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LINEAR REPRESENTATIONS OF CERTAIN COMPACT
SEMIGROUPSO

BY

D. R. BROWN AND MICHAEL FRIEDBERG

Abstract. In this paper we initiate the study of representation theory of compact,
not necessarily commutative, uniquely divisible semigroups. We show that a certain
class of semigroups are all topologically isomorphic to real matrix semigroups. The
proof utilizes a group embedding theorem and the standard results on homomor-
phisms of Lie groups into matrix groups.

1. Introduction. A semigroup S is (uniquely) divisible provided for each x e S,
and each positive integer n there exists a (unique) y e S such that yn = x. The basic
properties of uniquely divisible semigroups have been developed in [5], [10], and
[11]. Representation theory of these objects has been examined in [3], [4], [16],
and [17]. Related material occurs in [13].

In this paper we initiate the study of representation theory of compact, not
necessarily commutative, uniquely divisible semigroups. We shall be concerned
exclusively with faithful (real) finite-dimensional linear representations. Clearly,
objects admitting such representations are necessarily finite dimensional. For earlier
work involving representations of (nongroup) topological semigroups, see [2] and
[9].

§§2 and 3 are preparatory in nature. In §4 we show that a certain class of semi-
groups are all topologically isomorphic to real matrix semigroups. The conditions
such semigroups satisfy are restrictive. However, for mitigation the reader is asked
to recall the following:

(1) the structure of real matrix semigroups is quite special, and
(2) the theorem proved is one in which no linear structure is presumed upon the

semigroup investigated.
The matrix semigroup

{(*   ^ :x,y,x+ye[0,l]\

is an example of the class of semigroups we study here ; it has served us as a model
for the proof and it may aid the reader as motivation for the hypotheses. Higher
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dimensional analogues may be constructed by taking the convex hull of the (n x n)
identity matrix with the left trivial semigroup

'    10       ■■       0      Xy       \
¡0    ...    0   x2     \

< I   i I : x¡e[0, 1], i = 1,2, ...,n-l ..
10 ■■ 0       Xn.yj

Ao   ■•■0   1     /
It is conjectural as to whether every n-dimensional semigroup of the type studied in
§4 is embeddable in this example.

In connection with the cancellation hypothesis of Theorem 4.1, we note that in
[1] it has been shown that if M(S) is a 1-cell, and S satisfies all other hypotheses of
Theorem 4.1, then S\M(S) does have cancellation. Further, no higher dimensional
examples of this type are known in which S\M(S) fails to have cancellation.

Finally, we adhere to the semigroup terminology of [12]. The semigroup of n x n
real matrices will be denoted by Mn(R) ; Gln (F) will represent the subgroup of
invertible elements in Mn(R). The minimal ideal of S will be M(S), and the set of
idempotents of S will be E(S). We shall use □ for the empty set. For any e e E(S),
Core (e) = {x | xe = e = ex}.

We are indebted to several people for their comments concerning various aspects
of this material. In particular, H. Cook, J. D. Lawson, and J. W. Stepp have aided
us by their insights.

2. A group embedding theorem. In this section, we prove a theorem on the
(topological) group embeddability of a certain class of topological semigroups.
Our methods differ from those of Rothman [22] and Christoph [6] in that the semi-
group in question is first algebraically embedded in a group, then a topology is
introduced into the group such that the group is topological and the embedding
function is a homeomorphism. In order to accomplish this, we shall call upon two
well-known theorems which we state without proof. A semigroup is right reversible
provided every pair of principal left ideals has a nonempty intersection.

Theorem A (Ore-Rees) [7]. A right reversible semigroup S with two-sided
cancellation is embeddable in a group G such that G = S~1S. The group G is, to
isomorphism, unique, and is called the group of right quotients of S.

Theorem B (R. Ellis) [8]. Let G be a group having the property that the under-
lying space of G admits a topology V such that (G, 'V) is a locally compact Hausdorff
space. If right and left translation functions are continuous in this topology, then
(G, "F") is a topological group.

We now state the embedding theorem alluded to above.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1971]    LINEAR REPRESENTATIONS OF CERTAIN COMPACT SEMIGROUPS     455

Theorem 2.1. Let S be a topological semigroup defined on a closed subset of
Euclidean n-space (En) having nonempty interior (relative to En). If S is right revers-
ible and has two-sided cancellation, and if right translation functions are homeo-
morphisms, then S is embeddable in a Lie group G of dimension n in such a way that
S°, the interior of S relative to En, is open in G.

We defer the proof of 2.1 in order to establish a lemma useful both here and in
the sequel.

Lemma 2.2. Under the hypotheses of 2.1, S° is a two-sided ideal of S, and
G = (S°)-1-(S°).

