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BASIC THEORY

Tony Lindeberg

Royal Institute of Technology (KTH)
Computational Vision and Active Perception Laboratory (CVAP)
Department of Numerical Analysis and Computing Science
S-100 44 Stockholm, Sweden

and

Bart M. ter Haar Romeny

Utrecht University, Computer Vision Research Group,
Heidelberglaan 100 E.02.222,
NL-3584 CX Utrecht, The Netherlands

1.1. Introduction

Vision deals with the problem of deriving information about the world
from the light reected from it. Although the active and task-oriented
nature of vision is only implicit in this formulation, this view captures
several of the essential aspects of vision. As Marr (1982) phrased it in
his book Vision, vision is an information processing task, in which an
internal representation of information is of out-most importance. Only by
representation information can be captured and made available to decision
processes. The purpose of a representation is to make certain aspects of the
information content explicit , that is, immediately accessible without any
need for additional processing.

This introductory chapter deals with a fundamental aspect of
early image representation|the notion of scale. As Koenderink (1984)
emphasizes, the problem of scale must be faced in any imaging situation.
An inherent property of objects in the world and details in images is
that they only exist as meaningful entities over certain ranges of scale.
A simple example of this is the concept of a branch of a tree, which
makes sense only at a scale from, say, a few centimeters to at most a
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2 1. Linear scale-space: Basic theory

few meters. It is meaningless to discuss the tree concept at the nanometer
or the kilometer level. At those scales it is more relevant to talk about
the molecules that form the leaves of the tree, or the forest in which
the tree grows. Consequently, a multi-scale representation is of crucial
importance if one aims at describing the structure of the world, or more
speci�cally the structure of projections of the three-dimensional world onto
two-dimensional images.

The need for multi-scale representation is well understood, for example,
in cartography; maps are produced at di�erent degrees of abstraction. A
map of the world contains the largest countries and islands, and possibly,
some of the major cities, whereas towns and smaller islands appear at
�rst in a map of a country. In a city guide, the level of abstraction is
changed considerably to include streets and buildings etc. In other words,
maps constitute symbolic multi-scale representations of the world around
us, although constructed manually and with very speci�c purposes in mind.

To compute any type of representation from image data, it is necessary
to extract information, and hence interact with the data using certain
operators . Some of the most fundamental problems in low-level vision and
image analysis concern: what operators to use, where to apply them, and
how large they should be. If these problems are not appropriately addressed,
the task of interpreting the output results can be very hard. Ultimately, the
task of extracting information from real image data is severely inuenced by
the inherent measurement problem that real-world structures, in contrast
to certain ideal mathematical entities, such as \points" or \lines", appear
in di�erent ways depending upon the scale of observation.

Phrasing the problem in this way shows the intimate relation to
physics. Any physical observation by necessity has to be done through
some �nite aperture, and the result will, in general, depend on the
aperture of observation. This holds for any device that registers physical
entities from the real world including a vision system based on brightness
data. Whereas constant size aperture functions may be su�cient in many
(controlled) physical applications, e.g., �xed measurement devices, and also
the aperture functions of the basic sensors in a camera (or retina) may have
to determined a priori because of practical design constraints, it is far from
clear that registering data at a �xed level of resolution is su�cient. A vision
system for handling objects of di�erent sizes and at di�erence distances
needs a way to control the scale(s) at which the world is observed.

The goal of this chapter is to review some fundamental results
concerning a framework known as scale-space that has been developed by
the computer vision community for controlling the scale of observation and
representing the multi-scale nature of image data. Starting from a set of
basic constraints (axioms) on the �rst stages of visual processing it will
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be shown that under reasonable conditions it is possible to substantially
restrict the class of possible operations and to derive a (unique) set of
weighting pro�les for the aperture functions. In fact, the operators that are
obtained bear qualitative similarities to receptive �elds at the very earliest
stages of (human) visual processing (Koenderink 1992). We shall mainly
be concerned with the operations that are performed directly on raw image
data by the processing modules are collectively termed the visual front-end.
The purpose of this processing is to register the information on the retina,
and to make important aspects of it explicit that are to be used in later
stage processes. If the operations are to be local, they have to preserve
the topology at the retina; for this reason the processing can be termed
retinotopic processing.

1.1.1. Early visual operations

An obvious problem concerns what information should be extracted and
what computations should be performed at these levels. Is any type of
operation feasible? An axiomatic approach that has been adopted in order
to restrict the space of possibilities is to assume that the very �rst stages of
visual processing should be able to function without any direct knowledge
about what can be expected to be in the scene. As a consequence, the
�rst stages of visual processing should be as uncommitted and make as few
irreversible decisions or choices as possible.

The Euclidean nature of the world around us and the perspective
mapping onto images impose natural constraints on a visual system.
Objects move rigidly, the illumination varies, the size of objects at the
retina changes with the depth from the eye, view directions may change
etc. Hence, it is natural to require early visual operations to be una�ected
by certain primitive transformations (e.g. translations, rotations, and grey-
scale transformations). In other words, the visual system should extract
properties that are invariant with respect to these transformations.

As we shall see below, these constraints leads to operations that
correspond to spatio-temporal derivatives which are then used for
computing (di�erential) geometric descriptions of the incoming data ow.
Based on the output of these operations, in turn, a large number of feature
detectors can be expressed as well as modules for computing surface shape.

The subject of this chapter is to present a tutorial overview on the
historical and current insights of linear scale-space theories as a paradigm
for describing the structure of scalar images and as a basis for early
vision. For other introductory texts on scale-space; see the monographs by
Lindeberg (1991, 1994) and Florack (1993) as well as the overview articles
by ter Haar Romeny and Florack (1993) and Lindeberg (1994).
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1.2. Multi-scale representation of image data

Performing a physical observation (e.g. looking at an image) means that
some physical quantity is measured using some set (array) of measuring
devices with certain apertures. A basic tradeo� problem that arises in
this context is that if we are interested in resolving small details then the
apertures should be narrow which means that less of the physical entity
will be registered. A larger aperture on the other hand gives a stronger
response and coarser details. Since we, in general, cannot know in advance
what aperture sizes are appropriate, we would like to be able to treat
the scale of observation as a free parameter so as to be able to handle
all scales simultaneously. This concept of having a range of measurements
using apertures of di�erent physical sizes corresponding to observations at
a range of scales is called a multi-scale measurement of data.

increasing t

original signal

coarser levels

of scale

Figure 1.1. A multi-scale representation of a signal is an ordered set of derived signals
intended to represent the original signal at various levels of scale. (From [76].)

In case a set of measurement data is already given (as is the case when
an image is registered at a certain scale using a camera) this process can
be simulated by the vision system. The basic idea behind a multi-scale
representation is to embed the original signal into such a one-parameter
family of derived signals. How should such a representation be constructed?
A crucial requirement is that structures at coarse scales in the multi-scale
representation should constitute simpli�cations of corresponding structures
at �ner scales|they should not be accidental phenomena created by the
smoothing method.

This property has been formalized in a variety of ways by di�erent
authors. A noteworthy coincidence is that the same conclusion can be
reached from several di�erent starting points. The main result we shall
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arrive at is that if rather general conditions are imposed on the types
of computations that are to be performed at the �rst stages of visual
processing, then the Gaussian kernel and its derivatives are singled out
as the only possible smoothing kernels. The requirements, or axioms,
that specify the Gaussian kernel are basically linearity and spatial shift
invariance combined with di�erent ways of formalizing the notion that
structures at coarse scales should be related to structures at �ner scales
in a well-behaved manner; new structures should not be created by the
smoothing method.

An simple example where structure is created in a \multi-scale
representation" is when an image is enlarged by pixel replication (see
�gure 1.2). The sharp boundaries at regular distances are not present in
the original data; they are just artifacts of the scale-changing (zooming)
process.

