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Abstract. We consider a hierarchy of the natural-type Hamiltonian systems of n degrees of
freedom with polynomial potentials separable in general ellipsoidal and general paraboloidal
coordinates. We give a Lax representation in terms of 2 x 2 matrices for the whole hierarchy
and construct the associated linear ~matrix algebra with the r-matrix dependent on the dynamical
variables, A Yang-—Baxter equation of dynamical type is proposed. Using the method of variable
separation, we provide the integration of the systems in classical mechanics constructing the
separation equations and, hence, the explicit form of action variables, The quantization problem
is discussed with the help of the separation variables.

1. Introduction

The method of separation of variables in the Hamilton—Jacobi equation,
W .
H(Ply oo s Pis Xy vy Xn) =E pg=g i=1,...n (1.1)
(4
is one of the most powerful methods for the construction of action for the Liouville
integrable systems of classical mechanics [3]. We consider below systems of the ratural

form described by the Hamiltonian
1< '
=EZP%+V(X1,.--,%) pi.xi € R, (1.2)
i=]

The separation of variables means the solution of partial differential equation (1.1) for the
action function W in the following additive form:

"
W=> Wiu,.. .H) H=H
i=1
where u; will be called separation variables. Note that the partial functions W; depend
only on their separation variables y;, which define a new set of variables instead of the
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old ones {x;}, and on the set of constants of motion, or integrals of motion, [He). In
the following we shall speak about coordinate separation where the separation variables
{u;} are functions of the coordinates {x;} only. (The general change of variables may also
include the corresponding momenta {p;}.)

For a free particle (V = 0), the complete classification of all orthogonal coordinate
systems in which the Hamilton—Jacobi equation (1.1) admits the separation of variables
is known: these are generalized n-dimensional ellipsoidal and paraboloidal coordinates
{8, 9] (see also the references therein). It is also known that the Hamiltonian systems (1.2)
admitting an orthogonal coordinate separation with V £ 0 are separated only in the same
coordinate systems.

The modern approach to finite-dimensional integrable systems uses the language of the
representations of r-matrix algebras [10, 15, 16, 17]. The classical method of separation of
variables can be formulated within this langunage dealing with the representations of linear
and quadratic r-matrix algebras [11, 12, 16, 18]. For the 2 x 2 L-operators, the recipe is
to consider the zeros of one of the off-diagonal elements as the separation variables (see
also a generalization of this approach to higher dimensions of L-matrix {I18]). For V =0
in {11, 12], 2 x 2 L-operators were given, satisfying the standard linear r-matrix algebra
(10, 15],

1 0
00
01

[
Lem g R ]
(= =l -]

{Zi(u), L2()} = [r (@ — v}, L1(#) + L2 (v)] r(u) = (1.3

0 001

and the link with the separation of variables method was elucidated. In (1.3) we use
the familiar notations for the tensor products of L{u) and 2 x 2 identity matrix I,
Litw)=L)®I, La(v) =1 @ L{v).

In the present paper we construct 2 x 2 L-operators for systems (1.2) being separated

in the generalized ellipsoidal and paraboloidal coordinates. In the case when the degree N
of the potential V' is equal to 1 or 2, the associated linear r-matrix algebra appears to be
the standard one (1.3). In the case N > 2, the algebra is of the form.
{L1(e), Lo(0} = [r(u — v), L1(@) + La0)] 4 [s(n, v), L1() — La(v)] (1.4}
with s(u, v} = ay(k, v}o. ® o_, where o— = gy — iz and o; are the Pauli matrices, and
aey (1, v) is the function which equals I for ¥ = 3 and depends on the dynamical variables
{xe, peliq for N > 3.

The study of completely integrable systems admitting a classical r-matrix Poisson
structure with the r-matrix dependent on dynamical variables has attracted some attention
[5, 6, 13]. 1t is remarkable that the celebrated Calogero-Moser system, whose complete
integrability was demonstrated a number of years ago (cf [14]), has been found only recently
to possess a classical r-matrix of dynamical type [4].

