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Abstract

This paper specifies theLinear Road Benchmark for
Stream Data Management Systems (SDMS). Stream Data
Management Systems process streaming data by executing
continuous and historical queries while producing query re-
sults in real-time. This benchmark makes it possible to com-
pare the performance characteristics of SDMS’ relative to
each other and to alternative (e.g., Relational Database)
systems. Linear Road has been endorsed as an SDMS
benchmark by the developers of both the Aurora [1] (out
of Brandeis University, Brown University and MIT) and
STREAM [8] (out of Stanford University) stream systems.

Linear Road simulates a toll system for the motor vehi-
cle expressways of a large metropolitan area. The tolling
system uses “variable tolling” [6, 11, 9]: an increasingly
prevalent tolling technique that uses such dynamic factors
as traffic congestion and accident proximity to calculate toll
charges. Linear Road specifies a variable tolling system
for a fictional urban area including such features as acci-
dent detection and alerts, traffic congestion measurements,
toll calculations and historical queries. After specifying the
benchmark, we describe experimental results involving two
implementations: one using a commercially available Re-
lational Database and the other using Aurora. Our results
show that a dedicated Stream Data Management System
can outperform a Relational Database by at least a factor
of 5 on streaming data applications.
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1 Introduction

In this paper we introduce theLinear Road Benchmark
for Stream Data Management Systems (SDMS).

Stream data management has become a highly active re-
search area and has inspired the development of several pro-
totype systems including Aurora [1], STREAM [8], Tele-
graphCQ [4] and Niagara [5]. However, up until now there
has been no way to compare the performance characteristics
of these systems either to each other or to traditional data
management systems configured to process streaming data
(e.g., a Relational DBMS configured with triggers). Linear
Road is designed to measure how well a system can meet
real-time query response requirements in processing high-
volume streaming and historical data. It has been endorsed
by the developers of Aurora (out of Brandeis University,
Brown University and MIT) and STREAM (out of Stan-
ford University) as a basis for performance comparisons of
stream processing approaches.

In this paper, we use Linear Road to compare the per-
formance of an SDMS (Aurora) to a Relational Database
configured to process stream data inputs.1 Of course, our
implementation of Linear Road over a Relational Database
may not be optimal, and thus we invite others to implement
Linear Road and report their numbers. Nonetheless, we be-
lieve that the results reported here show that a dedicated
SDMS is far-better suited than a Relational Database for
supporting streaming data applications.

Streaming data poses unique challenges to the design
of a benchmark. For queries over this data to be mean-
ingful, the input data must havesemantic validityand not
just be random. Because most stream queries are continu-
ous, performance metrics should be based onresponse time
rather than completion time. The benchmark must beveri-
fiableeven though results returned may vary depending on
when they are generated. And the absence of aquery lan-

1We did not get performance numbers for STREAM in time to in-
clude them in this paper. However, these numbers and a description of
the STREAM implementation of Linear Road will be available on the
STREAM Linear Road web page [10].



guage standardfor stream queries means that the bench-
mark queries must be specified in a more general, though
unambiguous way. Linear Road has been designed to meet
each of these challenges.

Linear Road simulates an urban expressway system
where tolls are determined according to such dynamic fac-
tors as congestion and accident proximity. Linear Road’s
traffic-based orientation is inspired by the increasing preva-
lence ofvariable tolling(also known ascongestion pricing)
[6, 11, 9] in urban traffic systems. Traffic congestion in
major metropolitan areas is an increasing problem as ex-
pressways cannot be built fast enough to keep traffic flow-
ing freely at peak periods. The idea behindvariable tolling
is to issue tolls that vary according to time-dependent fac-
tors such as congestion levels and accident proximity, with
the motivation of charging higher tolls during peak traffic
periods to discourage vehicles from using the roads and ex-
acerbating the congestion. Variable tolling is becoming an
increasingly popular option for urban planners due to its ef-
fectiveness in reducing traffic congestion and to recent ad-
vances in microsensor technology that make it feasible. Illi-
nois, California, and Finland have pilot programs utilizing
this concept. Moreover, both London and Singapore charge
tolls at peak periods to let vehicles enter the downtown area
using similar reasoning.

We begin in Section 2 by presenting the unique chal-
lenges that stream data introduces in designing a benchmark
and describing the ways that Linear Road addresses those
challenges. In Section 3, we specify the benchmark require-
ments. In Section 4, we describe experiments involving two
implementations of the benchmark: one using a commer-
cially available Relational Database (which we call “System
X”), and one using Aurora. As we will show, a dedicated
SDMS can outperform a Relational Database in supporting
stream data applications by at least a factor of 5.

2 Challenges

Streaming data poses the following unique challenges to
the design of a benchmark:

Semantically Valid Input: Input data to a stream bench-
mark should not be purely random but should have some
semantic validity. A typical stream presents discrete mea-
surements of a continuous activity (e.g., the movements of
soldiers). The content of a stream should be consistent with
this activity. For example, if the positions of a soldier are
reported every 15 minutes, the positions of two consecutive
reports should not differ by more than how far a soldier can
travel in that time. To ensure semantic validity, input datato
a stream benchmark should be produced usingsimulation.

Continuous Query (CQ) Performance Metrics: Stream
queries are predominantly continuous, and therefore the
typical database benchmark metric of “completion time” is

inappropriate given that such queries never complete. In-
stead, more appropriate metrics for streams are:

• Response Time: What is the average or maximum dif-
ference between the time that an input arrives to an
SDMS and the time when an SDMS outputs a com-
puted response?

• Supported Query Load: How much input can a stream
system process while still meeting specified response
times and correctness constraints?

Many Correct Results: Any benchmark implementation
should be validated to ensure that it produces results consis-
tent with the benchmark specification. However, continuous
queries results may depend upon evolving historical state or
the arrival order tuples on a stream, and therefore several
different results for the same query may be “correct”. Vali-
dation should account for queries that have multiple correct
answers.

No Query Language:There exists no standard query lan-
guage for streaming systems, and therefore the query re-
quirements for a stream benchmark should be language-
agnostic, yet have a clear semantics.