Figure 1.2. Example of what may be called creation of spurious structure; here
by generating coarser-scale image representations by subsampling followed by pixel
replication. (left) Magnetic resonance image of the cortex at resolution 240 � 80 pixels.
(middle) Subsampled to a resolution of 48�16 pixels and illustrated by pixel replication.
(right) Subsampled to 48� 16 pixels and illustrated by Gaussian interpolation.

Why should one represent a signal at multiple scales when all
information is present in the original data anyway? The major reason for
this is to explicitly represent the multi-scale aspect of real-world images1.
Another aim is to simplify further processing by removing unnecessary
and disturbing details. More technically, the latter motivation reects the
common need for smoothing as a pre-processing step to many numerical
algorithms as a means of noise suppression.

Of course, there exists a large number of possible ways to construct
a one-parameter family of derived signals from a given signal. The
terminology that will be adopted2 here is to refer to as a \multi-scale
representation" any one-parameter family for which the parameter has a
clear interpretation in terms of spatial scale.

1At the �rst stages there should be no preference for any certain scale or range of
scales; all scales should be measured and represented equivalently. In later stages the
task may inuence the selection, for example, do we want to see the tree or the leaves?

2In some literature the term \scale-space" is used for denoting any type of multi-scale
representation. Using that terminology, the scale-space concept developed here should be
called \(linear) di�usion scale-space".
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1.3. Early multi-scale representations

The general idea of representing a signal at multiple scales is not entirely
new. Early work in this direction was performed by e.g. Rosenfeld and
Thurston (1971), who observed the advantage of using operators of di�erent
size in edge detection. Related approaches were considered by Klinger
(1971), Uhr (1972), Hanson and Riseman (1974), and Tanimoto and
Pavlidis (1975) concerning image representations using di�erent levels of
spatial resolution, i.e., di�erent amounts of subsampling.

These ideas have then been furthered, mainly by Burt and by Crowley,
to one of the types of multi-scale representations most widely used today,
the pyramid . A brief overview of this concept is given below.

1.3.1. Quad tree

One of the earliest types of multi-scale representations of image data is the
quad tree3 introduced by Klinger (1971). It is a tree-like representation of
image data in which the image is recursively divided into smaller regions.

The basic idea is as follows: Consider, for simplicity, a discrete two-
dimensional image I of size 2K � 2K for some K 2 N, and de�ne a measure
� of the grey-level variation in any region. This measure may e.g. be the
standard deviation of the grey-level values.

Let I(K) = I . If �(I(K)) is greater than some pre-speci�ed threshold �,

then split I(K) into sub-images I
(K�1)
j (j = 1::p) according to a speci�ed

rule. Apply this procedure recursively to all sub-images until convergence

is obtained. A tree of degree p is generated, in which each leaf I
(k)
j is a

homogeneous block with �(I
(k)
j ) < �. (One example is given in �gure 1.3.)

In the worst case, each pixel may correspond to an individual leaf. On the
other hand, if the image contains a small number of regions with relatively
uniform grey-levels, then a substantial data reduction can be obtained.

This representation has been used in simple segmentation algorithms for
image processing of grey-level data. In the \split-and-merge" algorithm,
a splitting step is �rst performed according to the above scheme. Then,
adjacent regions are merged if the variation measure of the union of the
two regions is below the threshold. Another application (when typically
� = 0) concerns objects de�ned by uniform grey-levels, e.g. binary objects;
see e.g. the book by Tanimoto and Klinger (1980) for more references on
this type of representation.

3For three-dimensional data sets, the corresponding representation is usually referred
to as octtree.
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Figure 1.3. Illustration of quad-tree and the split-and-merge segmentation algorithm;
(left) grey-level image, (middle) the leaves of the quad-tree, i.e., the regions after the
split step that have a standard deviation below the given threshold, (right) regions after
the merge step. (From [76].)

1.3.2. Pyramids

Pyramids are representations that combine the subsampling operation with
a smoothing step. Historically they have yielded important steps towards
current scale-space theories and we shall therefore consider them in more
detail. To illustrate the idea, assume again, for simplicity, that the size of
the input image I is 2K � 2K, and let I(K) = I . The representation of
I(K) at a coarser level I(K�1) is de�ned by a reduction operator. Moreover,
assume that the smoothing �lter is separable, and that the number of �lter
coe�cients along one dimension is odd. Then, it is su�cient to study the
following one-dimensional situation:

f (k�1) = REDUCE(f (k))

f (k�1)(x) =
PN
n=�N c(n) f (k)(2x� n); (1.1)

where c:Z! R denotes a set of �lter coe�cients. This type of low-
pass pyramid representation (see �gures 1.4{1.5) was proposed almost
simultaneously by Burt (1981) and in a thesis by Crowley (1981).

Low-pass and band-pass pyramids: Basic structure. A main advantage
of this representation is that the image size decreases exponentially with
the scale level, and hence also the amount of computations required to
process the data. If the �lter coe�cients c(n) are chosen properly, the
representations at coarser scale levels (smaller k) will correspond to coarser
scale structures in the image data. How can the �lter be determined? Some
of the most obvious design criteria that have been proposed for determining
the �lter coe�cients are:

� positivity: c(n) � 0,
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2n+1 � 2n+1

2n � 2n

2n�1 � 2n�1

Figure 1.4. A pyramid representation is obtained by successively reducing the image
size by combined smoothing and subsampling. (From [76].)

� unimodality: c(jnj) � c(jn+ 1j),
� symmetry: c(�n) = c(n), and
� normalization:

PN
n=�N c(n) = 1.

Another natural condition is that all pixels should contribute equally to all
levels. In other words, any point that has an odd coordinate index should
contribute equally to the next coarser level as any point having an even
coordinate value. Formally this can be expressed as

� equal contribution:
PN
n=�N c(2n) =

PN
n=�N c(2n+ 1).

Equivalently, this condition means that the kernel (1=2; 1=2) of width two
should occur as at least one factor in the smoothing kernel.

The choice of the �lter size N gives rise to a trade-o� problem. A larger
value of N increases the number of degrees of freedom in the design at the
cost of increased computational work. A natural choice when N = 1 is the
binomial �lter

(
1

4
;

1

2
;

1

4
) (1.2)

which is the unique �lter of width three that satis�es the equal contribution
condition. It is also the unique �lter of width three for which the Fourier
transform  (�) =

PN
n=�N c(n) exp(�in�) is zero at � = ��. A negative

property of this kernel, however, is that when applied repeatedly, the
equivalent convolution kernel (which corresponds to the combined e�ect
of iterated smoothing and subsampling) tends to a triangular function.



Lindeberg and ter Haar Romeny 9

Gaussian pyramid

Figure 1.5. A Gaussian (low-pass) pyramid is obtained by successive smoothing and
subsampling. This pyramid has been generated by the general reduction operator in
equation (1.1) using the binomial �lter from equation (1.2). (From [76].)
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Of course there is a large class of other possibilities. Concerning kernels
of width �ve (N = 2), the previously stated conditions in the spatial domain
imply that the kernel has to be of the form

(
1

4
� a

2
;

1

4
; a;

1

4
;

1

4
� a

2
): (1.3)

Burt and Adelson (1983) argued that a should be selected such that
the equivalent smoothing function should be as similar to a Gaussian as
possible. Empirically, they selected the value a = 0:4.

By considering a representation de�ned as the di�erence between two
adjacent levels in a low-pass pyramid, one obtains a bandpass pyramid,
termed \Laplacian pyramid" by Burt and \DOLP" (Di�erence Of Low
Pass) by Crowley. This representation has been used for feature detection
and data compression. Among features that can be detected are blobs
(maxima), peaks and ridges etc (Crowley et al. 1984, 1987).

Properties. To summarize, the main advantages of the pyramid
representations are that they lead to a rapidly decreasing image size, which
reduces the computational work both in the actual computation of the
representation and in the subsequent processing. The memory requirements
are small, and there exist commercially available implementations of
pyramids in hardware. The main disadvantage concerning pyramids is that
they correspond to quite a coarse quantization along the scale direction,
which makes it algorithmically complicated to relate (match) structures
across scales. Furthermore, pyramids are not translationally invariant.

