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Abstract— Since the introduction of the Diversity-
Multiplexing Tradeoff (DMT) by Zheng and Tse for
ML reception in frequency-flat MIMO channels, some results
have been obtained also for the DMT of frequency-selective
MIMO channels and for the DMT of suboptimal receivers
such as linear (LEs) and decision-feedback equalizers (DFEs)
for frequency-selective SIMO channels or frequency-flat
MIMO channels. We have recently extended these results to
the case of linear receivers for frequency-selective MIMO
channels. However, the diversity properties of linear receivers
turn out to be fairly catastrophic. In this paper we show
that full diversity can be restored by the introduction of a
convolutive linear MIMO precoding scheme that we showed
earlier to allow to attain the optimal DMT for ML or DFE
detection (in the frequency-flat case). The precoder needs to
be used with a moderate amount of redundancy in the form
of zero-padding, and with a MMSE design for the linear
equalizer. A MMSE-ZF design also benefits substantially from
the precoding. The proposed scheme is a significant extension
of an earlier SISO result by Tepelenlioglu to the MIMO case.

Index Terms— diversity, Multiple Input Multiple Output,
linear equalization, linear precoding, zero padding

I. INTRODUCTION

Consider a linear modulation scheme and single-carrier

transmission over a Multiple Input Multiple Output (MIMO)

linear channel with additive white noise. The multiple inputs

and outputs will be mainly thought of as corresponding to

multiple antennas. After a receive (Rx1) filter (possibly noise

whitening), we sample the Rx signal to obtain a discrete-

time system at symbol rate2. When stacking the samples

corresponding to multiple Rx antennas in column vectors,

the discrete-time communication system is described by

yk︸︷︷︸
nr×1

= h[q]︸︷︷︸
nr×nt

ak︸︷︷︸
nt×1

+ vk︸︷︷︸
nr×1

=

ns∑

i=1

hi[q]︸︷︷︸
nr×1

ai,k︸︷︷︸
1×1

+ vk︸︷︷︸
nr×1

(1)

where k is the symbol (sample) period index, nr and nt

are the number of Rx and Tx antennas respectively. The
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1In this paper, ”Rx” stands for ”receive” or ”receiver” or ”reception” etc.,
and similarly for ”Tx” and ”transmit”, ...

2In the case of additional oversampling with integer factor w.r.t. the
symbol rate, the Rx dimension would get multiplied by the oversampling
factor.

noise power spectral density matrix is Svv(z) = σ2
v Inr

,

q−1 is the unit sample delay operator: q−1 ak = ak−1,

and h[z] =
∑L−1

i=0 hi z−i= [h1[z] · · ·hnt
[z]] is the MIMO

channel transfer function in the z domain. The channel delay

spread is L symbol periods. In the Fourier domain we get

the vector transfer function h(f) = h[ej2πf ].

We introduce the vectors containing the SIMO impulse

response coefficients3 hi = [hT
i,0 · · ·h

T
i,L−1]

T and the overall

coefficient vector h = [hT
1 · · ·hT

nt
]T . Assume the energy

normalization tr{Rhh} = nr with Rhh = E {hhH}. By

default we shall assume the i.i.d. complex Gaussian channel

model: h ∼ CN (0, 1
(L+1)nt

Inrnt(L+1)) so that spatio-

temporal diversity of order nrntL is available (which is the

case from the moment Rhh is nonsingular). The average

per Rx antenna SNR is ρ =
σ2

a

σ2
v

. In this paper we consider

full channel state information at the Rx (CSIR) and usually

none (otherwise antenna selection) at the Tx (CSIT).

