
reflectivity in this case is close to unity, but the photon is still transmitted with high
probability – a process that we dub the quantum carburettor effect. This highlights
the counter-intuitive bunching effects due to the bosonic nature of light. We examine
the effect of imperfect detector efficiency and show that the operations and quantum
carburettor effect persist for experimentally feasible values. We also consider a multi
stage scheme.
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Figure 1. Comparison of the action of â† and Ê+ on a coherent state |α〉,
with α = 1. Figure shows Fock basis populations for: (a) |α〉, (b) â† |α〉 (after

normalization) and (c) Ê+ |α〉. Note that â† increases the relative probability

of higher excitation numbers (bosonic enhancement), whereas Ê+ preserves the
relative populations.

2. The bare raising operator

The bare raising and lowering operators, sometimes known as the Susskind-Glogower
operators [25], act on the space of harmonic oscillator energy eigenstates to shift the
amplitudes of a state of a system up or down the ladder by exactly one quantum
without modifying their relative amplitudes. They are

Ê+ =
∞
∑

n=0

|n+ 1〉〈n|, Ê− =
∞
∑

n=1

|n− 1〉〈n|, (1)

with Ê+ = (Ê−)†. Note that while Ê−Ê+ = ✶, Ê+Ê− = ✶ − |0〉〈0|, because acting
with Ê− on the ground state has no support. Unlike the more usual creation and
annihilation operators â† =

∑∞
n=0

√
n+ 1|n + 1〉〈n| and â =

∑∞
n=1

√
n|n − 1〉〈n| the

bare operators do not introduce
√
n bosonic enhancement factors, as shown in figure 1.

The corresponding operations are identical in their actions on a Fock state, but for a
superposition or mixture of Fock states the difference between these two operations
can be clearly seen. Ê+ only shifts the Fock basis amplitudes up to a higher photon
number, whereas after normalization â† increases the amplitudes of larger Fock states
relative to lower ones. Therefore the bare raising and lowering operators can be used
to shift the Fock state amplitudes of a quantum state up or down whilst preserving
coherence, with the obvious exception of the ground state information being lost when
the state is lowered.

These operators have long been of theoretical interest [25], as they can be used in
applications such as generation and manipulation of nonclassical states [28] or their
characterization [29]. Also, the bare raising operator Ê+ is a Fock-space equivalent
of the first Hilbert Hotel type operation [30], which demonstrates the mathematical
concept of infinity by an apparent paradox: a fully occupied hotel with infinite rooms
can accommodate one more guest by moving everyone up by one room.
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Figure 2. Setup of scheme from figure 2 of [27] (redrawn) for the synthesis
of large Fock states. The scheme succeeds when all detectors have no counts.
The beamsplitters each have a different transmission probability to optimize the
probability of a success, given success of the previous stage.

A scheme to synthesize arbitrary Fock states using beamsplitters and conditional
measurement with single photon inputs was considered in 2005 by Escher et. al. [27] .
Their system consisted of a cascade of beamsplitters, each combining a single photon
Fock state with the output of the previous beamsplitter. This is depicted in figure 2.
The scheme requires N single photons to make a Fock state |N〉, and succeeds when
all N − 1 perfectly efficient detectors do not fire. They found that the maximum
probability of a given detector not firing to be

P (0) =

(

n

n+ 1

)n

(2)

for a Fock state |n〉 and single photon input, leading to a |n+ 1〉 output. This occurs
with a beamsplitter of transmission coefficient

tn =

√

n

n+ 1
. (3)

Another similar scheme, again with cascaded beamsplitters and detectors, was
considered in [31] for state preparation from single photons and coherent states. Both
[31] and [27] simply considered implementing state preparation.

The standard creation operator â† can be implemented approximately, either
using postselected spontaneous parametric down conversion [32], or using a
beamsplitter, single photon and detector. We use the latter approach here, but we
aim to implement the bare raising operator Ê+ |n〉 = |n+ 1〉 instead. The bare raising
operator can be implemented in a two-stage process using attenuation followed by a
creation operator [33]. Here we seek a one-stage linear optical implementation with
corresponding high success probability and fidelity that works well on Gaussian states.
We do this by an appropriate choice of the parameters of the single beamsplitter.
One could also consider using existing implementations of â† to approximate Ê+. For
simplicity, we use the ideal creation operator to make this comparison with our results.

