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Abstract
The purpose of statistical modeling is to select targets for some action, such as a
medical treatment or amarketing campaign. Unfortunately, classical machine learning
algorithms are not well suited to this task since they predict the results after the action,
and not its causal impact. The answer to this problem is uplift modeling, which, in
addition to the usual training set containing objects on which the action was taken,
uses an additional control group of objects not subjected to it. The predicted true effect
of the action on a given individual is modeled as the difference between responses in
both groups. This paper analyzes two uplift modeling approaches to linear regression,
one based on the use of two separate models and the other based on target variable
transformation. Adapting the second estimator to the problem of regression is one of
the contributions of the paper. We identify the situations when each model performs
best and, contrary to several claims in the literature, show that the double model
approach has favorable theoretical properties and often performs well in practice.
Finally, based on our analysis we propose a third model which combines the benefits
of both approaches and seems to be the model of choice for uplift linear regression.
Experimental analysis confirms our theoretical results on both simulated and real data,
clearly demonstrating good performance of the double model and the advantages of
the proposed approach.
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1 Introduction

Machine learning models are frequently used to select targets for an action such as
a medical treatment or a marketing campaign. Typically, a sample is drawn from
the population, individuals in the sample are subjected to the action and a model
is trained to predict the outcomes. The model is then used to select cases from the
general population for which the action is most profitable, e.g. the estimated recovery
probability is above some threshold or predicted monetary gain from purchases made
after being targeted by the campaign is high.

Unfortunately this approach is usually incorrect since it only takes into account
what happens after the action, ignoring the outcome we would observe had a given
person not been targeted (Radcliffe and Surry 2011; Rzepakowski and Jaroszewicz
2012; Lai 2006). To better understand the difference, consider sending e-mails with
discount codes to selected customers. Suppose an average sale is 50 Euros and the
model predicts that, after receiving a 25% discount code, customer C1 will spend 150
Euros, so targeting her seems a good idea. This may however not be the case. If she
would have bought the product even without the discount, at the full price of 200
Euros, the campaign would have actually resulted in a loss of 50 Euros. It is, however,
profitable to target a customerC2 who spent only 10 Euros after receiving the discount,
but without the discount would not have bought anything at all.

Classical machine learning is unable to distinguish those two cases. An answer to
this problem is uplift modeling which uses two training sets: a treatment group with
objects subjected to an action and a control group with objects left untreated. The
goal is to model the difference between responses in both groups conditional on the
predictors, such that the benefit of taking the action is assessed against the background
of not taking it (Radcliffe and Surry 2011; Lai 2006; Holland 1986).

In this paper we address the problem of uplift modeling with a numerical outcome
variable, i.e. uplift regression. We are going to focus on linear models since they are
very useful in practice and allow us to provide detailed analysis comparing the current
approaches and new one proposed in this paper.

More formally, let x be a feature vector describing a customer, yT the numerical
outcome (e.g. purchase value) we would observe after targeting the customer, and
yC the numerical outcome we would observe had the customer not been targeted.
Our purpose is to build a linear model of the form x ′βU which predicts the quantity
yT − yC , called the uplift. The goal of this paper is to find as good an estimator of βU

as possible.
What makes uplift modeling challenging is that, for each case, only one of the out-

comes yT or yC is known, never both: once a person received an offer they cannot be
made to forget it. This is known as the Fundamental Problem of Causal Inference (Hol-
land 1986).

The contributions of the paper are as follows. First, we formally analyze two
approaches to uplift regression: the double model approach and the outcome vari-
able transformation approach which we here adapt to the problem of regression. To
the best of our knowledge this is the first such detailed comparison of uplift models
and one of very few theoretical results on uplift modeling. Our analysis contradicts
the common belief (Radcliffe and Surry 2011; Kuusisto et al. 2014; Guelman et al.
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Linear regression for uplift modeling 1277

2012) that the double model approach is usually inferior to dedicated uplift models.
Based on the results of our analysis we propose a modified estimator which combines
the benefits of both approaches and which we believe to be the model of choice for
uplift linear regression.

1.1 Literature overview

We will first position uplift modeling within the broader field of causal discovery and
later provide and overview of literature specific to this discipline.

Causal discovery aims not at predicting future outcomes, but, instead, to model
the effects of interventions which directly change the values of some variables (Pearl
2009). Causal discovery can roughly be divided into two subdomains. One deals with
the case in which the action was applied to some individuals (interventional data
is available), the other performs causal discovery when only observational data is
available (Pearl 2009).

Causal discovery from purely observational data is possible under additional
assumptions. For example, it is possible to uncover parts of the causal structure pro-
vided that reliable conditional independence tests are available (Spirtes et al. 2000),
or to determine the direction of causal influence by assuming a specific form of
causal relationship (see e.g. additive noise models Hoyer et al. 2009). A good general
overview of such methods can be found in Pearl (2009), Spirtes and Zhang (2016).
Those methods are not related to uplift modeling which aims to characterize the influ-
ence of a specific action, not to discover unknown causal structure.

A class of techniques has been developed in economics, social sciences and med-
ical statistics for causal discovery from interventional data, where a specific action
has been performed on some of the objects. The aims of those methods are similar to
uplift modeling, but the research problems addressed are different. The main focus is
on making causal inferences when treatment assignment was not random. For exam-
ple a treatment was applied based on doctor’s decision. Such treatment assignment
poses challenges for causal discovery; for example, the doctor might have applied the
treatment only to healthier patients which have greater survival probability in the first
place. Ignoring this fact will make the treatment look more beneficial than it is in
reality (Robins and Hernán 2018). The most popular approach is based on so called
propensity scores, that is estimates of the probability that a given individual receives the
treatment. Treatment and control cases with similar scores are then matched together
or assignedweights based on inverse treatment probabilities. A good overview of those
methods can be found in Imbens and Rubin (2015) and Robins and Hernán (2018),
some newer results from the machine learning community can be found in Johansson
et al. (2016) and Shalit et al. (2017).

It should be noted that matching and weighting approaches are based on strong
assumptions (such as all confoundingvariables beingobserved)which cannot be tested
directly from data (Robins and Hernán 2018). Such assumptions are not necessary
when treatment assignment is random; randomized controlled trials are thus a gold
standard in causal discovery (Imbens and Rubin 2015).
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1278 K. Rudaś, S. Jaroszewicz

Uplift modeling is different from those approaches since it strives to get the best
possible estimator from properly randomized data. Propensity score based methods
use almost exclusively the doublemodel approach, whichwewill analyze in this paper.

Another relevant method is g-estimation (Robins 1994; Robins and Hernán 2018)
which also directly estimates uplift coefficients on full data. However themethod itself
is not statistically efficient (Robins 1994) and requires a correction, which amounts
to subtracting predicted control outcomes from true treatment outcomes, making it in
fact a double model estimator (Robins 1994). The true benefit of g-estimation is that
it can be applied to complex multistage treatments which are beyond the scope of the
current paper.

Uplift modeling literature is concentrated mainly on the problem of classifica-
tion. Several approaches are based on decision trees (Rzepakowski and Jaroszewicz
2010, 2012; Radcliffe and Surry 2011) trained using modified splitting criteria which
aim to maximize differences in responses between groups, or some related infor-
mation theoretical measure. Several works investigate combining such trees into
ensembles (Guelman et al. 2012; Sołtys et al. 2014). Work on linear uplift models
includes approaches based on class variable transformation (Lai 2006; Jaśkowski and
Jaroszewicz 2012;Kane et al. 2014; Pechyony et al. 2013) usedwith logistic regression
and approaches based on Support Vector Machines (Kuusisto et al. 2014; Zaniewicz
and Jaroszewicz 2013, Oct 2017). Those works only address the problem of classifi-
cation and do not provide theoretical analyses which would clearly demonstrate the
merits of each approach. See Radcliffe and Surry (2011) for a general overview of
uplift modeling and its applications.