Proof. Let xe S and y e S°. Then xy exS°, and this set is open in En by in-
variance of domain (see [15], for example). Hence xS°^S°. This proves that 5°
is a right ideal, and the proof that S° is a left ideal is clearly similar. For the second
claim, let g e G, g = x'1y, x, ye S. Since S°x^S°, there exist s, t in S° such that
x = s~1t. Thus both x and y belong to the set (S0)"1^0), and to complete the proof
it suffices to show that this set is a subsemigroup of G. This follows from the chain
of inclusions (S°)"^S^S0)* \S0)^(S°)"\S) -\S)(S°)<= (S°)''(S0).

Proof of Theorem 2.1. In light of prior remarks, we denote by G the group of
right quotients of S and proceed to topologize G. Denote by <p the previously
anonymous embedding function carrying S into G. Let <?/ be the family of all open
subsets of 5°, and let i/~ = {xUy : U e <p(<?/), x, y e G}. To see that y is a subbasis
for a topology on G, note that for any zeG, and any x e S°, z = x~1xz e x~1S°z.
Clearly, in this topology on G, left and right translation functions are homeo-
morphisms of G onto itself, so that G is homogeneous in this topology.

We show next that 9 restricted to 5° is a homeomorphism. It is immediate from
the definition of the topology on G that 95 is an open function. Next, let ze S,
\etp, q,r,se <p(S), Ue yCtt) such that q>(z) is an element of p~1ql/r~1s. By Lemma
2.2, there exist elements a, b in r(S°) such that p<p(z)s'1 = a~1b. It follows directly
that br e aqll. By continuity of the semigroup multiplication in S, there exist
We<p(<%) such that be W and Wr^aqU. Thus, ap<p(z) = bse Ws, and Ws e <p(<?/)
by invariance of domain. Again by continuity of multiplication in S, there exists
V e q>C%) such that cp(z) e VandapV^ Ws. Direct computation yields V^p~1qUr~1s.
This establishes the continuity of 93 at z with respect to subbasic neighborhoods of
<p(z) and the fact that 93 is one-to-one yields continuity of 99 at z for arbitrary open
sets containing <p(z). Hence <p is a homeomorphism on S°. Since S° is locally
compact and 95(5°) is open in G, and G is homogeneous, we have that G is locally
compact.

To prove that G is Hausdorff, fix a e (p(S°). It is clear that a can be separated
from any other element of <p(S°). Hence let b e G\<p(S°). By Lemma 2.2, b=x~1y
for some pair x, y in q>(S°). Hence xa and y are distinct elements of q>(S°). By con-
tinuity in S and the fact that S° is a Hausdorff space, there exist V, W e<p(°ll) such

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



456 D. R. BROWN AND MICHAEL FRIEDBERG [October

that aeW, yeV, and xWC\ F=rj- It follows that W and x~xV are disjoint
members of V, containing a and b, respectively. Since a has now been shown to
be separated from any other element of G, and G is homogeneous, we have that G
is a Hausdorff space. By Theorem B, G is a topological group in the topology
induced by "V, and, since 5° is locally Euclidean, we have that G is locally Euclidean
and hence a Lie group [19].

To complete the proof of Theorem 2.1, it remains to be shown that <p is a homeo-
morphism on all of S. The fact that <p is continuous on all of S follows just as in
the argument for 5°, the exception being that the F obtained now is open only in
5 rather than in 5°. To prove that y is an open map, let W be an open set in S, let
zeW, and let a be an arbitrary fixed element of 5°. By hypothesis, Wa is open in
Sa. Since Wa^S°, there exists an open set Ue <% such that Wa=Sa n U. Hence
<piz)e<piU)<pia)-\ yiUMayi-e-r, and ^(UMa)-1 n9(S) = 9(W). This com-
pletes the proof of the theorem.

3. Theorems on uniquely divisible semigroups. We set forth in this section
certain basic theorems about compact uniquely divisible semigroups which we shall
need in the remainder of the paper. Throughout this section, »S will denote a com-
pact uniquely divisible semigroup. As in previous papers in this area (see, for
example, [3], [10], and [11]), [x] will denote the closure of the rational powers of x.
In the case that 5 has trivial maximal groups and x is a nonidempotent, it is well
known that [x] is topologically isomorphic to the unit interval [0, 1] under real
number multiplication [10]. The following result has been reported by J. D. Lawson
but does not appear in print.

Theorem 3.1. Let S be such that E(S) = M(S) u {1}. Then S\MiS) is a sub-
semigroup of S.

Proof. By passing to the Rees quotient of 5 modulo MiS), it suffices to consider
the case in which S has a zero and prove that S does not have zero divisors. To
this end, let x, y in S be such that xy = 0 and assume x is not zero. Clearly iyx)2 = 0,
whence by uniqueness of roots yx = 0. Thus 0 = xy = ixll2xll2)y = xll2ixll2y), so
that (xll2y)x112 = 0. Therefore ixll2y)2 = 0, and hence xll2y = 0. Inductively, xll2"y
= 0. Since the cluster points of the sequence {x1'2"} are known to form a subgroup
of 77(1), [14], it follows that y=0, which completes the proof.