Linear Road has been designed to meet each of the chal-
lenges listed above. The benchmark simulates an urban ex-
pressway system where toll charges are determined dynam-
ically. Input data consists of a stream ofposition reports
andhistorical query requests. Position reports specify the
location of a vehicle on an expressway and are emitted by
each vehicle every 30 seconds. A historical query request is
issued by a vehicle with some fixed probability every time
it emits a position report.

The benchmark requires processing a set of continuous
and historical queries over this input stream. In processing
position reports, a system must:

• maintain statistics about the number of vehicles and
average speed on each segment of each expressway on
a per minute basis,

• detect accidents and alert drivers of the accidents, and

• dynamically calculate toll charges based on segment
statistics and proximate accidents, and notify and as-
sess vehicles of these charges.

In processing a historical query request, a system will report
an account balance, a total of all assessed tolls on a given
expressway on a given day, or an estimated travel time and
cost for a journey on an expressway. Each query answer
must satisfy the response time and correctness requirements
specified in this document, and the throughput that a system
can sustain in meeting these requirements (as measured in
the number of expressways,L of input it processes) consti-
tutes the benchmark score (itsL-Rating ).



(0, 0) (527999,0)

Expressway 0

Expressway 1

Expressway 2

Expressway 3

Expressway 4

Expressway 5

Expressway 6

Expressway 7

Expressway 8

Expressway 9

(263999,0)

EW

N

S

(0, 263999)

(0, 527999)

Figure 1. The Geometry of Linear City

Linear Road meets the above challenges of an SDMS
benchmark:

• Semantically Valid Input:The input data to Linear
Road is generated by the publicly available traffic sim-
ulator, MITSIM [12]. We describe the details of the
simulated data in Section 3.1.1.

• CQ Performance Metrics:The L-Rating associated
with Linear Road is a measure ofsupported query load
in that it is a measure of the amount of input that an
SDMS can process (as measured in number of express-
ways) while still meeting response time and correct-
ness constraints (as specified in Section 3).

• Many Correct Results:For all queries that depend on
some evolving state (e.g., account balance queries that
depend on a table that is updated with every toll as-
sessed), variation in response times can mean that mul-
tiple answers could be returned that are “correct”. Lin-
ear Road includes two such queries, and validation for
each of those considers all possible valid answers.

• No Query Language:All Linear Road queries are
specified formally in the predicate calculus rather than
a specific stream query language.

3 The Linear Road Benchmark

Linear City is a fictional metropolitan area that is the ur-
ban setting for the Linear Road benchmark. The city en-
compasses an area that is 100 miles wide and 100 miles
long, and is divided into a grid such that the origin is the
southwestern most point in the city, and coordinate(x, y)
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Figure 2. An Example Expressway Segment

is x feet east andy feet north of the origin. Linear City
contains 10 parallel expressways numbered from 0-9 and
running horizontally 10 miles apart, as illustrated in Fig-
ure 1. (For simplicity, there are no expressways that run
vertically.) Each expressway has four lanes in each (east
and west) direction: 3 travel lanes (lanes #1-3) and one lane
devoted to entrance (lane #0) and exit (lane #4) ramps. Each
expressway has 100 entrance ramps and 100 exit ramps in
each direction, dividing it into 100 mile-longsegments. Fig-
ure 2 shows an example segment.

Every vehicle in Linear City is equipped with a sensor
that emits aposition reportthat identifies the vehicle’s ex-
act coordinates every 30 seconds. (We assume that posi-
tion reports specify coordinates with 100% accuracy.) Posi-
tion reports are processed to generate statistics about traffic
conditions on every segment of every expressway for every
minute, including average vehicle speed, number of vehi-
cles and existence of accidents. These statistics are used
to determine toll charges for variable tolling. In addition,
vehicles can issue queries to find out their current account
balance with the expressway system, total tolls assessed on
a given day and expressway, and travel time estimates.

For simplicity, we make the following assumptions about
position reports:

1. No Clock Skew:A global clock is assumed as the basis
for position report timestamps of all vehicles.

2. No Position Interpolation:The position of any vehicle
at any timet is assumed to be exactly the position re-
ported by that vehicle between times(t− 30 sec, t], or
unknownif no position report was emitted within that
range.

3. Instantaneous Delivery:A position report with times-
tampt is made available to a stream processing system
exactlyt seconds after the start of the simulation. This
is guaranteed by the data driver.

While simplistic, we justify these assumptions by pointing
out that the purpose of the benchmark suite is to serve as a
stress-test of systems performing stream processing and not
to accurately model traffic patterns.



3.1 Linear Road Input

Input data for the Linear Road benchmark is generated
by the MIT Traffic Simulator (MITSIM) [12] and stored in
flat files. A separatedata driver is responsible for reading
these files and delivering this data in a manner simulating
its arrival in real-time.

3.1.1 Simulation

Position reports are generated according to the following
traffic model followed by the traffic simulator. The simula-
tor generates a set of vehicles, each of which completes at
least onevehicle trip: a journey that begins at an entry ramp
on some segment and finishes at an exit ramp on some seg-
ment on the same expressway.2 In making a vehicle trip, a
vehicle is placed on the entrance ramp and accelerates at a
rate allowed by the other traffic. It then merges onto the ex-
pressway and moves towards its destination at a rate deter-
mined by the degree of traffic congestion. When the vehicle
reaches its destination, it moves to the exit ramp and decel-
erates. For each trip, the selected source location of a vehi-
cle is uniformly distributed over all of the possible entrance
ramps on the chosen expressway. The exit ramp is normally
distributed with a mean segment location in the middle of
the expressway (i.e., segment #50) and with a standard devi-
ation of 20 miles. Hence, vehicles have an affinity for exit-
ing in the downtown area. Once on the expressway, each ve-
hicle proceeds according to a standard traffic spacing model
built into the traffic simulator.

The simulator ensures that every vehicle emits a posi-
tion report every 30 seconds, staggering them so that at ev-
ery second, roughly1

30
of the reports for vehicles currently

on the expressway are emitted. Every position report has a
timestamp, which is an integer count of seconds since the
start of the simulation. A vehicle never travels faster than
100 MPH, and therefore it will emit at least one position
report from every segment it travels in. Further, every vehi-
cle is guaranteed to average 40 MPH or less when entering
and exiting an expressway and therefore it will emit at least
one position report from an entrance ramp and one position
report from an exit ramp for every vehicle trip.