As Ê+ is a trace preserving operation it can in principle be implemented
deterministically, unlike â†. Recently, experimental implementations of Ê+ using
cavity QED [34] or circuit QED [35] have been proposed that are in some cases
deterministic and may allow practical applications. There is also a proposed
implementation of Ê− [36]. Linear optical nondeterministic implementations of higher-
order Hilbert-Hotel operations exist, but not in the Fock basis [30]. Here we replace
the complexity of these proposals with linear optics in the Fock basis and postselection.
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3. Implementation of Ê+ with a single beamsplitter

Physical implementations of non-Gaussian quantum optical operations normally work
imperfectly and only effectively on a limited support. At the very least they are
constrained physically by the amount of energy available. It is typical to tailor an
operation to work with high fidelity on a set of states of interest or in restricted
experimental parameter regimes, which limits the success probability. For example,
probabilistic amplification only works on states with limited photon number; photon
subtraction using a beamsplitter and a detector only works well in the low reflectivity
limit. We take this standard approach: we optimise our operation for coherent states
and find surprisingly that it works almost as well for a broad set of states of similar
support.

3.1. Setup

|α〉|α〉|α〉
1

|1〉|1〉|1〉

2

3

4

Ẽ
+|α〉Ẽ
+|α〉Ẽ
+|α〉

0

counts

Figure 3. Setup of scheme to implement Ê+. A coherent state in mode 1 and
a single photon in mode 2 are the inputs. Measurement of no photocounts at a
perfectly efficient detector in mode 3 gives an approximate implementation of Ê+

on the input coherent state, denoted Ẽ+ |α〉 in mode 4. The beamsplitter has
transmission coefficient t and reflection coefficient r.

The essential setup used throughout is shown in figure 3, with coherent state and
single photon inputs and measurement in one output mode [37]. A coherent state of
mean photon number |α|2 can be written as:

|α〉 = e
−|α|2

2

∞
∑

n=0

αn

√
n
|n〉 , (4)

where {|n〉} is the set of Fock states. The beamsplitter relations are

(

â†1
â†2

)

=

(

|t|eiφT −|r|e− iφR

|r|eiφR |t|e− iφT

)(

â†3
â†4

)

, (5)

where |t|2+ |r|2 = 1. The operation implemented by this setup will be denoted Ẽ+ to
distinguish it from the ideal Ê+ operation. So that Ẽ+ does not change the relative
phase of the photon number states, we choose the convention φR = π and φT = 0.
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The joint input state to the beamsplitter is

|α〉1 |1〉2 = e
−|α|2

2

∞
∑

n=0

αn

√
n!

|n〉1 |1〉2 ≡
∞
∑

n=0

qn |n〉1 |1〉2 , (6)

where qn = e
−|α|2

2
αn

√
n!

(note that the following is also valid for any reasonable choice

of qn). This can be written in terms of the input mode creation operators acting on
the joint vacuum state:

|Ψin〉 =
∞
∑

n=0

qn
â†1

n

√
n!
â†2 |00〉12 . (7)

Application of the beamsplitter transformation in Eq. (5) gives the joint output as:

|Ψout〉 =
∞
∑

n=0

qn√
n!

(

|t|eiφT â†3 − |r|e− iφR â†4

)n

×
(

|r|eiφR â†3 + |t|e− iφT â†4

)

|00〉34 , (8)

which can be expanded to give:

|Ψout〉 =

∞
∑

n=0

n
∑

k=0

qn
√
n!(−1)k

k!(n− k)!

×
[

A1

√

(n− k + 1)!k! |n− k + 1〉3 |k〉4

+A2

√

(n− k)!(k + 1)! |n− k〉3 |k + 1〉4
]

, (9)

where

A1 = A1(n, k) = |t|n−k|r|k+1ei(n−k)φT−i(k−1)φR (10)

A2 = A2(n, k) = |t|n−k+1|r|kei(n−k−1)φT−i kφR . (11)

After conditioning on no counts at the detector in mode 3 (i.e. k = n, 2nd term
only), we find the normalized output is

Ẽ+ |α〉 = 1
√

P (0)

