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Abstract

Activated surface diffusion with interacting adsorbates is analyzed within the Linear Response

Theory framework. The so-called interacting single adsorbate model is justified by means of a

two-bath model, where one harmonic bath takes into account the interaction with the surface

phonons, while the other one describes the surface coverage, this leading to defining a collisional

friction. Here, the corresponding theory is applied to simple systems, such as diffusion on flat

surfaces and the frustrated translational motion in a harmonic potential. Classical and quantum

closed formulas are obtained. Furthermore, a more realistic problem, such as atomic Na diffusion

on the corrugated Cu(001) surface, is presented and discussed within the classical context as well

as within the framework of Kramer’s theory. Quantum corrections to the classical results are also

analyzed and discussed.
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I. INTRODUCTION

The main purpose of spectroscopic experiments involving a probe and a system at thermal

equilibrium with a reservoir or thermal bath consists of measuring the system response

under the perturbation caused by the probe [1, 2]. The intrinsic properties of matter can

be extracted by analyzing this response, which thus becomes a very important tool for

physicists, who can elucidate the microscopic structure and its dynamics through it. Many

times this response can be described by first order perturbation theory and determined by

the spectrum of the spontaneous fluctuations of the reservoir, as established by the so-called

fluctuation-dissipation (FD) theorem [3]. Within this linear approximation, the probability

per time unit that the full system formed by probe and reservoir changes from the initial state

to the final state is given by the Fermi golden rule. More specifically, the probe transition

probability from an initial state to a certain final state is given by the time Fourier transform

of the autocorrelation function associated with the operator defined by the matrix element

of the corresponding interaction Hamiltonian. This type of studies is based on the work

developed by van Hove [4, 5], who introduced the space-time correlation function (namely

the van Hove function), a generalization of the well-known pair-distribution function from

the theory of liquids, as a tool to study the scattering of probe particles (slow neutrons) by

quantum systems consisting of interacting particles at thermal equilibrium. Within the Born

approximation in scattering theory, the nature of the scattered particles as well as the details

of the system-probe interaction potential are largely irrelevant, this essentially reducing

the scattering problem to a typical statistical mechanics problem [6]. The linear response

function of a system consisting of interacting particles, also known as dynamic structure

factor or scattering law, can be then related to the spontaneous-fluctuation spectrum of

such particles and expressed in terms of particle density-density correlation functions [6–8].

As is known, a complete description of this dynamics can also be obtained through the

linear response theory, where the FD theorem is used to derive alternative response function

expressions for the dynamic structure factor.

From quasielastic He atom scattering (QHAS) experiments at low energies very detailed

information about defect and adsorbate dynamics on surfaces can be obtained [9–12]. Man-

son and Celli [10] generalized van Hove’s theory of neutron scattering by crystals and liquids

to atom surface scattering within the transition matrix formalism. Within this approach,
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small coverage of adsorbates and/or defects were assumed in order to ignore both their

interactions as well as multiple scattering with He atoms. Diffuse elastic and inelastic fea-

tures were interpreted again through the dynamical structure factor which is proportional

to the observed line shapes and is expressed in terms of the transfer of energy and parallel

momentum to the He atoms before and after the scattering process. The QHAS technique

has also been applied to study surface diffusion on metals with different types of atomic

and molecular adsorbates, the diffusion of Na adatoms (at different coverages) on Cu(001)

being one of the most extensively studied systems. In the case of massive particles, where

very large timescales are involved, the dynamic structure factor can be expressed in terms of

the adsorbate positions, which has led to the so-called single adsorbate model. Within this

approach, where low coverage is assumed, surface diffusion (i.e., the adsorbate motion) is

described by classical stochastic trajectories of adsorbates issued from solving the standard

Langevin equation. As in the case of Brownian-like particles, this equation encompasses two

contributions: (1) a (external) force arising from the deterministic, phenomenological adia-

batic potential describing the adsorbate-substrate interaction at zero surface temperature;

and (2) a stochastic force (usually, a Gaussian white noise) accounting for the vibrational

effects induced by the temperature on the surface lattice atoms (and therefore on the adsor-

bates). The system dynamics is then obtained after solving the Langevin equation [12–16],

analyzing the results derived from it in terms of the so-called motional narrowing effect

[15, 16] as well as Kramers’ turnover theory [17, 18] and the dephasing theory [19]. Within

this scenario, it is usually assumed that He-adsorbate interactions play no role on the surface

dynamics, thus being scarcely analyzed.

When the coverage is increased, the dynamic structure factor also provides valuable

information about the nature of the adsorbate-adsorbate interaction, which should be in-

cluded in the corresponding theoretical studies. In this way, pairwise potential functions

accounting for the adsorbate-adsorbate interactions are usually introduced into Langevin

molecular dynamics (LMD) simulations [14]. Recently, an alternative procedure has been

considered, where such pairwise interactions are described by a purely stochastic model,

namely the interacting single adsorbate (ISA) model [20–23]. This approach, also within

the standard Langevin framework, is based on both the theory of spectral-line collisional

broadening developed by van Vleck and Weisskopf [24] and the elementary kinetic theory

of gases [2], and explains fairly well the experimental broadening observed with increasing
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coverage [14]. The standard Langevin equation is solved with two different, non-correlated

noise functions: (1) a Gaussian white noise accounting for the surface friction, as before, and

(2) a white shot noise [25] replacing the pairwise interaction potential which simulates the

adsorbate-adsorbate collisions. A double Markovian assumption is therefore considered (for

the interaction with the surface and for the interaction among adsorbates). This assumption

holds because, on the one hand, substrate excitation timescales are much shorter than the

timescales associated with the adatom motions (the maximum frequency of the substrate

excitation is around 20-30 meV, while the characteristic vibrational frequency of the adatom

is around 4-6 meV). On the other hand, the time between consecutive collisions (measured

through a collisional frequency, which would depend on temperature, coverage or the adpar-

ticle mass) is typically much longer than the effective time that a collisional effect may last

(i.e., the time two adsorbates may effectively be in physical contact). Therefore, memory

effects are not taken into account. Just as the adsorbate-surface interaction is characterized

by a (surface) friction, the adsorbate-adsorbate interaction will also be describable in terms

of a collisional friction, which will vary with coverage. With this simple stochastic model,

where the total friction is the sum of the substrate friction and the collisional friction, a

good agreement with the experimental results for coverages up to 0.12, approximately, has

been obtained. For higher coverage values, the model cannot be applied due to the appear-

ance of ordered structures, as it has been observed [26] experimentally between 0.12 and

0.16. Recently, the collisional friction has been estimated from experiments with benzene

on graphite [27]. Although further investigation at a microscopic level and first-principle

calculations are needed, this simple stochastic model at moderate coverages is able to pro-

vide a complementary view of diffusion (through the quasielastic Q-peak) and low frequency

vibrational motions (through the frustrated translational T-mode peak), at or around zero

energy transfers (very long time dynamical processes), respectively. This could be under-

stood because any trace of the true interaction potential seems to be wiped out due to the

relatively large number of collisions taking place at very long times (the time scale for the

diffusion regime). Actually, this purely stochastic model can be derived from a microscopic

classical Hamiltonian model characterized by two baths associated with two independent

collections of harmonic oscillators [28], one related to the surface phonons and the other one

describing the presence of adsorbates, the source of the collisional friction. In this model,

the coupling to low-lying electron-hole excitations (electroninc friction) was not considered
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for simplicity. One of the purposes in the present work is to extend this two-bath model to

quantum activated diffusion.

Surface diffusion processes are also studied experimentally by means of the so-called spin

echo techniques. Thus, since the advent of He spin echo (HeSE) spectroscopy [29–31] and the

improved signal in the neutron spin echo (NSE) spectrometer [32, 33], fast diffusion processes

are more accessible and allow us to to better determine interaction potentials. In both types

of experiments, the observable is the so-called intermediate scattering function or polarization

function, which is the inverse time Fourier transform of the dynamic structure factor. This is

a complex function whose real and imaginary parts can be observed experimentally [30, 31].

The intermediate scattering function is also the space Fourier transform of the van Hove

function, which, in general, is also a complex-valued function. The complex character of

these functions can be understood as a signature of the quantum nature of the diffusion

dynamics. In this regard, a quantum Markovian theory of surface diffusion for interacting

adsorbates has also been proposed recently [34]. The imaginary part of the van Hove function

is important at small values of time or high temperatures (timescales of the order of ~β,

with β = 1/kBT , kB being Boltzmann’s constant). This dynamical regime takes place when

the mean de Broglie wavelength λB = ~/
√
2mkBT (m is the adsorbate mass) is of the order

of or greater than typical interparticle distances. For these timescales and distances, the

adparticle positions are no longer variables, but Heisenberg operators that do not commute

at two different times. This theory thus tries to reconcile classical and quantum calculations

when no diffusion by tunneling is considered.