Theorem 3.2. Let S have E(S) = {0, 1}, and let F7(l)=l. Let P* be the non-
negative real numbers, and let g: S\{0) xP* ->■ >S\{0} be defined by g(x, r) = xr. Then
g is continuous, and if{(xx, rA)} is a net in S\{0} xP* such that {xA} converges tox+l
and {rA} increases without bound, then {g(xK, rA)} converges i¡n S) to 0.

Proof. This is Theorem 1.3 of [3]. The following result is of use in §4.

Theorem 3.3. Let S have E(S) = M(S) u {1}, and let 77(1) = 1. Then for each
pair of distinct elements x, ye S\M(S), there exists h: S^-[0, 1] such that h is
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continuous, A(l) = l, h(M(S)) = 0, h(x)=£h(y), and for each z e S\E(S), h restricted
to [z] is a topological isomorphism.

Proof. Clearly, we may shrink M(S) by use of the Rees quotient and assume
that S has a zero. In this case the ./-relation on S defined by a ß b if and only if
SaS^SbS is known to be a partial order with closed graph [12], and we replace
a ß b by a-ib for the remainder of the proof. Assuming x%y, by a well-known
theorem of Nachbin [20], there exists a continuous function/: S->-[0, 1] which is
order preserving and satisfies f(x) = l,f(y) = 0. Let {rn}¡?=x be an enumeration of
the positive rational numbers such that ri = l. Define g(z) = 2"=i (l/2n)/(zrn); it is
easily checked that g is a continuous function from S into [0, 1] such that g(l)=l,
g(0)=0. Furthermore, g(x)>\f(x)=\, whereas g(y)=^. Now, let z 6 S\E(S) and
let r and s be real numbers satisfying 0 g s < r, so that for each n, srn < rrn. It follows
that f(zrrn)^/(zsr") for each n, and hence that g(zr)-¿g(zs). Should equality hold,
we would have /(zrr») =/(zsr») for each n, whence, by Theorem 3.2, f(zrp) =f(zsp) for
each nonnegative real number p. Fix any such/z and let q=pjr; then f(zrq)=f(zSQ),
so that f(ztp)=f(zp), where t = sjr. By iteration, t may be replaced by tk for any
positive integer k. Since z*<l, it follows that/(zp)=/(z°)=/(l)=l. Thus, for any
positive integer n, f(zn) = 1 ; however {zn} converges to zero in S, so that the con-
tinuity of fis contradicted. Thus g(zr) <g(zs).

Since g is continuous, for each z e S\E(S) we have that there exists a (unique)
positive real number r such that g(zr)=\. Now, define h0: S—>- [0, oo] by A0(1) = 0,
h0(0) = oo, and h0(z) = 1 jr if ze S\E(S) and g(zT) = \. We omit the verification of the
continuity of h0, which is straightforward but tedious.

Next, let z 6 S\E(S) and fix s, a positive real number. If h0(z) = 1 jr, then g(zr) = £,
so that g((zs)rls) = \, whence h0(zs) = slr = sh0(z). Finally, since g(x) > \ and g(y) g \,
we have h0(x)<l^h0(y). The desired function h is now defined by h(0) = Q, h(z)
= exp ( — h0(z)) otherwise, and the requisite properties are easily checked. The final
theorem of this section is a generalization of a theorem in [4].

Theorem 3.4. Let S have E(S) = M(S) u {1}, let M(S) consist of left zero
elements only (ef=e, all e,fe M(S)), and for each e e M(S), assume Core (e) is a
commutative subsemigroup of S. If S\M(S) has left cancellation, then S\M(S) has
right cancellation.

Proof. Suppose a, x, yeS\M(S) and xa=ya; set u = all2xa112, v = all2ya112. It
follows directly that u2 = vu, v2 = uv. Then u3 = (vu)u = vu2 = v2u, and, recursively,
un+1=vnu. Let e, fe M(S) such that {un} converges to e and {vn} converges to/.
Then, by continuity of multiplication, e—fu=f, so that u and v must commute.
We now have u2 = vu = uv = v2, whence u = v. Invoking left cancellation, we have
xall2=ya112. Inductively, it follows that xa112"=ya112"; hence, as in the proof of
3.1, we have x=y.

4. Faithful linear representations of certain semigroups. We are now prepared
to state the main result of the paper.
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Theorem 4.1. Let S be a compact semigroup such that E(S) = M(S) u {1}, M(S)
consists of left zero elements, M(S) is homeomorphic to an n— 1 cell, and for each
e e M(S), Core (e) is topologically isomorphic to [0, 1] under real number multiplica-
tion. If S\M(S) admits left cancellation, then S is topologically isomorphic to a
semigroup ofnxn real matrices in such a way that S\M(S) is embedded in Gln (F)
and M(S) is embedded in the rank one idempotents.

