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Abstract. The realization of the transfer functions of linear quantum stochastic systems
(LQSSs) is of fundamental importance for the practical applications of such systems, especially as
coherent controllers for other quantum systems. So far, most works that have addressed this problem
have used cascade realizations. In this paper, a new method is proposed, where the transfer function
of an LQSS is realized by a series connection of two linear static networks, and a reduced LQSS.
The introduction of pre- and postprocessing static networks leaves an intermediate reduced LQSS
with a simple input/output structure, which is realized by a simple feedback network of single-mode
LQSSs. The key mathematical tool that allows for the construction of this realization is an SVD-like
decomposition for doubled-up matrices in Krein spaces. Illustrative examples are provided for the
theory developed.
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1. Introduction. Linear quantum stochastic systems (LQSSs) are a class of
models that are widely used in quantum optics and other areas [5, 35, 36]. In quan-
tum optics, they describe a variety of devices, such as optical cavities and parametric
amplifiers, as well as networks of such devices. The mathematical framework for
these models is provided by the theory of quantum Wiener processes and the asso-
ciated quantum stochastic differential equations [29, 22, 13]. Potential applications
of quantum optics include quantum information and photonic signal processing; see,
e.g., [23, 15, 32, 41, 39]. Another particularly important application of LQSSs is as
coherent quantum feedback controllers for other quantum systems, i.e., controllers
that do not perform any measurement on the controlled quantum system and thus
have the potential for increased performance compared to classical controllers; see
[37, 38, 14, 28, 20, 21, 12, 2].

A problem of fundamental importance for applications of LQSSs is the problem
of realization/synthesis: Given an LQSS with specified parameters, how does one
engineer that system using basic quantum optical devices, such as optical cavities,
parametric amplifiers, phase shifters, beam splitters, and squeezers? The synthesis
problem comes in two varieties. First, there is the strict realization problem which
we just described. This type of realization is necessary in the case where the states
of the quantum system are meaningful to the application at hand. Examples include
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quantum information processing algorithms [23, 15, 32] and state generation [16, 19].
In the case that only the input/output relation of the LQSS is important, we have the
problem of transfer function realization. This is the case, for example, in controller
synthesis [21, 12, 2].

In recent years, solutions have been proposed to both the strict and the transfer
function realization problems. For the strict problem, [27, 25] propose a cascade
of single-mode cavities realization. This allows for arbitrary couplings of the LQSS
to its environment. However, not all possible interactions between cavity modes are
possible, because the mode of a cavity can influence only modes of subsequent cavities.
For this reason, direct Hamiltonian interactions [27] and feedback [25] between cavities
have been used to “correct” the dynamics of the cascade to the desired form. For the
transfer function realization problem, [30, 24] have shown that a cascade of single-
mode cavities realization is possible for any passive LQSS, in which case all cavities
needed to realize it are also passive. More recently in [26], it has been shown that a
cascade of single-mode cavities realization is possible for generic LQSSs.

In this paper, we propose an alternative solution to the problem of transfer func-
tion realization. We show that by appropriate transformations of inputs and outputs
(which can be realized experimentally by static linear optical networks; see subsec-
tion 2.3), one only needs to realize a much simpler transfer function. This “reduced”
transfer function can be realized by a concatenation of single-mode cavities in a feed-
back interconnection through a static linear optical network. In the case of passive
LQSSs, this realization is always possible, and all necessary devices needed for it are
also passive.

In the case of passive LQSSs, the realization method employs crucially the singular
value decomposition (SVD) for complex matrices. In order to extend the method to
general LQSSs, we prove Theorem 4.1, which is an analogue of SVD for a class of
even-dimensional structured matrices, the so-called doubled-up matrices [10, 31], in
a class of complex spaces with indefinite scalar products, the so-called Krein spaces
[6]. The role of the unitary matrices in the SVD, as isometries of the domain and
target spaces of the linear map (matrix), is taken up by Bogoliubov matrices (see [10]
and section 2) in the case of Krein spaces. This is an example of a new algebraic
tool required by the theory of LQSSs (or linear quantum systems theory) that goes
beyond the traditional toolbox of classic linear systems theory. The need for new
tools and methods in quantum systems theory is to be expected, since quantum
systems pose novel challenges compared to classical systems. Moreover, we expect
that Theorem 4.1 in its equivalent form for symplectic spaces, namely, Theorem 4.8,
will be of more general mathematical interest.

The rest of the paper is organized as follows: In section 2, we establish some
notation and terminology used in the paper and provide a short overview of LQSSs
and static linear optical devices and networks. In section 3, we demonstrate our
method of transfer function realization for passive LQSSs, which is the simplest case.
Finally, section 4 extends the realization result to general LQSSs using Theorem 4.1,
which is the main technical result of this paper.

2. Background material.

2.1. Notation and terminology.
1. x∗ denotes the complex conjugate of a complex number x or the adjoint of

an operator x, respectively. As usual, rex and imx denote the real and
imaginary parts of a complex number. The commutator of two operators X
and Y is defined as [X,Y ] = XY − Y X.
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2. For a matrix X = [xij ] with complex or operator entries, X# = [x∗ij ], X
> =

[xji] is the usual transpose, and X† = (X#)>. Also, for a vector x = [xi]
with number or operator entries, we shall use the notation x̌ =

( x
x#

)
.

3. The identity matrix in k dimensions will be denoted by Ik, and an r × s
matrix of zeros will be denoted by 0r×s. δij denotes the Kronecker delta
symbol in n dimensions, i.e., In = [δij ]. diag(X1, X2, . . . , Xk) is the block-
diagonal matrix formed by the square matrices X1, X2, . . . , Xk. KerX, ImX,
and RankX denote, respectively, the kernel (null space), the image (range
space), and the rank of a matrix X.

4. We define several matrices:

J2k =
(

Ik 0k×k
0k×k −Ik

)
, Σ2k =

(
0k×k Ik
Ik 0k×k

)
,

J2k =
(

0k×k Ik
−Ik 0k×k

)
, Φ2k =

1√
2

(
Ik Ik
−ıIk ıIk

)
,

Sk =


0 · · · 0 1
0 · · · 1 0
...

...
...

...
1 · · · 0 0

 , σ2 =
(

0 −ı
ı 0

)
(a Pauli matrix).

These matrices satisfy several useful identities:

J2
2k = I2k, Σ2

2k = I2k, Σ2kJ2kΣ2k = −J2k,

J2
2k = −I2k, S2

k = Ik, J2kS2kJ2k = S2k,

Φ†2kΦ2k = Φ2kΦ†2k = I2k, Φ2kJ2kΦ−1
2k = ıJ2k.

When their dimensions can be inferred from the context, we shall drop the
various subscripts.