The purpose of this work is to provide an analysis of activated surface diffusion with inter-

acting adsorbates within the linear response theory framework. The theoretical framework

of the aforementioned two-bath model is then applied to simple systems, such as diffusion

on flat surfaces and the frustrated translational motion in a harmonic potential, obtaining

classical and quantum closed formulas. Moreover, a more realistic problem, such as atomic

Na diffusion on on the corrugated Cu(001) surface, is presented and discussed within the

classical context as well as within the framework of Kramer’s theory, introducing quan-

tum corrections to the classical results which will be analyzed and discussed. Note that

an appropriate understanding of this surface dynamics is very important, for diffusion is a

preliminary step in more complicated surface phenomena, such as heterogeneous catalysis,

crystal growth, lubrication, associative desorption, etc. Furthermore, the QHAS and HeSE
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techniques can be considered as the surface science analogue of the quasielastic neutron

scattering techniques, which has been widely and successfully applied to analyze diffusion

in bulk.

According to our purposes, we have organized this work as follows. In Section II, we give

a general overview of the Linear Response Theory applied to activated surface diffusion. In

particular, a revision of the classical two-bath model is presented. Regarding the quantum

version of this model, a proposal and discussion are also given in order to describe the

stochastic trajectories of the adsorbates at different coverages. In Section III, applications

to simple models (flat surfaces and driven damped harmonic oscillator) as well as to more

realistic problems, as atomic Na diffusion on Cu(001), are analyzed within the context of

classical and quantum dynamics. Kramers’s turnover theory is also analyzed within the

classical context. Finally, in Section IV we summarize the conclusions derived from this

work as well as some future work.

II. GENERAL THEORY FOR ACTIVATED SURFACE DIFFUSION

A. Dynamic structure factor and intermediate scattering function

Space-time correlation functions [35] can be used to describe the decay of spontaneous

thermal fluctuations at surfaces, being central to the study of transport phenomena. These

functions are defined as the thermodynamic average of the product of two dynamical vari-

ables, each one expressing the instantaneous deviation from its corresponding equilibrium

value at particular points on the surface and time. A complete description of the particle

dynamics in a many-body system is then reached when the behavior of the corresponding

correlation functions over the entire wavenumber range is studied. This range splits into

different characteristic regions, each one associated with a different set of properties of the

system. In the case of scattering experiments, since the momentum and energy transfers are

the relevant quantities, any correlation-function theory has to be developed necessarily in

terms of such quantities. Space-time correlation functions can also be used to describe the

response of a fluid under a weak, external perturbation. Indeed, the reason why space-time

correlation functions are central quantities in transport phenomena in fluids is, precisely,

because of the equivalence between spontaneous fluctuation and linear response.
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In general, a surface local dynamical variable is defined as

A(R, t) =
1√
N

N
∑

i=1

ai(t)δ(R−Ri(t)), (1)

where ai(t) is any physical quantity and Ri(t) = (xi(t), yi(t)) is the time-dependent center

of the position operator of the adparticle on a two-dimensional surface. The corresponding

fluctuation is usually defined as δA(R, t) = A(R, t) − 〈A(R, t)〉β, where the average on a

canonical ensemble is denoted by 〈 · 〉β. The dynamical variable conserves if it satisfies a

continuity equation of the form

Ȧ(R, t) = −∇R · JA(R, t), (2)

where JA is the current associated with the A variable and the dot over A denotes the total

time derivative. Here, the dynamical variables of particular interest are the number density,

ρ(R, t) =
1√
N

N
∑

i=1

δ(R−Ri(t)), (3)

and the current density

J(R, t) =
1√
N

N
∑

i=1

vi(t)δ(R−Ri(t)), (4)

where vi accounts for the velocities of the N adparticles. The corresponding van Hove

fluctuation density autocorrelation function [4, 6] reads as

G(|R−R′|, t) = Σ〈δρ(R′, 0)δρ(R, t)〉β, (5)

and a similar expression holds for the current density. The adparticle density is given by

ρ = N/Σ, where Σ is the surface area and the coverage is defined by θ = N/Nmax, with Nmax

being the maximum number of sites in the Σ area. In most physical systems, correlation

effects are negligible at large space or time separation, the asymptotic limit being a simple

product of thermodynamically averaged quantities.

In analogy to scattering of slow neutrons by crystals and liquids [4–6], the observable

magnitude in QHAS experiments is the so-called differential reflection coefficient,

d2R(∆K, ω)

dΩdω
= ndFS(∆K, ω). (6)
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This coefficient gives the probability that the He atoms (probe particles) scattered from the

interacting adsorbates on the surface reach a certain solid angle Ω with an energy exchange

~ω = Ef − Ei and wave vector transfer parallel to the surface ∆K = Kf −Ki. In Eq. (6),

nd is the concentration of adparticles; F is the atomic form factor, which depends on the

interaction potential between the probe atoms in the beam and the adparticles on the surface;

and S(∆K, ω) is the dynamic structure factor, which gives, apart from other peaks, the Q

and T-mode peaks, also providing a complete information about the dynamics and structure

of the adsorbates through particle distribution functions. Experimental information about

long distance correlations is obtained from the dynamic structure factor when considering

small values of ∆K, while information on long time correlations is provided at small energy

transfers, ~ω.

The pair distribution functions are given by means of the van Hove or time-dependent

pair correlation function G(R, t) [4]. This function is related to the dynamic structure factor

by a double Fourier transform, in space and time, as

S(∆K, ω) =
1

2π~N

∫∫

G(R, t)ei(∆K·R−ωt) dR dt. (7)

Given an adparticle at the origin at some arbitrary initial time, G(R, t) represents the

average probability to find a particle (the same or another one) at the surface position

R = (x, y) at a time t. Thus, this function generalizes the well–known pair distribution

function g(R) from statistical mechanics [2, 7] by providing information about the interacting

particle dynamics.

The position operators of the adsorbates are given, in general, by the corresponding

Heisenberg operators (defined for all j = 1, · · · , N adparticles and time t),

Rj(t) = eiHt/~Rje
−iHt/~, (8)

where H is the Hamiltonian of the total system. As mentioned above, the space Fourier

transform of the G-function is the intermediate scattering function,

I(∆K, t) = N

∫∫

G(R, t)ei∆K·R dR

=
1

N
〈ρ∆K(t)ρ

†
∆K(0)〉β, (9)

where the ρ∆K operator defined as

ρ∆K(t) =
N
∑

j=1

e−i∆K·Rj(t) = ρ†−∆K(t) (10)
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is the Fourier component of the adsorbate number-density operator,

ρ(R, t) =

N
∑

j=1

δ(R−Rj(t)). (11)

Thus, in (9) the brackets denote the ensemble average over the trajectories associated with

each adsorbate Rj(t). The intermediate scattering function is the typical observable issued

from HeSE and NSE experimental techniques. Taking into account the relations (7) to

(11), we note that the dynamic structure factor can be expressed in terms of a density-

density correlation function and determined by the spectrum of the spontaneous fluctuations.

Moreover, the static structure factor, defined as S(∆K, t = 0), is related to g(R), which

describes the instantaneous correlation between adsorbates.

From relations (3) and (4), one finds by direct differentiation in the reciprocal space the

continuity or number conservation equation,

∂ρ∆K(t)

∂t
= i∆K · J∆K(t), (12)

which inserted into (9), and taking into account (7), we obtain the basic relation

S(∆K, ω) =
∆K2

ω2
Jl(∆K, ω), (13)

where Jl is the longitudinal (projected along the wave vector transfer direction) current

correlation function. This relation is rigorous as far as the adparticles are not being created

or absorbed.

The dynamic structure factor S(∆K, ω) is an even function in frequency. Therefore,

all the odd moments vanish and the frequency moments or frequency sum rules (static

correlation functions) are ∆K-dependent quantities,

ω2n(∆K) =
1

2π

∫

ω2nS(∆K, ω)dω = (−1)n
[

∂2nI(∆K, t)

∂t2n

]

t=0

, (14)

which are obtained from a Taylor series expansion of the intermediate scattering function

at short times (or small distances). In particular, the zeroth-order moment corresponds to

the static structure factor,

ω0(∆K) = S(∆K), (15)

since it describes the average distribution of interparticle distances on the surface; the second

order moment is related to the thermal speed v0 =
√

2kBT/m, as

ω2(∆K) = ∆K2v20. (16)
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Due to the quantum character of the different operators introduced above, several com-

ments are worth stressing. First, ρ∆K(t) and ρ†∆K(0) commute only at t = 0. Second, the

system studied here is assumed to be stationary and, therefore, the origin of time is arbitrary

for the correlation function associated with the density operators. Third, the complex char-

acter of the corresponding correlation function is a signature of the quantum dynamics of

the interacting system. Fourth, the G-function is also complex, but the dynamic structure

factor is real and positive definite because it represents a cross-section. More properties

of the ρ∆K(t) operator, the G-function and the dynamic structure factor can be found in

Lovesey’s book [6]. And fifth, the so-called detailed balance condition can be expressed as

[36]

S(∆K, ω) = e~ωβS(−∆K,−ω), (17)

which expresses that the probability that a He atom loses an energy ~ω is equal to e~ωβ

times the probability that a He atom gains an energy ~ω.