∞
∑

n=0

qn|t||r|n
√
n+ 1 |n+ 1〉4 , (12)

where the success probability P (0) is given by

P (0) =

∞
∑

n=0

|qn|2|t|2|r|2n(n+ 1) . (13)

Note that, in terms of a single mode, our beamsplitter-implemented operation

may be expressed as Ẽ+ = |t|â†|r|â†â. The output state from the beamsplitter can be
tuned by adjusting the value of |r|. We adjust |r| to match the desired state Ê+ |α〉
more closely. We do this by optimizing F1 = | 〈α| (Ê+)†Ẽ+ |α〉 |2, which is the fidelity
of the beamsplitter-implemented operation with the exact operation.
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3.2. Results

3.2.1. Perfect Detectors The most striking result is the behaviour of the success
probability for the Ẽ+ operation in the high n or α limit. The limit of Eq. (2)
as n → ∞ is P (0) = 1/e for high-n Fock states. This result also holds for
α → ∞, as shown numerically in figure 4. Thus a single photon is, with high
probability, transmitted through a highly-reflecting mirror by an intense light beam.
This “quantum carburettor”‡ effect is not due to any coherence between the photon
and the coherent state, as would be the case in a Mach-Zender interferometer for
instance.
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Figure 4. Success and reflection probabilities for the Ẽ+ operation. The
probability of no counts (red, solid) for the beamsplitter-implemented Ẽ+

operations for coherent state |α〉 input is plotted, with limit 1/e (grey, solid),
and the optimal value of the reflection probability |r|2 (blue, dashed).

The quantum carburettor effect can clearly be seen by the probability limit
in figure 4. With a beamsplitter of the optimum reflection probability |ropt|2, the
probability for the detection of zero photons with a perfect detector tends towards
the limit 1/e ≈ 0.37. The optimum reflection probability tends towards a perfectly
reflecting mirror, but even in this limit a single photon can be transmitted with
probability 1/e if the appropriate amplitude coherent state is also incident on the
beamsplitter.

We show the fidelity of the conditional output state after normalization with the
ideal Ê+ |α〉 in figure 5, and also for comparison the fidelity of the state â† |α〉 with
the ideal Ê+ |α〉. The different effect of Ê+ and â† is clearest around α ≈ 1, and the
conditional output state has a much higher fidelity with Ê+ |α〉 than the state â† |α〉.

For sufficiently large |α|, the
√
n+ 1 term of equation (12) is approximately

constant across the relevant Fock subspace that encompasses the majority of the
support of the state, leading to the increased fidelity compared with lower |α|.
Numerical results indicate that the reflection probability |ropt|2 for implementing the

Ê+ operation with the highest fidelity coincides closely with that for the highest
success probability for large values of |α| (α >≈ 2.5).

‡ The entrainment or sucking of a single photon through a highly-reflecting beamsplitter is
reminiscent of the operation of a carburettor, in which fuel is sucked through a small nozzle by
the flow of air.
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Figure 5. Fidelities of the Ẽ+ operation and perfect â† compared with the exact
Ê+ operation on coherent states. The fidelities of the normalized output state
Ẽ+ |α〉 (red, solid) and normalized â† |α〉 (blue, dashed) are shown, compared

to the ideal state Ê+ |α〉. The ‘do nothing’ fidelity of the original input
coherent state with the ideal state is also shown (gray, dotted). Fidelities are

| 〈α| (Ê+)†Ẽ+ |α〉 |2, | 〈α| âẼ+ |α〉 |2 and | 〈α| (Ê+)† |α〉 |2 respectively (with all
states suitably normalized). The reflectivity of the beamsplitter was chosen to

maximize the fidelity of the output state with Ê+ |α〉.

To calculate the reflection probability corresponding to the maximum success
probability, we differentiate Eq. (13) w.r.t. |r|2 and set equal to zero. Taking the
positive solution for |r|2 leads to

|r|2 =
|α|2 − 3 +

√

|α|4 + 2|α|2 + 5

2|α|2 , (14)

which is valid above |α|2 = 0.5. Hence in the high |α| limit Eq. (14) is a good
approximation of the optimal reflection probability.

