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Linear quantum trajectories: Applications to continuous projection measurements

K. Jacobs and P. L. Knight
Optics Section, The Blackett Laboratory, Imperial College, London SW7 2BZ, England

~Received 30 May 1997; revised manuscript received 19 September 1997!

We present a method for obtaining evolution operators for linear quantum trajectories. We apply this to a
number of physical examples of varying mathematical complexity, in which the quantum trajectories describe
the continuous projection measurement of physical observables. Using this method we calculate the average
conditional uncertainty for the measured observables, being a central quantity of interest in these measurement
processes.@S1050-2947~98!00603-9#

PACS number~s!: 03.65.Bz, 42.50.Lc, 05.40.1j
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I. INTRODUCTION

Quantum master equations, which govern the evolution
a density matrix representing the state of a physical syst
have a wide application in quantum dissipation and conti
ous measurement theory@1–3#. They describe the evolution
of a quantum system that is interacting with an environm
that, due to the interaction, may absorb energy from the
tem ~dissipation!, and will continually provide information
about the state of the system~continuous measurement!. A
classic example of a system interacting with an environm
is that of a single mode of an optical cavity that is allowed
leak out of the cavity via an imperfect end mirror. The ph
tons in the cavity leak out over time, and these may be
tected with a photodetector. The environment consists of
continuum of optical modes outside the cavity, and provid
a mechanism for dissipation and continuous measuremen
master equation would describe the evolution of the sys
averaged over all the possible times at which the phot
may be detected leaving the cavity. However, the ma
equation may be rewritten in an equivalent form as a s
chastic equation which describes the evolution of the sys
for eachset of photodetection times@4#. Each possible real
ization of the stochastic equation corresponds to a se
detection times, or more generally, to a particular set of m
surement results. Each set of results is termed a quan
trajectory @5#, and the stochastic equation is said tounravel
the master equation. The kind of stochastic process app
ing in the equation will depend upon the kind of measu
ment process. For photodetection of the output of a ca
mode the stochastic process is a point process@6#, while for
homodyne detection it is a Wiener process@7#. However, the
master equation, giving the overall average evolution, d
not depend upon the choice of measurement. In other wo
there are many different ways to unravel any particular m
ter equation. Here we will be concerned with stochas
equations that contain the Wiener process.

The fact that quantum master equations may be rewri
as linear stochastic equations~LSE’s! for the quantum state
vector, referred to alternatively aslinear quantum trajecto-
ries, has been known in the mathematical physics literat
for some time@8#, but has only fairly recently seen exposu
in the physics literature@9–11#, where it has been commo
to use nonlinear stochastic equations@12,13#. The advantage
of writing master equations as LSE’s, rather than the m
571050-2947/98/57~4!/2301~10!/$15.00
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familiar nonlinear version, is that in certain cases it has b
found that explicit evolution operators corresponding
these equations may be obtained in a straightforward m
ner. However, as far as we are aware, the only method
has been used to obtain evolution operators for these e
tions to date is to choose an initial state that allows the s
chastic equation for the state to be written as a stocha
equation for an eigenvalue, or which simplifies the action
the evolution operator@9,10#. In this paper we present a mor
general method for obtaining explicit evolution operators
these equations that makes no reference to the initial s
Naturally the resulting evolution operators contain classi
random variables. The complexity of the stochastic equati
that govern these classical random variables depends u
the complexity of the commutation relations between the
erators appearing in the LSE. If the complexity of the co
mutation relations is sufficiently high then the stochas
equations governing the classical random variables bec
too complex to solve analytically. Nevertheless, even if t
is the case, the form of the evolution operator provides
formation regarding the type of states produced by the L
and the problem is reduced to integrating the classical
chastic equations numerically. We also note that the solu
to an LSE provides additional information to that contain
in the solution to the equivalent master equation, becaus
gives the state of the system for each trajectory. For exam
the variance of a system operator may be calculated for e
final state~i.e., for each trajectory!, and this is referred to as
the conditionalvariance as it is conditional upon the resu
of the measurement. The overall average of these varia
may be then be calculated. The solution to the master eq
tion allows us to calculate only the variance that is obtain
by first averaging the final states over all trajectories, wh
is, in general, quite a different quantity.

In the following we use as examples LSE’s correspond
to the continuous measurement of physical observables
term of the form

ṙ5•••2k†O,@O,r#‡••• ~1!

in a quantum master equation for the evolution of a den
matrix, r, for a quantum systemS, describes a continuou
projection measurement of an observableO of S. The rate at
which information is gained regarding the observable is
termined byk, which is a positive constant. That a contin
2301 © 1998 The American Physical Society
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2302 57K. JACOBS AND P. L. KNIGHT
ous measurement of a physical observable can be desc
in this way has been demonstrated by Barchielli and
workers @14#, and also by Uedaet al. @15# using a quite
different approach. For the theory of continuous measu
ment the reader is referred to these works and refere
@16–19#. We refer to this measurement process as a cont
ous projection measurement because in the absence of
system evolution, the sole effect of this term is to reduce
off-diagonal elements of the density matrix to zero in t
eigenbasis of that observable. That is, it describes, in
long time limit, a projection onto one of the eigenstates
the observable under observation. If, in addition, the obse
able commutes with the Hamiltonian describing the free e
lution of the system under observation, then the free evo
tion does not interfere with this process of projection, and
measurement is referred to as a continuous quantum
demolition ~QND! measurement@20,3#.