After van Hove [4], ifR0 is the range of theG-function and T0 its relaxation time, ~/R0 and

~/T0 determine the orders of magnitude of average momentum and energy transfers in the

scattering process of the probe particles, which for light masses display the observable recoil

effect. Thus, the time variation of G affects the total scattering and angular distributions

only for a particle spending at least a time of order T0 over a correlation length R0. Moreover,

if the mean de Broglie wavelength, λB, is small compared to interadparticle distances or the

range of adsorbate-adsorbate interaction, no quantum effect will manifest in the G-function,

which deals with pairs of adparticles separated by distances of the order of R0. Nevertheless,

for small timescales (t ≪ T0 or t ∼ ~β)), the dynamics entirely concentrates in a region of

the order of or less than λB, and quantum effects are noticeable. At these distances, the

adparticles can be considered as a two-dimensional free gas. The imaginary part of the

G-function is greater at small values of time.

B. The Hamiltonian for the system and the thermal bath

1. The one-bath model

In order to go a step further into the dynamics, we need to specify a Hamiltonian as

introduced in Eq. (8). In surface diffusion, the full system+bath Hamiltonian is usually
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written [12] as

H =
p2x
2m

+
p2y
2m

+ V (x, y)

+

N
∑

i=1

[

p2xi

2mi
+

mi

2

(

ωxi
xi −

cxi

miωxi

x

)2
]

+
N
∑

i=1

[

p2yi
2mi

+
mi

2

(

ωyiyi −
cyi

miωyi

y

)2
]

, (18)

where (px, py) and (x, y) are the adparticle momenta and positions, and (pxi
, xi) and (pyi, yi)

with i = 1, · · · , N are the momenta and positions of the bath oscillators (phonons), with

mass and frequency given by mi and ωi, respectively; phonons with polarization along the

z-direction are not considered. The Hamiltonian was originally considered by Magalinskii

[37] and Caldeira and Leggett [38], who used it for weak and strong dissipation (a general

discussion about the Hamiltonian (18) can be found in Weiss’ book [39]). In surface dif-

fusion, V (x, y) is in general a periodic function describing the surface corrugation at zero

temperature.

The harmonic frequencies of the bath modes and the coupling coefficients are expressed

in terms of spectral densities, defined [38] as

Ji(ω) =
π

2

N
∑

j=1

c2ij
mjω2

ij

[

δ(ω − ωij )
]

. (19)

with i = x, y. This enables the passage to a continuum model. The associated friction

functions are defined through the cosine Fourier transform of the spectral densities as

ηi(t) =
2

πm

∫ ∞

0

dω
Ji(ω)

ω
cosωt, (20)

with i = x, y. For Ohmic friction, ηi(t) = 2ηiδ(t) where ηi is a constant and δ(t) is the

Dirac delta function. In this model, the noise is shown to be white when Ohmic friction

is assumed. The paradigm of white noise is the Gaussian white noise. Dealing with large

systems (the surface seen as a thermal bath) where the number of collisions between substrate

and adsorbate is very high, the fundamental theorem of probability theory, namely the

central limit theorem, assures that the fluctuations of the bath will be Gaussian distributed.

Diffusion can then be described by a Brownian-type motion involving a continuous Gaussian

stochastic process. In virtue of the FD theorem, such fluctuations can be related to the

friction coming mainly from surface phonons: the phonon friction. Electronic friction due

to low-lying electron-hole pair excitations are usually neglected in most of cases.
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2. The two-bath model

The diffuse elastic intensity of the He atoms scattered at large angles away from the

specular direction provides very detailed information on the mobility of adsorbates on sur-

faces. Based on the transition matrix formalism, Manson and Celli [10] proposed a quantum

diffuse inelastic theory for small and intermediate coverages of adsorbates on the surface

by ignoring multiple scattering effects of He atoms. The dynamical structure factor is then

obtained by assuming all the crystal vibrational modes (N) and point-like scattering centers

(M) satisfying the harmonic approximation with a given frequency distribution function.

Therefore, following the same type of arguments, we could assume two independent, un-

correlated baths to describe diffusion of interacting adsorbates. As before, the first bath

consists of the surface phonons. Meanwhile, the second bath is formed by M adsorbates

which, obviously, changes with the surface coverage given by experimental conditions [28].

For a two-bath model (for a given coverage), we take one adsorbate as the tagged particle

or system, while the remaining ones constitute the second bath descibed by M harmonic

oscillators. In this way, the corresponding total Hamiltonian reads as [28]

H =
p2x
2m

+
p2y
2m

+ V (x, y)

+
N
∑

i=1

[

p2xi

2mi
+

mi

2

(

ωxi
xi −

cxi

miωxi

x

)2
]

+

N
∑

i=1

[

p2yi
2mi

+
mi

2

(

ωyiyi −
cyi

miωyi

y

)2
]

+

M
∑

j=1

[

p̄2xj

2m̄j
+

m̄j

2

(

ω̄xj
x̄j −

dxj

m̄jω̄xj

x

)2
]

+
M
∑

j=1

[

p̄2yj
2m̄j

+
m̄j

2

(

ω̄yj ȳj −
dyj

m̄jω̄yj

y

)2
]

, (21)

where the barred magnitudes label the same quantities as in the one-bath model, but now

referring to a bath of M adsorbates, which are also considered as a collection of harmonic

oscillators. The ckj and dkj coefficients, with k = x, y, give the coupling strengths between

the adsorbate and the substrate phonons or other adsorbates, respectively. The spectral

density for the two baths is defined analogously to the one-bath model,

Ji(ω) =
π

2

N
∑

j=1

c2ij
mjω2

ij

[

δ(ω − ωij)
]

+
π

2

M
∑

j=1

d2ij
m̄jω̄2

ij

[

δ(ω − ω̄ij)
]

, (22)
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but now it is split into two sums, one spectral density due to the surface phonons and the

other one due to adsorbates. In a similar way, the friction functions are defined as in Eq. (20)

but now the spectral density is given by (22). The friction function is also split into two

terms, one due to the phonons, γ(t), and the other one due to the presence of adsorbates,

λ(t). This last friction function could be interpreted like a collisional friction. Again, for

Ohmic friction, ηi(t) = 2(γ + λ)δ(t), where γ and λ are constant and δ(t) is the Dirac delta

function.

Extension of the one-bath model to two baths is carried out to describe collisions among

adsorbates when the coverage is increased up to a certain value. Again, if the friction

is assumed to be Ohmic, the noise will be white. Adsorbate collisions can be seen as

discrete events. It is well known that an appropriate way to model this type of noise is by

considering a Poisson process, being generally designated as a white shot noise. As has been

shown elsewhere [21, 22], this white shot noise can be obtained as a limiting case of a color

noise. It is also clear that when the diffusion regime is reached, the discrete Poisson process

becomes a continuous Gaussian process. The introduction of the second bath allows us to

describe adsorbate collisions by a new friction coefficient, the collisional friction. If the two

baths are not correlated, the corresponding noises are also not correlated and this is the key

point of the ISA model. The total friction coefficient, the sum of the phonon and collisional

frictions, is related to the fluctuations of both baths through the FD theorem. This sum of

frictions has recently been estimated by the He spin echo technique [27, 31].

Before concluding this subsection, we would like to emphasize that if an external driving

force is also present (He atoms are sampling the surface to explore the motion of adparticles)

a new extra term should be added to the total Hamiltonian, (18) or (21) (see Section III).

C. The Langevin equation in the two-bath model

The next task is to eliminate the environmental (two-baths) degrees of freedom, which

leads to a damped equation of motion of the system coordinates. If the Heisenberg picture

of quantum mechanics is used, where the time evolution of a given operator A is given by

Ȧ =
i

~
[H,A], (23)
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a generalized Langevin equation (GLE) for each coordinate of the system is obtained, reading

as follows

mẍ(t) +m

∫ t

0

ηx(t− t′) ẋ(t′) dt′ +
∂V (x, y)

∂x
= Nx(t) (24)

and

mÿ(t) +m

∫ t

0

ηy(t− t′) ẏ(t′) dt′ +
∂V (x, y)

∂y
= Ny(t), (25)

where the associated friction functions are defined through the cosine Fourier transform of

the spectral densities given by Eq. (22),

ηi(t) =
2

πm

∫ ∞

0

dω
Ji(ω)

ω
cosωt, (26)

with i = x, y. Due to the splitting of the spectral density (22), note that the friction function

also splits into two terms, one due to the phonons, γ(t), and the other one due to the presence

of adsorbates, λ(t).