3.2.2. Arbitrary state inputs Although we tailor the beamsplitter reflection
coefficient such that the operation works well for coherent states, the implementation
is phase insensitive, so it works equally well for all states with Poissonian photon
number statistics. Furthermore the operation also works well for states with a similar
support to a coherent state. We illustrate this using randomly chosen states in a
finite Fock basis. The inset of figure 6 shows the distribution of fidelities for a basis
of up to 5 photons. An example state is shown in figure 7. All fidelities were greater
than 0.988 and the mean fidelity was 0.99478. We also show that our operation is
significantly different from the standard creation operator â† by calculating the fidelity
of approximating Ê+ with â†, which is shown in the main part of figure 6 alongside
the previous data. Despite our optimization for coherent states, our implementation
of Ê+ works well for a broad set of states, including randomly chosen states.

3.2.3. Inefficient Detectors For perfect detectors, no counts corresponds to a
projection on the vacuum. For imperfect detectors, the measurement operator
corresponding to “no counts” contains an admixture of higher Fock states. A major
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Figure 6. Distribution of the fidelities of Ê+ with the approximate Ẽ+ operation
(dark purple, main figure and inset) and â† (light purple, main figure only) on
random states. The inset shows the distribution of results in the far right hand bar
of the main figure. 10,000 random states were generated using QuTiP’s rand ket
function [38] with a maximum photon number of 6. The last element was set to
0 before renormalizing, to produce a state with random Fock state amplitudes
in the range |0〉 to |5〉. States were then operated on using our approximate Ẽ+

operation with parameters optimised for α = 1.5 and the fidelity with the exact
Ê+ calculated after normalization. The mean fidelity was 0.99478 (marked by
line on inset). The same states were also operated on with â† for comparison.

consideration for an experimental implementation would be the robustness to this
detector inefficiency. This can be accounted for by using the normally ordered
measurement operator : exp(−ηâ†â) : in place of a simple projection [39, 6.10], where
η is the detector efficiency (the probability that a photon incident on the detector will
be counted). Numerical calculations shown in figure 8 indicate that the model is not
affected severely by the presence of moderate inefficiency. Numerical work was done
in python with the aid of the QuTiP package [38].

Whilst moderate detector inefficiency does not prevent implementation of Ê+,
for η < 1 − 1/e ≈ 63% the optimum reflectivity is discontinuous with respect to
input state amplitude. This is due to the switch between two regimes: for low α, the
beamsplitter-implemented operation gives a better fidelity, while for higher |α| the
loss of fidelity due to the inefficiency means that simply reflecting the input coherent
state gives a better fidelity. In that case the success probability is the same as the
detector inefficiency, although the operation cannot be said to be implemented. The
boundary between these two regimes for various values of η is depicted in figure 9 as
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Figure 7. An example implementation of (a) Ê+ |ψ〉 and (b) the approximate
Ẽ+ |ψ〉 on a random state |ψ〉 from the set in figure 6. The fidelity is 0.9971.
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Figure 9. Comparison of the Ẽ+ scheme with doing nothing when detectors are
inefficient. The fidelity of the original coherent state |α〉 with its photon number

raised state Ê+ |α〉 (red,solid) and the fidelity of the normalized beamsplitter

operation with Ê+ |α〉 are shown for values of the detector inefficiency η =
0.8, 0.6, 0.4 from top to bottom (blue, dashed). The crossing points indicate the
discontinuity in the optimal reflection probability; at that point, it becomes more
advantageous to simply reflect the input state rather than attempt an operation
on it.

the point at which the ‘do nothing’ fidelity exceeds the achievable fidelity with the
current set up. Note that for η > 1 − 1/e ≈ 63% the ‘do nothing’ fidelity does not
exceed the fidelity of our operation, and our operation produces a state with sub-
poissonian variance which is non-classical even for large values of α. This detector
efficiency is experimentally realistic – for instance, transition-edge sensors (TES) can
offer efficiencies up to 98% [41].

3.2.4. Imperfect single photon sources Another significant experimental considera-
tion is the production of single photons. Here we briefly consider two imperfections
that may occur in single photon sources. Firstly we examine probabilistic sources that
produce photons with a probability p, and vacuum otherwise. Secondly we consider
heralded sources that produce pairs of single photons (one of which is measured to
indicate the presence of the other), which occasionally produce instead pairs of the
form |2〉 |2〉.