5. We shall denote by jk(λ) the upper Jordan block of size k with eigenvalue
λ if λ is real, and the direct sum of two Jordan blocks of size k/2 each (for
even k), the first with eigenvalue λ, and the second with eigenvalue λ∗, if λ
is complex. Then, Jk jk(λ) Jk = −jk(λ∗) for even k. For a matrix A with a
real eigenvalue λ of algebraic multiplicity k, or complex eigenvalues λ and λ∗,
of algebraic multiplicity k/2 each (for even k), let AV = V jk(λ). V will be
called the eigenvector block corresponding to λ.

6. We define the Krein space (C2k, J2k) as the vector space C2k equipped with
the indefinite inner product defined by 〈v, w〉J = v†J2kw, for any v, w ∈ C2k.
The J-norm of a vector v ∈ C2k is defined by |v|J =

√
|〈v, v〉J |, and if it

is nonzero, a normalized multiple of v is v/|v|J . For a matrix X ∈ C2r×2s,
considered as a map from (C2s, J2s) to (C2r, J2r), its adjoint operator will be
called [-adjoint and denoted by X[, to distinguish it from its usual adjoint
X†. One can show that X[ = J2sX

†J2r. The [-adjoint satisfies properties
similar to those of the usual adjoint, namely (x1A + x2B)[ = x∗1A

[ + x∗2B
[,

(AB)[ = B[A[, and (A[)[ = A.
7. Given two matrices X1,X2 ∈ Cr×s, we can form the matrix X =

( X1 X2

X#
2 X#

1

)
∈

C2r×2s. Such a matrix will be called doubled-up [10]. For X ∈ C2r×2s,
Σ2rXΣ2s = X# if and only if X is doubled-up. When referring to a doubled-
up matrix X, X1 and X2 will denote its upper-left and upper-right blocks. Let
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us denote the set of doubled-up matrices in C2r×2s by C2r×2s
du . ∪∞r,s=1C2r×2s

du

is closed under addition, multiplication, and taking ([-)adjoints.
8. A matrix R ∈ C2k×2k

du is called Bogoliubov if it is [-unitary, i.e., RR[ = R[R =
I2m. The set of these matrices forms a noncompact Lie group known as the
Bogoliubov group. Bogoliubov matrices are isometries of Krein spaces.

2.2. Linear quantum stochastic systems. The material in this subsection is
fairly standard, and our presentation aims mostly at establishing notation and termi-
nology. To this end, we follow the papers [31, 34]. For the mathematical background
necessary for a precise discussion of LQSSs, some standard references are [29, 22, 13],
while [5, 4] offer a physics perspective. The references [27, 3, 9, 8, 10] contain a lot of
relevant material as well.

The systems we consider in this paper are collections of quantum harmonic os-
cillators interacting among themselves, as well as with their environment. The ith
harmonic oscillator (i = 1, . . . , n) is described by its position and momentum vari-
ables, xi and pi, respectively. These are self-adjoint operators satisfying the canon-
ical commutation relations (CCRs) [xi, xj ] = 0, [pi, pj ] = 0, and [xi, pj ] = ıδij for
i, j = 1, . . . , n. We find it more convenient to work with the so-called annihilation
and creation operators ai = 1√

2
(xi + ıpi) and a∗i = 1√

2
(xi − ıpi). They satisfy the

CCRs [ai, aj ] = 0, [a∗i , a
∗
j ] = 0, and [ai, a∗j ] = δij , i, j = 1, . . . , n. In what follows,

a = (a1, a2, . . . , an)>.
The environment is modelled as a collection of zero temperature bosonic quan-

tum fields. The ith quantum field (i = 1, . . . ,m) is described by the bosonic field
annihilation and creation operators Ai(t) and A∗i (t), respectively. The field operators
are adapted quantum stochastic processes with forward differentials dAi(t) = Ai(t +
dt)−Ai(t) and dA∗i (t) = A∗i (t+ dt)−A∗i (t). They satisfy the quantum Itô products
dAi(t)dAj(t) = 0, dA∗i (t)dA∗j (t) = 0, dA∗i (t)dAj(t) = 0, and dAi(t)dA∗j (t) = δijdt.
In what follows, A = (A1,A2, . . . ,Am)>.

To describe the dynamics of the harmonic oscillators and the quantum fields
(noises), we need to introduce certain operators. We begin with the class of annihilator
only LQSSs. We also refer to such systems as passive LQSSs, because systems in this
class describe optical devices, such as damped optical cavities, that do not require an
external source of quanta for their operation. First, we have the Hamiltonian operator
H = a†Ωa, which specifies the dynamics of the harmonic oscillators in the absence
of any environmental influence. Ω ∈ Cn×n is a Hermitian matrix referred to as the
Hamiltonian matrix. Next, we have the coupling operator L (vector of operators) that
specifies the interaction of the harmonic oscillators with the quantum fields. L depends
linearly on the annihilation operators and can be expressed as L = Ca. C ∈ Cm×n is
called the coupling matrix. Finally, we have the unitary scattering matrix S ∈ Cm×m,
which describes the interactions between the quantum fields themselves. In practice,
it represents the unitary transformation effected on the field modes by a static passive
linear optical network that precedes the LQSS; see subsection 2.3.

In the Heisenberg picture of quantum mechanics, the joint evolution of the har-
monic oscillators and the quantum fields is described by the following system of quan-
tum stochastic differential equations (QSDEs):

da =
(
−ıΩ− 1

2
C†C

)
a dt− C†S dA,(1a)

dAout = Cadt+ S dA.(1b)

The field operators Ai out(t), i = 1, . . . ,m, describe the outputs of the system. We
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can generalize (1a) and (1b) by allowing the system inputs not to be just quantum
noises, but to contain a “signal part,” as well. Such is the case when the output of
a passive LQSS is fed into another passive LQSS. So we substitute the more general
notation U and Y for A and Aout, respectively. The forward differentials dU and dY
of m-dimensional inputs and outputs, respectively, contain quantum noises, as well
as linear combinations of variables of other systems. The resulting QSDEs are the
following:

da =
(
−ıΩ− 1

2
C†C

)
a dt− C†S dU ,(2a)

dY = Cadt+ S dU .(2b)

One can show that the structure of (2a) and (2b) is preserved under linear transforma-
tions of the state â = V a if and only if V is unitary. Under such a state transformation,
the system parameters (S,C,Ω) transform according to (Ŝ, Ĉ, Ω̂) = (S,CV −1, V ΩV †).
From the point of view of quantum mechanics, V must be unitary so that the new
annihilation and creation operators satisfy the correct CCRs.