The inhomogenity in Eqs. (24) and (25) represents a fluctuating force which depends

on the initial position of the system and initial positions and momenta of the oscillators

of each bath; a generalization of the one bath model [39]. The fluctuating force in each

direction can again be split into two sums, one due to the phonons and the other due to

adsorbates. As both baths are assumed to be uncorrelated, the same property holds for the

two noises. For each noise and each cartesian component, it can be easily shown that its

equilibrium (canonical ensemble) expectation value with respect to the heat bath including

the corresponding bilinear coupling to the system vanishes. On the contrary, the noise

autocorrelation function (each cartesian component and each bath) is a complex quantity

because in general it does not commute at different times. In the classical limit ~ → 0,

each noise correlation reduces to mkBTηi(t), with i = x, y. For Ohmic friction, i.e., delta

correlated, we have white noises. In the quantum case [39, 40], and also for Ohmic friction,

the imaginary part of each noise function is a step function and its real part goes with

csch2(πt/~β). Thus, at zero surface temperature, the noise is still correlated even for long

time (it decays algebraically like t−2) in contrast to the classical case. These facts give rise

to important differences with respect to the classical case such as, for example, the noise and

the system coordinates are correlated instead of being zero. In order to simplify the theory,

we will consider only classical noise but keeping in mind that our quantum results (see

Section III) will be only valid for not too low surface temperatures. In the QHAS and HeSE
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experimental techniques used for fast diffusion, the lowest attainable surface temperature

is around 50–100 K. In a future work, quantum noise and tunneling will be considered in

surface diffusion problems at very low temperatures.

Thus, if η(t) = 2ηδ(t) = 2(γ + λ)δ(t) (Ohmic friction), Eqs. (24) and (25) reduce to two

coupled standard Langevin equations (Markovian approximation) (the delta function counts

only one a half when the integration is carried out from zero to infinity) [20–22],

mR̈ = −mηṘ − F(R),+δN, (27)

which is the basis of the ISA model, and where δN is given by the sum of two noncorrelated

noises: the lattice (thermal) vibrational effects and the adsorbate-adsorbate collisions, which

are simulated by a Gaussian white noise (G) and a shot white noise (S) (Poissonian dis-

tributed), respectively. Thus, for each degree of freedom, we have δN(t) = δNG(t)+ δNS(t).

Let us remark that a Poissonian distribution behaves as a Gaussian distribution for very

long times. The Langevin equation is then solved for one single particle in presence of two

noises.

For a good simulation of a diffusion process, one has to consider very long times in

comparison to the timescales associated with the friction caused by the surface or to the

typical vibrational frequencies observed when the adsorbates keep moving inside a surface

well. This means that there will be a considerably large number of collisions during the

time elapsed in the propagation, and therefore that, at some point, the past history of the

adsorbate could be irrelevant regarding the properties we are interested in. This memory

loss is a signature of a Markovian dynamical regime, where adsorbates have reached what

we call the statistical limit. Otherwise, for timescales relatively short, the interaction is

not Markovian and it is very important to take into account the effects of the interactions

on the particle and its dynamics (memory effects). The diffusion of a single adsorbate

is thus modeled by a series of random pulses within a Markovian regime (i.e., pulses of

relatively short duration in comparison with the system relaxation) simulating collisions

among adsorbates. In particular, we describe these adsorbate-adsorbate collisions by means

of a white shot noise as a limiting case of a colored shot noise [25], as mentioned above. This

interaction is, therefore, described in terms of the collisional friction, which depends on the

surface coverage. Thus, the ISA model essentially consists of solving the standard Langevin

equation with two noise sources and frictions: a Gaussian white noise accounting for the
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friction with the substrate and a white shot noise characterized by a collisional friction

simulating the adsorbate-adsorbate collisions. This way of simulating the interaction among

adsorbates reduces the dynamical problem to the diffusion of a single adsorbate (like in the

SA approximation) and the N factor appearing in the S or I functions, Eqs. (7) and (9),

has not to be considered.

Finally, the surface coverage θ and λ or collisional friction can be related in a simple

manner. In the elementary kinetic theory of transport in gases [2] diffusion is proportional

to the mean free path l̄, which is proportionally inverse to both the density of gas particles

and the effective area of collision when a hard-sphere model is assumed. For two-dimensional

collisions the effective area is replaced by an effective length (twice the radius ρ of the

adparticle) and the gas density by the surface density σ. Accordingly, the mean free path is

given by

l̄ =
1

2
√
2ρσ

. (28)

Taking into account the Chapman-Enskog theory for hard spheres, the self-diffusion coeffi-

cient can be written as

D =
1

6ρσ

√

kBT

m
. (29)

Now, from Einstein’s relation, and taking into account that θ = a2σ for a square surface

lattice of unit cell length a, we finally obtain

λ =
6ρ

a2

√

kBT

m
θ. (30)

Therefore, given a certain surface coverage and temperature, λ can be readily estimated from

(30). Notice that when the coverage is increased by one order of magnitude, the same holds

for λ at a given temperature. Notice that λ could also be considered as a phenomenological

parameter, just like the substrate friction γ.

D. Linear response functions

The dynamic structure factor can also be related to the linear response function of the

system [6],

φ(∆K, t) =
i

~N
〈[ρ∆K(t), ρ

†
∆K]〉, (31)
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through the FD theorem, expressed as

S(∆K, ω) =
1

2πi
[1 + n(ω)]

∫ ∞

−∞

eiωt φ(∆K, t) dt, (32)

where 1+n(ω) = [1− exp(−~ωβ)]−1 is the detailed balance factor, with n(ω) the Boltzman

factor. Equation (32) relates the spectrum of spontaneous fluctuations, S(∆K, ω), to the

dissipation part of the response function. Time derivatives of the response function are

related to the Heisenberg equation of motion (23), of the ρ∆K operator and moments of the

dynamic structure factor involve nested commutators to evaluate them. The φ-function is

a causal function because it can not be defined before the external perturbation has been

switched on. For the scattering with He atoms, the perturbation starts at −∞ and ends at

+∞ and typically has a bell shape (see Section III).

In (32), the time Fourier transform of φ defines a generalized susceptibility function

χ(∆K, ω) and, therefore, can be reexpressed as

S(∆K, ω) = −i[1 + n(ω)]χ(∆K, ω). (33)

This susceptibility is complex and the real and imaginary parts are related through the well-

known Kramers-Kronig or dispersion relations [6]. On the other hand, the time derivative

of the linear response function is related to the so-called relaxation function as follows

Rφ(∆K, t) =

∫ ∞

t

dt′φ(∆K, t′), (34)

which describes the relaxation of the density after the external perturbation (He atoms)

has been switched off. Physically, Rφ goes to zero as t → ∞ and at t = 0 this function

coincides with the isothermal susceptibility. Thus, the dynamic structure factor can again

be reexpressed in terms of the relaxation function as

S(∆K, ω) = [1 + n(ω)]ω R̃φ(∆K, ω), (35)

where R̃φ(∆K, ω) is the time Fourier transform of the relaxation function.

Finally, the dynamic structure factor can also be expressed in terms of the Green function

which is directly related to the linear response function, generalized susceptibility and the

relaxation function [6],

S(∆K, ω) = − 1

π~
[1 + n(ω)] ImG(∆K, ω), (36)
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where

ImG(∆K, ω) = −~ Imχ(∆K, ω), (37)

with ImG(∆K, ω) being the imaginary part of the Green function.

III. APPLICATIONS

In general, an exact, direct calculation of I(∆K, t) or S(∆K, ω) is difficult to carry out

due to the noncommutativity of the adparticle position operators at different times, which

obey a Langevin-Markovian equation, here described by (27), where the friction is assumed

Ohmic and the interaction potential is not separable. However, for certain simple cases,

close formulas can be easily obtained.

The product of the two exponential operators in (9) can be evaluated according to a

special case of the Baker-Hausdorff theorem (the disentangling theorem). If A and B are two

operators then eAeB = e[A,B]/2eA+B, which only holds when the corresponding commutator

is a c-number. Thus, (9) reads now as [34]

I(∆K, t) = I1(∆K, t)I2(∆K, t), (38)

which is a product of two quantum intermediate scattering functions Ij(∆K, t) with j = 1, 2

associated with the exponentials of the commutator [A,B] and A + B, respectively. If we

identify [34] the operators A and B as A = i∆K ·R(0) and B = −i∆K ·R(t), the factor

I1 involving their commutator will depend on the character of the dynamics; for classical

dynamics, this factor is one. The second factor can also be written as follows

I2(∆K, t) = 〈e−i∆K·(R̂(0)−R̂(t))〉 = 〈e−i∆K
∫ t

0
v̂∆K(t′)dt′]〉 ≃ e−∆K2

∫ t

0
(t−t′)Cv(t′)dt′ (39)

within the so-called Gaussian approximation and where Cv(t) = 〈v∆K(t)v∆K(0)〉 is the veloc-
ity autocorrelation function along the direction given by ∆K or the longitudinal direction.

Equation (39) is exact if the velocity operator gives rise to a Gaussian stochastic process.

In the cases we are going to analyze below, we will discuss the factorization given by (38)

in more detail.
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A. Diffusion on flat surfaces

In the case of diffusion on flat or very low corrugated surfaces, where the role of the

adiabatic adsorbate-substrate interaction potential is negligible and only the action of the

thermal phonons and surrounding adsorbates are relevant, one can assume V (x, y) ≈ 0.