We defer the beginning of the proof in order to state several basic properties of
Lie groups that will be used in the sequel. For proofs of these facts, the reader is
referred to [19]. We assume n> 1 henceforth.

If G is an n-dimensional Lie group, then C7 admits a continuous homomorphism
i/> into Gln (F) such that kernel (</>) = Center (G). In particular, if G has trivial center,
then i/> is a continuous isomorphism of G into Gl„ (7?). The standard construction
leading to the definition of ¡/j is accomplished by defining addition, scalar multiplica-
tion, and a metric on £P, the set of one parameter groups of G in such a way that
¿£ becomes an n-dimensional real vector space. For each g e G, an operator Ag is
defined on £C by Ag(x(t))=gx(t)g~1. The homomorphism >b is then defined by
<f>(g) = Ag. The family of operators {Ag} can then be assigned matrices by choosing
any basis in 3?. There is also now a continuous local homeomorphism defined from
¿£ into G, called the exponential function, by exp(x) = x(l). We shall not be
involved with either the Lie product in ¿C or any of the other analytic properties
possessed by G.

Proof of Theorem 4.1. The argument is accomplished by putting together a
sequence of lemmata indexed by the alphabet. We first establish certain elementary
consequences of the hypotheses. Clearly, S is connected.

(A) The group of units of S is trivial. For, if g e 77(1), then define
/: M(S) -+ M(S) by f(e)=ge. Since M(S) is a cell, by the fixed point theorem of
Brouwer there exists b e M(S) such that gb = b. Since M(S) consists of left zero
elements, bg = b, so that g e Core (b), whence g= 1.

(B) The semigroup S is uniquely divisible. If x is a nonidempotent, then the
powers of x must converge to an idempotent eeM(S), and xeCore(e) [18].
Hence S is divisible. If b and c are both nth roots of a, then clearly all three of
these elements belong to the core of the same idempotent in M(S). It follows now
that b = c.

(C) The semigroup S is homeomorphic to an n-cell, and MiS) is a subset of the
boundary n — 1 sphere of S. For any x e S\E(S), let ex be the idempotent in MiS)
which is the limit of the powers of x. Let Q be the space obtained by shrinking
MiS) x {1} out of MiS) x [0, 1], and let Jf be the natural map from M(S) x [0, 1]
onto Q. It is well known that Q, as the cone over an n— 1 cell, is topologically an
n-cell. In order to map S onto Q, let n be any of the functions guaranteed by Theorem
3.3 from 5 onto [0, 1]. Define t: S^ Q by T(x) = Ji((ex, Hx))) if x^l and r(l)
= JAiMiS) x {1}). The function t is clearly well defined, one-to-one, and onto, and
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maps M(S) into the boundary of Q. To see that t is continuous, let {xa} be a net in
S converging to x. If xjt 1, it will be sufficient to show that {exJ converges to ex.
Let {exJ cluster to t e M(S). For each a, we have xaeXa = eXa, so that xt = t. Hence
xnt = t for each positive integer «, so that ext = t. Since ext = ex, also, we have / = t?A:.
It is now immediate that r(xa) converges to t(x). In the case that x=l, the con-
tinuity of h is sufficient to guarantee the continuity of r.

(D) The set S\M(S) is a subsemigroup of S having two sided cancellation. This
follows directly from Theorems 3.1 and 3.4.

We have now established that S has the following properties: 5 is a compact,
connected uniquely divisible semigroup defined on an «-cell such that E(S)
= M(S)\J {1}. Further, M(S) is an n—l cell, contained in the boundary of S,
consisting entirely of left zero elements, and for each e e M(S), Core (e) is topo-
logically isomorphic to [0, 1] with real multiplication. Finally, H(l) = {l}. We will
denote the subsemigroup S\M(S) by T. We shall have reason to deal with both the
interior of 5 (as a cell) and the interior of M(S) as a cell, and we shall use S°, and
M(S)° respectively for these sets. This should not cause confusion to the reader,
as the ordinary concept of set interior will not be brought into use throughout the
proof. Note that S°^T.

(E) The semigroup T satisfies the hypotheses of Theorem 2.1 and is therefore
embeddable in a Lie group of dimension n in such a way that the set S° remains
open. That right translation functions in T are homeomorphisms follows from the
fact that right translation functions in S are homeomorphisms ; this, in turn, follows
from right cancellation in T together with the fact that M(S) consists of left zero
elements. It remains to show that T is right reversible. To this end, let x and y be
elements of T. It must be shown that TxCsTy^ □• Note that Tx = Sx\M(S), so
that, topologically, Tx and Ty are «-cells with a boundary n—l cell removed.
Let e e M(S)°, and let U be an open set containing e such that i/£ M(S)° u S°.
Then e e Ux n Uy^Sx n Sy, and Ux n Uy is an open set in 5. Since S is an «-cell,
it follows that Ux n Uy is «-dimensional [15], and hence cannot be a subset of
M(S). Therefore we have Tx n Tyjt □, which shows that Tis right reversible. We
denote the Lie group T-1T=(S°)-1(S°) by G, and the embedding map of Tinto G
by <p.