1.2 Notation and assumptions

We assume following notation: vectors are denoted with lowercase letters y, β, etc.,
and matrices with uppercase letters X , Σ , etc. Subscripts denote vector components,
e.g. yi denotes the i th component of y with the exception of xi which will denote i th
row of the data matrix X . An identity matrix is denoted with I and 0 will denote both
zero vectors and scalars; transpose is denotedwith ′.N (μ,Σ) denotes themultivariate
normal distribution with mean vector μ and covariance matrix Σ .

Quantities related to the treatment group will be denoted with superscript T and
those related to the control group with superscript C . For example nT is the number
of cases in the treatment group.

Vectors and matrices may be random variables. Expectations are denoted in the
usual fashion, for example the expectation of y, the expectation of y with respect
to a random variable X , and the expectation of y conditional on g will be denoted,
respectively, as E y, EX y andE y|g. Similar notationwill be used for variances, where,
by variance of a vector we understand its covariance matrix. Whenever we use limits
involving random variables, convergence in probability will be assumed. Convergence

in distribution will be denoted
d−→.

Performance of linear models is typically measured by how well their estimate ˆβU

approximates the true parameter vector βU in terms of mean squared error E ‖ ˆβU −
βU‖2 (Heumann et al. 2013). For unbiased estimators this error is determined solely
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by the estimator’s covariance matrix (Heumann et al. 2013), which should be as small
as possible. All models we will encounter will be unbiased, so we will only compare
their variances. A covariance matrixΣ1 is considered greater than a covariance matrix
Σ2 if Σ1 − Σ2 is positive definite.

Throughout, we will assume that there are p predictor variables and n data records
arranged in a matrix X ∈ R

n×p. Let xi denote the i th row of X . We assume that rows
of X are generated independently from each other and follow the same distribution.
Let g be a random vector of length n with gi ∈ {T ,C}. If gi = T (gi = C) then the
i th observation has been assigned to the treatment (control) group, respectively.

We also define the matrices XT ∈ R
nT ×p and XC ∈ R

nC×p whose rows are rows
from X assigned to treatment and control groups; nT and nC denote respectively the
number of cases in the treatment and control training sets, n = nT + nC . Denote by

qT = nT
n and qC = nC

n the proportions of cases in both groups.

Likewise, we define treatment and control response vectors yT ∈ R
nT and yC ∈

R
nC and denote by y the combined vector of all responses. We will assume that the

expected outcome in the control group and the expected strength of the influence of
the action (i.e. uplift) are linear functions of the predictors. As a result the response in
the target group is also linear and the assumed relationships in the data can be written
as (Heumann et al. 2013)

yC = XCβC + εC , (1)

yT = XTβC + XTβU + εT = XTβT + εT , (2)

where βC are the true response coefficients in the untreated population, βT is the
respective treatment coefficient vector, and βU is the vector of coefficients defining
the strength and direction of the effect of the action on a given individual. Note that
βT = βC + βU so the response in the treatment group equals the baseline plus the
change in response caused by the action.

Random vectors εT and εC denote random components of the responses in the treat-
ment and control groups. It is assumed that X , εT and εC are independent of each other.
Moreover elements of εT are assumed to be independent and identically distributed,
with E εTi = 0 and Var εTi = (σ T )2 for some σ T > 0. Analogous assumptions are
made for εC with Var εCi = (σC )2. Note that the elements of both vectors may follow
different distributions. Let ε denote the combined vector of random components in
both groups.

For simplicity, in all theorems and proofs we will assume that the matrices X ,
XT and XC are of full rank, and thus the nonsingularity of X ′X , XT ′

XT and
XC ′

XC (Heumann et al. 2013). Since singular matrices form a subset of measure
zero, we may expect those facts to hold with probability one if nT , nC ≥ p and the
distribution of xi ’s is continuous. For binary matrices this is not the case and the esti-
mators may fail to exist with nonzero probability. This case will only be analyzed in
an example.
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Another simplification which we are going to make is assuming that the predictors
have zero mean E xi = 0. This assumption can easily be dropped from all asymptotic
results but we retain it for notational simplicity.

1.2.1 Randomization

For the upliftmodel to have a causal interpretation it is necessary for the distributions of
the predictors in both groups to be identical. In practice this means that the assignment
of cases to the treatment and control groups should be random and independent of the
predictors (Robins and Hernán 2018).1 There are, however, several ways to achieve
such randomization. In this work we will assume complete randomization (Imbens
and Rubin 2015). This means that the proportions qC , qT of cases in both groups are
fixed in advance but the actual assignment is random. The actual randomization may
be performed by sorting the cases in random order and then using the first nqC cases
as controls and assigning the remaining ones to the treatment group. As a result, pairs
(xi , yi ) are:

1. identically distributed within both treatment and control groups,
2. no longer independent, but independent conditional on g.

To see this note that gi ’s become dependent after fixing nT so pairs (xi , yi ) become
dependent through gi ’s and nT . Conditioning on g isolates nT from (xi , yi )’s which
again become independent.

2 Theoretical analysis of uplift regressionmodels

In this section we provide theoretical analysis of two frequently used types of uplift
models: the double model and the model based on target variable transformation.

2.1 The double model estimator

The easiest and most intuitive way of estimating the vector βU is to estimate βT and
βC using two independent linear models and subtract their predictions. We will refer
to this approach as the double model approach.

Definition 1 A vector ˆβU
d given by the formula

ˆβU
d = (XT ′

XT )−1XT ′
yT − (XC ′

XC )−1XC ′
yC (3)

is called the double model estimator of the parameter vector βU .

Notice, that the estimator can be written as ˆβU
d = β̂T − β̂C where β̂T =

(XT ′
XT )−1XT ′

yT and β̂C = (XC ′
XC )−1XC ′

yC are classical Ordinary Least
Squares (OLS) estimators (Heumann et al. 2013) built independently in both groups.

1 Methods for handling dependent assignment such as propensity score matching are beyond the scope of
this work, see Sect. 1.1
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Now we will look at the properties of the estimator in case when the matrix X is
fixed (constant) which is typically considered in statistical textbooks (Heumann et al.
2013;Greene 2003). The case is of somepractical importance in designed experiments,
where the matrix X is under full control of the researcher, however for us it will serve
mainly to illustrate some of the points we are going to make, since in most data mining
applications the matrix X is random.

Theorem 1 Assume that the predictor matrix X is fixed. Then the double model esti-

mator ˆβU
d is BLUE (Best Linear Unbiased Estimator).

The proof of this and the remaining theorems can be found in the Appendix.
From the theorem we can conclude that for fixed predictors the double model

approach is in a certain sense optimal. Therefore, in order to find better estimators for
uplift regression, the case of random predictors must be considered. Let us first give
some results on the behavior of the double model estimator in this case. The following

theorem shows that ˆβU
d is unbiased and asymptotically normal. The theorem thus

extends typical statistical analysis of linear models (see e.g. Heumann et al. 2013;
Greene 2003) to the case of uplift regression.

Theorem 2 Assume that the predictor matrix X is random, E xi = 0, andVar xi = Σ .
Assume further, that complete randomization was used. Then

1. ˆβU
d is unbiased, i.e. E ˆβU

d = βU ,
2. if, in addition, each row xi of matrix the matrix X follows the normal distribution

Np(0,Σ) then Var ˆβU
d =

(
(σ T )2

nT −p−1
+ (σC )2

nC−p−1

)
Σ−1,

3. if n → ∞ with the proportions qT , qC fixed, then
√
n

( ˆβU
d − βU

)
d−→

N
(
0,

(
(σ T )2

qT
+ (σC )2

qC

)
Σ−1

)
.

The third part of the theorem states that for large n the estimator is approximately
normally distributed and its covariance matrix is approximately equal to

Var ˆβU
d ≈ 1

n

(
(σ T )2

qT
+ (σC )2

qC

)
Σ−1.

Asymptotic variance is a convenient and frequently used tool to compare statistical
models (Greene 2003).