Thus, the stochastic single-particle trajectories R(t) running on the surface obey the follow-

ing Langevin-Markovian equation (27)

mR̈(t) = −mηṘ(t) + δN(t), (40)

where δN(t) = δNG(t) + δNS(t) is the two-dimensional fluctuation of the total noise acting

on the adparticle.

He atoms are usually the probe particles and it is generally assumed that they do not

influence the surface dynamics, that is, their influence can be considered a perturbation.

Some considerations are in order about the driving force or external perturbation. First, the

attractive part of the interaction potential does not play an important role in vibrational

excitation problems, and it can usually be neglected. And second, the incident energy for

the incoming particles is large compared to the vibrational excitation of the adsorbate (the

frustrated translational or rotational modes which are of very low frequency). A semiclassical

description of the projectile-adsorbate interaction allows for an estimate of the collisional

time and the duration of energy transfer. Thus, if r is the distance between the He atom

and the center of mass of the adsorbate and their interaction is accepted to be exponentially

repulsive [41], Ve(r) = A exp[−α′r], it can be easily shown that the external force can be

expressed as Fe(t) = C sech2α′t with C = α′vi sin θi/2 where vi and θi are the incident velocity

and angle, respectively. The parameter α′ gives the rate of energy exchange between the

translational (He atoms) and frustrated translational (adsorbates) motions. The hyperbolic

function has the physically correct behavior at the asymptotic limits (t → ±∞), and it

is maximum at t = 0 where the closest distance to the adsorbate is reached (bell shape).

A similar expression can be obtained for the external force if instead of a pure repulsive

interaction a Morse interaction is used.

Due to the fact that for a flat surface no direction is priveleged, and if the adsorbate

motion is driven by the external force Fe(t), we have from Eq. (40) that

〈ẍ(t)〉β + η〈ẋ(t)〉β =
1

m
Fe(t). (41)
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Within the linear response framework we could write the particular solution of the differential

equation as

〈x̃(t)〉β =

∫ t

−∞

dsφ(t− s)Fe(s), (42)

or, after Fourier transforming,

〈R̃(ω)〉β = χ(ω)F̃e(ω), (43)

where

F̃e(ω) =
Aω

α′2
csc
(πω

2α′

)

. (44)

Now, if we assume that ω/α′ keeps close to unity during the interaction along time, the

cosecant function will be also close to unity and the dynamic susceptibility will be that of a

free adparticle on a flat surface,

χ(ω) =
1

m

1

−ω2 − iηω
, (45)

which is exact whenever an Ohmic friction η is assumed and any direction given by ∆K is

considered. This expression of the dynamic susceptibility is valid for both the classical and

quantum case.

1. Classical dynamics

The adparticle motion can then be regarded as quasi-free since it is not ruled by a

potential, but only influenced by the two stochastic forces. Within this regime, the velocity

is a Gaussian stochastic process and the velocity autocorrelation function in any direction

(since there is no priveleged direction) is given by Doob’s theorem [22],

Cv(t) =
kBT

m
e−ηt. (46)

The expression for the intermediate scattering function resulting from (39), where

I(∆K, t) = I2(∆K, t) is

I(∆K, t) = exp
[

−χ2
(

e−ηt + ηt− 1
)]

, (47)

where the so-called shape parameter χ [22, 42] is defined as

χ2 ≡ 〈v20〉∆K2/η2. (48)
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From this relation we can obtain both the mean free path l̄ ≡ τ
√

〈v20〉 and the self-diffusion

coefficient D ≡ τ〈v20〉 (Einstein’s relation). When the coverage increases, the collisions

among adsorbates are also expected to increase, and so λ and therefore η. As can be easily

shown, (47) displays a Gaussian decay at short times that does not depend on the particular

value of η (ballistic motion), while at longer times it decays exponentially with a rate given

by η−1. Thus, with η, the decay of the intermediate scattering function becomes slower.

The above described effects can be quantitatively understood by means of the expression

of the dynamic structure factor obtained analytically from (47),

S(∆K,ω) =
eχ

2

πη
χ−2χ2

Re
{

χ−2iω/η[Γ̃(χ2 + iω/η)− Γ̃(χ2 + iω/η, χ2)]
}

=
eχ

2

π

∞
∑

n=0

(−1)nχ2n

n!

(χ2 + n)η

ω2 + [(χ2 + n)η]2
. (49)

Here, the Γ̃ symbol in the first line denotes both the Gamma and incomplete Gamma

functions (depending on the corresponding argument), respectively. As can be noted in

the high friction limit, (49) becomes a Lorentzian function, its full width at half maximum

(FWHM) being Γ = 2ηχ2, which approaches zero as η increases (narrowing effect). This is

in sharp contrast to what one could expect — as the frequency between successive collisions

increases one would expect that the line shape gets broader (effect of the pressure in the

spectral lines of gases). The physical reason for this effect could be explained as follows.

As η increases particle’s mean free path decrease and therefore correlations are lost more

slowly. In the limit case where friction is such that the particle remains in the same place,

the van Hove function becomes a δ-function, the intermediate scattering function remains

equal to one and the dynamic structure factor consists of a δ-function at ω = 0. Conversely,

in the low friction limit the line shape is given by a Gaussian function, whose width is

Γ = 2
√
2 ln 2

√

kBT/m ∆K, which does not depend on η. This is the case for a two–

dimensional free gas [43, 44]. This gradual change of the line shapes as a function of the

friction and/or the parallel momentum transfer leading to a change of the shape parameter

χ is known as the motional narrowing effect [15, 16]. Notice that, in our approach, friction

is related to the coverage. Thus, at higher coverages a narrowing effect is predicted for a

flat surface [20].

21



2. Quantum dynamics

In the Heisenberg representation, Eq. (40) still holds, its formal solution being

R(t) = R(0) +
P(0)

mη
Φ(ηt) +

1

mη

∫ t

0

Φ(ηt− ηt′)δN(t′)dt′, (50)

where P(0) is the initial adparticle momentum operator and Φ(x) = 1 − e−x. Then, the

commutator between R(0) and R(t) is obtained from Eq. (50) obtaining a c-number. Then,

the factor I1, by assuming a classical noise as previously mentioned, reads as [34]

I1(∆K, t) = exp

[

i~∆K2

2ηm
Φ(ηt)

]

= exp

[

iEr

~

Φ(ηt)

η

]

, (51)

where Er = ~
2∆K2/2m is the adsorbate recoil energy. As is apparent, the argument of the

exponential function becomes less important as the adparticle mass and the total friction

increase. The time-dependence only comes from Φ(ηt). At short times (. ~β), Φ(ηt) ≈ ηt

and the argument of I1 becomes independent of the total friction, thus increasing linearly

with time. On the other hand, in the asymptotic time limit, this argument approaches a

constant phase.

In order to calculate the I2 factor we start from Eq. (40) describing an adparticle with

mass m moving on a flat surface in presence of more adsorbates. The dynamic susceptibility

is also given by Eq. (45) and its time behavior by

χ(t) =
2

mη
e−ηt/2 sinh(ηt/2)Θ(t) (52)

where Θ(t) is the step function due to causality. The FD theorem allows us to express the

equilibrium position autocorrelation function, Cx(t) = 〈x(t)x(0)〉, in terms of the imaginary

part of the dynamic susceptibility and, after Fourier transforming, we find

Cx(t) =
~

πm

∫ +∞

−∞

dω
ηω

ω4 + η2ω2

e−iωt

1− e−β~ω
. (53)

From the relations
1

1− e−β~ω
=

1

2
+

1

2
coth (β~ω/2) (54)

and

coth(β~ω/2) =
2

β~ω

(

1 + 2

∞
∑

n=1

ω2

ν2
n + ω2

)

, (55)

where the so-called Matsubara frequencies are defined by

νn =
2πn

~β
, (56)
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we can decompose the correlation function as Cx(t) = Sx(t)+ iAx(t), i.e., into its symmetric

and antisymmetric parts, respectively. For t > 0, these functions read as

Sx(t) = − 1

mβη

(

t sign[t] +
1

η
e−ηt

)

+
2

βm

∞
∑

n=1

ηe−νnt − νne
−ηt

νn(η2 − ν2
n)

(57)

and

Ax(t) = − ~

2ηm

(

1− e−ηt
)

, (58)

which can be trivially related to (52) by the FD theorem. In (57), the sign function of the

real number t is defined as follows: +1 for t > 0 and −1 for t < 0. Now, since

Cv(t) = − d2

dt2
Cx(t), (59)

then

Cv(t) =

(

1

βm
− i

~η

2m

)

e−ηt − 2η

βm

∞
∑

n=1

νne
−νnt − ηe−ηt

η2 − ν2
n

, (60)

where the real part is identical to 46) except for the infinite sum of theMatsubara frequencies.