Before we proceed we note the following points. The LS
that is equivalent to the general master equation@21#

ṙ52
i

\
@H,r#1 (

n51

N

~2OnrOn
†2On

†Onr2rOn
†On!, ~2!

whereH is Hermitian and theOn are arbitrary operators, is

duc&5F2
i

\
Hdt2 (

n51

N

~On
†Ondt2A2OndWn~ t !!G uc&,

~3!

where thedWn(t) are independent stochastic Wiener inc
ments that obey the Ito calculus relationdWn(t)25dt @7#.

During evolution an initially pure quantum state remai
pure, but changes in a random way determined by the va
taken by the Wiener process. The state at timet, uc(t)&w , is
not normalized, and the probability measure for the sys
to have evolved to that particular state at that time is giv
by @9#

^c~ t !uc~ t !&wdPw , ~4!

where dPw is the Wiener measure. That is, it is the joi
probability measure for all the random variables that app
in the expression foruc(t)&w . It follows therefore that mo-
ments of system operators calculated with the equiva
master equation at timet are given by the expression

^O&5E ^c~ t !uOuc~ t !&wdPw , ~5!

whereO is the system operator in question, anddPw repre-
sents integration over all possible values of the random v
ables. For an in-depth account of LSE’s and their relati
ship to physical measurements we refer the reader to
@9#.

II. OBTAINING EVOLUTION OPERATORS FOR LINEAR
QUANTUM TRAJECTORIES

A. General method

We will explicitly treat here LSE’s that contain only on
stochastic increment. However, it will be clear that this tre
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ment may be easily extended for multiple stochastic inc
ments. Let us write a general LSE with a single stocha
increment as

duc&5@Ãdt1BdW~ t !#uc&. ~6!

In this equationÃ andB are arbitrary operators. We will se
that the complexity of the evolution operator will depen
upon the complexity of the commutation relations betweenÃ
andB.

Let us define the integral of Wiener increments ove
time Dt asDW(t). The probability density forDW(t) is @7#

P„DW~ t !…5
1

A2pDt
e2@DW~ t !#2/~2Dt !, ~7!

so that^DW(t)&50 and^@DW(t)#2&5Dt. As a first step in
obtaining an evolution operator for the LSE in Eq.~6! we
rewrite it in the form

uc~ t1dt!&5e@Ã2~B2/2!#dteBdW~ t !uc&5eAdteBdW~ t !uc&,
~8!

where we have definedA5Ã2B2/2. It is easily verified that
this is correct to first order by expanding the exponentials
second order and using the Ito calculus relationdW(t)2

5dt. To first order the state at timet1Dt is therefore

uc~ t1Dt !&5eADteBDW~ t !uc~ t !&, ~9!

so that the state at timet may be written as

uc~ t !&w5 lim
Dt→0

)
n51

N

~eADteBDWn!uc~0!&, ~10!

where

DWn5E
~n21!Dt

nDt

dW~ t !, ~11!

andN→` asDt→0 so thatNDt5t is always true. To com-
plete the derivation of the evolution operator we must ta
the limit in Eq. ~10!. To do this we must combine the argu
ments of the exponentials that appear in the product, so
we may sum the infinitesimals. We will choose to do this
first repeatedly swapping the order of the exponentials c
taining the operatorA with those containing the operatorB.
The simplest case occurs whenA andB commute so that the
problem essentially reduces to the single variable case,
we treat this in Sec. II B. The simplest nontrivial case occ
when the commutator@A,B#, while nonzero, commutes with
bothA andB, and we treat this in Sec. II C. In the final pa
of this section we examine a more complicated example
which the commutator@A,B# does not commute with eithe
A or B.

B. A QND measurement of photon number

The mathematically trivial case occurs whenA and B
commute. A nontrivial physical example to which this co
responds is a QND measurement of the photon number
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57 2303LINEAR QUANTUM TRAJECTORIES: APPLICATIONS . . .
single cavity mode. Denoting the annihilation operator d
scribing the mode bya, the free cavity field Hamiltonian is
given by @3#

H5\v~a†a1 1
2 !, ~12!

in which v is the frequency of the cavity mode, and th
observable to be measured isO5a†a. With this we have

A52 iv~a†a1 1
2 !22k~a†a!2, ~13!

B5A2ka†a, ~14!

in which k is the measurement constant introduced in E
~1!. As A andB commute the exponentials in Eq.~10! com-
bine trivially and we obtain

uc~ t !&w5 lim
Dt→0

eANDtexpFB(
n

DWnG uc~0!&

5eAteBW~ t !uc~0!&. ~15!