Further reading. There is a large literature on further work of pyramid
representations; see e.g. the book by Jolion and Rosenfeld (1994), the
books edited by Rosenfeld (1984), Cantoni and Levialdi (1986) as well
as the special issue of IEEE-TPAMI edited by Tanimoto (1989). A
selection of recent developments can also be found in the articles by
Chehikian and Crowley (1991), Knudsen and Christensen (1991), and
Wilson and Bhalerao (1992). An interesting approach is the introduction of
\oversampled pyramids", in which not every smoothing step is followed by
a subsampling operation, and hence, a denser sampling along the scale
direction can be obtained. Pyramids can, of course, also be expressed
for three-dimensional datasets such as medical tomographic data (see e.g.
Vincken et al. 1992).

It is worth noting that pyramid representations show a high degree of
similarity with a type of numerical methods called multi-grid methods; see
the book by Hackbusch (1985) for an extensive treatment of the subject.
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1.4. Linear scale-space

In the quad tree and pyramid representations rather coarse steps are
taken in the scale-direction. A scale-space representation is a special type
of multi-scale representation that comprises a continuous scale parameter
and preserves the same spatial sampling at all scales. The Gaussian scale-
space of a signal, as introduced by Witkin (1983), is an embedding of the
original signal into a one-parameter family of derived signals constructed
by convolution with Gaussian kernels of increasing width.

The linear scale-space representation of a continuous signal is
constructed as follows. Let f :RN ! R represent any given signal. Then, the
scale-space representation I :RN � R+ ! R is de�ned by letting the scale-
space representation at zero scale be equal to the original signal I(�; 0) = f
and for t > 0

I(�; t) = g(�; t) � f; (1.4)

where t 2 R+ is the scale parameter, and g:RN � R+nf0g ! R is the
Gaussian kernel; in arbitrary dimensions (x 2 RN; xi 2 R) it is written

g(x; t) =
1

(4�t)N=2
e�x

T x=(4t) =
1

(4�t)N=2
e�
PN

i=1
x2i =(4t): (1.5)

Figure 1.6. (left) The main idea with a scale-space representation of a signal is to
generate a family of derived signals in which the �ne-scale information is successively
suppressed. This �gure shows a one-dimensional signal that has been smoothed by
convolution with Gaussian kernels of increasing width. (right) Under this transformation,
the zero-crossings of the second derivative form paths across scales that are never closed
from below. (Adapted from Witkin 1983).

Historically, the main idea behind this construction of the Gaussian scale-
space representation is that the �ne-scale information should be suppressed
with increasing values of the scale parameter. Intuitively, when convolving
a signal by a Gaussian kernel with standard deviation � =

p
2t, the e�ect



12 1. Linear scale-space: Basic theory

Scale-Space Pyramid

Figure 1.7. A few slices from the scale-space representation of the image used for
illustrating the pyramid concept. The scale levels have been selected such that the
standard deviation of the Gaussian kernel is approximately equal to the standard
deviation of the equivalent convolution kernel corresponding to the combined e�ect of
smoothing and subsampling (from bottom to top; �2 = 0.5, 2.5, 10.5, 42.5 and 270.5).
For comparison, the result of applying the Laplacian operator to these images is shown
as well. Observe the di�erences and similarities compared to �gure 1.5. (From [76].)
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of this operation is to suppress4 most of the structures in the signal with a
characteristic length less than �; see �gure 1.6(a). Notice how this successive
smoothing captures the intuitive notion of the signals becoming gradually
smoother. A two-dimensional example is presented in �gure 1.7.

1.5. Towards formalizing the scale-space concept

In this section we shall review some of the most important approaches
for formalizing the notion of scale and for deriving the shape of the scale-
space kernels in the linear scale-space theory. In a later chapter in this
book by Alvarez and Morel (1994) it will be described how these ideas can
be extended to non-linear scale-spaces and how the approach relates to
mathematical morphology.

1.5.1. Continuous signals: Original formulation

When Witkin introduced the term scale-space, he was concerned with one-
dimensional signals and observed that new local extrema cannot be created
in this family. Since di�erentiation commutes with convolution,

@xnI(�; t) = @xn(g(�; t) � f) = g(�; t) � @xnf; (1.6)

this non-creation property applies also to any nth-order spatial derivative
computed from the scale-space representation.

Recall that an extremum in a one-dimensional signal I is equivalent to a
zero-crossing in the �rst-order derivative Ix. The non-creation of new local
extrema means that the zero-crossings in any derivative of I form closed
curves across scales, which will never be closed from below; see �gure 1.6(b).
Hence, in the one-dimensional case, the zero-crossings form paths across
scales, with a set of inclusion relations that gives rise to a tree-like data
structure, termed \interval tree". (For higher-dimensional signals, however,
new local extrema and zero-crossings can be created; see section 1.5.5.)

An interesting empirical observation made by Witkin was a marked
correspondence between the length of the branches in the interval tree and
perceptual saliency:

... intervals that survive over a broad range of scales tend to leap out
to the eye ...

In later work by Lindeberg (1991, 1993, 1994) it has been demonstrated
that this observation can be extended to a principle for actually detecting

4Some care must, however, be taken when expressing such a statement. As we shall in
section 2.3 in next chapter, adjacent structures (e.g. extrema) can be arbitrary close after
arbitrary large amounts of smoothing, although the likelihood for the distance between
two adjacent structures to be less than some value � decreases with increasing scale.
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signi�cant image structures from the scale-space representation. That
approach is based on the stability and lifetime over scales, the local contrast,
and the spatial extent of blob-like image structures.

Gaussian smoothing has been used also before Witkin proposed the
scale-space concept, e.g. by Marr and Hildreth (1980) who considered zero-
crossings of the Laplacian in images convolved with Gaussian kernels of
di�erent standard deviation. One of the most important contributions of
Witkins scale-space formulation, however, was the systematic way to relate
and interconnect such representations and image structures at di�erent
scales in the sense that a scale dimension should be added to the scale-
space representation, so that the behaviour of structures across scales can
be studied. Some aspects of the resulting "deep structure" of scale-space,
i.e. the study of the relations between structures at di�erent scales, will be
considered in the next chapter (section 2.3). See also (Koenderink 1994).

1.5.2. Inner scale, outer scale, and scale-space

Koenderink (1984) emphasized that the problem of scale must be faced
in any imaging situation. Any real-world image has a limited extent
determined by two scales, the outer scale corresponding to the �nite size of
the image, and the inner scale given by the resolution. For a digital image
the inner scale is determined by the pixel size, and for a photographic image
by the grain size in the emulsion.

As described in the introduction, similar properties apply to objects in
the world, and hence to image features. The outer scale of an object or a
feature may be said to correspond to the (minimum) size of a window that
completely contains the object or the feature, whereas the inner scale of an
object or a feature may loosely be said to correspond to the coarsest scale
at which substructures of the object or the feature begin to appear.

Referring to the analogy with cartography given in the introduction, it
should be emphasized that an atlas usually contains a set of maps covering
some region of interest. Within each map the outer scale typically scales
in proportion with the inner scale. A single map is, however, usually not
su�cient for us to �nd our way around the world. We need the ability to
zoom in to structures at di�erent scales; i.e., decrease and increase the inner
scale of the observation according to the type of situation at hand. (For an
excellent illustration of this notion, see the popular book Powers of Ten

(Morrison and Morrison 1985), which shows pictures of the world over 50
decades of scale from the largest to the smallest structures in the universe
known to man.)

Koenderink also stressed that if there is no a priori reason for looking at
speci�c image structures, the visual system should be able to handle image
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structures at all scales. Pyramid representations approach this problem by
successive smoothing and subsampling of images. However,

\The challenge is to understand the image really on all these levels
simultaneously , and not as unrelated set of derived images at di�erent
levels of blurring ..."

Adding a scale dimension to the original data set, as is done in the one-
parameter embedding, provides a formal way to express this interrelation.