The simulator generates oneaccidentin a random loca-
tion on each expressway for every 20 minutes of position re-
ports. An accident occurs when two vehicles are “stopped”
at the same position at the same time. A vehicle is stopped
when it reports the same position in 4 consecutive position
reports. Once an accident occurs in a given segment, traf-
fic proceeds in that segment at a reduced speed determined
by the traffic spacing model. The accident takes anywhere
from 10-20 minutes to be cleared once it is detected. Un-
til the accident clears, the vehicles involved in the accident
continue to emit position reports. After either of the vehi-
cles emits a position report that reveals that it has moved

2Note that some vehicles may not complete their vehicle tripsby the
end of the simulation period.

from the site of the accident, the accident is assumed to be
cleared.

With 1% probability, every emitted position report is ac-
companied by a historical query request from the same ve-
hicle. Of historical query requests, 50% are requests for
account balances, 10% are requests for total daily tolls on a
given day and expressway, and 40% are requests for travel
time predictions. We specify how these historical queries
should be processed in Section 3.2.3.

3.1.2 Stream Data

The stream data generated by the simulator consists of four
types of tuples:Position Reportsand historical query re-
quests forAccount Balances, Daily ExpendituresandTravel
Time Estimation.

Position Reports

A position report is a tuple of the form,

(Type = 0, Time, VID, Spd, XWay, Lane, Dir, Seg, Pos)

such thatType = 0 identifies this tuple as a position report,
Time (0 . . .10799)3 is a timestamp identifying the time at
which the position report was emitted,VID (0 . . .MAXINT)
is an integervehicle identifieridentifying the vehicle that
emitted the position report,Spd (0 . . . 100) is an integer re-
flecting thespeedof the vehicle (in MPH) at the time the
position report is emitted, andXWay, Lane, Dir, Seg and
Pos are the following functions over the vehicle’s(x, y) co-
ordinates:

• XWay (0 . . . L−1) identifies theexpresswayfrom which
the position report is emitted

• Lane (0 . . . 4) identifies the lane of the expressway
from which the position report is emitted (0 if it is
an entrance ramp (ENTRY), 1 − 3 if it is a travel lane
(TRAVEL) and4 if it is an exit ramp (EXIT)).

• Dir (0 . . . 1) indicates the direction (0 for Eastbound
and1 for Westbound) in which the vehicle is traveling
when it emits its position report,

• Seg (0 . . . 99) identifies the mile-longsegmentfrom
which the position report is emitted, and

• Pos (0 . . . 527999) identifies the horizontalposition
of the vehicle as a measure of the number of feet
from the westernmost point on the expressway (i.e.,
Pos = x).4

3There are 10800 seconds in a 3 hour simulation period.
4Strictly speakingSeg is redundant given that position reports include

Pos. However, several benchmark computations depend upon a vehicle’s
segment number, and therefore for convenience we include itin input po-
sition reports.



Historical Query Requests

A historical query request is either:

• Account Balance: a request for the vehicle’s current
account balance,

• Daily Expenditure: a request for the vehicle’s total
tolls on a specified expressway, on a specified day in
the previous 10 weeks,

• Travel Time: a request for an estimated toll and travel
time for a journey on a given expressway on a given
day of the week, at a given time.

Account balance requests are tuples of the form,

(Type = 2, Time, VID, QID)

such thatType identifies this tuple as an account balance
request,Time is the time of the request,VID is the vehicle
making the request, andQID is an integerquery identifier.
Daily expenditure requests are tuples of the form,

(Type = 3, Time, VID, XWay, QID, Day)

such thatType identifies this tuple as an daily expenditure
request,Time is the time of the request,VID is the vehicle
making the request,QID is the query identifier, andXWay
andDay (1 . . .69) identify the expressway and the day (1
is yesterday, 69 is 10 weeks ago) for which an expenditure
total is desired. Travel time requests are tuples of the form,

(Type = 4, Time, VID, XWay, QID, Sinit , Send, DOW, TOD)

such thatTime is the time of the request,VID is the vehicle
making the request,QID is a query identifier,XWay is the
expressway upon which the journey occurs (from segment
Sinit to segmentSend), andDOW (1 . . . 7) andTOD (1 . . . 1440)
specify the day of the week and minute number in the day
when the journey would take place.

To avoid the complication of unpredictable event deliv-
ery order, the four types of input tuples are multiplexed to-
gether into a single stream of tuples consisting of the union
of all fields. In order, these are:Type, Time, VID, Spd,
XWay, Lane, Dir, Seg, Pos, QID, Sinit , Send, DOW, TOD and
Day. Linear Road implementations can use theType field
to determine which fields are relevant for a given tuple.

3.1.3 Historical Data

Historical data summarizing 10 weeks worth of tolling his-
tory must be maintained by the system to answer historical
query requests that refer to data dating prior to the start of
the simulation. This data includes account data for all ve-
hicles as well as toll charges and average speeds for every
segment of every expressway for every minute over the pre-
vious 10 weeks. The historical data generator constructs
two flat text files of comma separated values:

• File TollHistory consists of tuples of the form,

(VID, Day, XWay, Tolls)

such that there is one entry for every vehicle that uses
an expressway during the 3 hour simulation (VID) for
every day in the previous 10 weeks (Day) and every ex-
pressway (XWay). For every(VID, Day, XWay) combi-
nation,Tolls is the total amount in tolls spent on the
expressway on dayDay by vehicleVID.

• File SegmentHistoryconsists of tuples of the form,

(Day, Min, XWay, Dir, Seg, Lav, Cnt, Toll)

such that there is one entry for every day,Day, minute
Min, expressway,XWay, direction,Dir and segment,
Seg. The values ofLav, Cnt andToll for each such
entry reflect the average speed, number of vehicles and
toll charge for the given segment on the given express-
way at the given time.