As the Wiener process,W(t), is a sum of independen
Gaussian distributed random variables,Wn , it is naturally
Gaussian distributed, the mean and variance ofW(t) being
zero andt, respectively. In a particular realization of th
stochastic equation, Eq.~6!, the Wiener process will have
particular value at each timet, and as we mentioned abov
the set of all these values corresponds to the trajectory th
taken by that particular realization. The fact that to obtain
state at timet we require only the value of the Wiener pro
cess at that time means that we do not require all the tra
tory information, but just a single variable associated w
that trajectory. For more complicated cases, in which
operators do not commute, we will find that other variab
associated with the trajectory appear in the evolution op
tor.

As the situation we consider here is a QND measurem
the phase uncertainty introduced by the measurement of
ton number does not feed back to affect the measuremen
that the result is simply to decrease continuously the un
tainty in photon number, and the state of the system at
tends to infinity tends to a number state. If we denote
evolution operator derived in Eq.~15! by V(t), and start the
system in an arbitrary mixed stater(0), then at timet the
normalized state of the system may be written as

r~ t !5
V~ t !r~0!V†~ t !

Tr$V~ t !r~0!V†~ t !%
. ~16!

As V(t) is diagonal in the photon number basis, we on
require the diagonal elements of the initial density matrix
calculate moments of the photon number operator. Deno
the diagonal elements of the initial density matrix byrn , and
the diagonal elements ofV(t)V†(t) by Vn , the variance of
the photon number, for a given trajectory, is given by

sn
2~ t !w5

(
n

n2rnVn

(
n

rnVn

2

S (
n

nrnVnD 2

S (
n

rnVnD 2 . ~17!
-

.
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The uncertainty in our knowledge of the number of photo
is the square root of this variance. Averaging this uncertai
over all trajectories therefore tells us, on average, how ac
rately we will have determined the number of photons a
later time. To calculate the value of the uncertainty for ea
trajectory, averaged over all trajectories we must multip
sn(t)w by the probability for each final state and avera
over all the final states. The probability measure for the fi
states,r(t), is given by the Wiener measure multiplied b
the norm of the final state, Tr$V(t)r(0)V†(t)%. This prob-
ability measure is not in general Gaussian inW(t), but a
weighted sum of Gaussians, one for eachn. Performing the
multiplication, we obtain the average conditional uncertain
in photon number as

^sn~ t !w&5EA(
nm

n~m2n!rnrmVnVmdPw , ~18!

in which

Vn5e24ktn212A2knW, ~19!

dPw5
1

A2pt
e2W2/~2t !dW. ~20!

We note that̂ sn(t)w& may be written as a function oft
5kt, which is the time scaled by the measurement const
Hence, as we expect, increasing the measurement time
the same effect on̂sn(t)w& as increasing the measureme
constant. We evaluatêsn(t)w& numerically for an initial
thermal state, and an initial coherent state, and display
results in Fig. 1. We have chosen the initial states so
they have the same uncertainty in photon number, with
result that the mean number of photons in each of the

FIG. 1. The conditional uncertainty in photon number averag
over all trajectories,̂sn(t)w&, is plotted here against the dimensio
less scaled time,t5kt. The dotted line corresponds to an initia
coherent state, and the solid line to an initial thermal state. B
initial states were chosen to havesn

2520, giving the thermal state a
mean photon number of̂n&54, and the coherent state a mea
photon number of̂n&520. The photon number distributions for th
two initial states are displayed in the inset.
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2304 57K. JACOBS AND P. L. KNIGHT
states is quite different. The results show the decreas
uncertainty with time, which is seen to be only weakly d
pendent upon the initial state.

C. A measurement of momentum in a linear potential

The simplest mathematically nontrivial case occurs wh
the commutator betweenA and B, while nonzero, is such
that it commutes with bothA andB. A physical situation to
which this corresponds is a continuous measurement of
momentum of a particle in a linear potential. If we denote
position and momentum operators for the particle asQ and
P, respectively, then the Hamiltonian is given by

H5
1

2m
P22FQ, ~21!

in which m is the mass of the particle andF is the force on
the particle from the linear potential. In this case we hav

A5S 2 i

2\m
22kD P21

iF

\
Q, ~22!

B5A2kP, ~23!

in which k is again the measurement constant.
Returning to Eq.~10! we see that to obtain a solution w

must pass all the exponentials containing the operatorB to
the right through the exponentials containing the operatoA.
In order to perform this operation we need a relation of
form

eBeA5eAeC. ~24!

For the present case the required relation is simply given
the Baker-Campbell-Hausdorff formula@22,1#

eBeA5eAeBe2@A,B#. ~25!

Using this relation to propagate successively all of the ex
nentials containingB to the right in the product in Eq.~10!
we obtain

)
n51

N

~eADteBDWn!5exp@ANDt#expFB(
n51

N

DWnG
3expF2@A,B#Dt (

n51

N

~n21!DWnG .