1.5.3. Causality

The observation that new local extrema cannot be created when increasing
the scale parameter in the one-dimensional case shows that the Gaussian
convolution satis�es certain su�ciency requirements for being a smoothing
operation. The �rst proof of the necessity of Gaussian smoothing for a
scale-space representation was given by Koenderink (1984), who also gave
a formal extension of the scale-space theory to higher dimensions. He
introduced the concept of causality, which means that new level surfaces

f(x; y; t) 2 R2� R: I(x; y; t) = I0g

must not be created in the scale-space representation when the scale
parameter is increased (see �gure 1.8). By combining causality with the
notions of isotropy and homogeneity, which essentially mean that all spatial
positions and all scale levels must be treated in a similar manner, he showed
that the scale-space representation must satisfy the di�usion equation

@tI = r2I: (1.7)

This di�usion equation (with initial condition I(�; 0) = f) is the well-
known physical equation that describes how a heat distribution I evolves
over time t in a homogeneous medium with uniform conductivity, given
an initial heat distribution I(�; 0) = f (see e.g. Widder 1975 or Strang
1986). Since the Gaussian kernel is the Green's function of the di�usion
equation at an in�nite domain, it follows that the Gaussian kernel is the
unique kernel for generating the scale-space. A similar result holds, as we
shall see later, in any dimension.

The technique used for proving this necessity result was by studying
the level surface through any point in scale-space for which the grey-level
function assumes a maximum with respect to the spatial coordinates. If no
new level surface is to be created when increasing scale, the level surface
should point with its concave side towards decreasing scales. This gives rise
to a sign condition on the curvature of the level surface, which assumes
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Figure 1.8. The causality requirement means that level surfaces in scale-space must
point with their concave side towards �ner scale (a); the reverse situation (b) should
never occur. (From [76].)

the form (1.7) when expressed in terms of derivatives of the scale-space
representation with respect to the spatial and scale coordinates. Since
points at which extrema are obtained cannot be assumed to be known
a priori, this condition must hold in any point, which proves the result.

In the one-dimensional case, this level surface condition becomes a level
curve condition, and is equivalent to the previously stated non-creation of
local extrema. Since any nth-order derivative of I also satis�es the di�usion
equation

@tIxn = r2Ixn ; (1.8)

it follows that new zero-crossing curves in Ix cannot be created with
increasing scale, and hence, no new maxima.

A similar result was given by Yuille and Poggio (1985, 1986) concerning
the zero-crossings of the Laplacian of the Gaussian. Related formulations
have also been expressed by Babaud et al. (1986) and Hummel (1986, 1987).

1.5.4. Non-creation of local extrema

Lindeberg (1990, 1991) considered the problem of characterizing those
kernels in one dimension that share the property of not introducing new
local extrema in a signal under convolution. A kernel h 2 L1 possessing the
property that for any input signal fin 2 L1 the number of extrema in the
convolved signal fout = h � fin is always less than or equal to the number
of local extrema in the original signal is termed a scale-space kernel:

� scale-space kernel: #extrema(h � fin) � #extrema(fin) 8fin 2 L1.

From similar arguments as in section 1.5.1, this de�nition implies that
the number of extrema (or zero-crossings) in any nth-order derivative is
guaranteed never to increase. In this respect, convolution with a scale-space
kernel has a strong smoothing property.

Such kernels can easily be shown to be positive and unimodal both
in the spatial and the frequency domain. These properties may provide a
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formal justi�cation for some of the design criteria listed in section 1.3.2
concerning the choice of �lter coe�cients for pyramid generation.

If the notion of a local maximum or zero-crossing is de�ned in a proper
manner to cover also non-generic functions, it turns out that scale-space
kernels can be completely classi�ed using classical results by Schoenberg
(1950). It can be shown that a continuous kernel h is a scale-space kernel
if and only if it has a bilateral Laplace-Stieltjes transform of the form

Z 1

x=�1
h(x) e�sxdx = C es

2+�s
1Y
i=1

eais

1 + ais
(1.9)

where �c < Re(s) < c for some c > 0 and where C 6= 0,  � 0, � and ai are
real, and

P1
i=1 a

2
i is convergent; see also the excellent books by Hirschmann

and Widder (1955) and by Karlin (1968).
Interpreted in the spatial domain, this result means that for continuous

signals there are four primitive types of linear and shift-invariant smoothing
transformations; convolution with the Gaussian kernel,

h(x) = e�x
2

; (1.10)

convolution with the truncated exponential functions,

h(x) =

(
e�j�jx x � 0;
0 x < 0;

h(x) =

(
ej�jx x � 0;
0 x > 0;

(1.11)

as well as trivial translation and rescaling .
The product form of the expression (1.9) reects a direct consequence

of the de�nition of a scale-space kernel; the convolution of two scale-space
kernels is a scale-space kernel. Interestingly, the reverse holds; a shift-
invariant linear transformation is a smoothing operation if and only if it
can be decomposed into these primitive operations.

1.5.5. Semi-group and continuous scale parameter

Another approach to �nd the appropriate families of scale-space kernels is
provided by group theory . A natural structure to impose on a scale-space
representation is a semi-group structure5, i.e., if every smoothing kernel is
associated with a parameter value, and if two such kernels are convolved
with each other, then the resulting kernel should be a member of the same
family,

h(�; t1) � h(�; t2) = h(�; t1 + t2): (1.12)
5Note that the semi-group describes an essentially one-way process. In general, this

convolution operation cannot be reversed.
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In particular, this condition implies that the transformation from a �ne
scale to any coarse scale should be of the same type as the transformation
from the original signal to any scale in the scale-space representation.
Algebraically, this property can be written as

I(�; t2) = fde�nitiong = h(�; t2) � f
= fsemi-groupg = (h(�; t2 � t1) � h(�; t1)) � f
= fassociativityg = h(�; t2 � t1) � (h(�; t1) � f)
= fde�nitiong = h(�; t2 � t1) � I(�; t1):

(1.13)

If a semi-group structure is imposed on a one-parameter family of scale-
space kernels that satisfy a mild degree of smoothness (Borel-measurability)
with respect to the parameter, and if the kernels are required to be
symmetric and normalized, then the family of smoothing kernels is uniquely
determined to be a Gaussian (Lindeberg 1990),

h(x; t) =
1p
4��t

e�x
2=(4�t) (t > 0 � 2 R): (1.14)

In other words, when combined with the semi-group structure, the non-
creation of new local extrema means that the smoothing family is uniquely
determined.

Despite the completeness of these results, however, they cannot
be extended directly to higher dimensions, since in two (and higher)
dimensions there are no non-trivial kernels guaranteed to never increase
the number of local extrema in a signal. One example of this, originating
from an observation by Lifshitz and Pizer (1990), is presented below; see
also Yuille (1988) concerning creation of other types of image structures:

Imagine a two-dimensional image function consisting of two hills, one
of them somewhat higher than the other one. Assume that they are
smooth, wide, rather bell-shaped surfaces situated some distance apart
clearly separated by a deep valley running between them. Connect the
two tops by a narrow sloping ridge without any local extrema, so that
the top point of the lower hill no longer is a local maximum. Let this
con�guration be the input image. When the operator corresponding to
the di�usion equation is applied to the geometry, the ridge will erode
much faster than the hills. After a while it has eroded so much that
the lower hill appears as a local maximum again. Thus, a new local
extremum has been created.

Notice however, that this decomposition of the scene is intuitively quite
reasonable. The narrow ridge is a �ne-scale phenomenon, and should
therefore disappear before the coarse-scale peaks. The property that new
local extrema can be created with increasing scale is inherent in two and
higher dimensions.
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1.5.6. Scale invariance and the Pi theorem

A formulation by Florack et al. (1992) and continued work by Pauwels
et al. (1994) show that the class of allowable scale-space kernels can be
restricted under weaker conditions, essentially by combining the earlier
mentioned conditions about linearity, shift invariance, rotational invariance
and semi-group structure with scale invariance. The basic argument is
taken from physics; physical laws must be independent of the choice of
fundamental parameters. In practice, this corresponds to what is known
as dimensional analysis;6 a function that relates physical observables must
be independent of the choice of dimensional units.7 Notably, this condition
comprises no direct measure of \structure" in the signal; the non-creation
of new structure is only implicit in the sense that physically observable
entities that are subject to scale changes should be treated in a self-similar
manner.