Whereas in non-fading channels, the probability of error

Pe decreases exponentially with SNR, for a given symbol

constellation, in fading channels the probability of error

taking channel statistics into account behaves as Pe ∼ ρ−d

for large SNR ρ, where d is the diversity order. Also,

at high SNR Pe is dominated by the outage probability

Po and has the same diversity order for a well-designed

system. On the other hand, at high SNR the channel capacity

increases with SNR as log ρ, which can be achieved with

adaptive modulation and coding (AMC) on the basis of

the long-term SNR (slow feedback), not to be confused

with the instantaneous SINR (fast feedback). In [1] it was

shown however that both benefits at high SNR cannot be

attained simultaneously and a compromise has to be ac-

cepted: the ”diversity-multiplexing tradeoff” (DMT). In [1]

the frequency-flat MIMO channel was considered. These re-

sults were extended to the frequency-selective SISO channel

in [3] and the frequency-selective MIMO channel in [4], see

also [5],[6]. In [7], it was shown for the frequency-selective

SIMO channel that a Zero Forcing (ZF) or Minimum Mean

Squared Error (MMSE) Decision-Feedback Equalizer (DFE)

with unconstrained feedforward filter allows to attain the op-

3In this paper, .∗, .T , and .H denote complex conjugate, trans-
pose and Hermitian (complex conjugate) transpose respectively, and
h†[z] = hH [1/z∗] denotes the paraconjugate (matched filter). Note that

h†[ej2πf ] = hH(f).



timum diversity and similar results for the MIMO frequency-

flat channel case, with a linear MIMO prefilter and a MMSE

MIMO DFE appears in [8].

In practice also the Linear Equalizer (LE) is often used

since its settings are easier to compute and there is no

error propagation. Also in practice, for both LE and DFE,

only a limited degree of non-causality (delay) can be used

and the filters are usually of finite length (FIR). Analytical

investigations into the diversity for SISO with LEs are much

more recent, see [9],[11] for linearly precoded OFDM and

[12] for Single-Carrier with Cyclic Prefix (SC-CP). The

use of the DFE appears in [13] (FIR) and [14],[15] (SC-

CP) where in the last two references diversity behavior

is investigated through simulations. The DMT for various

forms of LE and DFE with SIMO channels is investigated

in [16]. In particular, the DMT for LE turns out to be fairly

catastrophic since all benefits from frequency selectivity

are lost, and this both for MMSE and MMSE-ZF designs,

except for the case of fixed rate, for which is was noted

that the MMSE design benefits from full diversity. With

hindsight, this result needs to be qualified further since it

turns out to apply only for sufficiently low rates. The DMT

for frequency-flat MIMO with LEs has been derived in [17],

see also [18] for the diversity in the fixed rate case (no AMC).

We have recently extended these results to the case of

linear receivers for frequency-selective MIMO channels [19].

However, the diversity properties of linear receivers turn out

to be fairly catastrophic: instead of a product of three diver-

sity sources (nrntL), only a single reduced (receive) source

is left (nr−nt+1). So, all frequency-selective diversity is

lost, even in SISO systems. In [9], it was shown that the

introduction of redundant linear precoding in OFDM allows

a MMSE-ZF linear block receiver to regain full diversity

in the SISO (or SIMO) case. In [10], it was observed that

SC transmission with Zero Padding (ZP) is a particular

case of such approach. The ZP introduces redundancy in

the time (delay) dimension which allows a LE of inter-

symbol interference (ISI) to maintain full diversity: every

input symbol can be recovered linearly unless the whole

channel impulse response becomes zero.

II. LINEAR CONVOLUTIONAL SPACE-TIME CODER

(STC)

