LINEAR RECURRENCES 'AND UNIFORM DISTRIBUTION

MELVYN B. NATHANSON

ABSTRACT. A necessary and sufficient condition is obtained for the uniform distribution modulo p of a sequence of integers satisfying a linear recurrence relation.

Let $A=\left\{a_{n}\right\}_{n=1}^{\infty}$ be an infinite sequence of integers. For integers $m \geq 2$ and r, let $A(N, r, m)$ denote the number of terms a_{n} such that $n \leq N$ and $a_{n} \equiv r(\bmod m)$. If

$$
\lim _{N \rightarrow \infty} \frac{A(N, r, m)}{N}=\frac{1}{m}
$$

for $r=0,1, \cdots, m-1$, then the sequence A is uniformly distributed modulo m. The sequence A is uniformly distributed if A is uniformly distributed modulo m for all $m \geq 2$.

Kuipers, Niederreiter, and Shiue [1], [2], [4] have proved that the Fibonacci numbers are uniformly distributed modulo m only for $m=5^{k}$, and that the Lucas numbers are not uniformly distributed modulo m for any $m \geq 2$. Both the Lucas and Fibonacci numbers satisfy the linear recurrence $x_{n+2}=$ $x_{n+1}+x_{n}$. In this note we consider the uniform distribution of an arbitrary linearly recurrent sequence of integers.

Theorem 1. Let $X=\left\{x_{n}\right\}_{n=1}^{\infty}$ be a sequence of integers satisfying the linear recurrence $x_{n+2}=a x_{n+1}+b x_{n}$. Let p be an odd prime. Then the sequence X is uniformly distributed modulo p if and only if $p \mid\left(a^{2}+4 b\right)$, $p \nmid a$, and $p . \nmid\left(2 x_{2}-a x_{1}\right)$. The sequence X is uniformly distributed modulo 2 if and only if $2 \mid a, 2 \nmid b$, and $2 \nmid\left(x_{2}-x_{1}\right)$.

Proof. The linearly recurrent sequence X is periodic modulo p. If the period of X is not divisible by p, then X is certainly not uniformly distributed modulo p. Zierler [5] showed that if $p \nmid\left(a^{2}+4 b\right)$, then the period of X is relatively prime to p. If $p \mid\left(a^{2}+4 b\right)$ and $p \mid a$, then $p \mid b$, and so $x_{n} \equiv 0$ $(\bmod p)$ for all $n \geq 3$. If $p \mid\left(a^{2}+4 b\right)$ and $p+a$, then

[^0]\[

$$
\begin{equation*}
x_{n} \equiv \frac{2}{a^{2}}\left(2 x_{2}-a x_{1}\right) n\left(\frac{a}{2}\right)^{n}-\frac{4}{a^{2}}\left(x_{2}-a x_{1}\right)\left(\frac{a}{2}\right)^{n}(\bmod p) \tag{*}
\end{equation*}
$$

\]

If $p \mid\left(2 x_{2}-a x_{1}\right)$, then $x_{n} \equiv t(a / 2)^{n}(\bmod p)$ for some constant t. Either $t \equiv 0(\bmod p)$, or the period of X is the exponent e of $a / 2$ modulo p. But e is not divisible by p. Therefore, if X is uniformly distributed modulo p, then $p \mid\left(a^{2}+4 b\right), p \nmid a$, and $p \nmid\left(2 x_{2}-a x_{1}\right)$.

Conversely, suppose that X satisfies these three conditions. Let $A \equiv a / 2(\bmod p)$, and let e be the exponent of A modulo p. By (*), there are constants s and t such that $p \nmid s$ and $x_{n} \equiv(s n+t) A^{n}(\bmod p)$ for all $n \geq 1$. This sequence has period ep modulo p. To show that X is uniformly distributed modulo p, it suffices to show that each distinct residue modulo p occurs exactly e times among the first $e p$ terms of the sequence X.