(F) If x, y e T\{1} such that xy=yx, then (in S) [x] = [y]. This follows from the
equation xnyn=ynxn, which proves ex = exy=eyx = ey. Hence x, y e Core (exy),
which is topologically isomorphic to [0, 1], and thus [x] = [y].

(G) There exists a continuous isomorphism of G into Gln (jR). By the remarks
at the beginning of this section, it suffices to show that G has trivial center to
prove the function >J> is one-to-one. This follows immediately from (F). Now any
choice of basis in £C will induce an isomorphism of G into Gln (R). We permit any
such function to retain the name </<, and note that we now have that the function
t/199 is a continuous isomorphism of T into Mn(R), the semigroup of n x « real
matrices under matrix multiplication, and ificp(T)^.Gln(R). The balance of the
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proof is concerned with the extension of i/«p to all of S (for the right choice of basis
in ££). The primary problem is to extend <¡xp to M(S)°.

(H) The set exp-1 (<p(S0)) is open in £C and hence contains a basis for 3?,
which we denote by {xt}, i=l,...,n. This is immediate from the openness of
<p(S°) in G and the continuity of the exponential function, together with the fact
that <p(S°)çexp (3?) by the unique divisibility of F.

(I) Let z e F\{1} and suppose z e Core (<?). Then e e M(S)° if and only if z s S°.
Although this is the form of the result we need, we prove the alternate theorem
that e belongs to the (cell) boundary of M(S) if and only if z belongs to the (cell)
boundary of S, from which the former statement follows. For any positive integer
n, the map x —> xn is a homeomorphism of S onto itself and hence carries the
boundary of S back onto itself. Since M(S)° is open in the boundary of S and
{zn} converges to e, we have that e is in the boundary of M(S) if z is in the boundary
of 5. Conversely, suppose that e belongs to the boundary of M(S). To prove that
z belongs to the boundary of S, it suffices to find y e F\{1} such that y e Core (e)
and y is in the boundary of S; for then we have all rational powers of y in the
boundary of S, whence [y] will be a subset of the boundary of S. By the conditions
on Core (e), it will then follow that Core (e) is a subset of the boundary of S,
whence z belongs to the boundary of S. To produce the desired element y, let {yn}
be a sequence of elements of F converging to e such that each yn belongs to the
boundary of S. Let U and V be disjoint open subsets of the boundary of S such
that M(5)S U and 1 e V. Since each set [yn] is an arc meeting M(S) and containing
1, we may select a sequence {qn} such that qn e [yn]\(U u V). Let {qn} cluster to y,
and note that y is in the boundary of S and y e T\{1). To prove y e Core (e), it
suffices to show ye = e. Let {qk} be a subsequence of {qn} which converges to y, and
note {yk} still converges to e. Let ek denote the element of M(S) such that
yk e Core (ek) ; the sequence {ek} can then be factored as {ykek} to see that it also
converges to e. We now have ye = limfc {qkek} = limk {ek} = e. This completes the
argument for (I).

(J) Let x e T. Then xM(S)°<=M(S)°. Clearly xM(S)°^M(S); by invariance of
domain it suffices to show that if e,fe M(S)° and xe = xf then e=f Since Sx is a
sub-n-cell of S containing M(S) and e e M(S)°, there exists y e Core (e) n Tx.
Let y = tx; then yf=txf=txe=ye = e. Again, there exists z e Core (/) n Tx. If
z = sx, then ze=f Hence yze=yf=e, so that yz e Core (e). It follows that y(yz)
= iyz)y=y(zy). By cancellation of y from the left, yz = zy; by part (F), [j] = [z]
and hence e=f.