In the frequency-selective MIMO (or MISO) case, the

LE has to suppress not only ISI but also multi-stream

(multi-input) interference and hence requires more redun-

dancy to maintain full diversity. The redundancy can be

increased accordingly so that it can be exploited with ZP, by

introducing a convolutive linear MIMO precoding (space-

time coding) scheme that we showed earlier [8] to allow

to attain the optimal DMT for ML or DFE detection (in

the frequency-flat case). We show that a MMSE-ZF design

benefits substantially from the precoding (in particular allows

to recover frequency selective diversity), but also that to

recover full diversity, a MMSE design is required in the

proposed scheme. Note that in this paper we focus on the

diversity order of fixed rate transmission (with possibly rate-

dependent results) and not on the DMT. The per symbol

period mutual information for the frequency-selective MIMO

channel with white Gaussian input, infinite block length is

C =

∫ 1

2

− 1

2

log det(Int
+ ρ hH(f) h(f)) df

in which the equivalent system spectrum det(Int
+

ρ hH(f) h(f)) = det(Inr
+ ρ h(f) hH(f)) corresponds to

a system memory of min{nr, nt}L− 1. This implies that if

the LE diversity should be maximized through ZP as in [10],

an explicit input-output system memory of min{nr, nt}L−1
is required. Since the channel memory is only L−1, it

needs to be increased by linear precoding. This can be

accomplished with the convolutive STC introduced in [8]

(and earlier references therein). This convolutive STC is a

structured form of linear dispersion codes. As precoding can

only be done at the Tx side, the system memory gets actually

increased to ntL−1 for maximal diversity. As at high SNR,

C ≈ min{nr, nt} log(ρ), it suffices (esp. for a LE Rx) to

limit the number of symbol streams to ns = min{nr, nt}
(instead of nt). Motivated by these considerations, we pro-

pose to use the paraunitary prefilter T[zL] where

T[z] = D[z] Q , QHQ = nt Ins
, |Qij | = 1 ,

D[z] = diag {1, z−1, . . . , z−(nt−1)}
(2)

where Q is a (constant) tall unitary matrix with equal

magnitude elements (e.g. a submatrix of a DFT or a Walsh-

Hadamard matrix). Hence the signal appearing at the Tx

antennas is of the form ak︸︷︷︸
nt×1

= T[qL]︸ ︷︷ ︸
nt×ns

xk︸︷︷︸
ns×1

with Sxx[z] =

σ2
x Ins

and hence the signal ak is no longer spatiotemporally

white if nr < nt. So, symbol stream n (xn,k, n = 1, . . . , ns)

passes through the equivalent SIMO channel

gn[z] =

nt∑

i=1

z−(i−1)Lhi[z] Qi,n (3)

which has delay spread Lnt, due to the stream-specific

delay diversity. The Matched Filter Bound (MFB) is the

maximum attainable SNR for symbol-wise detection, when

the interference from all other symbols has been removed.

From (3), stream n has MFB

MFBn = ρ ||h||2 , ρ =
σ2

x

σ2
v

(4)

where ρ has been redefined. Hence the proposed T[zL] pro-

vides the same MFB and full diversity ntnrL for all streams.

Larger diversity order leads to larger outage capacity.

III. SINR OF BLOCK RECEIVERS AND OUTAGE

Now consider the cascaded prefilter-channel system g[z] =
h[z] T[zL] =

∑ntL−1
i=1 giz

−i for which we introduce ZP of

length ntL−1 symbol periods in a block of length N . This

leads to the banded block Toeplitz system matrix

G =




g0 0 · · · 0

g1 g0

...
...

. . .
gntL−1 g0

...
. . .

...
0 · · · gntL−1




= [G0 · · · GN−ntL]︸ ︷︷ ︸
Nnr×(N−ntL+1)ns

(5)



For the purpose of joint description of MMSE-ZF and

MMSE designs, consider G =
[
GH δ√

ρ
I
]H

where

δ =

{
0 , MMSE-ZF design,

1 , MMSE design.
With the streamwise

channel vectors, G
i

= [G
i,1

· · ·G
i,ns

], consider G
′

i,n
=

P⊥
G

i,n

G
i,n

where G
i,n

is G with column G
i,n

removed, and

P⊥
G

= I −PG, PG = G(GHG)#GH . We get the following

results for the SINR of block LEs

• MFBi,n = ρ ‖G
i,n

‖2 − δ = ρ ||h||2

• SINR
LE,δ
i,n = ρ ‖G

′

i,n
‖2 − δ.