Imagine these $e p$ terms written in a matrix with e rows and p columns. For $i=0,1, \cdots, e-1$ and $j=1,2, \cdots, p$, let the (i, j) th component of this matrix be $x_{i p+j}$. The j th column of the matrix consists of the e elements $x_{i p+j}$ with $i=0,1, \cdots, e-1$. But

$$
x_{i p+j} \equiv(s(i p+j)+t) A^{i p+j} \equiv(s j+t) A^{j-i}(\bmod p) .
$$

The set $\left\{A^{j-i}\right\}_{i=0}^{e-1}$ contains precisely the e residues $\left\{A^{i}\right\}_{i=0}^{e-1}$, and so the j th column of the matrix can be rearranged so that its (i, j) th entry is now $(s j+t) A^{i}$. Consider the i th row. It now consists of the p residues $(s j+t) A^{i}$ for $j=1,2, \cdots, p$. Since $s \neq 0(\bmod p)$, these residues are distinct modulo p, and so each row of the rearranged matrix contains a complete system of residues modulo p. That is, each residue modulo p occurs exactly e times in the first ep elements of the sequence X.

This proves the theorem for odd primes. The case $p=2$ is trivial.
Theorem 2 (Hasse principle). Let $X=\left\{x_{n}\right\}_{n=1}^{\infty}$ satisfy the linear recurrence $x_{n+2}=a x_{n+1}+b x_{n}$. Then X is uniformly distributed if and only if X is uniformly distributed modulo p for all primes p.

Proof. If X is uniformly distributed modulo p for all primes p, then $p \mid\left(a^{2}+4 b\right)$ for all p, and so $a^{2}+4 b=0$. Since a and b are relatively prime, it follows that $b=-1$ and $a= \pm 2$. If $a=2$, then X is the arithmetic progression $x_{n}=(n-1)\left(x_{2}-x_{1}\right)+x_{1}$, where $x_{2}-x_{1}= \pm 1$. If $n=-2$, then X is the sequence $x_{n}=(-1)^{n}\left[(n-1)\left(x_{2}+x_{1}\right)-x_{1}\right]$, where $x_{2}+x_{1}= \pm 1$. In both cases, X is uniformly distributed.

The converse is trivial.
Remark. The sequence X is p-adically uniformly distributed if X is uniformly
distributed modulo p^{k} for all $k \geq 1$. We can prove, by the method of [3], [4], the following "Hensel's lemma": If the linearly recurrent sequence X is uniformly distributed modulo p^{2}, then X is p-adically uniformly distributed.
R. T. Bumby has obtained similar results.

REFERENCES

1. L. Kuipers and J. S. Shiue, A distribution property of the sequence of Lucas numbers, Elem. Math. 27 (1972), 10-11. MR 46 \# 144.
2. -, A distribution property of the sequence of Fibonacci numbers, Fibonacci Quart. 10 (1972), no. 4, 375-376, 392. MR 47 \#3302.
3. -, A distribution property of a linear recurrence of the second order, Atti. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 52 (1972), 6-10.
4. H. Niederreiter, Distribution of Fibonacci numbers mod 5^{k}, Fibonacci Quart. 10 (1972), no. 4, 373-374. MR 47 \#3303.
5. N. Zierler, Linear recurring sequences, J. Soc. Indust. Appl. Math. 7 (1959), 31-48. MR 21 \#781.

DEPARTMENT OF MATHEMATICS, SOUTHERN ILLINOIS UNIVERSITY, CARBONDALE, ILLINOIS 62901

Current address: School of Mathematics, Institute for Advanced Study, Princeton, New Jersey 08540

[^0]: Presented to the Society, January 16, 1974 under the title Uniform distribution and linear recurrences; received by the editors February 4, 1974.

 AMS (MOS) subject classifications (1970). Primary 10A35, 10F99.
 Key words and phrases. Uniform distribution, recurrence sequences, linear recurrences, Hasse principle.