Implementations of Linear Road can bulk load this data into
any storage system and can do so offline so that the time for
bulk loading is not included in the time to run the bench-
mark.

3.2 Linear Road Requirements

The Linear Road benchmark requires processing a fixed
set of continuous and historical queries. These queries and
their response time and accuracy requirements are discussed
in detail below. Queries are described informally and spec-
ified formally in the predicate calculus.

Response time checks require that every output tuple,p,
include two timestamps: one that identifies the time thatp
was emitted (p.Emit) and one that is the timestamp of the
input tuple that triggeredp to be generated (p.Time). Emit
requires every system implementing Linear Road to invoke
a system call to get the current time immediately prior to
emitting p as output. Time is the timestamp of the input
resulting inp’s generation. For example, for any toll notifi-
cation,p, p.Time is the timestamp of the first position report
from the same vehicle reporting its position in the segment
for which the toll applies. This timestamp is generated by
the simulator, and the data driver ensures that this times-
tamp is the time the tuple is made available to the stream
processing system.

3.2.1 Toll Processing

Systems implementing Linear Road must calculate a toll
every time a vehicle reports a position in a new segment,
and notify the driver of this toll. Toll calculations are deter-
mined on the basis of the current congestion on the segment
(as measured in terms of the number of vehicles and the
average speed in the segment) as well as the proximity of
accidents. We make a distinction betweentoll notifications



andtoll assessments, which happen at different times. Ev-
ery time a vehicle issues its first position report from a seg-
ment, a toll for that segment is calculated and the vehicle
is notified of that toll. Every time a position report iden-
tifies a vehicle ascrossingfrom one segment into another,
the toll reported for the segment being exited is assessed to
the vehicle’s account. Thus, a toll calculation for one seg-
ment often is concurrent with an account being debited for
the previous segment. If the vehicle exits at the exit ramp of
a segment, the toll for that segment is not charged.

Toll Notifications

Table 1 expresses the conditions, output, recipients and re-
sponse time requirements for toll notifications. The formal-
ization is in terms of the set,P , of all position reports, and
uses the following shorthand notation:

• For any position report,p ∈ P ,
←
p identifies the posi-

tion report that was emitted by the same vehicle during
the same vehicle trip immediately prior top.5 Because
every vehicle emits a position report every 30 seconds
during a vehicle trip, this can be defined formally as:

←
p = q ∈ P s.t.
(q . VID = p . VID ∧ p . Time− q . Time = 30).

• Similarly for any position reportp ∈ P ,
→
p identifies

the position report during the same vehicle trip emitted
immediately followingp:

→
p = q ∈ P s.t.
(q . VID = p . VID ∧ q . Time− p . Time = 30).

• For any vehicle identifierv and timet, Lasti (v, t) de-
notes theith position report emitted byv prior to t:6

Lasti (v, t) = p ∈ P s.t.
(p . VID = v ∧ (30(i − 1) ≤ t − p . Time < 30i).

For example, by the “No Position Interpolation” as-
sumption, the current position ofv at timet is always
Last1 (v, t).

• For any timestamp,t (defined as an integer number of
seconds since the start of the simulation), the “minute
number oft” (M(t)) is the minute number in whicht
falls. That is,

M(t) = b
t

60
c + 1.

Note that the first minute of the simulation is minute
number 1.

5Obviously, this is undefined for the first position report of every vehi-
cle trip.

6This function is defined fort andv provided that at timet, v was in
the midst of a vehicle trip that began at leasti position reports ago.

Trigger Position report,q

Preconditions q . Seg 6=
←
q . Seg, l 6= EXIT

Output (Type: 0, VID: v, Time: t, Emit: t′

Spd: Lav (M(t), x, s, d),
Toll: Toll (M(t), x, s, d))

Recipient v

Response t′ − t ≤ 5 Sec

Table 1. Toll Notification Requirements

The trigger for a toll notification to vehiclev of a charge
for traveling in segments is a position report,q =

(Type: 0, Time: t, VID: v, Spd: spd,

XWay: x, Seg: s, Pos: p, Lane: l, Dir: d).

As stated in Table 1,q triggers a toll notification if it re-
ports thatv is in a new segment since the last position re-
port, but not in an exit lane. The tupleoutputconsists of
fieldsType = 0 (identifying this tuple as a toll notification),
VID (identifying the vehicle being notified of the toll),Time
(specifying the time thatq was emitted),Emit (specifying
the time the toll notification is emitted),Speed (specifying
the 5-minute average speed in the segment) andToll (spec-
ifying the calculated toll). Therecipientof the notification
is v, and theresponsetime requirement is 5 seconds be-
tween the time the position report was emitted (t) and the
time the toll notification is sent (t′).

The values calculated for fieldsSpd andToll are ex-
pressed in terms of the functions,Lav andToll defined in
Table 2. Lav (short for “Latest Average Velocity”) com-
putes the average speed on some expresswayx, segments
and directiond by averaging vehicle speeds over the 5 min-
utes that precede minutem = M(t). Minute averages are
expressed with the functionAvgs(m, x, s, d) that specifies
the average speed of all vehicles that emitted a position re-
port from segments of expresswayx in directiond during
minutem. Note that some vehicles might emit two posi-
tion reports during this minute. This is accounted for in
Avgsv(v, m, x, s, d) which calculates the average speed of
vehiclev according to all of the position reports it emits
during minutem. Finally, cars(m, x, s, d) returns the set
of all vehicles that emit position reports from segments on
expresswayx while traveling in directiond during minute
m. Note that we use the notation,p . (XWay; Seg; Dir) =
(x; s; d) as shorthand for

p . XWay = x ∧ p . Seg = s ∧ p . Dir = d,

and use{| . . . |} to denote the contents of a bag.
By default, the value ofToll at timet for a segment is

based on the average speed and number of vehicles report-
ing from the segment during minuteM(t)−1. Specifically,
if the LAV for the time interval from minuteM(t) − 5 to
M(t)− 1 is greater than or equal to 40 MPH, or if the num-
ber of vehicles on the segment (numvehicles) was 50 or
less during minuteM(t)−1, no toll is assessed. Otherwise,



the default toll is determined by the formula,

2 × (numvehicles− 50)2.