~26!

All that remains is to calculate the joint probability dens
for the random variables. The first is the Wiener process,
the second is

Y~ t !5 lim
Dt→0

Dt (
n51

N

~n21!DWn5E
0

t

t8dW~ t8!. ~27!

Clearly these are both Gaussian distributed with zero m
and all that we require is to calculate the covariances^Y(t)2&
and^W(t)Y(t)& to determine completely the joint density
time t. Using^DWnDWn&5dnmDt these quantities are easi
obtained:
in
-

n

he
e

e

y

-

d

n

^Y~ t !2&5 lim
Dt→0

Dt (
n51

N

@~n21!Dt#2Dt5E
0

t

t82dt85t3/3,

~28!

^W~ t !Y~ t !&5 lim
Dt→0

(
n51

N

@~n21!Dt#Dt5E
0

t

t8dt85t2/2.

~29!

The state at timet, under the evolution described by th
stochastic equation, is therefore

uc~ t !&w5eAteBW~ t !e2@A,B#Y~ t !uc~0!&, ~30!

where the joint probability density forW andY at time t is
given by

Pw~W,Y!5S A12

2pt2D expF2
2

t
W22

6

t3
Y21

6

t2
WYG .

Note that to obtain the probability density for the final sta
this must be multiplied by the norm of the state at timet.

Returning to the specific case of a particle in a line
potential, we may now obtain results for various quantities
interest. Writing the evolution operator in terms of the m
mentum and position operators we have

uc~ t !&w5expH F S 2 i

2\m
22kD P21

iF

\
QG tJ

3exp$A2k@PW~ t !1FY~ t !#%uc~0!&. ~31!

Using the Zassenhaus formula@23# to disentangle the argu
ment of the first exponential we may rewrite this in the mo
convenient form

uc~ t !&w5expF iF

\
QtGexp@h~2P2t2PFt22F2t3/3!#

3exp$A2k@PW~ t !1FY~ t !#%uc~0!&, ~32!

in which h5( i /2\m12k). For those not familiar with the
Zassenhaus formula, it is complementary to the BCH f
mula. While the BCH formula shows how to write an exp
nential of the sum of two operators as a product of expon
tials of the operators and their commutator~or in more
complicated cases repeated commutators of the two op
tors!, the Zassenhaus formula shows how to write the pr
uct of exponentials of two operators as the exponential of
sum of the operators and repeated commutators.

Let us first take an arbitrary initial state, writing it in th
momentum eigenbasis so that we have

uc~0!&5E
2`

`

C~p!up&dp, E
2`

`

uC~p!u2dp51. ~33!

Using Eqs.~32! and~33! in Eq. ~5! to calculate the moment
of p given by first averaging over all trajectories~that is, the
moments that would be given by the equivalent master eq
tion! we readily obtain
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57 2305LINEAR QUANTUM TRAJECTORIES: APPLICATIONS . . .
^p~ t !n&5^~p~0!1Ft !n&. ~34!

In particular, for any initial state,uc(0)&, the average value
of the momentum at timet, ^p(t)&, is simply shifted from
the initial value by the impulseFt. The variance of the mo
mentum at timet, sp

2(t)5^p(t)2&2^p(t)&2, remains equal
to its original value. That is, the uncertainty introduced in
the position of the particle by the momentum measurem
does not feed back into the momentum, even though
momentum does not commute with the Hamiltonian. This
because while the momentum determines the position
later time, the converse is not true. These results for
moments are easily checked using the equivalent ma
equation.

Now let us consider the conditional variance of the m
mentum at timet averaged over all trajectories. In the pr
vious section we calculated the conditional uncertainty,
ing the square root of the variance, and averaged this ove
trajectories. Here, however, we will find that the condition
variance is independent of the trajectory taken, and depe
only on the measurement time. This will also be true of
example that we will treat in the next section. In this ca
clearly it does not matter if we first average the conditio
variance over the trajectories, and then take the square
or if instead we average the conditional uncertainty, beca
the averaging procedure is redundant. However, in gen
the two procedures are not equivalent. We will denote
conditional variance bŷsp

2(t)w&. As the uncertainty in po-
sition does not feed back into the momentum, we expect
this variance should steadily decrease to zero. This is
cause during a trajectory our knowledge of the moment
steadily increases so that the distribution over momen
becomes increasingly narrow. To perform this calculation
take the initial state to be the minimum uncertainty wa
packet given by the ground state of a harmonic oscillato
frequencyv. The average values of the position and mom
tum of the particle are both zero in this state and the resp
tive variances are

^Q2&5
\

2mv
[sQ

2 ~0!, ^P2&5
m\v

2
[sp

2~0!,

and in momentum space the state may be written

uc~0!&5S 1

pm\v D 1/4E
2`

`

e2P2/~2m\v!up&dp. ~35!