Since this way of reasoning is valid in arbitrary dimensions and not
very technical, we shall reproduce it (although in a modi�ed form and with
somewhat di�erent proofs). The main result we shall arrive at is that scale
invariance implies that the Fourier transform of the convolution kernel must
be of the form

ĥ(!; �) = Ĥ(!�) = e�� j!�jp (1.15)

for some � > 0 and p > 0. The Gaussian kernel corresponds to the speci�c
case p = 2 and arises as a unique choice if certain additional requirements
are imposed.

Preliminaries: Semi-group with arbitrary parametrization. When basing
a scale-space formulation on scale invariance, some further considerations
are needed concerning the assumption about a semi-group structure.

In previous section, the scale parameter t associated with the semi-
group (see equation (1.12)) was regarded as an abstract ordering parameter
only. A priori , i.e. in the stage of formulating the axioms, there was no
direct connection between this parameter and measurements of scale in
terms of units of length. The only requirement was the qualitative (and
essential) constraint that increasing values of the scale parameter should
somehow correspond to representations at coarser scales. A posteriori , i.e.
after deriving the shape of the convolution kernel, we could conclude that
this parameter is related to scale as measured in units of length, e.g. via
the standard deviation of the Gaussian kernel �. The relationship is t =

6The great work by Fourier (1822) Th�eorie Analytique de la Chaleur has become
famous for its contribution on Fourier analysis. However, it also contains a second major
contribution that has been greatly underestimated for quite some time, viz . on the use
of dimensions for physical quantities.

7For a tutorial on this subject, see e.g. Cooper 1988).
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�2=2 and the semi-group operation corresponds to adding �-values in the
Euclidean norm.

In the derivation in this section, we shall assume that such a relationship
exists already in the stage of formulating the axioms. Introduce � as a
scale parameter of dimension [length] associated with each layer in the
scale-space representation. To allow for maximum generality in the relation
between t and �, assume that there exists some (unknown) transformation

t = '(�) (1.16)

such that the semi-group structure of the convolution kernel corresponds
to mere adding of the scale values when measured in terms of t. For kernels
parameterized by � the semi-group operation then assumes the form

h(�; �1) � h(�; �2) = h(�; �1((�1) + (�2))) (1.17)

where '�1 denotes the inverse of '. If zero scale should correspond to the
original signal it must hold that '(0) = 0. To preserve the ordering of scale
values ':R+ ! R+ must be monotonically increasing.

Proof: Necessity from scale invariance. In analogy with the previous scale-
space formulations, let us state that the �rst stages of processing should
be linear and be able to function without any a priori knowledge of the
outside world. Combined with scale invariance, this gives the following basic
axioms:

� linearity,
� no preferred location (shift invariance),
� no preferred orientation (isotropy),
� no preferred scale (scale invariance).

Recall that any linear and shift-invariant operator can be expressed as a
convolution operator and introduce � 2 R+ to represent an abstract scale
parameter of dimension [length]. Then, we can assume that the scale-space
representation I :RN � R+ ! R of any signal f :RN ! R is constructed by
convolution with some one-parameter family of kernels h:RN �R+! R

I(�; �) = h(�; �) � f: (1.18)

In the Fourier domain (! 2 RN) this convolution becomes a product:

Î(!; �) = ĥ(!; �) f̂(!): (1.19)
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Part A: Dimensional analysis, rotational symmetry, and scale invariance.
From dimensional analysis it follows that if a physical process is scale
independent, it should be possible to express the process in terms of
dimensionless variables. These variables can be obtained by using a result
in physics known as the Pi-theorem (see e.g. Olver 1986) which states that
if the dimensions of the occurring variables are arranged in a table with as
many rows as there are physical units and as many columns as there are
derived quantities (see next) then the number of independent dimensionless
quantities is equal to the number of derived quantities minus the rank of
the system matrix. With respect to the linear scale-space representation,
the following dimensions and variables occur:

Î f̂ ! �

[luminance] +1 +1 0 0

[length] 0 0 -1 +1

Obviously, there are four derived quantities and the rank of the matrix is
two. Hence, we can e.g. introduce the dimensionless variables Î=f̂ and !�.
Using the Pi-theorem, a necessary requirement for (1.19) to reect a scale
invariant process is that (1.19) can be written on the form

Î(!; �)

f̂(!; �)
= ĥ(!; �) = ~h(!�) (1.20)

for some function ~h:RN ! R. A necessary requirement on ~h is that
~h(0) = 1. Otherwise Î(!; 0) = f̂(!) would be violated. Since we require no

preference for orientation, it is su�cient to assume that ĥ depends on the
magnitude of its argument only and that for some function Ĥ:R! Rwith
Ĥ(0) = 1 it holds that

Î(!; �)

f̂(!; �)
= ~h(!�) = Ĥ(j!�j): (1.21)

In the Fourier domain, the semi-group relation (1.17) with the arbitrary
transformation function ' can be written

ĥ(!; �1) ĥ(!; �2) = ĥ(!; �1((�1) + (�2))) (1.22)

and from (1.21) it follows that Ĥ must obey

Ĥ(j!�1j) Ĥ(j!�2j) = Ĥ(j! '�1('(�1) + '(�2))j) (1.23)

for all �1; �2;  2 R+. It is straightforward to show (see the following
paragraph) that scale invariance implies that ' must be of the form

'(�) = C �p (1.24)
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for some arbitrary constants C > 0 and p > 0. Without loss of generality
we may take C = 1, since this parameter corresponds to an unessential
linear rescaling of t. Then, with '(�) = �p and ~H(xp) = Ĥ(x) we obtain

~H(j!�1jp) ~H(j!�2jp) = ~H(j!�1jp + j!�2jp); (1.25)

which can be recognized as the de�nition of the exponential function
( (�1) (�2) =  (�1 + �2))  (�) = a� for some a > 0). Consequently,

Ĥ(!�) = ~H(j!�jp) = exp(��j!�jp) (1.26)

for some � 2 R, and
ĥ(!; �) = Ĥ(!�) = e�� j!�j

p
: (1.27)

A real solution implies that � must be real. Concerning the sign of �, it is
natural to require

lim
�!1

ĥ(!; �) = 0 (1.28)

rather than lim�!1 ĥ(!; �) = 1. This means that � must be negative,
and we can without loss of generality set � = �1=2 to preserve consistency
with the de�nition of the standard deviation of the Gaussian kernel � in
the case when p = 2.

Necessity of self-similar parametrization t = C�p. To verify that scale
invariance implies that '(�) must be of the form (1.24), we can observe
that the left hand side of (1.23) is una�ected if �1 and �2 are multiplied
by an arbitrary constant  while ! is simultaneously divided by the same
constant. Hence, for all �1; �2;  2 R+ the following relation must hold:

'�1('(�1=) + '(�2=)) = '�1('(�1) + '(�2)): (1.29)

Di�erentiation with respect to �i (i = 1; 2) gives

'�1
0
('(�1=) + '(�2=))'

0(�i=) = '�1
0
('(�1) + '(�2))'

0(�i) (1.30)

where '0 denotes the derivative of ', etc. Dividing these equations for
i = 1; 2 and letting  = �2=�3 gives

'0
�
�1�3
�2

�
=
'0(�1)'

0(�3)

'0(�2)
: (1.31)

Let C 0 = '0(1) and  (�) = '0(�)=C 0. With �2 = 1 equation (1.31) becomes

 (�1�3) =  (�1) (�3): (1.32)
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This relation implies that  (�) = �q for some q. (The sceptical reader may
be convinced by introducing a new function � de�ned by  (�) = exp(�(�)).
This reduces (1.32) to the de�nition of the logarithm function �(�1�3) =
�(�1) + �(�3) and  0(�) = exp loga � = �1= log a for some a.)