For finite samples the covariance matrix can easily be computed only for normally
distributed xi ’s as shown in part 2.When the distribution of the covariates is not normal
the situation may be very different as shown in the following example.

Example 1 Consider two binary predictor variables, independent of each other, each
taking the value of 1 with probability 1

2 . Construct a data matrix X ∈ R
n×2 by taking

an n element sample from the joint distribution of the two variables. It is easy to see
that the columns of X are equal with probability 1

2n . As a result, with probability 1
2n

the matrix X ′X is singular and an OLS estimator using X as predictors is undefined.
Of course, even if the singularity is avoided the columns may become almost identical
leading to an ill-conditioned X ′X matrix.
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The double model estimator uses two separate models, each trained on a subset
of the full dataset. Splitting the training data makes problems described in the above
exampleworse (Muirhead 2005). The question therefore ariseswhether one can build a
better model by estimating βU directly on the whole dataset. Developing such models
is currently the main research area in uplift modeling. In the next section we present
and analyze one such estimator based on an outcome variable transformation.

2.2 The uplift regression estimator

The idea of using outcome variable transformations to build upliftmodels has first been
proposed for classification. The idea is quite simple: the class in the control training
set is reversed, both training sets are concatenated (possibly with some weighting of
cases) and a single classifier is built on such a combined dataset. The approach was
first mentioned by Lai (2006), rediscovered and formally justified in Jaśkowski and
Jaroszewicz (2012), some additional analyses were provided in Kane et al. (2014).

As it turns out, the method can be adapted to the regression setting. Consider the
following transformation ỹ of the target variable y:

ỹi =
{

1
qT

yi if gi = T ,

− 1
qC

yi if gi = C
(4)

and define

Definition 2 A vector β̂U
z given by the formula

β̂U
z = (

X ′X
)−1

X ′ ỹ (5)

is called the uplift regression estimator of the parameter vector βU .

The outcome in the control group is reversed similarly to the case of classification, but
special weighting factors are required to obtain correct estimates. For example, when
qT = qC = 1

2 then the target needs to be multiplied by 2. The reason for this scaling
becomes clear in the proof of Theorem 3 below, but we will first provide an intuitive
explanation.

Take randomvariables yi ∈ R, xi ∈ R
p and gi ∈ {T ,C}understood as the response,

predictors, and group assignment of case i . Define ỹi as in (4). We have

E ỹi |xi = Egi E(ỹi |gi , xi )
= P(gi = T )E (ỹi |gi = T , xi ) + P(gi = C)E (ỹi |gi = C, xi )

= qT E

(
1

qT
yi |gi = T , xi

)
+ qC E

(
− 1

qC
yi |gi = C, xi

)

= E (yi |gi = T , xi ) − E (yi |gi = C, xi ) ,

where the first equation follows from the law of total expectation (Billingsley 1995,
Chapter 34) and the second from the definition of ỹi . It can be seen that the expectation
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of the transformed target variable equals the desired expected difference between
responses in the treatment and control groups for an individual described by a feature
vector xi .

Another way to look at this estimator is to rewrite it as

β̂U
z = 1

qT
(
X ′X

)−1
XT ′

yT − 1

qC
(
X ′X

)−1
XC ′

yC ,

which reveals that it is the double model estimator where the matrices (XT ′
XT )−1 and

(XC ′
XC )−1 are replacedwith an estimate (X ′X)−1 made on the full dataset (Heumann

et al. 2013). Recall that due to randomization the true underlying covariance matrices
are identical in the treatment and control groups (Robins and Hernán 2018), so one
can expect that this estimate will be better than both (XT ′

XT )−1 and (XC ′
XC )−1. For

example, looking at the binary data from Example 1 one concludes that the probability
of observing a singular predictor matrix in the uplift regression estimator is 1

2n com-
pared to 1

2min{nT ,nC } for the double model. This is a very significant difference in favor

of ˆβU
z . See Muirhead (2005) for quantitative results for normally distributed data.

The following theorem shows that, usually, those gains are, unfortunately, offset by
other negative factors.

Theorem 3 Assume that the predictor matrix X is random, E xi = 0, andVar xi = Σ .
Assume further, that complete randomization was used. Then

1. ˆβU
z is unbiased,

2. if in addition xi ∼ N (0,Σ) and n → ∞ with the proportions qT , qC fixed, then

√
n( ˆβU − βU )

d−→ N
(
0,Σ−1

(
(σ T )2

qT
+ (σC )2

qC

)
+ bb′ + Σ−1 Tr(bb′Σ)

)
,

where b =
√

qC

qT
βT +

√
qT

qC
βC .

We see that an additional quantity now appears in the asymptotic variance. To gain
some intuition on how large it can become, assume Σ = I and look at the trace of
the asymptotic covariance, i.e. the sum of variances of all the coefficients. We have
(noting that Tr(I ) = p and Tr(bb′) = ‖b‖2, see e.g. Heumann et al. 2013)

Tr Var ˆβU
z ≈ 1

n
Tr

(
I

(
(σ T )2

qT
+ (σC )2

qC

)
+ bb′ + I Tr(bb′)

)

= p

n

(
(σ T )2

qT
+ (σC )2

qC

)
+ (p + 1)‖b‖2

n
.

Thus the trace of the variance exceeds that of the double model estimator by (p +
1)‖b‖2/n, where the vectorb is given inTheorem3. Since the vectorb can be arbitrarily

large, the variance of ˆβU
z can be arbitrarily worse than that of the double model

approach.
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ỹ

Fig. 1 Probability density functions of response variables in the double model (upper) and uplift regression
(lower) conditional on a fixed feature vector x

Another issue to note is that, unlike other results in this paper and classical OLS
analysis (Greene 2003), the second part of the theorem requires normally distributed
predictors even in the asymptotic case. If the distribution is not normal the variance
may be even larger depending on the fourth moments of xi (for details see the proof,
where a quartic form of xi appears).

There is however a special case when uplift regression performs well:

Observation 1 If in Theorem 3 the vector b is zero, the asymptotic variance of uplift
regression is identical to that of the double model approach. It is the case, for example,
if qT = qC = 1

2 and βT = −βC .

The experimental section will show that in this special (and rather unusual) case the
method is actually superior to the other two methods analyzed in this paper. In the
next section we provide an improved estimator, whose derivation is based on the above
observation. But first let us give an intuition behind the increased variance of the uplift
regression estimator and identify cases when it is most useful.

Figure 1 gives the intuition behind the increased variance of ˆβU
z . The figure shows

example probability density functions of response variables in the double model
(upper) and uplift regression (lower) for a given fixed feature vector x . The plots
can also be interpreted as densities of random error terms εT , εC , εUz centered on the
predicted expected values. The chart assumes qT = qC = 1

2 , xβ
T = 5, xβC = 4.

In the double model approach both error terms have narrow densities with variances
(σ T )2 and (σC )2 respectively. On the other hand, the density of the error term in the
uplift regression model is bimodal andmuch wider than both the treatment and control
errors. This is a result of reversing the sign of xβC which brings it further apart from
xβT , as marked by the arrows in the picture. Notice however that the expected value
coincides with xβU as desired.

In classical linear regression analysis the variance of the error term directly influ-
ences the covariance of estimated coefficients (Heumann et al. 2013; Greene 2003),
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and the wider bimodal distribution clearly has higher variance. Indeed, using the law
of total variance (Billingsley 1995, Chapter 34) we get

Var ỹ|x = Eg Var ỹ|x, g + Varg E ỹ|x, g

= qT
1

(qT )2
(σ T )2 + qC

1

(qC )2
(σC )2 + Varg

{
1
qT

xβT if g = T

− 1
qC

xβC if g = C

= (σ T )2

qT
+ (σC )2

qC
+ xqT qC

(
βT

qT
+ βC

qC

)2

,

where g is the random variable representing group assignment, and the last quantity is
the variance of a two-point distribution. Note that the last term is equal to xbwhere b is
the vector defined in Theorem 3, so this simple argument gives an intuitive justification
of its form.