General LQSSs may contain active devices that require an external source of
quanta for their operation, such as degenerate parametric amplifiers. In this case,
system and field creation operators appear in the QSDEs for system and field anni-
hilation operators, and vice versa. Since these are adjoint operators which have to be
treated as separate variables, this leads to the appearance of doubled-up matrices in
the corresponding QSDEs. To describe the most general linear dynamics of harmonic
oscillators and quantum noises, we introduce generalized versions of the Hamiltonian
operator, the coupling operator, and the scattering matrix defined above. We begin
with the Hamiltonian operator

H =
1
2

(
a
a#

)†( Ω1 Ω2

Ω#
2 Ω#

1

)(
a
a#

)
=

1
2
ǎ†Ωǎ,

which specifies the dynamics of the harmonic oscillators in the absence of any envi-
ronmental influence. The Hamiltonian matrix Ω ∈ C2n×2n

du is Hermitian. Next, we
have the coupling operator L, which specifies the interaction of the harmonic oscil-
lators with the quantum fields. L depends linearly on the creation and annihilation
operators, L = C1a + C2a

#. We construct the coupling matrix C ∈ C2m×2n
du from

C1 ∈ Cm×n and C2 ∈ Cm×n. Finally, we have the Bogoliubov generalized scattering
matrix S ∈ C2m×2m

du , which describes the interactions between the quantum fields
themselves. In practice, it represents the Bogoliubov transformation effected on the
field modes by a general static linear quantum optical network that precedes the
LQSS; see subsection 2.3 and [10].

In the Heisenberg picture of quantum mechanics, the joint evolution of the har-
monic oscillators and the quantum fields is described by the following system of quan-
tum stochastic differential equations (QSDEs):

dǎ =
(
−ıJΩ− 1

2
C[C

)
ǎ dt− C[S dǓ ,(3a)

dY̌ = Cǎ dt+ S dǓ .(3b)

The forward differentials dU and dY of m-dimensional inputs and outputs, respec-
tively, contain quantum noises, as well as a signal part (linear combinations of vari-
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ables of other systems). One can show that the structure of (3a) and (3b) is pre-
served under linear transformations of the state ˇ̂a = V ǎ if and only if V is Bogoli-
ubov. In that case the system parameters (S,C,Ω) transform according to (Ŝ, Ĉ, Ω̂) =
(S,CV −1, (V −1)†ΩV −1). From the point of view of quantum mechanics, V must be
Bogoliubov so that the new annihilation and creation operators satisfy the correct
CCRs.

We end this subsection with the model of the single-mode optical cavity, which
is the basic device for the proposed realization method in this paper. It is described
by its optical mode a, with Hamiltonian matrix Ω = diag(∆,∆), where ∆ ∈ R
is the so-called cavity detuning. For a cavity with m inputs and outputs, we let
C1 = (eıϕ1

√
κ1, . . . , e

ıϕm
√
κm)> and C2 = (eıθ1

√
g1, . . . , e

ıθm
√
gm)>. κi and gi will

be called the passive and the active coupling coefficients of the ith quantum noise to
the cavity, respectively. When gi = 0, the interaction of the cavity mode with the ith
quantum noise (along with the port) will be referred to as (purely) passive, and when
κi = 0, it will be referred to as (purely) active. The model of a cavity with m inputs
and outputs is the following:

da =
[
− ı∆− 1

2
(
C†1C1 − C>2 C

#
2

)]
a dt− C†1dU + C>2 dU#

=
(
− ı∆− γ

2

)
a dt+

m∑
i=1

(
− e−ıϕi

√
κi dUi + eıθi

√
gi dU#

i

)
,(4a)

dYi = eıϕi
√
κi a dt+ eıθi

√
gi a

# dt+ dUi,(4b)

i = 1, . . . ,m, where γ =
∑m
i=1(κi − gi). If a quantum noise couples passively to the

cavity, the corresponding interaction may be realized with a partially transmitting
mirror. For an interaction that has an active component, a more complicated im-
plementation is needed; see, e.g., [27, subsection 6.3] for the details. From now on,
we shall use the system-theoretic term port for any part of the experimental setup
that realizes an interaction of the cavity mode with a quantum noise (where an input
enters and an output exits the cavity).

2.3. Static linear optical devices and networks. In addition to the general-
ized cavities discussed above, our proposed realization method for LQSSs makes use
of static linear quantum optical devices and networks, as well. Useful references for
this material are [17, 27, 18, 1]. The most basic such devices are the following:

1. The phase shifter: This device produces a phase shift in its input optical
field. That is, if U and Y are its input and output fields, respectively, then
Y = eıθ U . Notice that Y∗Y = U∗U . This means that the energy of the
output field is equal to that of the input field, and hence energy is conserved.
Such a device is called passive.

2. The beam splitter: This device produces linear combinations of its two input
fields. If we denote its inputs by U1 and U2, and its outputs by Y1 and Y2,
then (

Y1
Y2

)
= R

(
U1
U2

)
,

where

R =

(
eı
ϕ+ψ

2 cos θ2 eı
ψ−ϕ

2 sin θ
2

−eı
ϕ−ψ

2 sin θ
2 e−ı

ϕ+ψ
2 cos θ2

)
.
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0 ≤ θ < 2π is called the mixing angle of the beam splitter. ϕ and ψ are phase
differences in the two input and the two output fields, respectively, produced
by phase shifters. This form of R corresponds to a general 2 × 2 unitary
matrix of determinant +1. We can see that

(
Y∗1 Y∗2

)( Y1
Y2

)
=
(
U∗1 U∗2

)
R†R

(
U1
U2

)
=
(
U∗1 U∗2

)( U1
U2

)
,

and hence the total energy of the output fields is equal to that of the input
fields. So, the beam splitter is also a passive device.

3. The squeezer: This reduces the variance in the real quadrature (U + U∗)/2,
or the imaginary quadrature (U − U∗)/2ı of an input field U , while increasing
the variance in the other quadrature. Its operation is described by(

Y
Y∗

)
= R

(
U
U∗

)
,

where

R =

(
eı(ϕ+ψ) coshx eı(ψ−ϕ) sinhx
eı(ϕ−ψ) sinhx e−ı(ϕ+ψ) coshx

)
,

x ∈ R is the squeezing parameter, and ϕ,ψ are phase shifts in the input and
the output fields, respectively, produced by phase shifters. This form of R
corresponds to a general 2× 2 Bogoliubov matrix. As Y∗Y 6= U∗U for x 6= 0,
the squeezer is an active device.

By connecting various static linear optical devices, we may form static linear
optical networks (multiport devices). For a passive network, i.e., one composed solely
of passive devices, we have that Y = RU , where R is an m×m unitary matrix. Such a
network is a generalization of the beam splitter and is sometimes called a multibeam
splitter. It turns out that any passive static network can be constructed exclusively
from phase shifters and beam splitters [33]. In the general case, where the network
may contain active devices as well, we have the more general relation Y̌ = RǓ , where
R is a 2m×2m Bogoliubov matrix. Using the Bloch–Messiah reduction (factorization)
of a Bogoliubov matrix [27, 18, 1], it turns out that a general static network can be
constructed exclusively from phase shifters, beam splitters, and squeezers.

Figure 1 contains graphical representations of a multiport cavity and two static
networks that will be used in what follows.

...

(c)

...

(b)

...

(a)

Fig. 1. (a) The gray block represents a multiport cavity. Black, white, and gray discs represent
active, passive, and general ports, respectively. (b)–(c) A passive and a general static network,
respectively.
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R

V †S V

Type I

Type II

m− r

r

Reduced LQSS

Fig. 2. Graphical representation of a particular LQSS architecture, used to realize the transfer
functions of arbitrary passive LQSSs.