Finally, the functional form of '(�) (equation (1.24)) can be obtained by
integrating '0(�) = C 0�q. Since �(0) = 0, the integration constant must be
zero. Moreover, the singular case q = �1 can be disregarded. The constants
C and p must be positive, since ' must be positive and increasing.

Part B: Choice of scale invariant semi-groups. So far, the arguments
based on scale invariance have given rise to a one-parameter family of semi-
groups. The convolution kernels of these are characterized by having Fourier
transforms of the form

ĥ(!; �) = e�j!�jp=2 (1.33)

where the parameter p > 0 is undetermined. In the work by Florack et al.
(1992) separability in Cartesian coordinates was used as a basic constraint.
Except in the one-dimensional case, this �xates h to be a Gaussian.

Since, however, rotational symmetry combined with separability per se
are su�cient to �xate the function to be a Gaussian, and the selection of
two orthogonal coordinate directions constitutes a very speci�c choice, it is
illuminating to consider the e�ect of using other choices of p.8

In a recent work, Pauwels et al. (1994) have analyzed properties of these
convolution kernels. Here, we shall review some basic results and describe
how di�erent additional constraints on h lead to speci�c values of p.

Powers of ! that are even integers. Consider �rst the case when p is an
even integer. Using the well-known relation between moments in the spatial
domain and derivatives in the frequency domainZ

x2R
xnh(x) dx = (�i)nĥ(n)(0); (1.34)

it follows that the second moments of h are zero for any p > 2. Hence, p = 2
is the only even integer that corresponds to a non-negative convolution
kernel (recall from section 1.5.4 that non-creation of local extrema implies
that the kernel has to be non-negative).

8This well-known result can be easily veri�ed as follows: Consider for simplicity the
two-dimensional case. Rotational symmetry and separability imply that h must satisfy
h(r cos �; r sin �) = h1(r) = h2(r cos �)h2(r sin �) for some functions h1 and h2 ((r; �)
are polar coordinates). Inserting � = 0 shows that h1(r) = h2(r) h2(0). With  (�) =
log(h2(�)=h2(0)) this relation reduces to  (r cos�)+ (r sin �) =  (r). Di�erentiating this
relation with respect to r and � and combining these derivatives shows that  0(r sin �) =
 0(r) sin �. Di�erentiation gives 1=r =  00(r)= 0(r) and integration log r = log  0(r) �
log b for some b. Hence,  0(�) = b� and h2(�) = a exp(b�2=2) for some a and b.
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Locality of in�nitesimal generator. An important requirement of a multi-
scale representation is that it should be di�erentiable with respect to the
scale parameter. A general framework for expressing di�erentiability of
semi-groups is in terms of in�nitesimal generators (see section 1.7.2 for
a review and a scale-space formulation based on this notion). In Pauwels
et al. (1994) it is shown that the corresponding multi-scale representations
generated by convolution kernels of the form (1.33) have local in�nitesimal
generators (basically meaning that the multi-scale representations obey
di�erential equations that can be expressed in terms of di�erential operators
only; see section 1.7.2) if and only if the exponent p is an even integer.

Speci�c choice: Gaussian kernel. In these respects, p = 2 constitutes a
very special choice, since it is the only choice that corresponds to a local
in�nitesimal generator and a non-negative convolution kernel.

Similarly, p = 2 is the unique choice for which the multi-scale
representation satis�es the causality requirement (as will be described in
section 1.7.2, a reformulation of the causality requirement in terms of non-
enhancement of local extrema implies that the scale-space family must have
an in�nitesimal generator corresponding to spatial derivatives up to order
two).

1.5.7. Other special properties of the Gaussian kernel

The Gaussian kernel has some other special properties. Consider for
simplicity the one-dimensional case and de�ne normalized second-moments
�x and �! in the spatial and the Fourier domain respectively by

�x =

R
x2Rx

Txjh(x)j2dxR
x2Rjh(x)j2dx

; �! =

R
!2R!

T!jĥ(!)j2d!R
!2Rjĥ(!)j2d!

; (1.35)

These entities measure the \spread" of the distributions h and ĥ, (where

the Fourier transform of any function h:RN � R! R is given by ĥ(!) =R
x2RN h(x) e�i!

Tx dx). Then, the uncertainty relation states that

�x�! � 1

2
: (1.36)

A remarkable property of the Gaussian kernel is that it is the only real
kernel that gives equality in this relation.

The Gaussian kernel is also the frequency function of the normal
distribution. The central limit theorem in statistics states that under
rather general requirements on the distribution of a stochastic variable,
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the distribution of a sum of a large number of such variables asymptotically
approaches a normal distribution when the number of terms tend to in�nity.

1.6. Gaussian derivative operators

Above, it has been shown that by starting from a number of di�erent sets of
axioms it is possible to single out the Gaussian kernel as the unique kernel
for generating a (linear) scale-space. From this scale-space representation,
multi-scale spatial derivative operators can then be de�ned by

Ii1:::in(�; t) = @i1:::inI(�; t) = Gi1:::in(�; t) � I; (1.37)

where Gi1:::in(�; t) denotes a (possibly mixed) derivative of some order
n = i1 + : : : iN of the Gaussian kernel. In terms of explicit integrals, the
convolution operation (1.37) is written

Ii1:::in(x; t) =
Z
x02RN

gi1:::in(x
0; t) f(x� x0) dx0: (1.38)

Graphical illustrations of such Gaussian derivative kernels in the one-
dimensional and two-dimensional cases are given in �gures 1.9 and 1.10.

1.6.1. In�nite di�erentiability

This representation where scale-space derivatives are de�ned by integral
operators has a strong regularizing property. If f is bounded by some
polynomial, i.e. if there exist some constants C1; C2 2 R+ such that

jf(x)j � C1 (1 + xTx)C2 (x 2 RN); (1.39)

then the integral (1.38) is guaranteed to converge for any t > 0. This
means that although f may not be di�erentiable of any order, or not
even continuous, the result of the Gaussian derivative operator is always
well-de�ned. According to the theory of generalized functions (or Schwartz
distributions) (Schwartz 1951; H�ormander 1963), we can then for any t > 0
treat I(�; t) = g(�; t) � f as in�nitely di�erentiable.

1.6.2. Multi-scale N -jet representation and necessity

Considering the spatial derivatives up to some order N enables
characterization of the local image structure up to that order, e.g., in terms
of the Taylor expansion9 of the intensity function

I(x+ �x) = I(x)+ Ii�xi+
1

2!
Iij�xi�xj +

1

3!
Iijk�xi�xj�xk +O(�x4): (1.40)

9Here paired indices are summed over the spatial dimensions. In two dimensions we
have Ii�xi = Ixdx+ Iydx.
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Figure 1.9. Graphs of the one-dimensional Gaussian derivative kernels @xng(x; t)
up to order n = 4 at scales �2 = 1:0 (left columns) and �2 = 16:0 (right columns).
The derivative/di�erence order increases from top to bottom. The upper row shows
the raw smoothing kernel. Then follow the �rst-, second-, third- and fourth-order
derivative/di�erence kernels. The continuous curves show the continuous Gaussian
derivative kernels and the block diagrams discrete approximations (see section 1.7.3).
(From [76].)
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Gaussian derivative kernels