Below we briefly recap how to get the 2 x 2 L-operators for the separable systems (1.2)
without the potential V 11, 12]. Let us consider a direct sum of the Lie algebras, each of
rank 1: A = @, 50x(2, 1). Generators 8; € R, k = 1,...,n of the A algebra satisfy the
Poisson brackets

{st, 55} = 8um £i1 gu 5k g = diag(l, —1, —1). (1.5)
Throughout the paper, we imply that the g metric calculates the norm and scalar product
of the vactors s;:

st = (81, 8) = (5})* = P> = (5})°

_dd_ 22 33
(8;, 8¢) = 88, — 5755 — 875
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Let us fix the values of the Casimir elements of the A algebra: s? = ¢, then variables
s; lie on the direct product of n hyperboloids in R3. Let ¢; € R and choose the upper
sheets of these double-sheeted hyperboloids. Denote the obtained manifold as K;7. We will
denote by hyperbolic Gaudin magnet [T} integrable Hamiltonian system on K, given by n
integrals of motion H; which are in involution with respect to the bracket (1.3),

n'
(31'1 Sk) . .
H=2)" P {H.,,H} =0 e & e if ik (1.6

To be more exact, one has to call this model an n-site s0(2,1)-X XX Gauodin magnet. Note
that all the H; are quadratic functions on generators of the .4 algebra and the following
equalities are valid:

Zn:Hg =0 Zn:e,-H,-sz-—Zn:c‘?.-
i=1 i=1

i=1

Here a new variable J = Y _|_, 8; is introduced which is the total sum of the hyperbolic
momenta 8;, The components of the vector J obey so(2,1) Lie algebra with respect to the
bracket (1.5) and are in involution with all the H;. The complete set of involutive integrals
of motion is provided by the following choice: H;, J*? and, for example, (/)2. Integrals
{1.6) are generated by the 2 x 2 L-operator (as well as the additional integrals J )

1 is? —(s} — 5%
L) = E u—¢; ( ~(s} i’I-.s"_;-'*) Zist )

j=1 J

n H: 2
detLw)=—Y ( - _:ej te _CJe,-)Z) : (.7

=1

satisfying the standard linear r-matrix algebra (1.3). Let¢; =0, { = 1,..., n, which turns
the hyperboloids 87 = ¢? into cones. The manifold X} admits in this case the following
parameterization (p;, x; € R):

2 + x2 : “— x* - X:
S:1=&“:["“£“ S"z_% §=Ef§; (1.8)
where the variables p; and x; are cancnically conjugated. Using the isomorphism (1.8),
the complete classification of the separable orthogonal coordinate systems was provided in
[11, 12} by means of the corresponding L-operators satisfying the standard linear r-matrix
algebra (1.3). The starting point for our investigation are these L-operators written for the
cases of free motion on a sphere and in the Euclidean space.

The paper is organized as follows. In section 2 we describe the classical Poisson
structure associated with the hierarchy of natural-type Hamiltonians separable in the three
coordinate systems: the spherical (for motion on a spheére), and general ellipsoidal and
paraboloidal (for n-dimensional Euclidean motion) coordinates. This structure is given
in terms of the linear r-matrix formalism, providing a new example of the dynamical
dependence of the r-matrices. We also introduce an analogue of the Yang-Baxter equation
for our dynamical r-matrices. In section 3 we derive the Lax representation for all the
hierarchy, as a consequence of the r-matrix representation given in section 2. Section
3 deals also with the aspect of variable separation. The question of quantization of the
considered systems is briefly discussed.
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2. Classical Poisson structure

Let us consider the following ansatz for the 2 x 2 L-operator

v = (éﬁ) i) =
where

it 2

B) =c-). ux"e £=0, 1, or 4( —Zps1 + B) ©2)
=1 ] -

AW =8+ Z 22 23)

n N
v =Y 2 Ve =Y Vpul*. 2.4)
i=1 b—eg k=0

Here the x;, p; are canonically conjugated variables ({p:, x;} = &;;}, Vi are indeterminate
functions of the x-variables; B and ¢; are non-coincident real constants. Note that dot over
£ means differentiation by time, and for natural Hamiltonian (1.2) one has %1 = Pp+1.