3. Transfer function realization of passive LQSSs. We present our real-
ization method of transfer functions of LQSSs in the case of passive systems first,
because it is the simplest one. Let us refer to Figure 2. It represents a particular
configuration, composed of a pre- and a postprocessing passive static linear network,
and a concatenation of single-mode optical cavities in a feedback connection through
a third passive static linear network. There are two types of cavities: Type I cavities
have a single passive port that connects to the static network, while Type II also have
a second passive port whose input and output connect to an output and an input,
respectively, of the pre- and the postprocessing network. Ports used for feedback will
be referred to as interconnection ports, while ports connected to inputs and outputs of
the pre- and the postprocessing networks will be referred to as system ports. The part
of the configuration between the pre- and the postprocessing networks will be referred
to as the “reduced LQSS.” In what follows, we prove that this sort of configuration can
realize the transfer function of an arbitrary passive LQSS for an appropriate choice
of parameters.

Theorem 3.1. Given a passive LQSS with parameters (S,C,Ω), let

G(s) =
[
I − C

(
sI + ıΩ +

1
2
C†C

)−1

C†
]
S

be its transfer function. Let C = V ĈW † be the SVD of the coupling matrix C, with

Ĉ =


√
κ1

. . . 0√
κr

0 0

 ,

where r ≤ min{n,m}. Then, G(s) can be factorized as G(s) = V Ĝ(s) (V †S), where
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Ĝ(s) has the form

Ĝ(s) = I − Ĉ
(
sI + ıΩ̂ +

1
2
Ĉ†Ĉ

)−1

Ĉ†,

with Ω̂ = W †ΩW . Ĝ(s) is the transfer function of a passive LQSS with parameters
(I, Ĉ, Ω̂). If we let D = diag(∆1, . . . ,∆n) and C̃ = diag(

√
κ̃1, . . . ,

√
κ̃n), where ∆i ∈

R and κ̃i > 0, then Ĝ(s) can be realized by the following feedback network of n − r
one-port and r two-port cavities:

da =
(
− ıD − 1

2
C̃†C̃ − 1

2
Ĉ†Ĉ

)
a dt− C̃†dUint − Ĉ†dU ,(5a)

dY = Ĉa dt+ dU ,(5b)

dYint = C̃a dt+ dUint,(5c)
dUint = RdYint.(5d)

The unitary matrix R (feedback gain) is determined through the relations

X = 2ıC̃−†(Ω̂−D)C̃−1,(6)

R = (X − I)(X + I)−1.(7)

The m-dimensional vectors U and Y contain the inputs and outputs of the system
ports, and the n-dimensional vectors Uint and Yint contain the inputs and outputs
of the interconnection ports. Di and κ̃i are the cavity detuning and the coupling
coefficient of the interconnection port, respectively, of the ith cavity, which can be
chosen arbitrarily. From the fact that D, Ĉ, and C̃ are diagonal, all diagonal elements
of C̃ are nonzero, and only r diagonal elements of Ĉ are nonzero, we see that (5a)–(5d)
describe a collection of cavities, all of which have one interconnection port, but only
r have system ports. Hence, the feedback network consists of n − r one-port and r
two-port cavities.

Proof of Theorem 3.1. It suffices to prove that Ĝ(s) is the transfer function of
the system described by (5a)–(5d). To this end, we combine the last two equations
in (5d) to obtain the relation

dUint = (I −R)−1R C̃a dt.

Now, we introduce the Cayley transform [7]

(8) X = (I −R)−1(I +R),

defined for matrices R without unit eigenvalues. The unitarity of R implies that X is
skew-Hermitian. We can also solve uniquely for R in terms of X with the following
result:

R = (X − I)(X + I)−1.

R can be seen to be unitary due to the skew-Hermitian nature of X. Also, it is easy
to see that (I − R)−1R = − 1

2I + 1
2X. Using the relation between dUint and a, and

the definition of X, the equations for the reduced LQSS take the following form:

da =
(
− ıD − 1

2
C̃†XC̃ − 1

2
Ĉ†Ĉ

)
a dt− Ĉ†dU ,

dY = Ĉa dt+ dU .
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These equations describe a passive LQSS with Hamiltonian matrix Ω̂ given by the
expression

(9) Ω̂ = D − ı

2
C̃†XC̃.

Given any values for the cavity parameters ∆i ∈ R and κ̃i > 0, and any desired
Hamiltonian matrix Ω̂ = W †ΩW , we may determine the unique X (and hence the
unique R) that produces this Ω̂ by the expression

X = 2ıC̃−†(Ω̂−D)C̃−1.

This completes the proof.

Remark 3.2. If the unitary feedback gain R is block-diagonal, i.e., if R =
diag(Rr, Rn−r), where Rr and Rn−r are unitary r× r and (n− r)× (n− r) matrices,
respectively, then the n− r modes that are not influenced directly by the inputs are
uncontrollable and unobservable. Indeed, it can be proved that this is a necessary
and sufficient condition for a passive LQSS to lose controllability and observability.
(The two system properties are equivalent for passive LQSSs; see [40].)

3.1. Illustrative example. Consider the three-mode, three-port passive LQSS
with the following parameters:

Ω =

 5 1 −2
1 3 0
−2 0 4

 , C =

 1 2 1
0 −1 3
2 3 5

 , and S = I3.

The SVD of C is given by C = V ĈW †, with

V =

 −0.2987 0.4941 −0.8165
−0.3065 −0.8599 −0.4082
−0.9038 0.1283 0.4082

 , W =

 −0.3093 0.2717 −0.9113
−0.4409 0.8081 0.3906
−0.8426 −0.5226 0.1302

 ,

and Ĉ = diag(6.8092, 2.7632, 0). The Hamiltonian of the reduced LQSS is given by

Ω̂ = W †ΩW =

 3.1315 0.0370 −0.7200
0.0370 4.4278 −2.2169
−0.7200 −2.2169 4.4407

 .

Letting D = 03×3 and C̃ = I3, (6) produces the following X:

X = ı

 6.2631 0.0740 −1.4400
0.0740 8.8556 −4.4337
−1.4400 −4.4337 8.8814

 ,

from which we calculate the feedback gain R using (7), to be equal to

R =

 0.9429 + 0.3245ı −0.0145 + 0.0276ı −0.0237 + 0.0637ı
−0.0145 + 0.0276ı 0.9438 + 0.2918ı −0.0467 + 0.1449ı
−0.0237 + 0.0637ı −0.0467 + 0.1449ı 0.9389 + 0.3010ı

 .

4. Transfer function realization of general LQSSs. In this section, we
present our synthesis method for the case of general LQSSs. To proceed as in section 3,
we first derive an analogue of the SVD for doubled-up matrices in Krein spaces.
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4.1. A canonical form for doubled-up matrices in Krein spaces.