The moments of momentum for each trajectory are given

^pn&w5
^c~ t !upnuc~ t !&w

^c~ t !uc~ t !&w
, ~36!

and we calculate the first and second to givesp
2(t)w

5^p(t)2&w2^p(t)&w
2 . We obtain

^sp
2~ t !w&5

sp
2~0!

118ksp
2~0!t

. ~37!

This is independent ofW and Y and hence independent o
the trajectory. It is therefore unnecessary to average ove
final states. Indeed̂sp

2(t)w& decreases steadily from the in
nt
e

s
a
e

ter

-
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tial value to zero ast→` as we expect from the discussio
above. This means that while the average value of mom
tum is determined by the measurement results, the erro
our estimate of the momentum at timet is not.

D. A quadrature measurement with a general quadratic
Hamiltonian

We now consider an LSE in which the commutator@A,B#
does not commute with eitherA or B. As in the previous
example, letP andQ be, respectively, the canonical mome
tum and position operators for a single particle so that th
obey the canonical commutation relation@Q,P#5 i\. With
this definition we will takeA and B to have the following
forms:

A5aP21gQ21jQP1hP1zQ, ~38!

B5kQ1kP, ~39!

where a,g,h,z,k, and k are complex numbers. This ex
ample applies to an optical mode of the electromagn
field, including classical driving and/or classically drive
subharmonic generation@24# and for which an arbitrary
quadrature is continuously measured. It also applies to
situation of a single particle, which may feel a linear and
harmonic potential, and which is subjected to continuous
servation of an arbitrary linear combination of its positio
@25# and momentum.

To obtain an evolution operator for the LSE with th
choice of the operatorsA and B, we require, as before, a
relation of the form given by Eq.~24!. To derive this relation
we proceed in the following manner.

First we may use the Baker-Campbell-Hausdorff exp
sion @1#, or alternatively solve the equations of motion give
by dB/de5@A,B#, to obtain an expression foreeABe2eA.
The result is

e2eA«BeeA5« f 1~e!Q1« f 2~e!P1« f 3~e!, ~40!

in which

f 1~e!5
1

l
~22kg1kj!S1kC, ~41!

f 2~e!5
1

l
~2ka2kj!S1kC, ~42!

f 3~e!5
1

l2
~khj22kaz2kzj22kgh!@C21#

1
1

l
~kh2kz!S. ~43!

In these expressionsC5cosh(i\le), S5sinh(i\le), and l
5Aj224ag. Using the relation

e2eAf ~«B!eeA5 f ~e2eA«BeeA!, ~44!

we obtain from Eq.~40!

e2eAe«BeeA5e« f 1~e!Q1« f 2~e!Pe« f 3~e!. ~45!
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2306 57K. JACOBS AND P. L. KNIGHT
Multiplying both sides of this equation on the left byeeA we
obtain a relation of the forme«BeeA5eeAe«D(e), as we re-
quire.

We see from the above procedure that the relation in
~24! may be obtained as long as a closed form can be fo
for the solution to the operator differential equationdB/de
5@A,B#. Clearly this is straightforward if this equation
linear in B, which is true in the example we have treat
here, and is sometimes possible in cases in which the e
tions are nonlinear.

In addition, for this example we also require the BC
relation in the form

eAeB5eA1B1
1
2 @A,B#. ~46!

This is so that we can sum up in one exponential the op
tors that result from swappingeDWnB andenDtA.

Using the expressions derived above, with the repla
mentse5nDt and «5DWn , for eachn from 1 to N, by
repeatedly swapping the exponentials containingB with
those containingA as in the previous example, we obtain

lim
Dt→0

)
n51

N

~eADteBDWn!5eAteX1~ t !Q1X2~ t !PeX3~ t !ei\Z~ t !,

~47!

in which the classical stochastic variablesXi andZ, are given
by

Xi~ t !5E
0

t

f i~ t8!dW~ t8!, ~48!

Z~ t !5E
0

t

f 1~ t8!X2~ t8!dW~ t8!2E
0

t

f 2~ t8!X1~ t8!dW~ t8!,

where the expressions for thef i are given above, and th
integrals are Ito integrals. TheXi are Gaussian distribute
with zero mean, and their covariances are easily calculate
in the previous example:

^Xi~ t !Xj~ t !&5E
0

t

f i~ t8! f j~ t8!dt8. ~49!

In addition, the two-time correlation functions for these va
ables are also easily obtained analytically. In particular
have

^Xi~ t !Xj~t!&5E
0

min~ t,t!

f i~ t8! f j~ t8!dt8. ~50!

However,Z(t) is not Gaussian distributed. We are not awa
of an analytic expression for this variable, so that its pro
ability density may have to be obtained numerically. W
note in passing, however, that in some cases double stoc
tic integrals of this kind may be written explicitly in terms o
products of Gaussian variables@7#. We note also thatZ de-
termines only the normalization of the final state, and not
state itself. The normalized state at timet is therefore inde-
pendent ofZ, and we examine the consequences of this
Appendix A.