To summarize this section, we list three cases when uplift regression estimator can
be useful; otherwise the doublemodel estimator should be used, or better, the corrected
uplift regression estimator proposed in the next section.

1. n is small (e.g. close to p) or the matrix X is ill conditioned (see e.g. Example 1)
so that the gains in better estimation of (X ′X)−1 outweigh the negative effects of
increased error term variance.

2. Error variances (σ T )2 and (σC )2 are huge compared to the actual responses such
that the variance in Theorem 3 is dominated by the first term.

3. When qCβT ≈ −qTβC . This however is rarely seen in practice where uplift is
typically small and we have βT ≈ βC (Radcliffe and Surry 2011).

3 The corrected uplift regression estimator

In this section we introduce a new estimator which combines the benefits of the double
regression model (low asymptotic variance) with the benefits of the uplift regression
model (good estimation of the (X ′X)−1 matrix for small samples). Experiments in the
next section suggest that this is the model of choice for linear uplift regression.

The main idea is to introduce corrections, such that the increase in variance
described in Theorem 3 is diminished as much as possible. Looking at Eqs. 1 and 2 it
is easy to see that subtracting some vector β∗ from for both βT and βC does not affect
βU which is the quantity of interest.

Pick β∗ = qCβT + qTβC . After subtracting β∗ from βT and βC the vector b from
Theorem 3 becomes

√
qC

qT
(βT − β∗) +

√
qT

qC
(βC − β∗)

=
√
qC

qT
(βT − qCβT − qTβC ) +

√
qT

qC
(βC − qCβT − qTβC ) = 0,
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so after making such a correction the increased variance of the uplift regression model
would not be observed.

Unfortunately we cannot directly modify coefficient vectors βT and βC . We do not
even know their exact values needed to compute β∗. To solve the second problem we
will estimate β∗ from data. Define:

y∗
i =

⎧⎨
⎩

qC

qT
yi , if gi = T

qT

qC
yi , if gi = C,

and use the following estimator (i.e. the classical least squares estimator Heumann
et al. 2013) applied to variable y∗

β̂∗ = (X ′X)−1X ′y∗. (6)

Since we cannot modify the true coefficient vectors βT and βC , we will instead
modify (correct) the target vector y by subtracting X β̂∗ from it. As a result we obtain
the following two-stage estimator.

Definition 3 A vector ˆβU
c given by the formula

ˆβU
c = (X ′X)−1X ′ ỹc

where

yc = y − X β̂∗

and

β̂∗ = (X ′X)−1X ′y∗

is called the corrected uplift regression estimator of the parameter βU .

The ỹc is the result of applying Eq. 4 to yc, and the estimator is in fact the uplift
regression estimator from Definition 2 with the target vector y replaced by a corrected
target vector yc.

It is not obvious that such a two step regression procedure will give an
improved estimator, since the correction may increase the variance of individual error
terms (Heumann et al. 2013; Greene 2003). The following theorem shows that we do
indeed obtain an improvement.

Theorem 4 Assume that the predictor matrix X is random, E xi = 0, andVar xi = Σ .
Assume further that complete randomization was used. Then

1. β̂∗ is an unbiased estimator of β∗,
2. ˆβU

c is an unbiased estimator of βU ,
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3. if n → ∞ with the proportions qT , qC fixed, then
√
n( ˆβU − βU )

d−→
N

(
0,

(
σ T 2

qT
+ σC 2

qC

)
Σ−1

)
.

It can be seen that the corrected estimator has the same asymptotic distribution as the
double regression estimator, thus recovering its low asymptotic variance. Furthermore,

both estimators β̂∗ and ˆβU
c are computed based on the full dataset using better estimates

of (X ′X)−1, as does the uplift regression estimator. Notice also that the assumption of
normality is no longer needed to compute asymptotic variance, in line with classical
OLS (Greene 2003).

Finite sample variance of the corrected estimator proved difficult to compute but the
experiments in the next section demonstrate that for small n it is superior to both double
model and uplift regression estimators. Its performance becomes identical the double
model approach as the sample size becomes large. Since the cost of computing the
corrected estimator is not much larger than that of computing the other two estimators,
we believe it is the estimator of choice for uplift linear regression.

4 Experimental evaluation

We will now evaluate the three proposed estimators on synthetic data and on two real
life datasets. This way we are going to verify the theoretical results presented in the
previous sections, and analyze the estimators’ behavior on finite samples and real data
which may not follow theoretical assumptions.

4.1 Synthetic data

We first evaluate the three estimators on synthetic data in order to illustrate their
behavior in a controlled setting.We begin by describing our data generation procedure.

For each p = 5, 20, 100 we generated a random matrix X for growing values of n.
Each row xi of X is generated from the multivariate normal distributionN (0, I ), with
zero mean and unit covariance matrix. Each sample is assigned to treatment or control
group using complete randomization with equal group proportions qT = qC = 1

2 . If n
is odd, we arbitrarily choose nT = nC + 1. The outcome variables are then generated
based on Eqs. 1 and 2 with εTi , εCi ∼ N (0, 1).

The vectorsβT andβC are generated randomly, in such away that ‖βT ‖ = ‖βC‖ =
1 and the angle between the two vectors has a specified value. This way we are able to
perform tests for large and small uplift (compared to the responses) and simulate the
special case fromObservation 1.We testedwith three different angles: π

10 , correspond-
ing to the case of small uplift frequently encountered in practice; π , corresponding to
an ideal case for the uplift regression model, and an intermediate value of π

2 .

To measure model performance we compare the estimated ˆβU with the true βU =
βT − βC using the squared error

‖ ˆβU − βU‖2.
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Since in this experiment we use synthetic data, the true βU is known, and the error
measure can be computed directly using coefficients estimated from the model. For
each value of the angle, each estimator and each value of n the experiment has been
repeated 100 times and the results averaged.We have only used n ≥ 2p to avoid having
less records than variables in the double model. The results are shown in Table 1 and
Figs. 2, 3 and 4.

Table 1 shows the actual values of squared errors for various estimators, angles
between βT and βC , and sample sizes n. Let us first look at angles π/10 and π/2.
It can be seen that for very small samples the double estimator has an extremely
large error. This is the result of poor estimation of (XT ′

XT )−1 and (XC ′
XC )−1 since

nT and nC are only slightly larger than p or even equal to it (see Muirhead 2005
for exact distributions of those matrices). The uplift regression estimator is better
than the double estimator for relatively small n but quickly becomes worse. This
shows that its applicability is in fact limited. On the other hand, the corrected uplift
regression estimator is consistently better than both competitors even for thousands of
training records and becomes comparable with the double estimator only for n ≈ 104.
Moreover, for p = 100 it maintains its lead for all n.

The last three columns of Table 1 show the case when βT = −βC (angle equal to
π ) which should be optimal for the uplift regression model by Observation 1. We see
that this is indeed the case: this model performs much better than the double estimator
for a wide range of sample sizes. The corrected model is, however, not much worse
and it actually performs better for very small n. Moreover the case of such a strong
uplift rarely occurs in practice (Radcliffe and Surry 2011).

Overall the results fully confirm our theoretical analysis given in the previous two
sections:

1. The uplift regression estimator outperforms the double estimator for small n due
to better estimation of the matrix (X ′X)−1, for larger values of n it becomes
significantly worse. In Table 1 its error is often more than twice as large.

2. The corrected uplift regression estimator combines the benefits of the two other
estimators and outperforms them both for all n. One exception is the case βT =
−βC , which is artificial and unlikely to occur in practice.