Theorem 4.1. Let C =
( C1 C2

C#
2 C#

1

)
∈ C2m×2n

du and C .= C[C. We assume that

all the eigenvalues of C are semisimple, and that Ker C = KerC. Let λ+
i > 0, i =

1, . . . , r+, λ−i < 0, i = 1, . . . , r−, and λci , i = 1 . . . , rc, with imλci > 0, be the nontrivial
eigenvalues of C (along with λc∗i ). Then, there exist Bogoliubov matrices V ∈ C2m×2m

du

and W ∈ C2n×2n
du and a matrix Ĉ =

( Ĉ1 Ĉ2

Ĉ#
2 Ĉ#

1

)
∈ C2m×2n

du , such that C = V Ĉ W [,

with Ĉ1 =
(
C̄1 0
0 0

)
, Ĉ2 =

(
C̄2 0
0 0

)
∈ Cr×r (r = r+ + r− + 2rc ≤ min{n,m}), and

C̄1 = diag
(√

λ+
1 , . . . ,

√
λ+
r+ , 0, . . . , 0︸ ︷︷ ︸

r−

, α1I2, . . . , αrcI2

)
,

C̄2 = diag
(

0, . . . , 0︸ ︷︷ ︸
r+

,

√
|λ−1 |, . . . ,

√
|λ−r− |,−β1σ2, . . . ,−βrcσ2

)
.

αi and βi are calculated in terms of λci , i = 1 . . . , rc, by

αi =

√
|λci |+ reλci

2
and βi =

imλci√
2
(
|λci |+ reλci

) .
The matrix C = C[C in the theorem is [-Hermitian (C[ = C) and doubled-

up (Σ C Σ = C#). The following two lemmas establish spectral properties of such
matrices, necessary for the proof of Theorem 4.1.

Lemma 4.2. Let A be a [-Hermitian matrix in (C2n, J), let λ1, . . . , λA be its real
eigenvalues, and let λA+1, . . . , λB be its complex eigenvalues with positive imaginary
parts. There exists an invertible matrix Z ∈ C2n×2n, such that

Z−1AZ = Â,(10a)

Z†J Z = Ĵ ,(10b)

where

Â
.= diag(jk1(λ1), . . . , jkA(λA), jkA+1(λA+1), . . . , jkB (λB)),(11a)

Ĵ
.= diag(ε1Sk1 , . . . , εASkA , εA+1SkA+1 , . . . , εBSkB ),(11b)

with εi = ±1, i = 1, . . . , A, and εi = 1, i = A + 1, . . . , B. This decomposition is
unique, except for eigenvalue permutations and multiplications of eigenvector blocks
(submatrices of Z) by phase factors.

Proof. The lemma is just the spectral theorem for self-adjoint matrices in spaces
with indefinite scalar products [6], applied to the case of a [-Hermitian matrix in the
Krein space (C2n, J).

Lemma 4.3. Let A be a [-Hermitian, doubled-up matrix in (C2n, J), and let V
be an eigenvector block corresponding to the eigenvalue λ. Then, ΣV # if λ ∈ R, or
ΣV #Jk if λ ∈ C− R, is a different eigenvector block corresponding to λ.

Proof. Let V be an eigenvector block corresponding to the eigenvalue λ. Then,
from (10a) and (10b), we have

AV = V jk(λ),

V †J V = εkSk.
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Using the properties of Σ and doubled-up matrices, we compute

(ΣAΣ) (ΣV ) = (ΣV ) jk(λ)⇒ A#(ΣV ) = (ΣV ) jk(λ)

⇒ A(ΣV #) = (ΣV #) jk(λ∗),(12a)

(ΣV )†(Σ J Σ) (ΣV ) = εkSk ⇒ (ΣV )†(−J) (ΣV ) = εkSk
⇒ (ΣV #)†J(ΣV #) = −εkSk.(12b)

When λ is real, (12a) implies that ΣV # is also an eigenvector block of λ, and (12b)
implies that V and ΣV # cannot be related by a simple phase factor; hence they are
different. When λ is complex (hence, k is even), (12a) and (12b) can be rewritten as
follows:

A(ΣV #) = −(ΣV #) Jk jk(λ) Jk ⇒ A(ΣV # Jk) = (ΣV # Jk) jk(λ),

(ΣV #)†J (ΣV #) = −JkSkJk ⇒ (ΣV #Jk)†J (ΣV #Jk) = Sk.

Hence, ΣV #Jk is an eigenvector block corresponding to λ. To show that it is different
from V , let ΣV #Jk = ρV , where ρ is a phase factor (hence, ρ∗ = 1/ρ = −ρ). From
this, it is easy to show that V = −|ρ|2V , which implies V = 0, a contradiction. Hence,
ΣV #Jk is different from V .

Proof of Theorem 4.1. We begin with the positive eigenvalues, λ+
i , i = 1, . . . , r+.

From Lemma 4.3, there correspond two eigenvectors to each eigenvalue: ζi, with
ζ†i Jζi = 1, and Σζ#

i , with (Σζ#
i )†J(Σζ#

i ) = −1. (We adopt the convention of ex-
pressing the eigenvector whose inner product with itself is negative in terms of the
eigenvector whose inner product with itself is positive.) These two eigenvectors are
also J-orthogonal to each other, i.e., ζ†i J(Σζ#

i ) = 0. Due to the semisimplicity hy-
pothesis and (10b), different eigenspaces are J-orthogonal to each other as well, so
that ζ†i J ζj = (Σζ#

i )†J (Σζ#
j ) = (Σζ#

i )†J ζj = 0 for i 6= j = 1, . . . , r+. If we define
the matrix ζ .= [ζ1 . . . ζr+ ] ∈ C2n×r+ , we see that

C [ζ Σζ#] = [ζ Σζ#] diag(λ+
1 , . . . , λ

+
r+ , λ

+
1 , . . . , λ

+
r+),

[ζ Σζ#]† J [ζ Σζ#] = J2r+ .

The treatment of the negative eigenvalues is identical. The resulting matrix η ∈
C2n×r− satisfies the analogous relations

C [ηΣη#] = [ηΣη#] diag(λ−1 , . . . , λ
−
r−
, λ−1 , . . . , λ

−
r−

),

[ηΣη#]† J [ηΣη#] = J2r− .

Similarly, for the case of zero eigenvalues, the corresponding matrix ψ ∈ C2n×r0

satisfies the relations

C [ψΣψ#] = 02n×2r0 ,

C [ψΣψ#] = 02m×2r0 ,

[ψΣψ#]† J [ψΣψ#] = J2r0 .

The middle equation holds due to the fact Ker C = KerC; see Theorem 4.1. Finally,
we consider the nonreal eigenvalues of C (with positive imaginary part), λci = µi+ ı νi,
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with νi > 0, i = 1 . . . , rc. By Lemmas 4.2 and 4.3, there correspond four associated
eigenvectors, ξi1, ξi2, Σξ#

i2, and Σξ#
i1, to each eigenvalue, where

C ξi1 = λci ξi1, C (Σξ#
i2) = λci (Σξ#

i2),

C ξi2 = λc∗i ξi2, C (Σξ#
i1) = λc∗i (Σξ#

i1),

and

ξ†iα J ξ
#
iβ = 1− δαβ ,

(Σξ#
iα)† J (Σξ#

iβ) = −1 + δαβ ,

(Σξ#
iα)† J ξ#

iβ = 0 for α, β = 1, 2.