Theorem 1. Let the curve det(L(u} — A} =0 for the L-operator (2.1) have the form

— A@)® - B@)Cn(w) = 2> + eu® — Z =0 fore=0, 1 (2.5)
- ¥ &
n
A =A@ - Bu)Cn(w) =2+ 160"+ BY + 8H - 5 - er =0
=1 "«
for £ = 4( — xn41 + B) @6)

with some integrals of motion &; and H;, H in the case of (2.6). Then the following
recurrence relations for V. are valid:

n k—1 A
Ve=Y 22> Vir-jd V=1 fore=0,1 @2.7)
i=1 J=0
n k=1
Ve = (up1 + BYWi1 + = szzvk-l-;e Vo=0
1-—1 Jj=1
for £=4(u—x,41+ B). 2.8
The explicit formulae for the integrals H; have the form '
n ! Z N
H=-Y —Lte.pl+x}3 Vg™  fore=0,1 2.9
= =0

{ibw L M2
H; = 2x} Z(—l)r'e{ Viv—j +4Pust pi%i = pies +4%np —4B) + ) —

=1 T
for £e=4(u — xpp1 + B) (2.10)
where M;; = x;p; — %; p;. The Hamiltonians & are given by
n 71
H=)Y H=eY pf+Vwn for £=0,1 (2.11)
i=1 i=l1
r'+l

2 PP+Vy  for £=4(u —Xu. -+ B). (2.12)

==1
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The proof is straightforward and based on direct computations.
We remark that the above recurrence formulae for the poientials can be written in
differential form. In particular, for the paraboloidal coordinates we have

&V 13V V1 .
a—x' 53xn+1 P — ,—ax‘.— I = 1,...,” (213‘)
3Vy 10~ 8Vyo V1

= Vg 23y Il ~B : 14
T vt ;x o T G = B) (2.14)

Note that the case of ¢ = ¢ is connected with the ellipsoidal coordinates on a sphere
and two other cases £ = 1 and 4z — x4, + B} describe the ellipsoidal and paraboloidal
coordinates in the Euclidean space, respectively (see section 3.2 and [11, 12] for more
detail). Recall that we study now the motion of a particle on these manifolds under the
external field with the potential V that could be any linear combination of the homogeneous

ones V.
Now we are ready to describe the linear algebra for the L-operator (2.1).

Theorem 2. Let the L-mairix be of the form (2.1} and satisfy the conditions of theorem 1.
The following algebra is then valid for its eniries:

(B(), B@)} = (A(), A@)} = 0 2.15)
(Cy (), C(®)] = —d o (s, v) (AW) — A®)) 2.16)
(B, AG)) = ——(Bw) — BO) @17
(Cr@), AW} = === (Ca@) = Cy ) ~2a(6, DBW) Q.19
(B), Cx ()} = ———(A) ~ AO) 2.19)

where the function ay(x, v) has the form

N ko Lk
- us —u
ay (it v) = Oy () — Qn(v) - Z 0,
u—v yari u—v
» f (2.20)
Ov) =Y Qi Q=2 VuVin
k=0 m=0
The proof is based on the recurrence reiations (2.7), (2.8).
We remark that for the paraboloidal coordinates the following formula is valid:
1 53 vy
N—=2 N—k—1
=2 — Nkl 2.21)
Q) 5 g o
therefore in this case we have
Qu)y = 1act (2.22)
4 3Xr;+l

The algebra (2.15)-(2.19) can be rewritten in the Vmatrix form as linear r-matrix algebra -

{L1(), Lao{v)} = [r (u — v), L1 () + La{v)] + [sw{u, v), L1(u) — La(v)] (2.23)
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using 4 x 4 notations Li(x) = L) @ I, L2(v) = I @ L(v); the matrices r(u — v} and
sy (xe, v) are given by .

2
—v

P P=

0
0
r(u—v)=u 1
0

oo
(= R e
— o o0

(2.24)

Sy(u, v) =20ay(u,v)o. @o_ O = ( ? g )

The algebra (2.15)-(2.19) or (2.23)-(2.24} contains all the information about the system
under consideration. From it there follows the involutivity of the integrals of motion.
Indeed, the determinant d{u) = detL(u) is the generating function for the integrals of
motion and it is simply to show that

{d(u),d(»)} =0. - (2.25)
In particular, the integrals H; (2.9), (2.10) are the residues of the function d():
H; =res|,—,, d(1) i=1,...,n.

The Hamiltonians H (2.11}, (2.12} appear to be a residue at infinity. Let us rewrite the
relation (2.23) in the form

{L1(x), La(®)} = [da(nt, v), L1 ()] — [da1{s, v)La(9)] (2.26)
with di; = ry; + 555, djs = s —r; ati < j.