(K) For any xeS, xS^Sx; in particular, if xeT, then xT^Tx. If
xeM(S)u{l}, this is clear; the latter claim will follow from the former by
application of Theorem 3.1. Hence let x e T and pick y e S°. Denote by A the
complement of M(S) in the boundary of S; from the fact that right translation by
a: is a homeomorphism of S onto Sx, we have that the cell boundary of Sx
= Ax u M(S). It is well known [21] that the set x[y] is an arc in S with endpoints
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x and xey. By (I) and (J), xey e M(S)°. Since right multiplication by x leaves M(S)
fixed elementwise, the set Sx\Ax is open not only in Sx but also in S, and contains
the elements xey. Hence there exists a positive real number M such that xyr e Sx\Ax
for all r>M. Now suppose xy^ Sx. Let (a, b) be the maximal open interval of
nonnegative real numbers such that xyr $ Sx for all r e (a, b). Clearly, bf¿M<co,
so that xy" is defined. Moreover, xy" belongs to the boundary of >Sjc, and hence to
Ax. Let te A such that xy" = tx. Then, for each positive integer «, x(yb)n = tnx,
whence, by continuity, xey = etx = et. But xey e M(S)°, whereas et is in the boundary
of M (S), since t is an element of the boundary of S. This contradiction establishes
xy e Sx for every y e S°; since 5° is dense in 5 and Sx is closed, we have xS^Sx
as desired.

(L) Let {ya}aeD be a net in F con verging to _y e T. Letp e(Sy)° = S°y. There exists
8 e D such that if a > 8, then p e (Sya)°. Let 2s be the family of closed subsets of S,
endowed with the Vietoris topology. It is well known that 2s is a compact topo-
logical semigroup under the operation of set multiplication inherited from S. In
particular, if B denotes the cell boundary of S, we have By = lim sup {Bya}
= lim inf {Bya}, as well as Sy = lim sup {,Sjza} = lim inf {Sya}. Let F be a connected
open set containing p (S is locally connected) such that V^S°y. Then there exists
ße D such that if a > ß, then Bya^(S\V). Let y e D such that if a > y, then V n Sya
j= □. Finally, let 8 e D such that 8>ß,y. Then, for a > 8, we have Vg. Sya, since
otherwise Bya would separate V. Thus p e (Sya)° for a > 8. It should be noted here
that, although sequences are clearly sufficient to describe convergence in S, it is to
our advantage later in the proof to have (L) stated for arbitrary nets.

In virtue of (K) above, for each g, x eT there exists a unique t eT such that
gx = tg; for fixed g e F this defines a map Fon Tinto F by F(x) = t where gx = tg.
By passing to the group G it may be seen that F is the restriction to <p(T) of the
inner automorphism generated by <p(g), with the action translated back into T
by the function 93-1. It follows immediately that Fis a topological isomorphism of
T into itself. Clearly F admits a well-defined extension to M(S) given by F(e)=ge
for each e e M(S). We permit the extended function to retain the name F.

(M) The function Fis a topological isomorphism of S into S. From the remarks
above, it remains to show that Fis one-to-one and continuous on M(S). Suppose
ge=gf where e,fe M(S). Let x e Core (e)\{l}, y e Core (/)\{1). Let s,teT such
that gx = tg, gy = sg. Then tge=gxe=ge and sge = sgf=gyf=gf=ge, so that both
s and t belong to Core (ge) = Core (gf). Now we have st = ts, from which gyx = sgx
=stg = tsg = tgy=gxy. By left cancellation, yx = xy and therefore by part (F) of the
proof, [jc]=l>>], whence e=f This proves that Fis one-to-one on M(S).

Continuity of Fon Fand M (S) separately is immediate from the definition of F.
Let {zn} be a sequence in Fconverging to e e M(S). Let {F(zn)} cluster to/in S. We
show/=ge = F(e). From the equalities gzn = F(zn)g we have ge =fg; since ge e M(S)
and g e T, it follows from Theorem 3.1 that/e M(S), so that fg=f and thus ge=f
as desired. Since F restricted to F is a homomorphism, F is now a continuous iso-
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morphism of S into itself. Since S is compact, F is also a closed map and hence a
homeomorphism. This completes the proof of (M).

(N) Let g e S°, and let F be the function determined by g as in (M) above. Then
for each x e T, we have Fix) $ iSx)° = S°x. If x=l, this is clear. Otherwise, as in
the argument for (K), let A be the complement of MiS) in the boundary of S, so
that the boundary of Sx is M(5) u Ax. From (F), the fixed point set of S under
Fis exactly the arc [g]; since g e 5°, eg e MiS)0. Hence [g] meets each of the dis-
joint open sets S\Sx (in 1) and Sx\Ax (in eg). Thus [g] n Ax^ □, whence [g] n /Lr
^ □• This proves that F leaves a point of /4x fixed. On the other hand, were
Fix)eS°x, we would have F(Tx) = F(T)F(x)çT(S°x)^S°x, where the final
inclusion follows from Lemma 2.2. This contradiction completes the proof.