For our purposes, it will be beneficial to work with the linear combinations χi1
.=

1√
2

(ξi1 +ξi2) and χi2
.= 1√

2
(ξi1−ξi2), along with Σχ#

i1 and Σχ#
i2. It is straightforward

to show that

C [χi1 Σχ#
i2 Σχ#

i1 χi2] = [χi1 Σχ#
i2 Σχ#

i1 χi2]
(
µi I2 −νi σ2
νi σ2 µi I2

)
and

χ†i1 J χi1 = (Σχ#
i2)† J (Σχ#

i2) = 1, χ†i1 J χi2 = (Σχ#
i1)† J (Σχ#

i2) = 0,

χ†i2 J χi2 = (Σχ#
i1)† J (Σχ#

i1) = −1, (Σχ#
iα)† J χiβ = 0 for α, β = 1, 2.

If we define χ .= [χ11 Σχ#
12 . . . χrc1 Σχ#

rc2] and recall that different eigenvalue blocks
are J-orthogonal to each other, we can see that the following relations hold:

C [χΣχ#] = [χΣχ#]
(
µ −ν
ν µ

)
,

[χΣχ#]† J [χΣχ#] = J4rc ,

where µ= diag(µ1I2, . . . , µrcI2) and ν = diag(ν1σ2, . . . , νrcσ2).
Let us define W̄ .=

[
[ζ η χ] Σ[ζ η χ]#

]
and W .=

[
[ζ η χψ] Σ[ζ η χψ]#

]
. Then,

W is Bogoliubov. Indeed, recalling the orthonormality relations within each type of
eigenvector block (complex, real positive, real negative, and zero eigenvalues) and the
fact that different blocks are J-orthogonal to each other, we can see that

W [W = J(W †JW ) = JJ = I

and

ΣWΣ = Σ
[

Σ[ζ η χψ]# [ζ η χψ]
]

=
[

[ζ η χψ]# Σ[ζ η χψ]
]

= W#.

We also have that

(13) C W̄ = W̄ C̄ = W̄

(
C̄1 C̄2
C̄#

2 C̄#
1

)
,

where

C̄1 = diag(λ+
1 , . . . , λ

+
r+ , λ

−
1 , . . . , λ

−
r−
, µ1I2, . . . , µrcI2, ),

C̄2 = diag(0, . . . , 0︸ ︷︷ ︸
r++ r−

,−ν1σ2, . . . ,−νrcσ2).
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C̄ is just the restriction of C on its 2r-dimensional invariant subspace spanned by
eigenvectors with nontrivial eigenvalues (r = r+ + r−+ 2rc). We can factor C̄ = C̄[C̄,
with C̄

.=
( C̄1 C̄2

C̄#
2 C̄#

1

)
∈ C2r×2r, where

C̄1 = diag
(√

λ+
1 , . . . ,

√
λ+
r+ , 0, . . . , 0︸ ︷︷ ︸

r−

, α1I2, . . . , αrcI2

)
,

C̄2 = diag
(

0, . . . , 0︸ ︷︷ ︸
r+

,

√
|λ−1 |, . . . ,

√
|λ−r− |,−β1σ2, . . . ,−βrcσ2

)
.

The parameters αi and βi are determined in terms of λci , as follows:

αi =

√
|λci |+ reλci

2
, βi =

imλci√
2
(
|λci |+ reλci

) .
Introducing the definition C = C[C and the factorization C̄ = C̄[C̄ into (13), we
compute

C[CW̄ = W̄ C̄[C̄ ⇒ W̄ [ C[CW̄ = C̄[C̄ ⇒
(
CW̄ (C̄)−1

)[
·
(
CW̄ (C̄)−1

)
= I.

The fact that C̄ is full rank was used in the above calculation to guarantee its invert-
ibility. The matrix CW̄ (C̄)−1 ∈ C2m×2r

du , since each of its factors has this property.
Then, there exists a matrix VI ∈ C2m×r, such that

(14) CW̄ (C̄)−1 = [VI ΣV #
I ]⇒ CW̄ = [VI ΣV #

I ] C̄.

Notice that the columns of [VI ΣV #
I ] are J-orthonormal, i.e., [VI ΣV #

I ]† J [VI ΣV #
I ] =

J2r. The final step is to complete a J-orthonormal basis of (C2m, J2m) with the
doubled-up property, that is, to find a matrix VII ∈ C2m×(m−r), such that V .=[

[VI VII ] Σ[VI VII ]#
]

is Bogoliubov. To do this, consider the image of [VI ΣV #
I ]. It

is a nondegenerate subspace of C2m, meaning that it admits a J-orthonormal basis.
Such a basis is, in fact, furnished by the columns of [VI ΣV #

I ]. It follows then [6] that
its J-orthogonal complement in C2m is also nondegenerate; hence it also admits a
J-orthonormal basis. Any such basis must contain m− r vectors whose inner product
with themselves is 1, and m − r vectors whose inner product with themselves is −1.
Then, VII can be any matrix whose columns are composed of those basis vectors
whose inner product with themselves is 1. Finally, from (14) and C [ψΣψ#] = 0, we
obtain

C
[

[W̄ψ] Σ[W̄ψ#]
]

=
[

[VI VII ] Σ[VI VII ]#
]( (

C̄1 0
0 0

) (
C̄2 0
0 0

)(
C̄2 0
0 0

)# (
C̄1 0
0 0

)# )
⇒ CW = V Ĉ,

which is exactly the statement of the theorem, given that W is Bogoliubov.

Before we employ the theorem to prove the analogue of Theorem 3.1 in the case
of a general LQSS, we make several remarks.

Remark 4.4. In order to prove the analogue of Theorem 3.1 in the case of a general
LQSS, it is necessary that V be Bogoliubov and W be doubled-up.
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Remark 4.5. The theorem excludes the case of a C such that C = C[C has non-
semisimple eigenvalues. Though there is no fundamental issue in extending the result
in that case, there does not seem to exist a simple form for the reduced form Ĉ.

Remark 4.6. The theorem also excludes the case where KerC is a strict subspace
of Ker C. When Ker C = KerC, C is called J-nondegenerate, and this is the generic
situation for C ∈ C2m×2n

du , with m ≤ n. The proof is as follows: Let us define the map
φm,n : C2m×2n

du → R2m×2n by φm,n(C) .= Φ2mCΦ−1
2n . φm,n is an isomorphism, which

implies that RankC = Rankφm,n(C). It is well known that a 2m × 2n real matrix,
with m ≤ n, will have rank equal to 2m, generically. Hence, it follows that the generic
C ∈ C2m×2n

du , with m ≤ n, has rank equal to 2m. Then, RankC[ = Rank J2nC
†J2m =

RankC† = 2m. From this, Rank C ≤ min(RankC,RankC[) = 2m. But, from
Sylvester’s rank inequality, we have that Rank C ≥ RankC + RankC[ − 2m = 2m.
Hence, Rank C = 2m, so dim Ker C = 2n−2m = dim KerC, from which Ker C = KerC
follows. In the case m ≥ n, we have that KerCC[ = KerC[, generically. Then, one
can prove Theorem 4.1 using C[ in place of C.