The basic intuition is to raise tolls when congestion is high
so as to discourage drivers from contributing to worse con-
gestion.

The toll calculation described above is issued for seg-
ments unless anaccidentwas detected 0-4 segments down-
stream ofs as of minuteM(t). In this case, no toll is
charged. Accident detection is discussed in Section 3.2.2.

Toll Assessments

Every time a position report identifies a vehicle ascrossing
from one segment into the next, the toll charge quoted to
the vehicle when it first entered the segment that it is now
leaving is assessed to the vehicle’s account. Systems imple-
menting Linear Road must keep track of all tolls assessed
so that it can answerAccount Balancequeries that report
the current balance of a vehicle,Daily Expenditurequeries
that report the total tolls assessed on a given expressway on
a given day for a given vehicle, andTravel Time Estimation
queries that use previous toll charges to estimate tolls for
given segments on future days and times.

3.2.2 Accident Processing

Systems implementing Linear Road must detect accidents
on the expressways as they occur (detection), and subse-
quently alert all vehicles in the vicinity (notification). As
was discussed in Section 3.2.1, accident detection should
also result in a reduction in tolls that are assessed within 5
segments upstream.

Accident Detection

A stream processing system should detect anaccidenton a
given segment whenever two or more vehicles arestopped
in that segment at the same lane and position. A vehicle is
consideredstoppedif four consecutive position reports from
this vehicle come from the same position (i.e., the same ex-
pressway, lane, position and direction). This is expressed
formally in Table 3 with the predicatesStopandAcc . Pred-
icateStop(v, t, x, l, p, d) holds if the four most recent posi-
tions reports fromv as of timet are from the same location.
PredicateAcc(t, x, p, d) holds if there were two vehicles
stopped as of timet at the same positionp of expresswayx
in directiond.

Accident Notification

Once an accident is detected, every vehicle that enters into
a segment in the vicinity of the accident must be notified so
that these vehicles have the opportunity to exit the express-
way and avoid the resulting congestion. The exact require-
ments for accident notification are summarized in Table 4.

Trigger Position report,q
Precondition ∃s′,0≤i≤4 (s′ = Dn (q . Seg, d, i) ∧

Acc in Seg(M(t) − 1, x, s′, d)),

q . Seg 6=
←
q . Seg, l 6= EXIT

Output (Type: 1, Time: t, Emit: t′, Seg: s′)
Recipients v

Response t′ − t ≤ 5 Sec

Table 4. Accident Alert Requirements

The trigger for an accident notification is a position report
q =

(Type: 0, Time: t, VID: v, Spd: spd,
XWay: x, Seg: s, Pos: p, Lane: l, Dir: d),

that identifies a vehicle entering a segment 0 to 4 segments
upstream of some accident location, but only ifq was emit-
ted no earlier than the minute following the minute when the
accident occurred, and no later than the minute the accident
is cleared. This is expressed using the predicate

Acc in Seg(m, x, Dn (s, d, i))

that holds if there was an accident in the segment that is ex-
actly i segments downstream ofs, in expresswayx and in
the travel lanes for directiond during minutem.7 The tu-
ple outputconsists of the fields,Type = 1 (identifying this
tuple as an accident alert),Time (specifying the time thatq
was emitted),Emit (specifying the time the notification is
emitted), andSeg (specifying the segment where the acci-
dent occurred). Theresponsetime requirement is 5 seconds
between the time thatq was emitted (t) and the time the
accident notification is sent (t′).

Note that for a given accident, multiple accident notifi-
cations may be sent to thesame vehicleif that vehicle does
not exit the expressway and instead enters segments bring-
ing it closer to the site of the accident. Repeated notifica-
tions are intentional, as this allows for vehicles that enter
one of these segmentsafter the accident occurs to be no-
tified of the accident. Also, once a vehicle stops receiving
accident notifications, it can assume that it has either passed
the accident location or that the accident has been cleared.

3.2.3 Historical Query Processing

Aside from the continuous queries involving toll and acci-
dent notifications, systems implementing Linear Road must
also be able to respond to historical query requests issued by
vehicles. There are three types of historical queries. These
are described below.

Account Balance Queries

A customer traveling on some expressway can request his
account balance at any time. At the start of the simulation,

7The segment that isi segments downstream ofs Dn(s,d,i) is MIN
(s + i, 99) if the direction is eastbound (d = 0) and MAX (s − i, 0)
otherwise.



cars(m, x, s, d) = {p . VID | p ∈ P, m = M(p . Time), p . (XWay; Seg; Dir) = (x; s; d)}
Avgsv(v, m, x, s, d) = AVG ({|p . Spd | p ∈ P, p . VID = v, m = M(p . Time), p . (XWay; Seg; Dir) = (x; s; d)|})

Avgs(m, x, s, d) = AVG ({|Avgsv(v, m, x, s, d) | v ∈ cars(m, x, s, d)|})

Lav (m, x, s, d) = bAVG ({|Avgs(m − 1, x, s, d), . . . , Avgs(m − 5, x, s, d)|})c

Toll (m, x, s, d) =



















2 · (|cars (m − 1, t, x, s, d)| − 50)2

if Lav (m, x, s, d) < 40 and
|cars(m − 1, x, s, d)| > 50 and

∀0≤i≤4 (¬(Acc in Seg(m − 1, x, Dn (s, d, i))))
0, otherwise

Table 2. Notation Used to Define Tolls

Stop(v, t, x, l, p, d) ⇔ ∀1≤i≤4 (Lasti (v, t) . (XWay; Lane; Pos; Dir) = (x; l; p; d))
Acc(t, x, p, d) ⇔ ∃v1,v2,l (l = TRAVEL ∧ v1 6= v2 ∧ Stop(v1, t, x, l, p, d) ∧ Stop(v2, t, x, l, p, d))

Acc in Seg(m, x, s, d) ⇔ ∃p,t (t ∈ m ∧ Acc(t, x, p, d) ∧ b p

5280
c = s)

Table 3. Notation Used to Define Accidents

every vehicle’s account balance is zero, and thereafter the
account balance at timet is the sum of all tolls assessed as of
t. The requirements for account balance historical queries
are summarized in Table 5. A historical query to return an
account balance for a given vehicle is triggered by a request
tuplea =

(Type: 2, Time: t, VID: v, QID: q).