(O) Let g e S°, and for each positive real number r, let Fr be the function induced
by gr as in the claims above. Note that, if s is also a positive real number, then
Fs+r = Fs-Fr. Fix x e T, and abbreviate Fr(x) to yr. Clearly {yr} forms a net directed
by the natural order of F, the positive real numbers. We prove that the net {yr}
converges to an element y eT r\ [g]. Since this is immediate if x—1, assume x#l.
Let z be any cluster point of {yr}. To prove z e[g], it suffices to show eg = zeg. For
each reP, grx=yrgr; since {gr} converges to e9 and multiplication in S is con-
tinuous, the desired equality holds. Now, if z e M(S), then z = eg, whence z e M(S)°.
The set Sx\Ax is therefore an open set in 5 containing z, so there exists r eP such
that yreSx\Ax. Since yreT, we have Fr(x)=yr e S°x, which contradicts (N).
Hence zeT, and we have shown that any cluster point of {yr} belongs to [g] O T.
To complete this claim, it must be proved that {yr} cannot cluster to two distinct
elements y and z of [g] n T. Assume neither y nor z is 1 ; a suitable modification of
the ensuing argument can be made easily to treat the case in which {yr} clusters to 1.
Set z=yr, where, say, r> 1, and setp=/r + 1)/2. Since y e S°, we have immediately
that p e (Sy)° and yr e (Sp)°. Next, by choosing a subnet of {yr} converging to y,
we may apply part (L) of the proof to produce one positive real number y such that
p e S°yj, so that Sp^Sy,. Since {yT} also clusters to z, there exists a positive real
number k such that k >jand yk e (Sp)°. Let s = k—j; then Fsiy¡) = Fs(F¡(x)) = Fs+j(x)
=yk e (Sp)°=Z Syh in contradiction to (N). This completes the proof of (O).

We are now prepared to extend the embedding function \\><p to M(S)°. Recall,
from part (H), that a basis {x,}, z'=l,...,n, has been fixed for 3? such that
exp (x¡) e <p(S°) for z'=l,...,n. Fix e e M(S)°, and choose g arbitrarily from
Core (e) n 5°. As before, let Fr be the function determined by gr. We define the
operator </«p(e) by its action on the basis {xt}. In particular, let r(
= limreP Ffâ'^exp (xi))). Then, for any nonnegative real number q, we define
iMe)iXi))iq) = UtdQ). For negative q, we let («*l))(?) = 9'((/1)-')-1. In this
manner, it is clear that i>l"pie)ixi)) is a one parameter group in G for i= 1,..., n.
Further, the range of the operator </«p(e) thus determined is the subspace of j£f
spanned by exp-1 (<p(g)), which is proper in j£?, so that <p<pie) is not an invertible
operator. As defined to the present, the operator <fi<pie) appears to be dependent on
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the choice of g from Core (e) n 5°. The next lemma shows this not to be the case.
(P) Let g e S°, let h=g\ where / e P, and let xeT.lf Fr is the function deter-

mined by gr as in (M), then limreP {Fr(x)} = limrsP {Ftr(x)}. This is clear, since either
of these nets (directed by P) may be regarded as a subnet of the other.

(Q) The exponential function is a homeomorphism on exp-1 (<p(S0)). Let c
and d be elements of exp-1 (<p(S0)), and suppose exp (c) = exp (d) = <p(t) e <p(S°).
Since c is continuous and <p(S°) is open in G, there exists an open interval U con-
taining 1 such that c(U)^(S°). Let ajb be a positive number in U. There exists
me S° such that c(ajb) = <p(m). Then <p(mb) = c(a) = (c(l))a = <p(ta), so that m" = ta
and thus m = tal". It follows that, for all r e £/, we have c(r) = 93(ir). We have now
shown that c and the one parameter group/defined by f(r) = <p(tr) if r^O,/(/■)
= q>(t~,)~1 if r<0 agree on the open interval U. It is straightforward to prove that
c=/from this information. An analogous argument shows that d=f, whence c = d
and (exp) is one-to-one on (exp)-1 (93(5°)). Since (exp)"1 (93(5°)) is an open subset
of Euclidean «-space and 93(5°) is homeomorphic to «-space, (exp) is a homeo-
morphism on (exp)-1 (93(5°)) by invariance of domain.

(R) For each g e S°, the function i(i<p restricted to [g] is a topological isomorph-
ism. To see that this function is continuous at eg, let {«„} be a sequence in [g]\{e,,}
converging to eg. Set hn=gnn); it is no loss of generality to assume the sequence
{r(n)} is monotonically increasing in P. It must be shown that, in the topology of
SC, 0/V(wn)(*i)) converges to (i}i<p(e^(xA) for i=l,..., n. To this end, recall

(Meg)(xd)(l) = (lim F^-^expLrO)))

= lim (rf/to-^exp (*,))))) = lim rtg'MlMgT1-
reP reP

On the other hand, (WÄn)(^))(l) = (<p(«r<'l))^(l))('p(<?r<n))"1). Hence, from part (O)
we have exp (<b<p(hn)(xA) converges to exp (ib(p(eg)(Xi)). Further, since g e S°,
exp (<l«p(eg)(xi)) 6 <p(S°), which is open in G so that, by (Q), (yV(wn)(*i)) converges to
(vV(ei)C*i))- This completes the proof of (R).