Remark 4.7. For X ∈ R2r×2s, define its ]-adjoint X] by X] = −J2sX
>J2r. The ]-

adjoint satisfies properties similar to those of the usual adjoint, namely (x1A+x2B)] =
x1A

] + x2B
], (AB)] = B]A], and (A])] = A. Using the definition of the map φ in

the previous remark, we have that for C ∈ C2r×2s, φr,s(C)] = φs,r(C[). Then, given
a Bogoliubov matrix T ∈ C2k×2k

du , S = φk,k(T ) ∈ R2k×2k satisfies S] = φk,k(T [) =
φk,k(T−1) = (φk,k(T ))−1 = S−1. Such a matrix S is called real symplectic. The set
of these matrices forms a noncompact Lie group, known as the real symplectic group,
which is homomorphic to the Bogoliubov group. Given the isomorphisms φ between
real and doubled-up and between symplectic and Bogoliubov matrices, respectively,
Theorem 4.1 may be restated as follows.

Theorem 4.8. Let X ∈ R2m×2n and X .= X]X. We assume that all the eigen-
values of X are semisimple, and that KerX = KerX. Let λ+

i > 0, i = 1, . . . , r+,
λ−i < 0, i = 1, . . . , r−, and λci , with imλci > 0, i = 1 . . . , rc, be the nontrivial eigen-
values of C (along with λc∗i ). Then, there exist symplectic matrices V ∈ R2m×2m and
W ∈ R2n×2n and a matrix X̂ =

(
X̂1 X̂2

X̂2 X̂3

)
∈ R2m×2n, such that X = V X̂ W ], with

X̂l =
(
X̄l 0
0 0

)
, X̄l ∈ Rr×r (r = r+ + r− + 2rc ≤ min{n,m}) for l = 1, 2, 3, and

X̄1 = diag
(√

λ+
1 , . . . ,

√
λ+
r+ ,

√
|λ−1 |, . . . ,

√
|λ−r− |, α1I2, . . . , αrcI2

)
,

X̄2 = diag
(

0, . . . , 0︸ ︷︷ ︸
r++r−

, β1J2, . . . , βrcJ2

)
,

X̄3 = diag
(√

λ+
1 , . . . ,

√
λ+
r+ ,−

√
|λ−1 |, . . . ,−

√
|λ−r− |, α1I2, . . . , αrcI2

)
.

αi and βi are calculated in terms of λci , i = 1 . . . , rc, by

αi =

√
|λci |+ reλci

2
and βi =

imλci√
2
(
|λci |+ reλci

) .
4.2. Main result. Let us refer to Figure 3. It represents a particular configura-

tion, composed of a pre- and a postprocessing (general) static network and a collection
of beam splitters and single-mode optical cavities in a feedback connection through a
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third static network. The beam splitters realize the unitary J2 =
(

0 1
−1 0

)
. There are

four types of cavities: Type I cavities have a single passive interconnection port, and
Type IIp/IIa have an additional passive or active system port, respectively. Finally,
Type III cavities have one passive and one active system port each, in addition to their
passive interconnection port. In the following, we prove that this sort of configura-
tion can realize the transfer function of an arbitrary passive LQSS for an appropriate
choice of parameters.

R

V [S V

Type I

Type IIp

Type IIa

Type III

m− r

r

Reduced LQSS

Fig. 3. A graphical representation of the realization of the transfer function of a general LQSS
proposed in Theorem 4.9. Each cavity is representative of all cavities of its type.

Theorem 4.9. Given a general LQSS with parameters (S,C,Ω), let

G(s) =
[
I − C

(
sI + ıJΩ +

1
2
C[C

)−1

C[
]
S

be its transfer function. If C satisfies the assumptions of Theorem 4.1, let C =
V ĈW [ be its corresponding decomposition. Then, G(s) can be factorized as G(s) =
V Ĝ(s) (V [S), where Ĝ(s) has the form

Ĝ(s) = I − Ĉ
(
sI + ıJΩ̂ +

1
2
Ĉ[Ĉ

)−1

Ĉ[,

with Ω̂ = W †ΩW . Ĝ(s) is the transfer function of an LQSS with parameters (I, Ĉ, Ω̂)
and can be realized by the following feedback network of n − r one-port, r+ + r−
two-port, and 2rc three-port cavities, where r = r+ + r− + 2rc:

dǎ =
(
− ıJΩ̄− 1

2
C̃[C̃ − 1

2
Ĉ[Ĉ

)
ǎdt− C̃[dǓint − Ĉ[dǓ ,(15a)

dY̌ = Ĉǎdt+ dǓ ,(15b)

dY̌int = C̃ǎdt+ dǓint,(15c)

dǓint = RdY̌int.(15d)
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Here, C̃ = diag(
√
κ̃1, . . . ,

√
κ̃n,
√
κ̃1, . . .,

√
κ̃n), and Ω̄ = diag(D,D) +E +E>, where

D = diag(∆+
1 , . . . ,∆

+
r+ ,∆

−
1 , . . . ,∆

−
r−
,∆c

1,∆
c
1, . . . ,∆

c
rc ,∆

c
rc ,∆

0
1, . . . ,∆

0
n−r)

and E ∈ R2n×2n has all zero elements except for

Er++r−+2i−1,n+r++r−+2i = Er++r−+2i,n+r++r−+2i−1 = − imλci
2

for i = 1, . . . , rc. The Bogoliubov matrix R (feedback gain) is determined through the
relations

X = 2ı(C̃[)−1(JΩ̂− JΩ̄) C̃−1,(16)

R = (X − I)(X + I)−1.

Proof. The proof consists of two parts. First, we show that the LQSS

dǎ =
(
−ıJΩ̄− 1

2
Ĉ[Ĉ

)
ǎdt− Ĉ[dǓ ,(17a)

dY̌ = Ĉǎdt+ dǓ(17b)

can be realized (in the strict sense) by a particular configuration of cavities. If we look
at the structure of Ĉ and Ω̄, we conclude that it contains the following components:

1. r+ independent cavities with one passive port each, with Hamiltonian ma-
trices diag(∆+

i ,∆
+
i ) and coupling matrices diag(

√
λ+
i ,
√
λ+
i ), i = 1, . . . , r+,

corresponding to the positive eigenvalues of C.
2. r− independent cavities with one active port each, with Hamiltonian matri-

ces diag(∆−i ,∆
−
i ) and coupling matrices

( 0
√
|λ−
i |√

|λ−
i | 0

)
, i = 1, . . . , r−, corre-

sponding to the negative eigenvalues of C.
3. rc independent two-mode LQSSs with two ports, with Hamiltonian matrices

∆c
i 0 0 −imλci/2

0 ∆c
i −imλci/2 0

0 −imλci/2 ∆c
i 0

−imλci/2 0 0 ∆c
i


and coupling matrices 

αi 0 0 ıβi
0 αi −ıβi 0
0 −ıβi αi 0

ıβi 0 0 αi


for i = 1, . . . , rc, corresponding to the nonreal eigenvalues of C. This LQSS
can be realized as a cascade connection of two identical two-port, single-mode
cavities and a beam splitter, as in Figure 4. Each cavity has one passive port
with coupling coefficient α2

i and one active port with coupling coefficient β2
i .