Figure 1.10. Grey-level illustrations of two-dimensional Gaussian derivative kernels
up to order three. (Top row) Zero-order smoothing kernel, T , (inverted). (Second
row) First-order derivative kernels, �xT and �yT . (Third row) Second-order derivative
kernels �xxT , �xyT , �yyT . (Bottom row) Third-order derivative kernels �xxxT , �xxyT ,
�xyyT , �yyyT . Qualitatively, these kernels resemble the shape of the continuous
Gaussian derivative kernels. In practice though, they are de�ned as discrete derivative
approximations using the canonical discretization framework described in section 1.7.3.
(Scale level t = 64:0, image size 127 � 127 pixels.) (From [76].)
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In early work, Koenderink and van Doorn (1987) advocated the use of this
so-called multi-scale N -jet signal representation as a model for the earliest
stages of visual processing10. Then, in (Koenderink and van Doorn 1992)
they considered the problem of deriving linear operators from the scale-
space representation that are to be invariant under scaling transformations.
Inspired by the relation between the Gaussian kernel and its derivatives,
here in one dimension,

@xng(x; �
2) = (�1)n 1

�n
Hn(

x

�
) g(x; �2); (1.41)

which follows from the well-known relation between derivatives of the
Gaussian kernel and the Hermite polynomials Hn (see table 1.1)

@xn(e
�x2) = (�1)nHn(x) e

�x2 ; (1.42)

they considered the problem of deriving operators with a similar scaling
behaviour. Starting from the Ansatz

 (�)(x; �) =
1

��
'(�)(

x

�
) g(x; �); (1.43)

where the superscript (�) describes the \order" of the function, they
considered the problem of determining all functions '(�):RN ! R such
that  (�):RN ! R satis�es the di�usion equation. Interestingly, '(�) must
then satisfy the time-independent Schr�odinger equation

rTr'(�) + ((2�+N)� �T �)'(�) = 0; (1.44)

where � = x=�. This is the physical equation that governs the quantum
mechanical free harmonic oscillator. It is well-known from mathematical
physics that the solutions '(�) to this equation are the Hermite functions,
that is Hermite polynomials multiplied by Gaussian functions. Since
derivatives of a Gaussian kernel are also Hermite polynomials times
Gaussian functions, it follows that the solutions  (�) to the original problem
are the derivatives of the Gaussian kernel. This result provides a formal
statement that Gaussian derivatives are natural operators to derive from
scale-space. (Figure 1.11 shows a set of Gaussian derivatives computed in
this way.)

1.6.3. Scale-space properties of Gaussian derivatives

As pointed out above, these scale-space derivatives satisfy the di�usion
equation and obey scale-space properties, for example, the cascade

10In section 2.2 in the next chapter it is shown how this framework can be applied to
computational modeling of various types of early visual operations for computing image
features and cues to surface shape.
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order Hermite polynomial

H0(x) 1

H1(x) x

H2(x) x2 � 1

H3(x) x3 � 3x

H4(x) x4 � 6x2 + 3

H5(x) x5 � 10x3 + 15x

H6(x) x6 � 15x4 + 45x2 � 15

H7(x) x7 � 21x5 + 105x3 � 105x

TABLE 1.1. The �rst eight Hermite polynomials (x 2R).

smoothing property

g(�; t1) � gxn(�; t2) = gxn(�; t2 + t1): (1.45)

The latter result is a special case of the more general statement

gxm(�; t1) � gxn(�; t2) = gxm+n(�; t2 + t1); (1.46)

whose validity follows directly from the commutative property of
convolution and di�erentiation.

1.6.4. Directional derivatives

Let (cos�; sin �) represent a unit vector in a certain direction �. From
the well-known expression for the nth-order directional derivative @n� of a
function I in any direction �,

@n� I = (cos� @x + sin � @y)
n I: (1.47)

if follows that a directional derivative of order n in any direction can be
constructed by linear combination of the partial scale-space derivatives

Ix1 ; Ix2 ; Ix1x1 ; Ix1x2 ; Ix2x2 ; Ix1x1x1 ; Ix1x1x2 ; Ix1x2x2 ; Ix2x2x2 ; : : :

of that order. Figure 1.12 shows equivalent derivative approximations
kernels of order one and two constructed in this way.

In the terminology of Freeman and Adelson (1990) and Perona (1992),
kernels whose outputs are related by linear combinations are said to be
\steerable". Note, however, that in this case the \steerable" property is
not attributed to the speci�c choice of the Gaussian kernel. The relation
(1.47) holds for any n times continuously di�erentiable function.



30 1. Linear scale-space: Basic theory

Figure 1.11. Scale-space derivatives up to order two computed from the telephone and
calculator image at scale level �2 = 4:0 (image size 128�128 pixels). From top to bottom
and from left to right; I, Ix, Iy, Ixx, Ixy, and Iyy.

1.7. Discrete scale-space

The treatment so far has been concerned with continuous signals. Since real-
world signals obtained from standard digital cameras are discrete, however,
an obvious problem concerns how to discretize the scale-space theory while
still maintaining the scale-space properties.

1.7.1. Non-creation of local extrema

For one-dimensional signals a complete discrete theory can be based on
a discrete analogy to the treatment in section 1.5.4. Following Lindeberg
(1990, 1991), de�ne a discrete kernel h 2 L1 to be a discrete scale-space
kernel if for any signal fin the number of local extrema in fout = h � fin
does not exceed the number of local extrema in fin.

Using classical results (mainly by Schoenberg 1953; see also Karlin 1968
for a comprehensive summary), it is possible to completely classify those
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Figure 1.12. First- and second-order directional derivative approximation kernels in the
22:5 degree direction computed by linear combination of partial derivatives according to
(1.47). (Scale level t = 64:0, image size 127 � 127 pixels.) (From [76].)

kernels that satisfy this de�nition. A discrete kernel is a scale-space kernel
if and only if its generating function 'h(z) =

P1
n=�1 h(n) zn is of the form

'K(z) = c zk e(q�1z
�1+q1z)

1Y
i=1

(1 + �iz)(1 + �iz
�1)

(1� �iz)(1� iz�1)
; (1.48)

where

c > 0, k;2 Z,

q�1; q1; �i; �i; i; �i � 0,

�i; i < 1, andP1
i=1(�i + �i + i + �i) <1.

The interpretation of this result is that there are �ve primitive types of
linear and shift-invariant smoothing transformations, of which the last two
are trivial;

� two-point weighted average or generalized binomial smoothing,

fout(x) = fin(x) + �ifin(x� 1) (� � 0);

fout(x) = fin(x) + �ifin(x+ 1) (�i � 0);

� moving average or �rst-order recursive �ltering,

fout(x) = fin(x) + �ifout(x� 1) (0 � �i < 1);

fout(x) = fin(x) + ifout(x+ 1) (0 � i < 1);

� in�nitesimal smoothing or di�usion smoothing (explained below),
� rescaling, and
� translation.

It follows that a discrete kernel is a scale-space kernel if and only if it can
be decomposed into the above primitive transformations. Moreover, the
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only non-trivial smoothing kernels of �nite support arise from generalized
binomial smoothing (i.e., non-symmetric extensions of the �lter (1.2)).

If this de�nition is combined with a requirement that the family of
smoothing transformations must obey a semi-group property (1.12) over
scales and possesses a continuous scale parameter , then there is in principle
only one way to construct a scale-space for discrete signals. Given a signal
f :Z! R the scale-space :Z�R+! R is given by

I(x; t) =
1X

n=�1

T (n; 2t)f(x� n); (1.49)

where T :Z� R+ ! R is a kernel termed the discrete analogue of the
Gaussian kernel . It is de�ned in terms of one type of Bessel functions,
the modi�ed Bessel functions ~In (see Abramowitz and Stegun 1964):11

T (n; 2t) = e�2�t ~In(2�t): (1.50)

This kernel satis�es several properties in the discrete domain that are
similar to those of the Gaussian kernel in the continuous domain; for
example, it tends to the discrete delta function when t ! 0, while for
large t it approaches the continuous Gaussian. The scale parameter t can
be related to spatial scale from the second-moment of the kernel, which
when � = 1 is

1X
n=�1

n2 T (n; 2t) = 2t: (1.51)

The term \di�usion smoothing" can be understood by noting that the scale-
space family I satis�es a semi-discretized version of the di�usion equation:

@tI(x; t) = I(x+ 1; t)� 2I(x; t) + I(x� 1; t) = r2
2Ix; t) (1.52)

with initial condition I(x; 0) = f(x), i.e., the equation that is obtained
if the continuous one-dimensional di�usion equation is discretized in space
using the standard second di�erence operatorr2

3I , but the continuous scale
parameter is left untouched.