In the first case, it is still straightforward to observe the quantum carburettor
effect. The single photon source outputs the state p |1〉 〈1| + (1 − p) |0〉 〈0|. We
can associate count rates C1 and C0 for the single photon and vacuum contributions
respectively. The overall observed count rate is then

Cobs = pC1 + (1− p)C0 . (15)

Providing p is well know, it is then possible to recover C1 by first measuring C0.
Implementing Ê+ using this type of probabilistic source will of course reduce the

fidelity of the output state. Consider as before that F1 is the fidelity associated with
input of a single photon, and F0 that with vacuum input. The total fidelity of the
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Figure 10. Probability of success with variation from the optimal beamsplitter
reflectivity |ropt|2. This is for large values of α: α = 5 (red, solid), α = 10 (blue,
dashed), α = 15 (green, dotted) and α = 20 (purple, dot-dashed). In each case the
reflection probability has been normalised by the optimal reflection probability
for that α.

output then relies on the relative probabilities of these occurring, and can be expressed
as

Ftotal = pF1 + (1− p)F0 , (16)

noting that for high α input the probability of detecting zero counts in either case is
approximately equal. We can see that the fidelity achievable will be bounded below
by pF1, in the case that F1 = 0 (which is a very pessimistic assumption).

In the second case, the two-photon rate is typically much lower than the one-
photon rate. Our scheme reduces the impact of these states further, as at the
optimal beamsplitter reflection probability the probability P (0) of obtaining 0 counts
is reduced by approximately half for a 2 photon input compared to a single photon
input.

3.2.5. Tolerance of variation in r At higher values of α, the success probability is
very sensitive to variation in |r|2. This can be seen clearly in figure 10, which shows
the probability of success for fixed values of α. This will impose some experimental
limitation on the magnitude of α depending on the tolerances of the beamsplitter
construction. Numerical results in figure 10 indicate that the drop off in success
probability is slower for |r| < |ropt|, as might be expected for the very high reflectivity
required. It should be noted that the fidelity in this range is not significantly affected
by changes in |r|2, only the probability of success.

Despite the sensitivity to r, there are several viable options to investigate this
effect experimentally. Perhaps the simplest way would be to not vary r, but to
start with a larger coherent state than required and attenuate this to the value
commensurate with the available reflectivity of the beamsplitter. The attenuation
could be controlled by a polarising beamsplitter. On the other hand, to control r it
might be possible to use an interferometer as a beamsplitter and merely change the
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internal phase. In a beamsplitter made from a divided glass cube the reflected fraction
can be changed by altering the incidence angle of the light.
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If x = 0
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Figure 11. Cascaded Ẽ+ operation. The lower beamsplitter (BS1), modes 1
to 4, is as in the previous section. If a failure occurs at BS1, heralded by the
single photocount at detector D1, the scheme now continues. The failed state
from mode 4 is input into the upper beamsplitter (BS2) through mode 5, with a
second ancilla single photon in mode 6, and a second attempt made to implement
Ẽ+, with result |ψ2〉 output in mode 8 in the event that no photocounts occur at
detector D2.

4. Cascaded Operation

With a more elaborate approach, it may be possible to improve on the scheme in the
previous section. Here we consider a straightforward extension of the implementation
of Ê+, with extra components to correct a failed operation.

4.1. Setup

The operation fails with 1 or more photocounts in mode 3. For the case of 1 count,
we attempt the operation again on the failed output. This requires feedforward from
the first detector, and an additional single photon, beamsplitter and detector as in
figure 11. Figure 12 shows the possible measurement results at each detector, with
their associated outcomes and probabilities. This may improve the success probability
of the operation.

If there is no count at detector 1, then the first output state |ψ1〉 is accepted
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D1 Result

Accept

Fidelity F1F1F1

Fail

Retry

D2 Result

Accept

Fidelity F2F2F2

Fail

P1(0)P1(0)P1(0)

P1(> 1)P1(> 1)P1(> 1)

P1(1)P1(1)P1(1)

P2(0)P2(0)P2(0) P2(> 0)P2(> 0)P2(> 0)

Figure 12. Probability tree associated with the correction scheme in figure 11.
D1 and D2 refer to the detectors as labelled in figure 11, while Pj(0) indicates the
no-count probability at the jth detector, and Pj(1) the single-count probability.
If more than 1 count occurs, we do not attempt correction.

as before. If there is a count, a correction is attempted. When there is no count at
detector 2 the correction is accepted and the unnormalized output state |ψ2〉 in mode
8 is

∞
∑

n=0

qn|r1|n−1(n|t1|2 − |r1|2)|t2||r2|n
√
n+ 1 |n+ 1〉8 , (17)

where subscript 1 refers to the first beamsplitter parameters and 2 to the second. The
normalization gives the probability of an initial failure (1 count at detector 1) and
then an accepted correction (no counts at detector 2).