For a rate R per stream symbol, the precoded system outage

probability is Po = Prob{log(det(I + ρGGH)) < Ntot R}
where Ntot = ns(N−ntL+1) is the total number of

symbols in the block. For a LE, the outage is

PLE,δ
o,i,n = Prob{log(1 + SINR

LE,δ
i,n ) < R} .

For a ZF design, a perfect outage of symbol (i, n) occurs

when SINRi,n = 0. For the MFB this can only occur if h =
0. For a suboptimal Rx however, the SINR can vanish for any

h on the Outage Manifold Mi,n = {h : SINRi,n(h) = 0}.

At fixed rate R, the diversity order is the codimension of

(the tangent subspace of) the outage manifold. Two (extreme)

cases can be considered, depending on whether the symbols

in the block are the result of joint encoding (j−enc schemes)

or separate encoding (s − enc schemes), with ensuing joint

or separate decoding. The outage probabilities of j−enc and

s − enc schemes are respectively

P j−enc
o (R) = Prob

(∑
i,n log(1 + SINRi,n) < Ntot R

)

P s−enc
o (R) = Prob

(⋃
i,n {log(1 + SINRi,n) < R}

)
.

The outage manifold for a s−enc scheme, which we consider

here (knowing that j − enc can only do better), is given by

M =
⋃

i,n

Mi,n. P s−enc
o = PLE,δ

o,i,n for a symbol position i

in the middle of the block. The outage analysis for MMSE

designs is more tricky than for MMSE-ZF designs.

IV. OUTAGE OF BLOCK TX VS. THE JENSEN CHANNEL

Outage for a ZF LE will only occur if G in (5) loses full

column rank. Now, due to the block triangular edge of a

banded block Toeplitz matrix, G can only lose rank if the

block column G0, or its nonzero part g, loses column rank.

For easy reference, we shall refer to g as the ”Jensen” chan-

nel (of g[z]), as in [6], the concept of which was introduced

in [4]. Here g corresponds to G for a minimal block length

with only one symbol per stream. Hence for ZF, it suffices

to analyze the case G = g. This can be further argued by

extending the reasoning of [7] to det(Ins
+ρ g†[z] g[z]). For

the MMSE case, the detailed diversity behavior may depend

on the block length though.

V. OUTAGE ANALYSIS OF THE JENSEN CHANNEL

Note that gHg + δ
ρ
Ins

= QH(D + δ
ρnt

Int
)Q where D =

diag {‖h1‖2, . . . , ‖hnt
‖2}.

A. MMSE-ZF Design δ = 0

Outage occurs when gHg becomes singular. Let d1 ≥
· · · ≥ dnt

be the ordered diagonal elements of D. Then

outage occurs when dns
= 0. Since dns

is the maximum of

nt−ns+1 instances of ‖hi‖2, we get the diversity order:

Theorem 1: For a LE, dZF = (nt−ns+1)nrL, N ≥ ntL.

Note that the diversity is full (ntL) for the case nr = 1,

in which case, after applying delay diversity T[z], the result

from [10] applies immediately.

B. MMSE Design δ = 1

Consider first nr ≥ nt = ns. Then we have an eigende-

composition and (gHg + 1
ρ
Ins

)−1 = QH(D + 1
ρnt

Int
)−1Q

and from its diagonal elements we get SINR
LE,1
1,n =

(
∑nt

i=1
1

1+ρ‖hi‖2
)−1−1.

Theorem 2: For a MMSE LE, N = ntL, nr ≥ nt = ns,

Prob{log(1 + SINR
LE,1
1,n ) < R} = Prob{

∑nt

i=1
1

1+ρ‖hi‖2
>

2−R} = PLE,1
o,1,n

.
= 1

ρd with d = min{nt, ⌊2−R⌋+1}.