We may now write the state at timet as
q.
d

a-

a-

e-

as

-
e

e
-

as-

e

n

uc~ t !&w5eAteX1~ t !Q1X2~ t !PeX3~ t !1 i\Z~ t !uc~0!&. ~51!

Hence even though values for averages over all trajecto
may in general have to be calculated numerically, the evo
tion operator provides us with information regarding the ty
of states that will occur at timet. In particular, if the initial
state is Gaussian in position~and therefore also Gaussian
momentum!, then as each of the exponential operators in
above equation transform Gaussian states to Gaussian s
we see that the state of the system remains Gaussian a
times. The mean of the Gaussian in both position and m
mentum change with time in a random way determined
the values of the stochastic variables.

We will shortly consider a particular example, that of
harmonic oscillator undergoing a continuous observation
position, and use this evolution operator to calculate the c
ditional variance for the position at timet. We will take the
initial state to be a coherent state, which is a Gaussian w
packet. This conditional variance does not depend upon
trajectory, but simply upon the initial state and the measu
ment time, as indeed we found to be the case for the mom
tum measurement in Sec. II C.

Let us first show that for an initial coherent state the co
ditional variance of any linear combination of position a
momentum is independent of the trajectory for all of t
cases covered by the evolution operator in Eq.~51!. To do
this we must calculate the effect of this evolution operator
a coherent state. Clearly the effect of the rightmost expon
tial operator is at most to change the normalization, wh
effects neither the average values of position and mom
tum, nor the respective variances. The effect of the next
ponential, being linear inP andQ, is calculated in Appendix
B. We find that it changes the mean values of the posit
and momentum, and alters the normalization, but the s
remains coherent in that the position variance~and hence the
momentum variance! is unchanged. Finally, the effect of th
exponential quadratic inP andQ is calculated in Appendix
B. We find that this operator modifies the position varian
However, as the operator does not contain any stocha
variables, and as the manner in which it changes the pos
variance is independent of the mean position and mom
tum, we obtain the result that the effect on the position va
ance, and hence the variance of any linear combination
position and momentum, is trajectory independent.

Let us now consider a harmonic oscillator in which t
position is continuously observed. This situation has be
analyzed by Belavkin and Staszewski using the equiva
nonlinear equations@13#. The operatorsA andB in this case
are given by

A5S 2 i

2\mD P21S 2 imv2

2\
22kDQ2, ~52!

B5A2kQ, ~53!

in which m is the mass of the particle,v is the frequency of
the harmonic oscillation, andk is the measurement consta
for the continuous observation of position. Taking the init
state to be coherent, and denoting itua&, the initial position
wave function is given by
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^xua&5S 2s2

p D 1/4

e2s2x212sxa2
1
2 ~ uau21a2!, ~54!

wheres25mv/(2\). Using the results in Appendix B, w
find that the coefficient ofx2 at a later timet is given by

s825s2F122l

322l GF112
122l

112l G , ~55!

where

l 5
21/2

rz coth~zvt !1~11 ir !
, ~56!

and we have defined the parameters

z5A2i

r
21, r 5

mv2

2\k
. ~57!

After some algebra this may be written as

s825s2iz
iz tanh~zvt !21

tanh~zvt !2 iz
, ~58!

in agreement with that derived by Belavkin and Staszew
The conditional variance forx at time t is given by

sx
2~ t !w5

1

4 Re@s82#
. ~59!

As t tends to infinity, Eq.~58! gives a steady state value fo
the conditional variance, which is

sx
25

1

4 Im@z#
5~A2s2AA4/r 21111!21. ~60!

The parameterr is a dimensionless quantity that gives ess
tially the ratio between the frequency of the harmonic os
lator, and the rate of the position measurement. We m
view the dynamics of the position variance as being the
sult of two competing effects. One is the action of the m
surement, which is continuously narrowing the distributi
in position, and consequently widening the distribution
momentum. The other is the action of the harmonic moti
which rotates the state in phase space, so converting the
ened momentum distribution into position. Depending on
relative strengths of these two processes, determined by
dimensionless constantr , a steady state is reached in whic
they balance. If the rate of the measurement is very
compared to the frequency of the oscillation~corresponding
to r !1), then the localization in position is much great
than it would be for an unmonitored oscillator, and in th
case we succeed effectively in tracking the position of
particle. However, if the frequency of oscillation is muc
greater than the rate of localization due to the measurem
then the steady-state position variance remains essen
that of the unmonitored oscillator.
i.
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III. CONCLUSION

We have presented a method for obtaining evolution
erators for various classes of stochastic equations descri
linear quantum trajectories, and applied this to a numbe
physical examples pertaining to physical systems subje
to the continuous projection measurement of an observa
We have shown how the complexity of the stochastic eq
tions governing the random variables that appear in the e
lution operator depends upon the commutation relations
tween the operators appearing in the LSE. For the cas
which both these operators commute with their commuta
probability densities for the random variables may be o
tained analytically. We have also shown that in cases
which the commutation relations are more complex it
sometimes still possible to obtain an explicit evolution o
erator. This is possible even in cases in which the class
stochastic integrals, or equivalently the stochastic equati
governing the random variables that appear in this oper
are too complex to solve analytically.
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APPENDIX A: ELIMINATING VARIABLES THAT
AFFECT ONLY THE FINAL NORMALIZATION

We found in Sec. II D that not all the random variabl
that appear in the evolution operator are Gaussian dis
uted. This result is surprising because it has been sh
previously, using the nonlinear equations, that for an ini
Gaussian state, the probability density for the conditio
mean position and momentum, and therefore for the fi
state,are Gaussian distributed for this case@12#. These two
results may be reconciled due to the fact that the n
Gaussian variable in the evolution operator given in Eq.~51!
affects purely the normalization of the final state, rather th
the state itself.