The fidelity measure used is the mean fidelity of accepted output states:

Fmean =
P1(0)F1 + P1(1)P2(0)F2

P1(0) + P1(1)P2(0)
, (18)

where Pj(0) indicates zero counts at the jth detector and therefore an accepted output
state at the relevant beamsplitter, Pj(1) indicates one photocount with the possibility
to correct the state, and Fj is the fidelity of that state. The total success probability
is simply P1(0) + P1(1)P2(0).

4.2. Results

Figure 13 shows, for various input |α〉, the possible mean fidelities against their
probabilities. Points cover the full range of beamsplitter pairs, whilst the solid line
indicates use of beamsplitter 1 alone. It can be seen that the best fidelity is obtained
using a single beamsplitter. For lower α an increase in probability is possible, but
this results in a large loss of fidelity. This indicates that the strategy delivers only
marginal improvement at best.

The poor performance of attempts to correct the failed operation with a second
beamsplitter can be linked to the two photon interference and the production of a
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Figure 13. The success probability-fidelity trade off. The mean fidelities of
the accepted output states Ẽ+ |α〉 with ideal state Ê+ |α〉 for α = 1, 2,

√
2

and 3 are shown, against the probability of obtaining that outcome in a 2
beamsplitter setup. Points (purple, light) cover the full range of possible pairs
of beamsplitters and indicate the accessible region of fidelities and probabilities
using this approach. The line (black, bold) indicates outcomes solely using a
single beamsplitter.

‘hole’ in the photon number distribution of a coherent state, an effect described by
Escher et al [42] and depicted in figure 14. As α increases, the optimal beamsplitter
reflection coefficient |ropt| for the Ê+ operation on a coherent state tends towards
the reflection coefficient required to create a hole around n = |α|2 found by Escher
et al. Figure 14 shows this effect for α = 2, with the optimal beamsplitter for the
Ê+ operation. This lack of amplitude at |α|2 severely impacts on the fidelity of any
attempted recovery; while any divergence from this |ropt| in the first beamsplitter
reduces the probability and fidelity of an initially successful operation. Hence, the
attempt at correcting a failed operation is not particularly successful.

5. Discussion and conclusions

The application of Ê+ makes coherent states nonclassical. This is clearly seen by
noting that Ê+ |α〉 has no zero photon component, a sign of nonclassicality [40]. From
the basic scheme (figure 3) using linear optics and conditioning on a measurement
outcome, it is clear that our implementation provides an experimentally-viable, high
probability non-Gaussian operation with potential applications in continuous variable
quantum information processing tasks such as entanglement distillation.

In the presented implementation of Ê+, the maximum success probability and
optimal fidelity are achievable at the same time; there is no need to compromise one
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Figure 14. Output state after a failed operation with 1 count in mode 3 and a
perfect detector. The input state was a coherent state of amplitude α = 2.

to improve the other as is the case with implementations of â†. We achieve high
fidelity and good success probability on a broad range of states, including randomly
chosen states. A more elaborate optical scheme may be able to improve the success
probability, as Ê+ is in principle deterministic, as demonstrated in a cavity QED
proposal [34].

To observe the quantum carburettor effect experimentally, the main components
required are a single photon source and a mode-matched laser, a beamsplitter, and
a photodetector. As the measurement is conditioned on zero photocounts, a non-
photon-number-resolving detector is sufficient. A variable beamsplitter would allow
the 1/e limit to be investigated, by using different values of r to obtain results as
in figure 8 and noting the corresponding maximum probability of no counts at the
detector for each r.

Future work could consider other schemes to improve the success probability for
Ê+, or look at ways to implement other non-Gaussian operations. An interesting
direction would be to quantify the achievable non-Gaussianity for a given set of
experimental components, possibly in a resource theory framework.
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