3. As n tends to infinity the errors of all models tend to zero. They all consistently
estimate βU .

One last issue requires a comment. Notice that, in the table, errors for the double
estimator are exactly the same regardless of the angle between βT and βC . To see why
this is the case, rewrite

ˆβU
d − βU = (XT ′

XT )−1XT ′
yT − (XC ′

XC )−1XC ′
yC − βT + βC

= (XT ′
XT )−1XT ′

(XTβT + εT ) − (XC ′
XC )−1XC ′

(XCβC + εC )

− (XT ′
XT )−1XT ′

XTβT + (XC ′
XC )−1XC ′

XCβC

= (XT ′
XT )−1XT ′

εT − (XC ′
XC )−1XC ′

εC
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Fig. 2 Fraction of cases for which uplift and corrected uplift estimators are better than the double model
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Fig. 3 Fraction of cases for which uplift and corrected uplift estimators are better than the double model

estimator in terms of ‖ ˆβU − βU ‖2 for p = 20
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Fig. 4 Fraction of cases for which uplift and corrected uplift estimators are better than the double model

estimator in terms of ‖ ˆβU − βU ‖2 for p = 100

and note that the resulting quantity does not depend on βT , βC . Since we use the same
random seed for each angle, the double estimator was trained on the same X and ε in
each case, yielding identical estimates.

Another kind of comparison is shown in Figures 2, 3 and 4, where we compare the
fractions of random sampleswhere uplift and corrected uplift estimators are better than

the double model estimator in terms of the squared error ‖ ˆβU − βU‖2. The fractions
are shown as functions of n for various angles between βT and βC , for p = 5, 20, 100.
When a plot hovers around 0.5 (horizontal line), themodels are comparable. The figure
confirms our earlier analysis: for small n both estimators outperform the doublemodel.
For larger n the uplift regression estimator performs poorly except for the special case
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βT = −βC . The proposed, corrected uplift regression estimator performs well in all
cases, especially in the practically important case of small uplift, when βT ≈ βC .
In this case the advantage does not vanish even for n = 10,000 and is especially
pronounced for p = 100, where the corrected model is better in all cases.

Overall, we believe that Figures 2, 3 and 4 demonstrate that it is beneficial to use
the corrected model, even if the reduction in the error is small (Table 1, large values
of n). Its computational complexity is not much larger than that of the double model
and the results are consistently better, especially for larger values of p.

4.2 Real data: a social program

In this section we describe the experiments we performed on the first real dataset. We
begin by describing the dataset and the experimental methodology, later we present
actual results.

4.2.1 Description of the dataset

The dataset we use comes from a program (called OSNAP) to motivate children to
higher physical activity (Giles et al. 2016). The data describes 401 children who
have been randomly split into two groups: these who participated in the OSNAP
program, and remaining ones who did not. Children’s activity was measured using
special equipment. We will focus on the outcome variable tot_dur_mv1, which
describes daily minutes of overall moderate to vigorous physical activity. We chose
this variable since this is the principal indicator in the study. Because each child was
observed for several days we average the observations for each child.

We first removed all post-randomization variables: valdays, mn_avgfree_
outdoor, mn_avgfree_indoor, mn_avgstruc_outdoor, mn_avgstruc
_indoor, allmean_min_wr, mn_avgfreepa. Further, we removed the vari-
ablesmn_pctdavg_mean_temp26p andpctdavg_mean_temp26p since they
were identical to a third variable. This dataset is called OSNAP1. Additionally, we
created a set OSNAP2 by removing the following variables which were highly cor-
related with each other: mtype, mn_avgpa, mn_avginpa, mn_avgstrucpa,
mn_avgfree_indoor, grade (we did keep indicators for each specific grade),
gradeK_2, mn_avgoutpa, and pair. There are 34 variables in the OSNAP1
dataset and 24 variables in OSNAP2. This way we obtained two training sets with
differing levels of collinearity (Heumann et al. 2013).

4.2.2 Methodology

Since for real data we do not have access to true coefficient vectors, we had to use test
sets. The treatment and control groups have both been randomly split into two parts,
creating treatment and control train and test sets. The models were of course built on
the training sets. The use of the test sets requires additional discussion.

Since we do not know the true model coefficients, we decided to compare model’s
predictive performance. This, however, is also difficult since, due to the Fundamental
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Problem of Causal Inference (see Sect. 1 and Holland 1986), for each case we only
know its outcome after the treatment or without it. As a result, the true gain with
which models’ prediction should be compared is never known at the level of indi-
vidual data records (Radcliffe and Surry 2011; Rzepakowski and Jaroszewicz 2012).
To solve this problem we will compare model predictions with actual outcomes on
subsets of records. Similar ideas have been used to test other approaches to causal
inference (Shalit et al. 2017) and to test classification uplift models (Radcliffe and
Surry 2011; Rzepakowski and Jaroszewicz 2012).

Let S ⊆ {1, . . . , n} be indices of cases in such a subset. Of course S should only
contain test cases. Define ST = {i ∈ S : gi = T } and SC = {i ∈ S : gi = C}. We
will use the following absolute error measure to assess model performance

∣∣∣∣∣∣
1

|ST |
∑

i∈ST
xi ˆβU −

⎛
⎝ 1

|ST |
∑

i∈ST
yTi − 1

|SC |
∑

i∈SC
yCi

⎞
⎠

∣∣∣∣∣∣
, (7)

that is we compare average uplift over all cases in ST , as predicted by the model, with
uplift over ST computed based on actual outcomes in this subset. We pick subsets
which are continuous slices of given width along a random projection. To select a
subset we first generate a random vector and project the data onto this vector. Let
p ∈ [0, 1] be the proportion of cases which should be included in S. We pick for S
indices of all cases whose projections fall between quantiles r and r + q, where r is
generated uniformly at random from [0, 1 − p]. We chose three possible values for
p: 10, 50 and 100%; the last value amounts to comparing true and predicted uplift on
the full test set.

The whole process was repeated 1000 times and the results averaged to make the
experiments repeatable.

4.2.3 Results

The results for OSNAP1 are shown in Fig. 5 and for OSNAP2 in Fig. 6. The training
set contained 110 cases in both treatment and control groups. The test sets were of
similar size.

It can be seen that the size of the test subset does not affect the results. It is evident
that when highly correlated variables are present the double model fails completely.
This is due to the fact that some of those variables are categorical, and, even though
X ′X is nonsingular, either XT ′

XT or XC ′
XC may be; see Example 1. Both other

estimators provide meaningful results with the proposed corrected estimator giving
vastly superior estimates.

When highly correlated variables are removed (OSNAP2 dataset, Fig. 6) the per-
formance of the double model improves dramatically. It is now much better than the
uplift estimator, however the proposed corrected estimator maintains its lead.

While testing on full data (rightmost figures results for other test set sizes are
similar), the averaged absolute error (Eq. 7) of the double model was 2.96 and of
the corrected model 2.42. This is a decrease of about 18%. Moreover, the corrected
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Fig. 5 Differences between predicted and true uplift for three estimators on the OSNAP1 data computed
on random subsets of size 10, 50, and 100%. nT = nC = 110. The models used are the double regression
model (double), the uplift regressionmodel based on target variable transformation (uplift) and the proposed
corrected uplift regression model (corrected)
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Fig. 6 Differences between predicted and true uplift for three estimators on the OSNAP2 data computed
on random subsets of size 10, 50, and 100%. nT = nC = 110. The models used are the double regression
model (double), the uplift regressionmodel based on target variable transformation (uplift) and the proposed
corrected uplift regression model (corrected)

uplift regression model was more accurate than the double regression model in 73.4%
of the subsamples. This shows that on the OSNAP2 data, the proposed approach is
clearly superior. The corrected model is not much more expensive to build, but offers
systematically lower prediction errors.

4.2.4 Interpretation of the models

To further validate the presented approach, in this section we analyze coefficients of
the three proposed models on the OSNAP2 data.

The coefficients were obtained by building the models on the full OSNAP2 dataset,
but to evaluate the significance of the coefficientswe used subsampling estimates (Poli-
tis et al. 1999) of standard deviations of the coefficients. To this end we sampled 66%
of the data 1000 times, built the three models on each subsample and computed stan-
dard deviations of the coefficients over the subsamples. Table 2 lists coefficients which
were at least one standard deviation away from zero for at least one model.