Proof: At high SNR, the i.i.d. 1/(1+ρ‖hi‖2) become either

0 or 1. Now, Prob{1/(1 + ρ‖hi‖2) = 1} = Prob{‖hi‖2 <
1/ρ}

.
= ρ−nrL. And

∑
i 1/(1 + ρ‖hi‖2) > 2−R if

⌊2−R⌋+1 ≤ nt terms are equal to 1, and hence the

(⌊2−R⌋+1)-largest term becomes equal to 1. Q.E.D.

Full diversity requires R ≤ − log2(nt−1) (= ∞ for nt = 1).

For ns = nr < nt, we remark that decreasing the number

of streams improves the SINR. Hence at least the diversity

of the case ns = nt is recovered.

VI. MMSE ANALYSIS IN THE LOW/HIGH RATE LIMIT

Note: diag (GHG)=‖h‖2I =(MFB/ρ)I . With k=(i, n),

SINR
LE,1
k = ρ

(
‖Gk‖

2 − GH
k Gk(G

H

k Gk + 1
ρ
I)−1G

H

k Gk

)
=

ρ‖h‖2

(
1 − ρ‖h‖2 G̃

H

k G̃k(I + ρ‖h‖2G̃
H

k G̃k)−1G̃
H

k G̃k

)

for any N , where G̃ = ‖h‖−2G, diag (G̃) = I . Hence

MFB(1 − MFB‖G̃
H

k G̃k‖2) ≤ SINR
LE,1
k ≤ MFB. Outage

occurs when SINR < 2R − 1.

a) Low Rate Limit: For very small 2R − 1, outage

occurs when SINR and hence MFB are small and hence

SINR ≈ MFB. Hence full diversity (even MMSE LE and

MFB curves identical).

b) High Rate Limit: Now for outage: MFB > 2R−1 ≫

1 and I + ρ‖h‖2G̃
H

k G̃k ≈ ρ‖h‖2G̃
H

k G̃k and hence

SINR
LE,1
k ≈ SINR

LE,0
k and dMMSE = dZF .

VII. SIMULATIONS

A number of simulations have been performed that all

confirm the analysis results; the ones shown here are for

the parameters nt = nr = 2, L = 2, N = 16. Outage

probabilities have been computed for Gaussian symbols

assuming separate encoding for the LEs, for which hence

the results for symbols at the edge or in the middle of the

block are shown separately. The best curve in the figures

corresponds to a fictitious outage, with the MFB as SINR.

The reason why these curves are considered is that they

exhibit unambiguously the full diversity. The second best
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Fig. 1. Outage probability vs. SNR for MFB, block outage, and MMSE
LE for the case nt = nr = 2, L = 2, N = 16, R = 0.1bpcu, and 2.106

Monte Carlo runs.
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Fig. 2. Outage probability vs. SNR for MFB, block outage, MMSE LE and
MMSE-ZF LE for the case nt = nr = 2, L = 2, N = 16, R = 1bpcu,
and 2.106 Monte Carlo runs.

curve corresponds to the block outage, which would be

attained by a block DFE with joint encoding. The simulations

show that the block outage exhibits full diversity, since the

curves are parallel to those of the MFB. The results in Fig. 1

show that for low rate (R = 0.1bpcu (bits per symbol)), a

MMSE LE performs indeed identical to the MFB, as the

analysis showed. At a medium rate (R = 1bpcu), the results

in Fig. 2 show that with a MMSE LE, the edge symbols still

benefit virtually of full diversity, whereas the middle symbols

are starting to suffer. The MMSE LE performs in any case

much better than the MMSE-ZF LE, the slope of which is

insensitive to the rate transmitted. The slopes of the outage
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Fig. 3. Outage probability vs. SNR for MFB, block outage, and MMSE
LE for the case nt = nr = 2, L = 2, N = 16, R = 4bpcu, and 2.106

Monte Carlo runs.

curves of the MMSE-ZF LE in Fig. 2 are identical to those

of the MMSE LE in Fig. 3 where a high rate (R = 4bpcu)

is used, as predicted by the analysis.
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