The tupleoutput consists of the fields,Type = 2 (identi-
fying this tuple as an account balance),Time (specifying
the time thata was emitted),Emit (specifying the time the
query response is emitted),QID (identifying the query that
issued the request),Bal (the account balance calculated),
andResultTime (the time at whichBal was last updated).
The balance is the sum of all tolls that were charged to the
vehicle’s account. This is expressed in terms oftollset: the
set of all position reports that resulted in a toll charge be-
ing assessed. A subset of the position reports that generated
alerts, tollset(v) consists of those position reports issued
from some segment (s) whose subsequent position reports
indicated that the vehicle did not exit the expressway from
segments. More formally,

tollset(v) =

{p ∈ P | p . VID = v, p . Seg 6=
→
p . Seg,

p . (XWay; Dir) = (x; d)}.

FunctionToll specifies the toll calculation as described in
Table 2.

That Linear Road requires answering account balance
queries means that the tolls charged to each vehicle must be
maintained in a timely fashion. Thus, the most substantial
overhead resulting from inclusion of this historical query
comes not from the cost of answering it but from the cost
of maintaining the data required to answer it. Theresponse

Trigger Account balance request,a

Condition -
Output (Type: 2, Time: t, Emit: t′,

ResultTime: τ, QID: q,

Bal:
∑

p ∈ tollset(v),
p.Time ≤ τ,

p . Seg 6= Last1 (v, t).Seg

(f(p))) s.t.

f(p) =
Toll (M(p . Time), p . XWay, p . Seg, p . Dir)

Recipient v

Response t′ − t ≤ 5 Sec

Accuracy τ ≥ t − 60 Sec

Table 5. Account Balance Requirements

time requirement is 5 seconds from the time the historical
query request is issued to the time a response is emitted.
The accuracyrequirement specifies that the returned bal-
ance must have been accurate at some time,τ , in the 60
seconds prior to the time when the account balance request
is issued. (Given that tolls can be issued at most once per
emitted position report, this means the query has up to 3
possible correct answers.) This interval gives the stream
processing system some flexibility as to when to update the
balance of a vehicle as a result of assessing a toll. If a query
request at timet is concurrent with some toll charges that
have yet to be assessed to a vehicle’s account, the system
might choose to process the historical query before updat-
ing the account balance (potentially producing a result that
is accurate for some timeτ < t), or waiting until the tolls
have been assessed.

Daily Expenditure Queries

A second historical query that can be issued in Linear Road
is one that requests the sum of tolls spent on some express-



Trigger Daily Expenditure request,d
Condition -

Output (Type: 3, Time: t, Emit: t′, QID: q,
Bal:

∑

p ∈ tollset(v),
Day(p.Time) = d,

p.XWay = x

(f(p))) s.t.

f(p) =
Toll (M(p . Time), p . XWay, p . Seg, p . Dir)))

Recipients v

Response t′ − t ≤ 10 Sec

Table 6. Daily Expenditure Requirements

way on some day in the last 10 weeks (not including the
current day or any day which ended within 5 minutes of
t). The requirements for daily expenditure historical queries
are summarized in Table 6. A historical query to return an
account balance for a given vehicle is triggered by a request
tupled =

(Type: 3, Time: t, VID: v, QID: q, XWay: x, Day: n).

The tupleoutputconsists of the fields,Type = 3 (identify-
ing this tuple as a daily expenditure report),Time (specify-
ing the time thatd was emitted),Emit (specifying the time
the query response is emitted),QID (identifying the query
that issued the request), andBal which is the account bal-
ance calculated. The value ofBal is the sum of all tolls
from expresswayx on dayn that were charged to the vehi-
cle’s account.

To be able to respond to daily expenditure queries, sys-
tems implementing Linear Road must maintain 10 weeks
worth of toll data per vehicle and expressway. Given the
approximately 150,000 vehicles generated in a 3 hour sim-
ulation, this amounts to150, 000 · L · 70 (roughly between
10 million and 100 million) rows.

Travel Time Estimation Queries

A historical query to return a time travel estimate is trig-
gered by a request tuplez =

(Type: 4, Time: t, VID: v, QID: q,
XWay: x, Sinit: i, Send: e,

DOW: d, TOD: y)
.

In response, the system responds with a tuple of the form,

(Type : 4, QID : q, TravelTime : r1, Toll : r2)

such thatr1 and r2 are respectively, the predicted travel
time and toll charge for the vehicle journey calculated on
the basis of statistics maintained over the previous 10 weeks
in the manner described below.

Let z be a request for a travel time and toll charge es-
timate for a journey from segmenti to segmente on ex-
presswayx starting on dayd and timey. Now, lettj be the

expected arrival timeat segmentj (i ≤ j ≤ e). Then,

yi = y, and
yj+1 = yj + tav(x, j, d, tj) (i < j ≤ e)

where tav(Xway, Seg, DOW, TOD) computes the ex-
pected travel time from average vehicle speed for 10 weeks
of data, for a given expressway, segment, day and time.
Then, the expected travel time,r1 = ye and the expected
toll is

r2 =

e−1
∑

j=1

cav(x, j, d, yj)

where cav(Xway, Seg, DOW, TOD) computes the ex-
pected toll from average vehicle speed and number of ve-
hicles for a given expressway, segment, day and time, using
Table 2.

Systems implementing Linear Road must maintain 10
weeks worth of statistical data for each segment on the Lin-
ear Road expressways. The data that must be maintained
for each of theL × 200 segments includes a count of the
number of vehicles in the segment and theLav . Note that
10 weeks of historical data at 1 minute granularity for ev-
ery segment requires maintaining200 · L · 10 · 7 · 24 · 60
(roughly between 20 million and 200 million) rows. The
response time requirement for the travel time query is 30
seconds.