It can be seen that the double model and the corrected uplift regression produced
very similar coefficients, with almost identical significance patterns. Uplift regres-
sion coefficients have much larger absolute values, and more of them are significant
(but usually only at 1 standard deviation). Overall, however, the signs of coefficients
were identical (a significant exception being mn_mean_temp26p discussed below)
suggesting that all models discovered similar phenomena.
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Table 2 Averaged coefficients for variables in the OSNAP2 data

Variable Double Corrected Uplift

Coeff. Std. Coeff. Std. Coeff. Std.

Intercept − 35.74* 18.15 − 36.32** 13.95 84.42** 41.09

gtmeter − 17.38* 8.71 − 9.53* 7.9 − 0.91 11.84

mn_mean_temp26p 0.61** 0.28 0.56** 0.23 − 1.07* 0.64

ndays_precip 0.9 2.6 1.29 2.07 8.6* 5.77

sex=female 4.28* 4.2 4.04* 3.84 5.52 10.14

grade=2 − 5.75 10.66 − 4.97 7.34 − 35.15* 23.65

grade=3 − 7.32 10.11 − 5.23 7.29 − 39.85* 22.67

grade=4 − 7.65 10.62 − 5.58 7.45 − 30.68* 22.71

grade=5 − 4.84 10.44 − 2.65 7.8 − 34.9* 23.49

race=1 − 1.66 10.49 − 1.99 8.3 − 35.52* 21.05

race=2 − 7.56* 5.88 − 7.23* 5.08 − 31.45** 13.87

race=4 8.0 10.08 4.97 8.44 24.22* 21.36

Standard deviation estimates are based on resampling. Only variables significant in at least one model are
shown. Stars show statistical significance of the variables, the number of stars is the number of standard
deviations away from zero

We tried to verify the coefficients using external sources. The original OSNAP
paper (Giles et al. 2016) did little stratified analysis, indicating only that sex did
not significantly influence outcomes and that children in the first grade responded
more positively. We found that sex has a mild influence on program success, but
the results are not strongly significant; the second statement is reflected in Table 2,
indicators for grade > 2 all have negative coefficients, but the results are only mildly
significant.

We have also found two papers (Harrison et al. 2017; Edwards et al. 2015) dis-
cussing the effect of weather on children’s physical activity. While they are purely
observational studies, both indicate strong influence of outside temperature. Our mod-
els indicate that temperature is important also when one tries to actively encourage
children to exercise (variable mn_mean_temp26p: mean temperature between 2
and 6 p.m.). Surprisingly the uplift regression model gave negative coefficient value
in this case. We were unable to explain this phenomenon. The ndays_precip vari-
able indicates the number of rainy days during the study period. In Harrison et al.
(2017) and Edwards et al. (2015) it was shown that precipitation is negatively corre-
lated with exercise, but our models suggest, that in those cases encouragement can
actually be more effective.

The gtmeter variable which was found significant by the double model and
the corrected uplift regression is related to the type of physical activity meter used.
We find it plausible that the type of meter influences the measurements. This may
indicate that using different types of meters in the study might have affected the final
results.
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Fig. 7 Model performance on a direct marketing campaign dataset. Sample size is the sum of treatment and
control group sizes, treatment group size being 2/3 of the total. The models used are the double regression
model (double), the uplift regressionmodel based on target variable transformation (uplift), and the proposed
corrected uplift regression model (corrected)

4.3 Real data: a marketing campaign

In this sectionwe evaluatemodel performance on a real lifemarketing dataset obtained
from Kevin Hillstrom’s MineThatData blog (Hillstrom 2008). It contains results of an
e-mail campaign for an Internet based retailer. The dataset contains information about
64,000 customers and includes basic features such as the amount of money spent in the
previous year or when the last purchase was made. A total of 10 variables is available.
The customers have been randomly split into three groups: the first received an e-
mail campaign advertising men’s merchandise, the second, a campaign advertising
women’s merchandise, and the third was kept as control. Our target variable was the
amount spent by each person during the two weeks following the campaign (Hillstrom
2008). We combined both e-mail groups into a single treatment group.

Since the data is fairly large, but contains few variables, we compare performance
of the three analyzed models for increasing sample sizes. We used the same testing
methodology as for theOSNAPdata. The test setswere randomly selected 50%subsets
of treatment and control groups. Training sets of various sizes were sampled from the
remaining records. The train/test selection procedure was repeated 1000 times and the
results averaged. The outcomes are shown in Fig. 7. The left chart shows the averaged
absolute error (Eq. 7), with ST and SC being full treatment and control test sets. The
right chart shows the proportion of subsamples on which one of the models was better
than another for all three pairs of models.

The left chart shows that all models’ errors become almost identical for n ≈ 1000,
but for lower n the differences are more pronounced. The right chart shows, that even
for larger n, the differences remain detectable. Overall the advantage of corrected
uplift regression model over the double model is clear and quite stable. Its advantage
over uplift regression is smaller but still visible.

Good performance of the uplift regression model (which consistently outperforms
the double model until n reaches about 1000) requires a comment since it seems to
contradict our earlier results. We believe this to be a result of a specific target variable
distribution: most customers made no purchase at all. Out of 64,000 customers, only
578 made a purchase and, as a result, the distribution of the target variable has a sharp
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peak at 0.Most target values are thus unaffectedby theoutcomevariable transformation
given in Eq. 4 and the phenomenon shown in Fig. 1 does not occur.

5 Conclusions, limitations and future research

The paper presented a detailed analysis of current approaches to uplift regression: the
double model approach and the approach based on outcome variable transformation.
Contrary to popular belief (Radcliffe and Surry 2011; Kuusisto et al. 2014; Guelman
et al. 2012), we found that the double model approach usually performs much better
than the outcome transformation approach. Based on our analysis we also proposed a
third estimator, which combines the benefits of both methods, and which we believe
to be the estimator of choice for uplift regression.

A limitation of the proposed method is that the theoretical framework currently
only applies to linear regression. We believe this to be an important first step, future
work will involve extending the above analysis to other kinds of machine learning
models. Another limitation is that, currently, the influence of regularization on model
performance is not included in the analysis. Future research will address designing
optimal regularization strategies for uplift regression.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

Appendix: Proofs

Proof (of Theorem 1) From classical theory of ordinary least squares (Heumann et al.
2013) we know that E β̂T = βT and E β̂C = βC so E β̂U

d = E β̂T − E β̂C =
βT − βC = βU proving that β̂U

d is indeed unbiased.
The rest of the proof roughly follows the proof of Gauss–Markov theorem (Greene

2003, Chapter 4) in both groups. Any linear estimator of βU has the form β̂U = Ay
for some matrix A. W.l.o.g. it can be rewritten as

β̂U =
[

(XT ′
XT )−1XT + D1 D2

D3 −(XC ′
XC )−1XC + D4

] [
yT

yC

]

Denoting DT = D1 + D3, DC = −(D2 + D4) we get

ˆβU =
[
(XT ′

XT )−1XT ′ + DT
]
yT −

[
(XC ′

XC )−1XC ′ + DC
]
yC .

Using Eqs. 1 and 2 and the fact that E εT = E εC = 0 we get

E ˆβU = [(XT ′
XT )−1XT ′ + DT ](XTβT + E εT )
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− [(XC ′
XC )−1XC ′ + DC ](XCβC + E εC )

= βT − βC + DT XTβT − DC XCβC .

For ˆβU to be unbiased this expectation must equal βU for all possible values of βT ,

βC giving DT XT = 0 and DC XC = 0. ˆβU is the sum of two parts, one based on the
control the other on treatment data. Since the parts are independent, the variance of
ˆβU is their sum. We have

Var[(XC ′
XC )−1XC ′ + DC ]yC = [(XC ′

XC )−1XC ′ + DC ](Var yC )[(XC ′
XC )−1XC ′ + DC ]′

= (σC )2(XC ′
XC )−1XC ′

XC (XC ′
XC )−1 + (σC )2(XC ′

XC )−1(DC XC )′

+ (σC )2DC XC (XC ′
XC )−1 + (σC )2DCDC ′

= (σC )2((XC ′
XC )−1 + DCDC ′

).