Its coupling matrix is given by
0 ıβi
αi 0

−ıβi 0
0 αi

 ,
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Fig. 4. A cascade system realizing the two-mode, two-port LQSS in the case of a complex
eigenvalue.

and its Hamiltonian matrix is given by diag(∆c
i ,∆

c
i ) for i = 1, . . . , rc. The

beam splitter implements the unitary transformation J2 =
(

0 1
−1 0

)
.

4. n − r closed cavities (without ports, that is), with Hamiltonian matrices
diag(∆0

i ,∆
0
i ) and coupling matrices equal to zero, i = 1, . . . , r0, corresponding

to the zero eigenvalues of C.
Going from the configuration described by (17a) and (17b) to the reduced model

described by (15a)–(15d) (see also Figure 3), we introduce a (passive) interconnection
port in each cavity. To complete the proof, it suffices to prove that Ĝ(s) is the transfer
function of the feedback network described by (15a)–(15d). To this end, we combine
(15c) and (15d) to obtain the relation dǓint = (I −R)−1R C̃ǎ dt. Now, we introduce
the Cayley transform X = (I − R)−1(I + R); see (8). It is straightforward to verify
that X is doubled-up and [-skew-Hermitian (X[ = −X) if and only if R is Bogoliubov.
The unique solution for R in terms of X is given by R = (X − I)(X + I)−1. Using
the identity (I − R)−1R = − 1

2I + 1
2X, the relation between dǓint and ǎ, and the

definition of X, the equations for the reduced LQSS take the following form:

dǎ =
(
− ıJΩ̄− 1

2
C̃[XC̃ − 1

2
Ĉ[Ĉ

)
ǎdt− Ĉ[dǓ ,

dY̌ = Ĉǎdt+ dǓ .

These equations describe an LQSS with Hamiltonian matrix Ω̂ given by the expression

(18) JΩ̂ = JΩ̄− ı

2
(C̃[XC̃).

Given any values for the cavity parameters ∆ and κ̃ and any desired Hamiltonian
matrix Ω̂ = W †ΩW , we may determine the unique X (and, hence, the unique R) that
produces this Ω̂ by the expression

X = 2ı(C̃[)−1(JΩ̂− JΩ̄) C̃−1.

Remark 4.10. Similarly to the passive case (see Remark 3.2) if R =
( R1 R2

R#
2 R#

1

)
,

with R1 and R2 block-diagonal (with blocks of dimensions r and n− r, respectively),
the n− r modes that are not influenced directly by the inputs are uncontrollable and
unobservable. However, the controllability and observability properties of a general
LQSS are more complicated [40].

4.3. Illustrative example. Consider a two-mode, two-port LQSS with the fol-
lowing parameters:

Ω =


2 1 0 −1
1 2 −1 0
0 −1 2 1
−1 0 1 2

 , C =


0 1 2 0
−1 2 1 −1

2 0 0 1
1 −1 −1 2

 , and S = I4.
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The eigenvalue decomposition of C = C[C is computed to be C = UDU−1, where

D = diag(−2.8284, 2.8284,−2.8284, 2.8284),

U =


−0.9074 0.3474 0.2038 0.1756
−0.1329 0.2965 0.4090 −0.8908

0 0 −0.8629 0.4064
0.3987 −0.8896 −0.2159 −0.1027

 .

To the positive eigenvalue λ+ = 2.8284, there correspond the eigenvectors u2 and u4
given by the second and fourth columns of U . We have that 〈u4, u4〉J > 0, and after
normalization u4 becomes ζ1 = (0.2180,−1.1061, 0.5046,−0.1275)>. To the negative
eigenvalue λ− = −2.8284, there correspond the eigenvectors u1 and u3 given by the
first and third columns of U . We have that 〈u1, u1〉J > 0, and after normalization u1
becomes η1 = (−1.0987,−0.1609, 0, 0.4827)>. According to the proof of Theorem 4.1,

W =
[
[ζ1η1] Σ [ζ1η1]#

]
=


0.2180 −1.0987 0.5046 0
−1.1061 −0.1609 −0.1275 0.4827

0.5046 0 0.2180 −1.0987
−0.1275 0.4827 −1.1061 −0.1609

 .

Since there are no zero eigenvalues,

Ĉ = C̄ =


1.6818 0 0 0

0 0 0 1.6818
0 0 1.6818 0
0 1.6818 0 0

 ,

and we can compute V simply by

V = CW Ĉ−1 =


−0.0576 −1.0196 0.1834 −0.0957
−1.0691 0.0164 0.3357 0.1749

0.1834 −0.0957 −0.0576 −1.0196
0.3357 0.1749 −1.0691 0.0164

 .

The Hamiltonian of the reduced LQSS is equal to

Ω̂ = W †ΩW =


3.6444 1.0135 0.4429 −3.3952
1.0135 4.3462 −3.3952 −1.7249
0.4429 −3.3952 3.6444 1.0135
−3.3952 −1.7249 1.0135 4.3462

 .

The reduced LQSS can be implemented by the use of two cavities, one with a pas-
sive port (corresponding to λ+) and one with an active port (corresponding to λ−).
Choosing the detuning of both cavities to be zero makes the total Hamiltonian of
their concatenation Ωconc = 04×4. Also, we choose C̃ = I4. Then, we compute

X = ı


7.2889 2.0271 0.8858 −6.7904
2.0271 8.6924 −6.7904 −3.4497
−0.8858 6.7904 −7.2889 −2.0271

6.7904 3.4497 −2.0271 −8.6924

 ,

from which the feedback gain R is computed to be

D
ow

nl
oa

de
d 

11
/0

1/
18

 to
 1

30
.5

6.
97

.4
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

3368 SYMEON GRIVOPOULOS AND IAN PETERSEN

R =


−0.3731 + 7.8624ı 0.9082− 5.2659ı 7.4743ı 0.0450− 5.8003ı

0.9082− 5.2659ı 0.3125 + 4.4401ı −0.0450− 5.8003ı 3.7042ı
−7.4743ı 0.0450 + 5.8003ı −0.3731− 7.8624ı 0.9082 + 5.2659ı

−0.0450 + 5.8003ı −3.7042ı 0.9082 + 5.2659ı 0.3125− 4.4401ı

.
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