Quantum effects are important at low surface temperatures, the long time behavior being

mainly determined by the first term of the Matsubara series. In such cases, relaxation is no

longer governed only by the damping constant [39, 40].

Finally, (60) is substituted into (39) in order to obtain the factor I2,

I2(∆K, t) = e−∆K2
∫ t

0
(t−t′)Cv(t′)dt′ = e−∆K2[f(t)+g(t)], (61)

where the time-dependent functions f(t) and g(t) are given by

f(t) =

(

1

mβη2
− i

~

2mη

)

[e−ηt + ηt− 1] (62)

and

g(t) =
2

mβ

∞
∑

n=1

νne
−ηt − ηe−νnt + η − νn

νn(η2 − ν2
n)

. (63)

The total intermediate scattering function (38) can be then expressed as

I(∆K, t) = e−χ2[α∗ηt−Φ(ηt)]e−∆K2g(t), (64)

with χ = ∆K2〈v20〉/η2 and α = 1 + i~β/2, the thermal square velocity being 〈v20〉 = 1/mβ.

The recoil energy is included in the imaginary part of the product χ2α∗, which disappears
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when ~ → 0. Equation (61) is slightly different to that obtained elsewhere [34], where the

factor I2 was treated classically,

I2(∆K, t) = e−χ2[ηt−Φ(ηt)], (65)

and, therefore, the total intermediate scattering function (38) can be expressed as

I(∆K, t) = eαχ
2

e−χ2[ηt+αΦ(ηt)]. (66)

Equation (64) is the generalization of the intermediate scattering function for the quantum

motion of interacting adsorbates in a flat surface. The dependence of this function on

∆K2 through the shape parameter is the same as in the classical theory [22]. No previous

information about the velocity autocorrelation function is needed. However, classically, the

intermediate scattering function is usually obtained from Doob’s theorem, which states that

the velocity autocorrelation function for a Gaussian, Markovian stationary process decays

exponentially with time [45]. The ballistic or free-diffusion regime and the diffusive regime

are apparent from (66). The first one is dominant at very low times, ηt ≪ 1, and the second

one at very long times, ηt ≫ 1.

The diffusion coefficient can be obtained from

D = lim
t→∞

∫ t

0

Cv(t
′)dt′. (67)

Thus, from Eqs. (60) and (62), the diffusion coefficient is the real part of the complex number

given by

D =
kBT

mη
− i

~

2m
, (68)

which coincides with Einstein’s law for the classical case (insuring that the adparticle velocity

distribution becomes Maxwellian asymptotically). The same result is reached from the mean

square displacement, 〈(R(t) − R(0))2〉, which takes into account only the symmetric part

of the position autocorrelation function. Quantum fluctuations (the Matsubara frequencies)

do not affect this result at low temperatures except the time limit to which the mean square

displacement (MSD) is linear with time may become very large. At zero temperature,

D is also zero and the MSD is no longer linear with time. The infinite sum of Matsubara

frequencies determines now the long time limit behavior. As previously mentioned, the limit

to zero surface temperatures is questionable if in the commutator we neglect the correlation

between the noise and the coordinate system.
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B. Diffusion on harmonic potentials

The harmonic model is an appropriate working model to understand the bound motion

inside the wells of a corrugated surface and, therefore, to also understand the behavior

associated to the T-mode, which comes precisely from the oscillating behavior undergone

by the adparticle when the diffusional motion is temporarily frustrated. Now if we again

assume that ω/α′ keeps close to unit during the interaction along time, the cosecant function

will be close to one and the dynamic susceptibility will be that of an adparticle subject to

a one-dimensional harmonic potential

χ(ω) =
1

m

1

−ω2 − iηω + ω2
0

, (69)

ω0 being the frequency of the harmonic oscillator. This expression is exact whenever an

Ohmic friction η is assumed. This expression of the dynamic susceptibility is valid for both

the classical and quantum cases.

1. Classical dynamics

In contrast with the case of a dynamics where V (x, y) does not play a relevant role,

we can devise a particle fully trapped within a harmonic potential well. Thus, for a har-

monic oscillator, the behavior of the adparticle becomes very apparent when looking at the

corresponding velocity autocorrelation function, which reads [15, 22, 45] as

Cv(t) =
kBT

m

ω0

ω̄
e−ηt/2 cos(ω̄t + δ1), (70)

with

ω̄ ≡
√

ω2
0 −

η2

4
, (71)

and tan δ1 = η/2ω̄. Note that (46) can be easily recovered after some algebra in the limit

ω0 → 0 from (70).

The only information about the structure of the lattice is found in the shape parameter

through ∆K [see Eq. (48)]. When large parallel momentum transfers are considered, both

the periodicity and the structure of the surface have to be taken into account. Consequently,

the shape parameter should be changed for different lattices. The simplest model including

the periodicity of the surface is that developed by Chudley and Elliott [46], who proposed a
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master equation for the pair-distribution function in space and time assuming instantaneous

discrete jumps on a two-dimensional Bravais lattice. Very recently, a generalized shape

parameter based on that model has been proposed to be [42]

χl(∆K) ≡
√

Γν(∆K)

2η
, (72)

where, within our approach, γ is substituted by η. Here, Γν(∆K) represents the inverse of

the correlation time and is expressed as

Γν(∆K) = ν
∑

j

Pj [1− cos(j ·∆K)], (73)

ν being the total jump rate out of an adsorption site and Pj the relative probability that a

jump with a displacement vector j occurs.

Substituting now (70) into (39) leads to the following expression for the intermediate

scattering function

I(∆K, t) = exp

{

−χ2
l η

2

ω̄ω0

[

cos δ1 − e−ηt/2 cos(ω̄t− δ1)
]

}

. (74)

The argument of this function displays an oscillatory behavior around a certain value with

the amplitude of the oscillations being exponentially damped. This translates into an also

decreasing behavior of the intermediate scattering function, which also displays oscillations

around the asymptotic value. This means that after relaxation the intermediate scattering

function has not fully decayed to zero unlike the case of absence of a potential. Again, in

the limit ω0 → 0, (74) approaches (47).

In order to obtain an analytical expression for the dynamic structure factor, it is conve-

nient to express (74) as [22]

I(∆K, t) = e−χ2

l
f(ω̄,t)

= e−χ2

l
A1

∞
∑

m,n=0

(−1)m+n

m!n!
χ
2(m+n)
l Am

3 A
n
4e

i(m−n)δ1e−(m+n)ηt/2ei(m−n)ω̄t, (75)

where

f(ω̄, t) ≡ A1 + A3e
iδ1e−(η/2−iω̄)t + A4e

−iδ1e−(η/2+iω̄)t, (76)
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with

A1 =
ω0

ω̄

η2{2(η/2)ω̄ sin δ1 + [ω̄2 − (η/2)2] cos δ1}
[(η/2)2 + ω̄2]2

, (77)

A3 =
ω0

ω̄

η2

2(η/2− iω̄)2
, (78)

A4 =
ω0

ω̄

η2

2(η/2 + iω̄)2
, (79)

where the coefficients Ai has been put in terms of η, ω̄ and δ1. From (75), it is now

straightforward to derive an expression for the dynamic scattering factor, which results

S(∆K,ω) =
e−χ2

l
A1

π

∞
∑

m,n=0

(−1)m+n

m!n!
χ
2(m+n)
l Am

3 A
n
4e

i(m−n)δ1

× (m+ n)η/2

[ω − (m− n)ω̄]2 + [(m+ n)η/2]2
. (80)

For a harmonic oscillator, there is no diffusion and, therefore, (80) is only valid when

m 6= n. All the Lorentzian functions contributing to (80) are due to the creation and

annihilation events of the T mode. These Lorentzians are characterized by a width given by

Γ = (m+ n)η/2, which increases with η. This broadening (proportional to η) undergone by

the dynamic structure factor is thus contrary to the narrowing effect observed in the case of

a flat surface. It can be assigned to the confined or bound motion displayed by the particle

ensemble when trapped inside the potential wells. Hence, in order to detect broadening of

the line shapes in surface diffusion experiments, adparticles must spend some time confined

inside potential wells, since the broadening will be induced by the presence of temporary

vibrational motions.