Since DCDC ′
is nonnegative definite the above variance cannot be less than

(σC )2(XC ′
XC )−1. Repeating the above steps for the second part we see that the

variance of ˆβU cannot be lower than (σC )2(XC ′
XC )−1 + (σ T )2(XT ′

XT )−1, that is
the variance achieved by the double model estimator. �

Proof (of Theorem 2) We have E β̂T = E(XT ′
XT )−1XT ′

yT = (XT ′
XT )−1XT ′

XT

βT +(XT ′
XT )−1XT ′

E εT . Since XT and εT are independent andE εT = 0 the second

term vanishes giving E β̂T = βT also for random XT . Analogous result for the control
group allows us to reuse the reasoning from the proof of part 1 of Theorem 1.

Using the law of total variance

Var ˆβT = VarXT E( ˆβT |XT ) + EXT Var( ˆβT |XT ) = VarXT βT + (σ T )2 EXT (XT ′
XT )−1.

The first term is equal to zero since βT is a constant. Since xi is assumed to fol-
low multivariate normal distribution with zero mean (XT ′

XT )−1 follows the inverse
Wishart distribution whose variance is Σ−1/(n − p − 1) (Muirhead 2005). Noting

that β̂T and β̂C are independent we get

Var( ˆβU
d ) = Var(β̂T ) + Var(β̂C )

= (σ T )2
Σ−1

nT − p − 1
+ (σC )2

Σ−1

nC − p − 1
.

For the proof of the last part we will use classical asymptotic results for ordinary least
squares (Greene 2003, Chapter 4) which state that

√
nT (β̂T − βT )

d−→ N
(
0, (σ T )2Σ−1

) √
nC (β̂C − βC )

d−→ N
(
0, (σC )2Σ−1

)
,

implying
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√
n( ˆβU

d − βU ) =
√
n√
nT

√
nT (β̂T − βT ) +

√
n√
nC

√
nC (β̂C − βC )

d−→ 1√
qT

N
(
0, (σ T )2Σ−1

)
+ 1√

qC
N

(
0, (σC )2Σ−1

)

= N
(
0,

(
(σ T )2

qT
+ (σC )2

qC

)
Σ−1

)
.

�
Before proving the next two theorems let us introduce a useful lemma.

Lemma 1 Suppose the datawas generated using amodel given inEqs.1and2, and that
complete randomization was used. The predictor matrix X is assumed to be random
with E xi = 0,Var xi = 0. Let γ , δ be two constants and d be a random vector defined
as

d = (X ′X)−1[γ XT ′
yT + δXC ′

yC ].

Then

1. E(X ′X)−1XT ′
XT = qT I and E(X ′X)−1XC ′

XC = qC I ,
2. E d = qT γβT + qCδβC .
3. As n → ∞ with qT , qC held fixed

√
n(d − E d)

d−→ N
(
0,Σ−1(qT (γ σ T )2 + qC (δσC )2) + qCqTΣ−1ΔΣ−1

)

where Δ = Var(x ′
i xi b̆) is the covariance matrix of the random vector x ′

i xi b̆ and
b̆ = γβT − δβC

4. If in addition xi ∼ N (0,Σ), then

Δ = Σ b̆b̆′Σ + Σ Tr(b̆b̆′Σ)

Proof To prove the first statement of the lemma write (X ′X)−1XT ′
XT = ∑

i :gi=T

(X ′X)−1xi x ′
i . Notice now that random matrices (X ′X)−1xi x ′

i are identically dis-
tributed (but not independent) regardless of gi due to symmetry and randomization.
They therefore have identical expectations and

E(X ′X)−1XT ′
XT =

∑
i :gi=T

E(X ′X)−1xi x
′
i = nT E(X ′X)−1x1x

′
1 = nT

n
n E(X ′X)−1x1x

′
1

= qT
n∑

i=1

E(X ′X)−1xi x
′
i = qT E(X ′X)−1

n∑
i=1

xi x
′
i = qT E(X ′X)−1X ′X = qT I .

The proof for the control group is analogous. Now, using Eqs. 1 and 2 and noting
E εT = E εC = 0 we get

E d = E(X ′X)−1[γ XT ′
yT + δXC ′

yC ]
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= E(X ′X)−1[γ XT ′
XTβT + γ XT ′

εT + δXC ′
XCβC + δXC ′

εC ]
= γ E(X ′X)−1XT ′

XTβT + δ E(X ′X)−1XC ′
XCβC = qT γβT + qCδβC ,

where the last equality follows from the first part.
For the proof of the third part introduce the vector ε̆, which plays the role of the

random component if d is used as an estimator of regression coefficients. It is defined
as

ε̆i =
{

γ yi − xi (qT γβT + qCδβC ) if gi = T

δyi − xi (qT γβT + qCδβC ) if gi = C .
(8)

To show asymptotic normality we need to count the expectation and variance of xi ε̆i
conditional on gi . First apply Eqs. 1 and 2 to yi and recall that E εTi = E εCi = 0 to
get

E(ε̆i |xi , gi ) =
{

γ xiβ
T − xi (q

T γβT + qCδβC ) = xi (γβT (1 − qT ) − qCδβC ) if gi = T

δxiβ
C − xi (q

T γβT + qCδβC ) = xi (−qT γβT + (1 − qC )δβC ) if gi = C

= xi (γβT − δβC )

{
qC if gi = T

−qT if gi = C
= xi b̆

{
qC if gi = T

−qT if gi = C .
(9)

Clearly E(x ′
i ε̆i |xi , gi ) = x ′

i E(ε̆i |xi , gi ) and from the law of total expectation we now
get

E(x ′
i ε̆i |gi ) = Exi (E(x ′

i ε̆i |xi , gi )|gi )

= Exi (x
′
i xi |gi )b̆

{
qC if gi = T ,

−qT if gi = C
= Σ b̆

{
qC if gi = T ,

−qT if gi = C,

where the last equality follows from the fact that the distribution of xi does not depend
on gi (randomization) and that the mean of xi is zero so E x ′

i xi is simply the covariance
matrix of xi . From Eqs. 1 and 2 it follows that

Var(ε̆i |xi , gi ) =
{

(γ σ T )2 if gi = T

(δσC )2 if gi = C,

since after conditioning the only random components are εT and εC . This implies
Var(x ′

i ε̆i |xi , gi ) = x ′
i xi Var(ε̆i |xi , gi ). From the law of total variance we get

Var(x ′
i ε̆i |gi = T ) = Exi (Var(x

′
i ε̆i |xi , gi = T )|gi = T ) + Varxi (E(x ′

i ε̆i |xi , gi = T )|gi = T )

= (γ σ T )2 Exi (x
′
i xi |gi = T ) + Varxi (x

′
i xi b̆q

C |gi = T )

= Σ(γσ T )2 + (qC )2 Varxi (x
′
i xi b̆|gi = T ) = Σ(γσ T )2 + (qC )2Δ,
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where the last equality is a consequence of randomization. After obtaining an analo-
gous result for gi = C we can write

Var(x ′
i ε̆i |gi ) =

{
Σ(γσ T )2 + Δ(qC )2 if gi = T ,

Σ(δσC )2 + Δ(qT )2 if gi = C .

The argument below is very similar to classical derivation of asymptotic normality of
OLS (Greene 2003). To obtain the limiting distribution of d write

lim
√
n(d − E d) = lim

√
n

(
(X ′X)−1[XT ′

γ yT + XC ′
δyC ] − (X ′X)−1[XT ′

XT + XC ′
XC ]E d

)

= lim
√
n(X ′X)−1

(
XT ′

(γ yT − XT E d) + XC ′
(δyC − XC E d)

)

= lim
√
n(X ′X)−1X ′ε̆ = lim

(
1

n
X ′X

)−1 1√
n
X ′ε̆.