Theorem 3. The following equations (the dynamical Yang-Baxter equations) are valid for
the algebra (2.26)

[dipu, v), diae, w)) + [dia(u, v), dua (v, w)] + [da2(w, V), di3(u, w)]
+{L2(v), diz(u, w)} — {Ls(w), dia (&, v)}
He(n, v, w), La(w) — Lz(w)] =0 227

where ¢(u, v, w) is some matrix dependent on dynamical variables. The other two equations
are obtained from (2.27) by cyclic permutations.

Proaf. Let us write the Jacobi identity as
{L1() {L2Q), L3} + {La(w), {L1(w), Lo(@)}} + {L2(0), {L3(w), Li(@)}} =0 (2.28)

with Li) =L QIQI, Lo =IQ LMWK, Ls(w) =TI ® I ® L(w). The extended
form of (2.28) reads [13]
[Li(u), [di2(u, v}, dia(u, w)] + [di2(x, v}, doa(v, w)] + [daz(w, v), di3 (s, w)]]

+[L1(w), {L2(v), dia(u, w}} — {L3(w), dia(u, 1)}]

=+ cyclic permutations = 0. {2.29)
Further on we restrict ourselves to proving (2.27) only in the paraboloidal case (other cases

can be handled in a similar way). To complete the derivation of (2.27), we shall prove the
following equality for all the members of the hierarchy

{La2(v), s13(u, w)} — {La(w), s12(x, v)}
Py (u, v, w)

= 28x(u, v, w)[Pa, 513 + s12] — T[& La(v) — Ly(w)] (2.30)
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(with cyclic permutations). In (2.30) the matrix s = o_ @ o_ ® o.. and

Onw)(v—w) + Qn{w)(w — ) + On(w)(u — U)

B, v, w) = R T Yo (2.31)
In the extended form (2.30) can be rewritten as
{Q), Q(v)} = {B(u), Q(v)} = (2.32)
(AW, Q) = 4ay(a, v) — %95'—’5’!-(-’3-333@) 2.33)
Xn+1

{AQw), ayx(u, v)}

= 2w (w, u) —anw, o)) — 2B (a"’”(w’ v) _ dew(w, “)) (2.34)

¢ —-v 2u—v X4 Ixpy

{Q@), C(w) + {C(w), 2(v)} = GN( . )(A( ) — A()). (2.35)

The equality (2.32) is trivial and equation (2.33) is derived by differentiating (2.18).
Equation (2.34) follows from the definition of Q(u) and (2.33). To prove (2.35) we write
it using the explicit form of Cy (1) and A(u) as

day(w, i) day(w, v)
E(U—e,)(u——e)(( B T )

f=1

Xi doen(w, u a ,
_1 Z: PiXi ( n(w,u)  day(w b‘)) _ 2.36)
(u—e}v—e) Bxn41 Bxpsi
Using the identity
wk — S B S SR 2 W 25
u —v = ——
w—u w—"v. w—u w—uv

and the recurrence relation (2.13), we find that the equality (2.36) is valid. Therefore the
equations (2.27) follow with the matrix ¢, v, w) = 88(u, v, w)/dx, 1 6. @o_ @ o_. The
proof is completed,

We remark that the validity of equations (2.27) with an arbitrary matrix c(z, v, w)
is sufficient for the validity of (2.28) and, therefore, (2.27) can be interpreted as some
dynamical classical Yang—Baxter equation, i.e. the associativity condition for the linear
r-matrix algebra. These equations have an extra term [e, L; — L;] in comparison with the

extended Yang—Baxter equations in [13].
We would like to emphasize that all statements of this section can be generalized to the

following form of the potential term Vi () in (2.4):

N
Van@ = Y AVt feC

k=—M

This form corresponds to the linear combinations of homogeneous terms V; as potential V
and also includes the negative degrees to separable potential (see the end of section 3.1 for
more detail).