2. Quantum dynamics

The formal solution of Eq. (27) is given by

R(t) = R(0) +
P(0)

mη
Φ(ηt) +

1

mη

∫ t

0

Φ(ηt− ηt′)[F(R(t′)) + δN(t′)]dt′, (81)

where the force F is given by Hooke’s law and P(0) is the initial adparticle momentum

operator and Φ(x) = 1− e−x. The presence of the adiabatic force introduces an additional

commutator, [R0,F(R(t))] = (i~)∂F(R(t))/∂P0, where the dependence of the adiabatic

force on the initial state (R(0),P(0)) is through R(t) which is again negligible in a quantum

Markovian framework [34]. Thus the factor I1 is the same as for a flat surface, Eq. (51).
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In order to calculate the I2 factor we again start from Eq. (27). The dynamic susceptibility

is also given by (69) and its time behavior by

χ(t) =
1

mω̄
e−ηt/2 sin ω̄tΘ(t), (82)

where Θ(t) is again the step function due to causality. According to the FD theorem, as

before, the equilibrium position autocorrelation function can be expressed as

Cx(t) =
~

πm

∫ +∞

−∞

dω
ηω

(ω2 − ω2
0)

2 + η2ω2

e−iωt

1− e−β~ω
(83)

whose symmetric and antisymmetric parts are given, for t > 0, as

Sx(t) =
e−ηt/2

mβω̄ω2
0

[ω̄ cos ω̄t + (γ/2) sin ω̄t]− 2

βm

∞
∑

n=1

e−νnt

(η/2− νn)2 + ω̄2
(84)

and

Ax(t) = − ~

2mω̄
e−ηt/2 sin ω̄t, (85)

respectively, and the velocity autocorrelation function by

Cv(t) =
ω0

mβω̄
e−ηt/2 cos(ω̄t+ δ1)+

2

βm

∞
∑

n=1

ν2
ne

−νnt

(η/2− νn)2 − ω̄2
− i~ω2

0

2mω̄
e−ηt/2 cos(ω̄t+ δ2), (86)

with tan δ2 = ηω̄/ω2
0. Again, the real part is the same as in the classical case except the

Matsubara series. The same considerations about the surface temperature in the quantum

regime can be done as before. The I2 factor can be expressed as in (61) through the functions

f(t) =
t

mβω̄
e−ηt/2 sin ω̄t+

2

βm

∞
∑

n=1

ν2
ne

−νnt

(η/2− νn)2 − ω̄2

+
i~t

2m
e−ηt/2

[

(1− γ2/ω2
0)(e

ηt/2 − cos ω̄t) +
γ3 − 3γω2

0

2ω0ω̄
sin ω̄t

]

(87)

and

g(t) =
1

mβω2
0ω̄

{

ω̄ − e−ηt/2[ω̄ cos ω̄t+ (ω2
0t+ γ/2) sin ω̄t]

}

− 2

βm

∞
∑

n=1

1− e−νnt(νnt+ 1)

(η/2− νn)2 − ω̄2
+

i~ω2
0

2mω̄
[g0 + g1(t) + g2(t)] , (88)

with

g0 =
ω̄η

4ω7
0

(η3 + 2ω0η
2 − 2ω2

0γ − 4ω3
0), (89)

g1(t) =
e−ηt/2

ω6
0

[ω̄ω2
0(ω

2
0 − η2)t + 2ω2

0ηω̄ − η3ω̄] cos ω̄t, (90)

g2(t) =
e−ηt/2

ω6
0

[(η/2)ω2
0(3ω

2
0 − η2)t+ 4ω2

0η
2 − ω4

0 − η4/2] sin ω̄t. (91)
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The total intermediate scattering function will be the product of the factors I1 and I2 given

by (51) and (61), taking into account (87) and (88), respectively.

C. Diffusion on corrugated surfaces

1. Classical dynamics

The broadening of the diffusion line shapes has been shown to be produced by the tempo-

rary trapping [20]. We start this subsection by considering a general velocity autocorrelation

function which keeps the same functional form of Eq. (70), but whose parameters do not

hold the same relations as those characterizing a harmonic oscillator [15], that is,

Cv(t) =
kBT

m
e−η̃t cos(ω̃t+ δ̃), (92)

where the values of the parameters η̃, ω̃ and δ̃ are obtained from a fitting to the numerical re-

sults issued from solving the standard Langevin equation with periodic boundary conditions

(27). From Eq. (92) one easily reaches the corresponding expression for the intermediate

scattering function, [22]

I(∆K, t) = e−χ2

l
f̃(ω̃,t)

= e−χ2

l
Ã1−χ2

l
Ã2t

∞
∑

m,n=0

(−1)m+n

m!n!
χ
2(m+n)
l Ãm

3 Ã
n
4e

i(m−n)δ̃e−(m+n)η̃tei(m−n)ω̃t, (93)

which is analogous to (75), and where

f̃(ω̃, t) ≡ Ã1 + Ã2t+ Ã3e
iδ̃e−(η̃−iω̃)t + Ã4e

−iδ̃e−(η̃+iω̃)t, (94)

and

Ã1 =
η̃2[2η̃ω̃ sin δ̃ + (ω̃2 − η̃2) cos δ̃)

(η̃2 + ω̃2)2
, (95)

Ã2 =
η̃2(η̃ cos δ̃ − ω̃ sin δ̃)

η̃2 + ω̃2
, (96)

Ã3 =
η̃2

2(η̃ − iω̃)2
, (97)

Ã4 =
η̃2

2(η̃ + iω̃)2
. (98)

Unlike the case of the harmonic oscillator, notice now that there is a new linear dependence

on time in f̃ because of the parameters η̃, ω̃ and δ̃ are time-independent. This leads to an
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exponentially decaying factor in (93), which accounts for the diffusion and that makes the

intermediate scattering function to vanish at asymptotic times. In this sense, the intermedi-

ate scattering function can be considered as containing both phenomena, diffusion and low

vibrational motions. This effect is better appreciated in the dynamic structure factor,

S(∆K,ω) =
e−χ2

l
Ã1

π

∞
∑

m,n=0

(−1)m+n

m!n!
χ
2(m+n)
l Ãm

3 Ã
n
4e

i(m−n)δ

× χ2
l Ã2 + (m+ n)η̃

[ω − (m− n)ω̃]2 + [χ2Ã2 + (m+ n)η̃]2
. (99)

This general expression clearly shows that both motions (diffusion and oscillatory) cannot

be separated at all. The Q–peak is formed by contributions where m = n, for which each

partial FWHM is given by

ΓQ = χ2
l Ã2 + 2m η̃. (100)

Analogously, the T-mode peaks come from the sums with n 6= m and each partial FWHM

is given by

ΓT = χ2
l Ã2 + (m+ n) η̃. (101)

If the Gaussian approximation is good enough, the value of η̃ will not be too different from

the nominal value of η and, therefore, both peaks will display broadening as η increases.

This is a very remarkable result since a relatively simple model, as the one described here,

can explain the corresponding experimental broadenings observed with coverage. Thus,

broadening arises from the temporary confinement of the adparticles inside potential wells

along their motion on the surface [20]. The problem of the experimental deconvolution has

been already discussed elsewhere [42]. Here we would like only to mention that using this

simple model, such deconvolutions would be more appropriate in order to extract useful

information about diffusion constants and jump mechanisms. Finally, as mentioned before,

the motional narrowing effect will govern the gradual change of the whole line shape as a

function of the friction or, equivalently, the coverage, the parallel momentum transfer and

the jump mechanism.

2. Classical dynamics. The Kramer’s turnover framework

The theory of activated surface diffusion in one dimension was developed [47, 48] from

Kramers’ solution to the problem of escape from a metastable well. [49, 50] The underlying
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dynamics is assumed well described by the Langevin equation provided that the reduced

barrier height is of the order of ∼ 3 or higher, the energy loss to the bath of trajectories

close to the barrier top is given by classical mechanics and the potential at the barrier top is

approximately parabolic. It has been shown that Kramers’ based theory with finite barrier

correction terms can then be replaced by Langevin numerical simulations [18].

The starting point is a kinetic equation for the stationary flux of particles exiting each

well at either barrier. This flux is affected by the rate of particles exiting the jth well and

those arriving at the well from the two neighboring wells, j+1 and j−1. Here we are going

to give the main analytical expressions derived from Kramers’ theory, more details can be

found elsewhere. [18, 48] A central quantity in the theory is the reduced average energy

loss δ to the bath as the adatom traverses from one barrier to the next. For a single cosine

potential as that considered here with barrier height V ‡ = 2V0, the energy loss is given by

δ =
8V0γ

′

kBTω0
, (102)

where ω0 = 2π
√

V0/ma2 is the harmonic frequency of oscillation near the well bottom, m

is the mass of the adatoms and a is the unit cell length. Since typically many experiments

or calculations are carried out under conditions of large reduced barrier heights, δ can be

unity or even larger, even though the damping constant is rather small.