From the law of large numbers and E xi = 0 we have lim 1
n X

′X = Σ and by con-
tinuous mapping theorem (Greene 2003) lim(X ′X/n)−1 = Σ−1. Since (X ′X/n)−1

converges to a constant, we can apply Slutsky’s theorem (Greene 2003) to move it
before the limit obtaining

lim
√
n(d − E d) = Σ−1 lim

1√
n
X ′ε̆ = Σ−1 lim

1√
n

n∑
i=1

xi ε̆i . (10)

Computing the last limit is tricky since xi ’s are not independent due to complete
randomization (see Sect. 1.2) so the Central Limit Theorem cannot be directly applied.
However, xi ε̆i ’s are independent conditional on g, and are identically distributedwithin
each group. So we will compute the limit separately in the treatment and control group
using only conditional variances and expectations such that the Central Limit Theorem
can be applied. Notice first that

qT E(x ′
i ε̆i |gi = T ) + qC E(x ′

i ε̆i |gi = C) = qTΣ b̆qC − qCΣ b̆qT = 0

so we may write

1√
n

n∑
i=1

x ′
i ε̆i = 1√

n

⎛
⎝ ∑
gi=T

x ′
i ε̆i +

∑
gi=C

x ′
i ε̆i

⎞
⎠ − n√

n

(
qT E(x ′

i ε̆i |gi = T ) + qC E(x ′
i ε̆i |gi = C)

)

= 1√
n

⎛
⎝ ∑
gi=T

x ′
i ε̆i − nT E(x ′

i ε̆i |gi = T ) +
∑
gi=C

x ′
i ε̆i − nC E(X ′

i ε̆i |gi = C)

⎞
⎠

=
√
nT√
n

1√
nT

∑
gi=T

(x ′
i ε̆i − E(x ′

i ε̆i |gi = T )) +
√
nC√
n

1√
nC

∑
gi=C

(x ′
i ε̆i − E(x ′

i ε̆i |gi = C))

d−→
√
qTN (0,Var(x ′

i ε̆i |gi = T )) +
√
qCN (0,Var(x ′

i ε̆i |gi = C))

= N (0, qT Var(x ′
i ε̆i |gi = T ) + qC Var(x ′

i ε̆i |gi = C)),
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where the limit in distribution follows from the Central Limit Theorem. Noting

qT Var(x ′
i ε̆i |gi = T ) + qC Var(x ′

i ε̆i |gi = C) = Σ(qT (γ σ T )2 + qC (δσC )2) + ΔqCqT

and substituting into Eq. 10 we get

lim
√
n(d − E d)

d−→ Σ−1N (0,Σ(qT (γ σ T )2 + qC (δσC )2) + ΔqCqT )

= N (0,Σ−1(qT (γ σ T )2 + qC (δσC )2) + qCqTΣ−1ΔΣ−1).

To prove part 4 rewrite the expression for the variance as (using a vector analogue of
the formula Var x = E x2 − (Ex)2)

Var(x ′
i xi b̆) = Exi (x

′
i xi b̆b̆

′x ′
i xi |gi ) − Exi (x

′
i xi b̆|gi )Exi (x

′
i xi b̆|gi )′

= Exi (x
′
i xi b̆b̆

′x ′
i xi |gi ) − Σ b̆b̆′Σ

Since xi ∼ N (0,Σ), from (Petersen and Pedersen 2012, Section 8.2.4) we have

Exi (x
′
i xi b̆b̆

′x ′
i xi |gi ) = 2Σ b̆b̆′Σ + Σ Tr(b̆b̆′Σ)

which completes the proof. �
Proof (of Theorem 3) To prove part 1 take γ = 1/qT and δ = −1/qC and apply
part 2 of Lemma 1. Part 2 follows from Lemma 1 parts 3 and 4 after taking γ = 1/qT

and δ = −1/qC and noting qCqTΣ−1ΔΣ−1 = bb′ + Σ−1 Tr(bb′Σ). �
Proof (of Theorem 4) To prove part 1 take γ = qC/qT and δ = qT /qC and apply
Lemma 1. For parts 2 and 3 let us rewrite the estimator as follows

ˆβU
c = 1

qT
(X ′X)−1(XT ′

(yT − XT β̂∗)) − 1

qC
(X ′X)−1(XC ′

(yC − XC β̂∗)) (11)

and expand the first term of the sum using Eq. 2

1

qT
(X ′X)−1(XT ′

(yT − XT β̂∗))

= 1

qT
(X ′X)−1(XT ′

XTβT + XT ′
εT − XT ′

XTβ∗ − XT ′
XT (β̂∗ − β∗))

= 1

qT
(X ′X)−1XT ′

(XT (βT − β∗) + εT ) − 1

qT
(X ′X)−1XT ′

XT (β̂∗ − β∗)).

Using an analogous expansion for the second term in Eq. 11 and defining y̆T =
XT (βT −β∗)+ εT and y̆C = XC (βC −β∗)+ εC we can write ˆβU

c = β1 +β2 where

β1 = 1

qT
(X ′X)−1XT ′

y̆T − 1

qC
(X ′X)−1XC ′

y̆C
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β2 = − 1

qT
(X ′X)−1XT ′

XT (β̂∗ − β∗) + 1

qC
(X ′X)−1XC ′

XC (β̂∗ − β∗).

Taking γ = 1/qT , δ = −1/qC , by Lemma 1 part 2 we get E β1 = βT − βC = βU

and by part 3, noting that b̆ = 0, and consequently Δ = Var(x ′
i xi b̆) = 0 we have

√
n(β1 − βU )

d−→ N
(
0,Σ−1

(
(σ T )2

qT
+ (σC )2

qC

))
(12)

so to complete the proof is suffices to show that β2 has zero expectation and that its
variance vanishes as n → ∞.

Let us begin with demonstrating E β2 = 0. Let ε∗ be defined as in Eq. 8 with
γ = qC/qT and δ = qT /qC . Notice that by the law of total expectation and Eq. 9

E ε∗
i |xi = Egi E(ε∗

i |xi , gi ) = P(gi = T )xi b̆q
C − P(gi = C)xi b̆q

T

= qT xi b̆q
C − qC xi b̆q

T = 0.

Rewrite

(X ′X)−1XT ′
XT (β̂∗ − β∗) = (X ′X)−1XT ′

XT
[
(X ′X)−1X ′y∗ − (X ′X)−1X ′Xβ∗]

= (X ′X)−1XT ′
XT (X ′X)−1X ′ [Xβ∗ + ε∗ − Xβ∗] = (X ′X)−1XT ′

XT (X ′X)−1X ′ε∗.

Using total expectation again

E(X ′X)−1XT ′
XT (X ′X)−1X ′ε∗ = EX (X ′X)−1XT ′

XT (X ′X)−1X ′ E(ε∗|X) = 0.

Repeating the above argument for (X ′X)−1XC ′
XC (β̂∗ −β∗)/qC completes the proof

of this part. We will now prove the desired asymptotic behavior of β2.

√
nβ2 = n(X ′X)−1

(
− 1

nT
XT ′

XT + 1

nC
XC ′

XC
) √

n(β̂∗ − β∗)

=
(
1

n
X ′X

)−1 (
− 1

nT
XT ′

XT + 1

nC
XC ′

XC
) √

n(β̂∗ − β∗).

We know (see proof of part 3 of Lemma 1) that
( 1
n X

′X
)−1 → Σ−1, 1

nT
XT ′

XT → Σ ,

and 1
nC

XC ′
XC → Σ . Therefore

(
1

n
X ′X

)−1 (
− 1

nT
XT ′

XT + 1

nC
XC ′

XC
)

→ 0.

By Lemma 1 part 3
√
n(β̂∗ −β∗) converges in distribution to a multivariance normal.

Applying Slutsky’s theorem to the product of the two quantities we get β2 → 0
completing the proof of part 3. �
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