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LINEAR RECURRENCES 'AND UNIFORM DISTRIBUTION
MELVYN B. NATHANSON

ABSTRACT. A necessary and sufficient condition is obtained for the
uniform distribution modulo p of a sequence of integers satisfying a

linear recurrence relation.

Let A= {a"}:=1 be an infinite sequence of integers. For integers
m> 2 and r, let A(N, r, m) denote the number of terms a, suchthat < N

and @ =7 (mod m). If

i AW ) 1

N —o0 m
for r=0, 1,.--, m — 1, then the sequence A is uniformly distributed modulo
m. The sequence A is uniformly distributed if A is uniformly distributed
modulo m for all m > 2.

Kuipers, Niederreiter, and Shiue [1], [2], [4] have proved that the
Fibonacci numbers are uniformly distributed modulo m only for m = Sk, and
that the Lucas numbers are not uniformly distributed modulo m for any m > 2.
Both the Lucas and Fibonacci numbers satisfy the linear recurrence X4y =
X, 41+ %,. Inthis note we consider the uniform distribution of an arbitrary
linearly recurrent sequence of integers.

Theorem 1. Let X = {xn}‘:___l be a sequence of integers satisfying the

4p=ax  +bx . Let p be an odd prime. Then the
sequence X is uniformly distributed modulo p if and only if p |(a2 + 4b),

linear recurrence x,

pta, and p A (2:~:2 - ax 1)' The sequence X is uniformly distributed modulo
2if and only if 2| a, 24 b, and 24 (x,- x ).

Proof. The linearly recurrent sequence X is periodic modulo p. If the
period of X is not divisible by p, then X is certainly not uniformly distrib-
uted modulo p. Zierler [5] showed that if p 4 (4% + 4b), then the period of
X is relatively prime to p. If p|(a? + 4b) and p|a, then p|b, and so x,=0
(mod p) for all »> 3. If p|l(a®+ 4b) and p 4 g, then

Presented to the Society, January 16, 1974 under the title Uniform distribution
and linear recurrences; received by the editors February 4, 1974.

AMS (MOS) subject classifications (1970). Primary 10A35, 10F99.

Key words and phrases. Uniform distribution, recurrence sequences, linear
recurrences, Hasse principle. Copyright © 1975, American Mathematical Society

License or copyright restrictions may apply to redistribution; see hnps:mams.org/journalfterms—of—use



290 M. B. NATHANSON

2 a\" 4 a\’
() 5, = 50, —ax)n (%) - Lo, ax)(4) (mod p)
If p|(2x, ~ ax ), then x_= t(a/2" (mod p) for some constant t. Either
t =0 (mod p), or the period of X is the exponent e of 4/2 modulo p. But
e is not divisible by p. Therefore, if X is uniformly distributed modulo p,
then p|(a? + 4b), p + 4, and p 4 (2x, - ax).
Conversely, suppose that X satisfies these three conditions. Let
A= a/2 (mod p), and let e be the exponent of A modulo p. By (%), there
are constants s and ¢ such that p £'s and x, = (sn+ #) A" (mod p) for all
n> 1. This sequence has period ep modulo p. To show that X is uniformly
distributed modulo p, it suffices to show that each distinct residue modulo
p occurs exactly e times among the first ep terms of the sequence X.
Imagine these ep terms written in a matrix with e rows and p columns.
For i=0,1,---,e~1and j=1, 2, +--, p, let the (7, j)th component of

this matrix be x . The jth column of the matrix consists of the e elements

ip+j
Xip+j with i=0, 1, +++, e~ 1. But
Xipej= (s(ip + 1) + DA™ = (sj + )A7~7 (mod p).

The set {Aj"ii:?:'ol contains precisely the e residues {Ai§f='01, and so the
jth column of the matrix can be rearranged so that its (i, j)th entry is now
(sj+ ) A, Consider the ith row. It now consists of the p residues (sj + ¢) A’
for j=1,2,---, p. Since s# 0 (mod p), these residues are distinct modulo
b, and so each row of the rearranged matrix contains a complete system of
residues modulo p. That is, each residue modulo p occurs exactly e times
in the first ep elements of the sequence X.

This proves the theorem for odd primes. The case p = 2 is trivial.

Theorem 2 (Hasse principle). Let X =lx 1. satisfy the linear recur
rence x ., =ax ., +bx . Then X is uniformly distributed if and only if X
is uniformly distributed modulo p for all primes p.

Proof. If X is uniformly distributed modulo p for all primes p, then
p|(a? + 4b) for all p, and so @’ + 4b=0. Since @ and b are relatively
prime, it follows that b=~ 1 and a= 12, If a= 2, then X is the drithmetic
progression x, =(n~ D(x,- x) + x,, where x,—x, = + 1L If n=- 2, then
X is the sequence x =(-D"[(n~ D(x,+ x)) - x ], where x,+x, =11
In both cases, X is uniformly distributed.

The converse is trivial.

Remark. The sequence X is p-adically uniformly distributed if X is uniformly
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distributed modulo p* for all £ > 1. We can prove, by the method of [3],

[4], the following *‘Hensel’s lemma’’: If the linearly recurrent sequence X

is uniformly distributed modulo p?, then X is p-adically uniformly distributed.
R. T. Bumby has obtained similar results.
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