574 J C Eilbeck et al
3. Consequences of the r-matrix representation

3.1. Lax representation

Following the article [5] we can consider the Poisson structure (2.26) for the powers of the
L-operator

(L@, (Lo} = 1857, v), L] - 145", 0) Ly ()] (3.0)
with
k=1 =1
a5, v) = 3 Y (L@ P Lo @)y (, VYL )Y (L)) (32)
p=0 g=0

As an immediate consequence of (3.1), (3.2) we obtain that the conserved quantities H and
H; are in involution. Indeed, we have

{Te(L1 ())?, Te(La())?} = TH{ (L4 ()%, (L2(v))*} (3.3)
and after applying the equality (3.1) at £ = ! = 2 to this equation and taking the trace, we
obtain the desired involutivity. Further, let us define differentiation by time as

L) = %L(u) = Trz{ L1 (), (L2(w))*} 34

where the trace is taken over the second space. Applying the equation 3.1) at k== 1,I =2
to (3.4), we obtain the Lax representation in the form L () = [M (x), L(x)] with the matrix
M (u) given by

Mu) = 231_13111 Tre Ly (w)r(u — v} — s(u, v). (3.5
After the calculation in which we take into account the asymptotic behaviour of the L-
operator (2.1}, we obtain the following explicit Lax representation:

L(w) = [M(u), L(w)]

(AW B\ {0 1 (3.6)
"(”"(cwcu) —A(u)) M(")"(QN(M) 0)

where Qp (1) was defined by equations (2.20). Lax representations for the higher flows can
be obtained in a similar way.
As follows from (3.6),

A(w) = —1B@) Cw(w) = —5B(u) — B(u)Qn (1)
so our L-matrix can be given in the form
~LB(u) B(w)
L{u) = Ea . . 3.7
@ ( ~1BG) - B@)Qx() 1B G

The equations of motion, which follow from (3.6) with the L-matrix from (3.7), have the
form

Bi[@n]- B(u)=0 (3.8)

where

BilQn] =13+ 1{3, On} 5=
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with curly brackets standing for the anticommutator. Operator B; is the Hamiltonian

operator of the first Hamiltonian structure for the coupled KdV equation [1, 2]. Equation

(3.8), considered as one for the unknown function B(u), was solved in the three cases (2.2),
n 2

Bw) =s- 3 — £=0,1, 4(u — x,41 + B)
i=1 u—e
in [1] and [2]). General solution of this equation as one for the Q(«) has the form
N
Qunw)= Y fiQ*  fieC (3.9)
k=M
where the coefficients Q, are defined from the generating function Q(u)
oo B
O@w) =B = ) Owk (3.10)
k=m0

Recall that we can write the element Cy (1) of the L-matrix (2.1) in two different forms
(using the Q or V functions)
n

1. 2
Cuw) = —3B@ - B@ow @ = - - - V@)

i=1 £

where function V(u) = Zi;o V, u¥* was defined in (2.4). The general form of the
function V(x) is

N
Vv = Y fived*  freC (3.11)
k=—M

where coefficients 1, are defined by the generating function V(x)

+c0
V) =B = ) Viut. (3.12)
k=—00
Potentials V; are connected with coefficients ;. Indeed, using generating functions (3.10)
and (3.12), we have

. . . +o0 +00 +oo &
Q=B 2w=V@)- - V@)= ( Vi u") ( Z Vi uk) = Z Wk ka Vs
k=—00 k=—0a =—00 j=0

and, therefore, Q; = Zf:o Vi Vi—;j. Thus we have recovered the formula (2.20) for the
s-matrix.

3.2, Separation of variables

Let X denote the number of degrees of freedom: K = n — 1 for ellipsoidal coordinates on
a sphere, K = n for ellipsoidal coordinates in the Eucludean space, and X = n + 1 for
paraboloidal coordinates in the Euclidean space. The separation of variables (cf [12, 17]) is
understood in the context of the given hierarchy of Hamiltonian systems as the construction
of X pairs of canonical variables 7;, i, i =1,..., K,

{i, s} = {7, e} =0 {ris 1t = e (3.13)

and K functions ®; such that
& (wy i B, HY) =0 =12, (3.14)
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where Hg) are the integrals of motion in involution. Equations (3.14) are the separation
equations. The integrable systems considered admit the Lax representation in the form of
2 x 2 matrices (3.6) and we will introduce the separation variables mr;, ; as

B(u;) =0 mp = A) i=1,....K (3.15)

Below we write explicitly these formulae for our systems. Theset of zeros s, j =1,..., K
of the function B(uz) defines the spherical (¢ = 0), general ellipsoidal (¢ = 1) and general
paraboloidal (¢ = 4{(& — x,+1 + B)) coordinates given by the formulae [8, 9, 12]

2 ;1:11 (U'J m)

m

m=1,...,n wherec=Y x2 fore=0 3.16
Hk;ém(em_ek) k_; k ( )

2 Hj—-l U‘Lj )
l—[;;;zm (e —
n+l

Xn41 '—"'Zel +B+Zﬂq

i=1
2 _ H”“w,,—emj
nk#m(em - )

m=1,....,n fore=1 (3.17)

=1,...,n fore=4(u — x,11 + B). 3.18)

Theorem 4. The coordinates ;. m; given by (3.15) are canonically conjugated.