3.3 Running the Benchmark

Aside from this document, the Linear Road benchmark
web site [7] makes available four tools to assist researchers
in the implementation of Linear Road:

• A historical data generatorthat generates a set of flat
files containing historical toll data summarizing tolling
activity over the 10 weeks prior to the simulation run,

• A traffic simulator(based on MITSIMLab [12]) that
generates a set of flat files containing streaming input
data for the benchmark,

• A data driver that delivers the data generated by the
traffic simulator to a system in real-time, and

• A validator that verifies the correctness of query re-
sults as well as ensuring that response-time require-
ments are met.

The purpose of the benchmark is to determine theL-
rating of a stream processing system: the maximumscale
factor at which the system can respond to the specified set
of continuous and historical queries while meeting their re-
sponse time and accuracy requirements. It is assumed that
the benchmark will be run with increasingly larger scale
factors until one is found for which the requirements cannot
be met. Once the queries are formulated in a given system,
the benchmark is executed according to the steps below:



1. Thehistorical data generatoris run to generate flat
files consisting of 10 weeks worth of historical data.
Offline, this data can be loaded into the system’s stor-
age facility of choice.

2. Thetraffic simulatoris run to generateL flat files, each
of which consists of 3 hours of traffic data and histori-
cal query requests from vehicles reporting from a sin-
gle expressway during rush hour. Thedata driver is
then invoked to deliver this data in a manner simulat-
ing its arrival in real-time.

3. The system running the benchmark is configured to
generate a flat file containing all output tuples (with
timestamps reflecting the times of their generation and
the times of the input tuples that triggered their gener-
ation) in response to the queries defined in the bench-
mark.

4. Thevalidation toolis used to check the response times
and accuracy of generated output to see if they meet
the requirements of the benchmark.

A system achieves anL-rating for the benchmark if it meets
its response time and accuracy constraints while supporting
L expressways worth of input.

Systems implementing Linear Road must direct their
output into a single flat file. Validation involves compar-
ing the system’s output with that generated as a reference
set by the validation tool for the given input. The valida-
tion tool will read output from the flat files generated by the
stream system and check the results to see if they meet the
response time and accuracy requirements described previ-
ously. It is expected that most systems will produce accurate
output, but will for some scale factor, be unable to continue
meeting the response time constraints. When reporting its
L-rating, a system should also specify the hardware config-
uration over which it ran.

4 Implementations & Experiments

In this section, we describe two implementations of the
Linear Road benchmark and compare their relative perfor-
mance. The first implementation is over a pre-release com-
mercialization of Aurora [1] and is described in Section 4.1.
The second implementation is over a commercially avail-
able Relational Database (System X) and is described in
Section 4.2. Both systems were run on the same 3 GHz
Pentium box with 2 GB RAM and running Linux. We com-
pare the performance of these two implementations in Sec-
tion 4.3 and show that a dedicated stream processing engine
can outperform a Relational Database for streaming data ap-
plications (as measured in their respective scale factors)by
a factor of 5.8

8The Aurora system we use in the benchmark is still a pre-Beta version
of the commercial product, and we anticipate that this improvement factor
will increase as the product matures.

Of the queries included in the benchmark, theTravel
Time Estimationquery is by far the most complex and diffi-
cult to express. Neither of the benchmark implementations
described below supports this query and requests in the in-
put for this type of query are ignored.

4.1 Linear Road in Aurora

Aurora uses a workflow-like boxes-and-arrows model
for constructing queries over stream data [2]. The Aurora
implementation of Linear Road consists of aquery network
of roughly 60 boxes and the following shared tables:

• Vehicle Information:Including, for every vehicle, such
things as its last known location (expressway # + posi-
tion + direction) and its account balance,

• Stopped Cars:Including all locations where cars are
stopped and the cars involved,

• Accidents:Including all segments in close proximity
to an accident and the time of the accident,

• Segment Statistics:Including for every segment of ev-
ery expressway, and for every minute in the last 5 min-
utes, and

• Toll History: For every vehicle, expressway and day
over the previous 10 weeks, the total tolls spent on the
expressway.

Historical query requests are each handled separately
from position reports, and each require 1-2 boxes to read
from the appropriate tables (Vehicle Informationfor the ac-
count balance query andToll History for the daily expendi-
ture query) and process the results.

Position reports are processed by three consecutive sub-
networks of the query network:

1. Subnetwork #1is responsible for detecting and record-
ing when cars are stopped, and if for the ones that are,
if they are in an accident. This subnetwork reads and
writes theStopped Cars, AccidentsandVehicle Infor-
mationtables.

2. Subnetwork #2is responsible for maintaining statistics
for every segment of every expressway with 1 minute
granularity. This subnetwork reads from theAccidents
table and writes to theSegment Statisticstable.

3. Subnetwork #3is responsible for calculating and emit-
ting tolls for those position reports that show a vehicle
that has crossed into a new segment, and for emitting
accident alerts for those position reports that show that
the vehicle has entered a segment within 5 segments
upstream of a recent accident. This subnetwork reads
from theSegment Statisticstable and emits results (toll
notifications and accident alerts) to an output stream.



The subnetworks listed above are connected in sequence.
Synchronization primitives between them ensure that no
position report with timestampt is processed by Subnet-
work #3 before all position reports with timestamps oft -
1 minute or less have been processed by Subnetworks #1
and #2. The box-at-a-time scheduler of Aurora [3] is con-
strained only by these primitives and the availability of in-
puts to boxes when deciding what boxes are eligible to be
scheduled.

4.2 Linear Road in System X

We built two implementations of Linear Road over Sys-
tem X. The first is atrigger-basedimplementation that uses
the built-in trigger facility of System X to process position
reports and historical query requests as they arrive. The
second is apolling-basedimplementation that uses a data
driver written in Perl to preload a dedicated relation with
a second’s worth of position reports every second and sub-
sequently invoke a System X stored procedure. For both
implementations, recovery logging was turned off. Because
the polling-based implementation allows for batch process-
ing of position reports, sensitivity analysis showed that it
performed much better than the trigger-based implementa-
tion and therefore, only the polling-based implementation
is presented here.

The Linear Road implementation over System X has
much the same structure as the Linear Road implementation
over Aurora. A stored procedure of roughly 300 lines of
queries and accompanying code, this implementation also
uses tables to storevehicle information, stopped cars, acci-
dents, segment statisticsandtoll history. As well, there is
an additional table to hold all input tuples delivered by the
driver in the last second, and an additional table to receive
the output results.