(S) For each x e S0 u M(S)°, det (<f"p(x)) e [0, 1], where "det" is the deter-
minant function. Furthermore, det (\b<p(x)) = 1 if and only if x= 1. This is immediate
from part (R) above, together with the fact that the determinant function is a
continuous homomorphism. Indeed, we have that (deti/icp) is a topological iso-
morphism of [g] onto the real interval [0, 1] under real multiplication, for any
g£S°.

(T) The function 1/193 is continuous and one-to-one on [5,\M(S)] u M(S)°. First,
let {zm} be a sequence in S\M(S) converging toe e M (S)°, and let g e S° n Core (e).
Let Xi be a fixed arbitrary member of the previously mentioned basis of £C. It
suffices to show that {(<l"p(zm))(xt)} converges to (ib<p(e))(x¡) ; indeed, since e e M(S)°,
(i/Kp(e))(x¡) eexp-1 (S°). Thus, by (Q), we need only show {exp ((>l"p(zm))(xt))}
converges to exp ((</'93(e))(xi)). For each m, 93(zm)(x¡(l))93(zm)_1 has the same deter-
minant as x¡(l); similarly, by the definition of («/«93(e)) we have det ((>l"p(e))(xt)(l))
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= det (Xj(l)). It now follows from the comments in (S) above that, if the sequence
{ipiZmXXiO))?)^)"1} has all of its cluster points in <p([g]), then it must converge to
((i/í<p(e))((x¡)(l))). Let t e S° such that (p(í) = x¡(l), and let Fm be the function gener-
ated by the equality zms = Fm(s)zm as in part (M) above. Since the sequence {zmt}
converges to et = e, we have that the sequence {Fm(t)zm} also converges to e. It now
follows that, if r is a cluster point in S of {Fm(t)}, then re = e, so that r e Core (e)= [g].
Finally, no cluster point of the sequence {Fm(t)} can belong to MiS), since det <p(t)
is not zero. Hence the sequence {<p(zm)(Xi(l))(p(zm)~^ does cluster in <p([g]), and
therefore it converges to the element ((iA<p(e))((x¡)(l))).

To complete the proof of (T), it remains to treat the case in which {ek} is a
sequence in M(S)° converging to e e M(S)°. It suffices to show {exp ((^(eYzOCXj))}
clusters to exp ((^<p(e))(x¡)). For each k, let gke S° n Core (efc). For simplicity, let

hk = limíyígOrXiíOí^gfc))-'1 = exp HMeMxd),
n

and let
h = lim(9(g)rxi(l)(95(g))-1 = exp((Me))ixd),

n

where g e S° n Core (e). Recall that nte e <p([g,c]), ne<p([g]), and note det hk
= det Xj(l) = det n for each k. Let ifc e F such that <pisk) = hk, and let {sk} cluster to s
in 5. By the first part of the proof of (T), s cannot belong to M(S)°. On the other
hand, since skek = ek, we have by continuity that se = e, whence s e Core (e), so that
s e Core ie)\{e}. It follows that {hk} clusters to fis). Further, since the determinant
function is continuous, we have det <p(s) = det hk = det h. Hence, by part (R), <p(s)
= h. Thus {hk} clusters to n.

That thcp is one-to-one on M(S)° is immediate from part (O).
(U) The semigroup S is topologically isomorphic to a subsemigroup of itself

contained in (S\M(S)) u M(S)°. Fix g e S°, and let F be the function defined
before part (M) of the proof by F(x) = t if x e T and gx = tg, Fie)=ge if e e MiS).
Let Fn be the function defined by gn in the analogous manner. By part (M) of the
proof, each Fn is a topological isomorphism of S into S. We show there exists a
positive integer n such that Fn(S)^(S\M(S))KJ M(S)°. Clearly, we need only
produce n such that Fn(M(5))ç M(S)°. Let g" converge to eg. Note e\, e MiS)0 by
part (I). Hence, for each q e M(S), there exists a positive integer n(q) such that
gniq)-q e M(S)°. By continuity of multiplication, there exists a set Vq open in
MiS), containing q such that gn<-q)- Va^M(S)°. Let {F4(J)}, i= 1,..., /3, be a finite
cover of M(S) determined in this manner, and let n = max {n(q(i)) : i= 1,..., b}.
Thus, if q e M(S), let q e Vqii). Then g*q=g*-'«<'«»g*i«<f»q egn-nWmM(S)°. By part
(J) above, the latter set is a subset of M(S)°. Hence gnM(S)^M(S)°, whence
FB(S)S(S\M(S)) u Af(S)°.

The proof of Theorem 4.1 is completed by noting that the composite function
(1/193) • Fn is a continuous isomorphism of the compact semigroup S into MniR), and
is hence a topological isomorphism.
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