Proaf. Let us list the commutation relations between B(v) and A{u),
{B(w), B(v)} = {A(w), A()} =0 (3.19)
{A@), BO)} = vf—u(B(u) -B@). (3.20)

The equalities {u;, &5} = 0 follow from (3.19). To derive the equality {u;, 7;} = ~6;; we
substitute u = ; in (3.20) and obtain

2
{7, B(v)} sy B(v)

- Ej
which together with the equation
0= {Trjf B(,U.'q’)} = {JT}, B(U)} iu:g.:..- +B,(ru’l'){?rj1 ll':}

gives

{st Wi} = {-ﬁ}n B(v)} |v_p,,—31j

B’( i)
Equalities {m;, 7;} = 0 can be verified in the similar way:
{?Tj, J"‘:J'} = {A(LL;), A(“’j)}
= {A(), A} lompy +A () s, AQup)}
= A" (AW, p)} + A () pe, A(u)} =0.
The separation equations have the form
= d(u;) (3.21)
where the function d(u) is the determinant of the L-operator (2.25).
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3.3. Quantization

The separation of variables has a direct quantum counterpart [11, 19]. To pass to quantum
mechanics we change the variables 7;, y; to operators and the Poisson brackets (3.13) to
the commutators

[y e} = [my, m] =0 [m5, pe] = —idse. (3.22)
Suppose that the common spectrum of u; is simple and the momenta 7; are realized as the
derivatives m; = —i3/9u;. The separation equations (3.21) become the operator equations,
where the non-commuting operators are assurned to be ordered precisely in the order as
those listed in (3.14), that is, m;, &, HN s eees . Let W(uq,..., ux) be a common
eigenfunction of the quantum integrals of motzon

HPw=nv, i=1,.. K. (3.23)

Then the operator separation equations lead to the set of differential equations
;(—iz— % ,,u,,H“) G HEY (. k) =0 j=1,...,K (3.24)

which allows the separation of variables

K
W, i) = [ [ ¥(es)- (325)
j=1

The original multidimensional spectral problem is therefore reduced to the set of one-
dimensional multiparametric spectral problems which have the following form in the context
of the problems under consideration:

( + eu¥ +E )11;,(;;)”,...,1):0 Cfore=0,1 (3.26)

d
(ﬁ + 166" 2 + B)* + 8Anp1 +Z ) Yl Aty ooy hng) =0

fore =4(u — xp + B) (3.27}

with the spectral parameters Aq, ..., Apt1. The problems (3.26), (3.27) must be solved on
the different intervals (‘permitted zones”) for the variable u.

4. Conclusion

We should emphasise that a large family of integrable systems has been studied in the
present paper. As partial cases it includes, for example, the classical Coulomb problem, the
oscillator and many others that can be separated in general orthogonal coordinate systems.
In other terms we can claim that every coordinately separable Hamiltonian of natural type,
with the separation variables lying on the hyperelliptic curve, is in our family. We have to
mention also a recent preprint [20] where it was shown that the elliptic Calogero-Moser
problem provides one more example of the integrable system of natural type described
through L-operator satisfying the algebra (1.4) with a slightly more general dynamical
Yang—Baxter equation (2.27). But it is not coordinately separable any more.

We remark also that all systems considered in the paper yield an algebra which has
general properties that are independent of the type of the system. Therefore, it would be
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interesting to consider its Lie-algebraic origin within the general approach to the classical
r-matrices [16].

There exists an interesting link of the algebra studied here with the restricted flow
formalism for the stationary flows of the coupled Kdv (cKdv) equations [1]. The Lax pairs
which have been derived in the paper from the algebraic point of view were recently found
in (2] by considering the bi-Hamiltonian structure of cKdV.

It seems to be interesting to examine the same questions for the generalized hierarchy
of Gelfand-Dickey differential operators for which the corresponding L-operators have to
be the n x 72 matrices.
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