As with Aurora, historical queries are handled separately
(with simple SQL queries). Position reports follow the same
sequence of processing as with Aurora: first detect acci-
dents; then generate statistics and calculate and emit toll
and accident alerts. As much as possible, tuples are pro-
cessed in batch mode. For example, after the arrival of a
minute’s worth of position reports, a query is run over these
position reports to determine all segment statistics for that
minute.

4.3 Results

In this section, we present experimental results from run-
ning the Aurora and System X implementations of Linear
Road with varying numbers of expressways.

4.3.1 Scale Factor

Table 7 shows theL-factors achieved by Aurora and System
X running Linear Road. An expressway’s worth of input
data consists of roughly 12 million position reports, 60,000

System X Aurora
0.5 2.5

Table 7. L-Ratings for Linear Road

account balance query requests and 12,000 daily expendi-
ture requests delivered in 3 hours. The corresponding out-
put consists of roughly 2 million toll alerts and 28,000 ac-
cident alerts (as well as one historical query output for each
historical query request). Therefore, on average, the Sys-
tem X implementation processed roughly 560 input tuples
per second (delivering an average throughput of 100 tuples
per second) while meeting the response time requirements
of Linear Road, while Aurora processed roughly 2800 input
tuples per second (delivering an average throughput of 486
tuples per second) for a factor of 5 performance gain.9

Table 8 shows the maximum response times for toll no-
tifications for every run of System X and Aurora. For any
given run, these numbers show the highest response time
for an output toll notification such that the response time
for any outputq is equal toq.Emit − q.Time. Note that
because timestamps are in the granularity of a second, the
reported response times may be off by up to a second. That
is, a response time ofk calculated in this way indicates
that the actual response time is some time,t, such that
k − 1 Sec < t < k + 1 Sec.

One can observe from this table that when either sys-
tem first fails to meet the benchmark requirements for some
number of expressways, it fails substantially. Aurora suc-
ceeds with 2.5 expressways but has a worst-case response
time of roughly 3 minutes with 3 expressways. System
X succeeds with 0.5 expressways but has a worst-case re-
sponse time of roughly 33 minutes for 1.0 expressway. The
degree to which a system fails depends on how early during
the 3 hour run the system first starts to fall behind (i.e., the
first input that fails to meet the response time requirements).
When this occurs, it must be the case that input tuples are
being backed up on the input queue and soon it becomes the
case that response time requirements fail before processing
even begins for these inputs. Aurora first fails with 3 ex-
pressways in processing an input position report with times-
tamp, 7931 (roughly 2.3 hours into the benchmark), and
therefore tuples are only accumulating in the input queue
for the last 40 min or so of the run. System X first fails with
1 expressway in processing an input position report with
timestamp, 4761 (roughly 1.3 hours into the benchmark),
and therefore tuples are accumulating in the input queue for
the last hour and 40 minutes of the run. Because System X
fails earlier in its run, its worst-case response time is much
higher. Note that when run with 1.5 and 2 expressways,
System X fails even sooner and with many more input tu-
ples idling in the input queues, and reports worst-case re-
sponse times of roughly 4.5 and 14.5 hours respectively.

9Because System X was unable to meet the benchmark requirements
for 1 expressway, results were generated at the granularityof half of an
expressway.



XWays System X Aurora

0.5 3 1
1.0 2031 1
1.5 16346 1
2.0 52443 2
2.5 - 2
3.0 - 196

Table 8. Max Response Times for Tolls (Sec)

4.3.2 Discussion

Our results suggest that a dedicated SDMS can outperform
a Relational Database system in processing stream data by
at least a factor of 5. If the response time requirements
were made more strict (e.g., 3 seconds for toll alerts rather
than 5 seconds), then Aurora still meets the requirements
for 2.5 expressways, but System X may then fail to meet
the response time requirements for 0.5 expressways. Un-
fortunately, the 1 second granularity of timestamps we used
stopped us from confirming this result in time for the pa-
per deadline, and thus only the factor of 5 improvement is
known with certainty.

The purpose of this benchmark is to stimulate creative
thought on how to meet the challenges of large scale stream-
ing data applications. To this end, the goal of our ini-
tial experiments described above, was to see how a stream
data management system that was architected for exactly
these kinds of applications, would compare to a relational
database system that was configured to process queries in
response to pushed data. Our numbers suggest that a dedi-
cated SDMS is far better suited for stream data applications
than a relational database. We readily acknowledge that our
implementation of Linear Road in a Relational Database
may not be optimal, and so we invite others to implement
this benchmark and report their numbers.

5 Conclusions

This paper presentsLinear Road: a benchmark and ac-
companying toolkit for comparing the capabilities of sys-
tems that perform stream data management. Linear Road is
inspired by the increasing prevalence of “variable tolling”
in highways systems throughout the world. Based on a fic-
tional urban area with a simple geometry, Linear Road sim-
ulates a traffic monitoring system that maintains current and
historical statistics over each 1 mile segment of each ex-
pressway, detects and alerts drivers of accidents, calculates
tolls based on segment statistics, accidents and frequency
of use, and supports historical queries that report account
balances, daily expenditures and predicted travel times and
tolls.

After outlining the challenges in formulating a stream
data benchmark in Section 2 and describing the benchmark
itself in Section 3, we described two implementations of
Linear Road: one using a commercially available Relational

Database system (“System X”), and the other using a pre-
release commercialization of Aurora. Our experimental re-
sults showed that Aurora has anL-factor of 2.5, whereas
System X has anL-factor of 0.5, thus showing a factor of 5
performance gain resulting from using a dedicated Stream
Data Management System to process stream data. In fact,
the performance gain is likely higher than this, but time con-
straints before the paper deadline did not allow us to refine
our time precision to establish this for certain.

Beyond serving as a basis for comparison, the purpose of
this benchmark is to stimulate creative thought in the design
of Stream Data Management Systems. We invite others to
run the benchmark on their own systems and contribute to
this discussion.
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