In the moderate to strong friction limit where the rate limiting step is spatial diffusion

(sd) across the barrier, the rate of the escape from the well in both directions is given by

the Kramers-Grote-Hynes formula [49, 51]

Γsd =
Λ‡

ω‡

ω0

π
exp[−V ‡/kBT ], (103)

where the Kramers-Grote-Hynes prefactor is

Λ‡

ω‡
=

√

1 +
η2

4ω‡
− η

2ω‡
, (104)

which has been generalized to two baths and appears as a renormalization taking into account

recrossings, since we are working implicitly in normal mode coordinates for the diffusing

particle and the two baths. Finally, for the partial rates one finds

Γj = −Γsd

π

∫ 2π

0

d∆K sin2 (∆K/2) cos(j∆K) exp

{

2

π

∫ π/2

0

dx ln

[

1− P 2(x)

1 + P 2(x) cos(∆K)

]

}

,

(105)
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where the function P (x) is defined as

P (x) = exp

[

− δ

4 cos2(x)

]

. (106)

and ∆K is written dimensionless. The rate of escape from the zeroth well,

κ = −Γ0, (107)

and the relative probability or a jump of length j is given by the probability of being trapped

at the jth well,

Pj =
Γj

κ
. (108)

For a one-dimensional periodic potential, the diffusion coefficient is related to the escape

rate by

D =
1

2
κ〈a2〉 = 1

2
a2

∞
∑

j

j2Γj, (109)

where 〈a2〉 is the mean square path length. The diffusion coefficient can then be expressed

in close form as

D = DsdΥ
−1 exp

{

2

π

∫ π/2

0

dx ln[1 + P (x)]

}

, (110)

with Dsd = (1/2a2)Γsd the diffusion coefficient in the spatial diffusion regime, and Υ the

depopulation factor for the metastable well first given by Melnikov [47],

Υ = exp

{

2

π

∫ π/2

0

dx ln[1− P (x)]

}

. (111)

In analogy to the Chudley-Elliott model [21, 46], an analytical expression for the FWHM

of the dynamic structure factor can also be obtained by imposing a master equation for the

intermediate scattering function. One easily sees that if the dynamic structure factor has

the ubiquitous Lorentzian shape, the FWHM is given by

Γ(∆K) = 4Γsd sin
2

(

∆K

2

)

exp

{

2

π

∫ π/2

0

dx ln

[

1− P 2(x)

1 + P 2(x)− 2P (x) cos(∆K)

]

}

. (112)

This equation is important in the sense that assuming the validity of Kramers’ model and

the master equation approach, it allows for a direct comparison with the experimental data

and/or Langevin numerical simulations and therefore an estimation of the spatial diffusion

rate Γsd and the energy loss δ. From these parameters and their temperature dependence,

one can further infer the barrier height, the friction coefficient and the barrier frequency.
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In order to solve Eq. (27) we have used the velocity-Verlet algorithm, which is commonly

applied when dealing with stochastic differential equations [52]. For the average calculations

shown here a number of 10,000 trajectories is sufficient for convergence along the [100]

direction. The initial conditions are chosen such that the velocities are distributed according

to a Maxwell–Boltzmann velocity distribution at a temperature T (i.e., the ensemble is

initially thermalized), and the positions such that they cover the extension of a single unit

cell of the potential model used (see below). Regarding the dynamical parameters, we have

used the same parameters previously chosen for the Na atom on a Cu(001) surface, that

is, γ = 0.1ω0, where ω0 is obtained from the harmonic approximation assumed near the

well bottom with a barrier of V0 = 41.4 meV. The mass and radius of the adparticles are

those of a Na atom, since this adsorbate has been widely used in QHAS experiments over

the Cu(001) surface (non-separable potential) [23]. As for the coverage, θ = 1 corresponds

to one Na atom per Cu(001) surface atom or, equivalently, σ = 1.53 × 1019 atom/cm2;

a = 2.557 Å is the unit cell length; and ρ = 2 Å has been used for the atomic radius. Once

the surface temperature and the coverage are fixed, the corresponding λ value is obtained

from Eq. (30).

In Fig. 1 jump rates calculated in ps−1 at 200 K are shown as a function of the surface

friction for a nonseparable interaction potential [23] and two coverages (solid line θ = 0.028

and dashed line, θ = 0.18). These jump rates are obtained from Kramer’s theory and squares

and circles from mean first passage time calculations. As can clearly seen, the left part of

the turnover region is slightly shifted depending on the coverage used. Notice that without

including finite barrier corrections, the agreement is fairly good indicating that Kramers

one dimensional theory can be convenient for interpreting QHAS measurements even when

interacting adsorbates are present.

In Fig. 2 the tracer diffusion coefficient in a.u. versus the total friction at 200 K is plotted.

White circles are issued from the ISA model and black circles from Kramer’s results. The

agreement is again quite good and Einstein’s law is clearly fulfilled.

Finally, in Fig. 3 the FWHM (in µeV) of the Q-peak is shown for two different coverages

(low, 0.028, and moderate, 0.18) at 200 K as a function of the parallel wave vector transfer

covering the first Brilloiun zone. Results from the ISA model are plotted in black squares

and circles. White squares and circles are experimental results and the solid lines are coming

from Kramer’s theory which are also obtained by assuming a Chudley-Elliott model. The
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FIG. 1: Jump rates in ps−1 as a function of the coverage (solid line θ = 0.028; and dashed line,

θ = 0.18) for the diffusion of Na atoms on Cu(001) surface at 200 K, along the [100]. Kramers

results are plotted in lines and mean first passage time calculations are plotted in circles and

squares.
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FIG. 2: Tracer diffusion coefficient in a. u. as a function of the coverage for the diffusion of Na

atoms on Cu(001) surface at 200 K, along the [100]. Kramers results are given by black circles and

Langevin numerical simulations by white circles.

agreement among theoretical results is fairly good but with the experimental results are

poorer for the high coverage. Values of the coverage around 0.16 mark the upper limit

where the ISA model can work.
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FIG. 3: Full width at half maximum (in µeV) of the quasielastic peak as a function of the parallel

wave vector transfer for the diffusion of Na atoms on Cu(001) surface at 200 K and two coverages:

0.028 (low coverage) and 0.18 (intermediate coverage), along the [100].

3. Quantum dynamics

Our starting point is again Eq. (27) where now the adiabatic force is derived by any

general interaction potential. The same discussion as in the harmonic case can be followed

for the I1 factor.

For Na atoms, the pairwise interaction potential is repulsive and the mean interparticle

distance should be most of the time greater than λB. Thus, the I2 factor could be replaced,

in a first approximation, by the classical counterpart, Eq. (93). The error comes from

small times but due to the fact the diffusion process is a long time one, the influence on the

quasielastic peak (wave-vector dependence) and quantum diffusion constant (Einstein’s law)

will be really small for massive particles [34]. In Fig. 4, we show the effects of the quantum

correction in the diffusion process studied here at two different surface temperatures for a

coverage of 0.028. For comparison, in this plot, the classical intermediate scattering function

and the real part of its quantum analog are displayed. As seen, although the Na atom is

a relatively massive particle, at low temperatures the plateau is lower for the quantum

case. This implies an initially faster decay arising from the strong influence of the quantum

behavior at short time scales. It is therefore the real part of the intermediate scattering

function what one should compare to the experiment rather than I2, as is usually done.

Obviously, this effect will be less pronounced at high coverages.
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FIG. 4: (Color online.) Classical intermediate scattering function (45) for Na diffusion on a Cu(001)

surface at 50 K and 100 K (black solid lines) and the real part of its quantum-mechanical analog

(51) (red/dark grey dashed lines). The surface coverage considered here is 0.028 and the diffusion

along the azimut [100].

At very low temperatures, the Matsubara series should play a similar role like the extra

term observed in the f and g functions like in the harmonic case. Thus, a new quantum

correction should be added for very low temperatures.

IV. CONCLUSIONS

It is remarkable that, within the Markovian formalism presented here, the quantum inter-

mediate scattering function, I1, is independent of the relative corrugation of the surface and,
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at short times, also independent of the friction. At low surface temperatures, the I1 factor

will be responsible for a higher contribution of the imaginary part of I, given by Eq. (51),

modifying substantially the response in the diffusion process. For relatively heavy particles

and at very long times (diffusion time scales), operators in the I2 factor can be replaced

by variables, since λB is very small. As far as we know, an exact quantum calculation for

a corrugated surface is not possible and some approximations have to be invoked, e.g., the

damped harmonic oscillator has been applied here in order to obtain close formulas. Of

course, other different, alternative theoretical approaches can also be found in literature

(see, for example, Refs. 50, 53) but within the single adsorbate approximation. The theo-

retical formalism that we propose here should also be very useful to avoid extrapolations

at zero surface temperature when trying to extract information about the frustrated trans-

lational mode. Diffusion experiments at low temperatures are very difficult to perform (or

even unaffordable); for example, for the HeSE technique surface temperatures around 100 K

can be attainable. However, the type of theoretical calculations needed in this formalism is

easy to carry out and they would provide a simple manner to go to lower temperatures with

quite reliable results, thus allowing to extract confident values of magnitudes such as friction

coefficients and oscillation frequencies. By decreasing the surface temperature, quantum ef-

fects are extended at higher values of time. Going from 100 K to 50 K, the time where

the quantum dynamics is important increases from 0.07 ps to 0.15 ps. The standard prop-

agation time for diffusion is greater than 400 ps. In our opinion, the limits of applicability

of this quantum theory should be at coverages up to 12-16 % and around 50 K where the

Matsubara series is still playing no role on the diffusion. Obviously, at lower surface temper-

atures, the quantum character of the noise becomes more and more important. This type

of conditions as well as the diffusion mediated by tunneling needs to be more investigated

since new experimental results are being analyzed.
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