Let us assume that we have an initial stateuc&, and an
evolution operator that is a function of the random variab
X andZ ~which may in general be vector valued!. We let the
random variableZ determine only the normalization of th
final state, so that the evolution operator may be written

V~X,Z,t !5O~X,t ! f ~Z,t !, ~A1!

whereO is an operator valued function, andf is simply a
complex valued function. The unnormalized state at timet is
then given by

uc~ t !&w5O~X,t ! f ~Z,t !uc&. ~A2!

Clearly once we have normalized that state at timet, it is no
longer dependent uponZ. In particular the normalized stat
is given by
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uc̃~ t !&w5
O~X,t !uc&w

A^cuO†~X,t !O~X,t !uc&w

. ~A3!

The probability measure for the final state is

P~X,Z,t !5^c~ t !uc~ t !&wPw~X,Z,t !, ~A4!

in which Pw(X,Z,t) is the probability density given by th
Wiener measure for the variablesX and Z. However, since
the normalized state depends only uponX, we require for all
calculations only the marginal probability density forX. De-
noting this marginal density also byP, we have

P~X,t !5E P~X,Z,t !dZ. ~A5!

In certain cases the probability measure for the normali
state may therefore be Gaussian, even though the mea
for the unnormalized state is not. However, asP(X,Z,t) con-
tains a factor of the norm ofuc(t)&w , the probability mea-
sure for the output process will, in general, only be Gauss
if the norm is Gaussian inX. Clearly the norm is Gaussian i
X for initial Gaussian states in the case we investigate in S
II D.

APPENDIX B: THE EFFECT ON A COHERENT STATE
OF EXPONENTIALS LINEAR AND QUADRATIC

IN P AND Q

We first calculate the effect of an operator of the form

enP1mQ ~B1!

on a coherent stateua&. The coherent state is defined as t
eigenstate of the annihilation operatora, such that

aua&5aua&, ~B2!

and

a5Amv

2\
x1 iA 1

2\mv
p. ~B3!

Here m and v are the mass and frequency of a harmo
oscillator, which serves the purposes of defining the cohe
state. In particular we are interested in the position wa
function of the result. We therefore wish to calculate

^xuc&5^xuenP1mQua&, ~B4!

where ux& is an eigenstate of the position operatorQ such
that

Qux&5xux&. ~B5!

Note that in generaluc& will not be normalized. To perform
this calculation we will need the BCH formula given in E
~46!, and the position wave function for a coherent state,

^xua&5S 2s2

p D 1/4

e2s2x212sxa2 ~1/2! ~ uau21a2!
d
ure

n

c.

c
nt
e

5S 2s2

p D 1/4

e2s2x212sxa2ar
2
2 iara i, ~B6!

where

s5Amv

2\
, ~B7!

a5a r1 ia i . ~B8!

Note that this expression contains the phase facto
2 ia ra i . This is left out in many texts, but is essential f
consistency with the completeness relations for the posi
states. We also require the inner product of two coher
states,

^aub&5e2~1/2!~ uau21ubu2!1a* b, ~B9!

and the well known integral formula

E e2ax22bxdx5Ap

a
eb2/~4a!, Re@a#.0. ~B10!

We proceed first by rewriting the exponential in terms
annihilation and creation operators, so that we have

enP1mQ5eua1fa†
5efa†

euaeuf/2 ~B11!

in which

u5S nA \

2mv
2 imAm\v

2 D , ~B12!

f5S nA \

2mv
1 imAm\v

2 D . ~B13!

We may now use the completeness relation for the cohe
states to obtain

^xuc&5^xuefa†
euaua&euf/2

5
1

pE E ^xub&^buefa†
euaua&euf/2d2b

5
1

pE E ^xub&^bua&eua1fb* 1uf/2d2b

5^xua1f&e~1/2! ufu21Re@af* #1ua1uf/2. ~B14!

We see that the state remains coherent, although it is
longer normalized, and is shifted in phase space byf.

We now wish to calculate the effect of an operator of t
form

ehP21zQ21jQP ~B15!

on a coherent state. This time we require to calculate

^xuc&5^xuehP21zQ21jQPua&. ~B16!

For this calculation we will need the disentangling theore
for the exponential of a general quadratic form of the an
hilation and creation operators, which is given by@26#
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eua21va†21wa†a5e~w1x!/2ela†2
exa†aema2

, ~B17!

in which

l 5
v

f coth~ f !2w
, ~B18!

x5 lnS f

f coth~ f !2w sinh~ f ! D , ~B19!

m5
u

f coth~ f !2w
, ~B20!

f 5A~w224uv). ~B21!

First of all rewriting the exponential containingP andQ as
an exponential in the annihilation and creation operators,
have

^xuehP21zQ21jQPua&5^xueua21va†21wa†a1uua&
~B22!

in which

u5S z\

2mv
2

hm\v

2
2 i

j\

2 D , ~B23!

v5S z\

2mv
2

hm\v

2
1 i

j\

2 D , ~B24!

w5S z\

mv
1hm\v D , ~B25!
n

us

t,
.

tic

u-
y-
e

We now proceed by using the disentangling theorem,
employing the completeness relation for the coherent sta

^xuc&5^xue~w1x!/2ela†2
exa†aema2

ua&

5
1

pE E ^xub&^bue~w1x!/2ela†2
exa†aema2

ua&d2b

5
1

pE E ^xub&^buaex&

3elb* 2
d2be

1
2 uau2~ ue2xu21!1ma2

ey1~w1k!/2. ~B26!

Performing the integral over the real and imaginary parts
a, we obtain

^xuc&5
1

A112l
S 2s2

p D 1/4

e2~1/2!uau22ma2
ey1~w1k!/2

3expH 2s2x2F122l

322l GF112
122l

112l G J
3expH 2sxaexF 1

322l GF112
122l

112l G J
3expH a2e2xF 1

322l GF1

2
1

2

112l G J . ~B27!

It is easily verified that this reduces tôxua& as required
when we setl 5x5m50.
by

,
t.
.
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Phys. Scr.45, 193~1992!; Y. Salama and N. Gisin, Phys. Let
A 181, 269 ~1993!; H. M. Wiseman and G. J. Milburn, Phys
Rev. A 49, 1350~1994!; H. J. Carmichael, inQuantum Optics
VI, edited by J. D. Harvey and D. F. Walls~Springer, Berlin,
1994!, p. 219.

@13# V. P. Belavkin and P. Staszewski, Phys. Lett. A140, 359
~1989!.

@14# A. Barchielli, L. Lanz, and G. M. Prosperi, Nuovo Cimento72,
79 ~1982!; A. Barchielli, ibid. 74, 113 ~1983!.

@15# M. Ueda, N. Imoto, H. Nagaoka, and T. Ogawa, Phys. Rev
46, 2859~1992!.

@16# M. D. Srinivas and E. B. Davies, Opt. Acta28, 981~1981!; M.
Ueda, Quantum Opt.1, 131 ~1989!; Phys. Rev. A41, 3875
~1990!.



d

n
,

d

cs

rg,

n.

2310 57K. JACOBS AND P. L. KNIGHT
@17# C. Caves and G. J. Milburn, Phys. Rev. A36, 5543~1987!; M.
Ozawa,ibid. 41, 1735~1990!; H. M. Wiseman and G. J. Mil-
burn, ibid. 47, 642 ~1993!; M. J. Gagen, H. M. Wiseman, an
G. J. Milburn, ibid. 48, 132 ~1993!.

@18# A. Peres and W. K. Wootters, Phys. Rev. D32, 1968~1985!;
L. Diosi, ibid. 33, 3785 ~1986!; M. B. Menskii, Meas. Tech.
USSR29, 799 ~1986!.

@19# G. Lupieri, J. Math. Phys.24, 2329~1983!; G. M. Prosperi, in
The Quantum Measurement Process and the Observatio
Continuous Trajectories, edited by A. Dold and B. Eckmann
Lecture Notes in Mathematics Vol. 1055~Springer, Berlin,
1984!, p. 301; A. S. Holevo, inLimit Theorems for Repeate
Measurements and Continuous Measurement Processes, edited
of

by A. Dold and B. Eckmann, Lecture Notes in Mathemati
Vol. 1396 ~Springer, Berlin, 1989!, p. 229.

@20# C. M. Caves, K. S. Thorne, R. W. P. Drever, V. P. Sandbe
and M. Zimmerman, Rev. Mod. Phys.52, 341 ~1980!.

@21# G. Lindblad, Commun. Math. Phys.48, 199 ~1976!.
@22# H. F. Baker, Proc. London Math. Soc.3, 24 ~1905!; J. E.

Campbell, Proc. London Math. Soc.28, 381 ~1897!; F. Haus-
dorff, Leipz. Ber.58, 19 ~1906!.

@23# W. Witschel, J. Phys. A8, 143 ~1975!.
@24# R. B. Levien, M. J. Collett, and D. F. Walls, Opt. Commu

82, 171 ~1991!.
@25# G. J. Milburn, K. Jacobs, and D. F. Walls, Phys. Rev. A50,

5256 ~1994!.
@26# M. J. Collett ~private communication!.