A simple interpretation of the discrete analogue of the Gaussian kernel
is as follows: Consider the time discretization of (1.52) using Eulers explicit
method

I(k+1)(i) = �t I(k)(i+ 1) + (1� 2�t) I(k)(i) + �t I(k)(i� 1); (1.53)
11The factor 2 in the notation 2t arises due to the use of di�erent parameterizations of

the scale parameter. In this book, the scale parameter is related to the standard deviation
of the Gaussian kernel � by �2 = 2t which means that the di�usion equation assumes the
form It = r

2I. In a large part of the other scale-space literature, the di�usion equation
is written It = 1=2r2I with the advantage that the scale parameter is the square of the
standard deviation of the Gaussian kernel t = �2.
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where the superscript (k) denotes iteration index. Assume that the scale-
space representation of I at scale t is to be computed by applying this
iteration formula using n steps with step size �t = t=n. Then, the
discrete analogue of the Gaussian kernel is the limit case of the equivalent
convolution kernel

(
t

n
; 1� 2t

n
;

t

n
)n; (1.54)

when n tends to in�nity, i.e., when the number of steps increases and each
individual step becomes smaller. This shows that the discrete analogue
of the Gaussian kernel can be interpreted as the limit case of iterative
application of generalized binomial kernels.

Despite the completeness of these results, and their analogies to
the continuous situation, however, they cannot be extended to higher
dimensions. Using similar arguments as in the continuous case it can be
shown that there are no non-trivial kernels in two or higher dimensions
that are guaranteed to never introduce new local extrema. Hence, a discrete
scale-space formulation in higher dimensions must be based on other
axioms.

1.7.2. Non-enhancement and in�nitesimal generator

It is clear that the continuous scale-space formulations in terms of causality
and scale invariance cannot be transferred directly to discrete signals;
there are no direct discrete correspondences to level curves and di�erential
geometry in the discrete case. Neither can the scaling argument be
carried out in the discrete situation if a continuous scale parameter is
desired, since the discrete grid has a preferred scale given by the distance
between adjacent grid points. An alternative way to express the causality
requirement in the continuous case, however, is as follows (Lindeberg 1990):

Non-enhancement of local extrema: If for some scale level t0 a point
x0 is a local maximum for the scale-space representation at that level
(regarded as a function of the space coordinates only) then its value
must not increase when the scale parameter increases. Analogously, if
a point is a local minimum then its value must not decrease when the
scale parameter increases.

It is clear that this formulation is equivalent to the formulation in terms
of level curves for continuous data, since if the grey-level value at a local
maximum (minimum) would increase (decrease) then a new level curve
would be created. Conversely, if a new level curve is created then some
local maximum (minimum) must have increased (decreased). An intuitive
description of this requirement is that it prevents local extrema from being
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enhanced and from \popping up out of nowhere". In fact, it is closely
related to the maximum principle for parabolic di�erential equations (see,
e.g., Widder 1975 and also Hummel 1987).

Preliminaries: In�nitesimal generator. If the semi-group structure is
combined with a strong continuity requirements with respect to the scale
parameter, then it follows from well-known results in (Hille and Phillips
1957) that the scale-space family must have an in�nitesimal generator
(Lindeberg 1990, 1991). In other words, if a transformation operator Tt
from the input signal to the scale-space representation at any scale t is
de�ned by

I(�; t) = Ttf; (1.55)

then there exists a limit case of this operator (the in�nitesimal generator)

Af = lim
h#0

Thf � f

h
(1.56)

and

lim
h#0

I(�; �; t + h)� I(�; �; t)
h

= A(Ttf) = AI(�; t): (1.57)

Non-enhancement of local extrema implies a second-order in�nitesimal
generator. By combining the existence of an in�nitesimal scale-space
generator with the non-enhancement requirement, linear shift-invariance,
and spatial symmetry it can be shown (Lindeberg 1991, 1992, 1994) that
the scale-space family I :ZN�R+! R of a discrete signal f :ZN ! Rmust
satisfy the semi-discrete di�erential equation

(@tI)(x; t) = (AScSpI)(x; t) =
X
�2ZN

a�I(x� �; t); (1.58)

for some in�nitesimal scale-space generator AScSp characterized by

� the locality condition a� = 0 if j�j1 > 1,
� the positivity constraint a� � 0 if � 6= 0,
� the zero sum condition

P
�2ZN a� = 0, as well as

� the symmetry requirements a(��1;�2;:::;�N) = a(�1;�2;:::;�N) and

aPNk (�1;�2;:::;�N) = a(�1;�2;:::;�N) for all � = (�1; �2; :::; �N) 2 ZN and all

possible permutations PN
k of N elements.

Notably, the locality condition means that AScSp corresponds to the
discretization of derivatives of order up to two. In one and two dimensions
respectively (1.58) reduces to

@tI = �1r2
3I; (1.59)
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@tI = �1r2
5I + �2r2

�2I; (1.60)

for some constants �1 � 0 and �2 � 0. Here, the symbols, r2
5 and r2

�2

denote the two common discrete approximations of the Laplace operator;
de�ned by (below the notation f�1;1 stands for f(x� 1; y + 1) etc.):

(r2
5f)0;0 = f�1;0 + f+1;0 + f0;�1 + f0;+1 � 4f0;0;

(r2
�2f)0;0 = 1=2(f�1;�1 + f�1;+1 + f+1;�1 + f+1;+1 � 4f0;0):

In the particular case when �2 = 0, the two-dimensional representation
is given by convolution with the one-dimensional Gaussian kernel along
each dimension. On the other hand, using �1 = 2�2 corresponds to a
representation with maximum spatial isotropy in the Fourier domain.

1.7.3. Discrete derivative approximations

Concerning operators derived from the discrete scale-space, it holds that
the scale-space properties transfer to any discrete derivative approximation
de�ned by spatial linear �ltering of the scale-space representation. In
fact, the converse result is true as well (Lindeberg 1993); if derivative
approximation kernels are to satisfy the cascade smoothing property,

�xnT (�; t1) � T (�; t2) = �xnT (�; t1 + t2); (1.61)

and if similar continuity requirements concerning scale variations are
imposed, then by necessity also the derivative approximations must
satisfy the semi-discretized di�usion equation (1.58). The speci�c choice of
operators �xn is however arbitrary; any linear operator satis�es this relation.
Graphs of these kernels at a few levels of scale and for the lowest orders of
di�erentiation are shown in �gure 1.9 and �gure 1.10.

To summarize, there is a unique and consistent way to de�ne a scale-
space representation and discrete analogues to smoothed derivatives for
discrete signals, which to a large extent preserves the algebraic structure of
the multi-scale N -jet representation in the continuous case.

1.8. Scale-space operators and front-end vision

As we have seen, the uniqueness of the Gaussian kernel for scale-space
representation can be derived in a variety of di�erent ways, non-creation
of new level curves in scale-space, non-creation of new local extrema,
non-enhancement of local extrema, and by combining scale invariance
with certain additional conditions. Similar formulations can be stated
both in the continuous and in the discrete domains. The essence of these
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results is that the scale-space representation is given by a (possibly semi-
discretized) parabolic di�erential equation corresponding to a second-order
di�erential operator with respect to the spatial coordinates, and a �rst-
order di�erential operator with respect to the scale parameter.

1.8.1. Scale-space: A canonical visual front-end model

A natural question now arises: Does this approach constitute the only
reasonable way to perform the low-level processing in a vision system, and
are the Gaussian kernels and their derivatives the only smoothing kernels
that can be used? Of course, this question is impossible to answer to without
further speci�cation of the purpose of the representation, and what tasks
the visual system has to accomplish. In any su�ciently speci�c application
it should be possible to design a smoothing �lter that in some sense has a
\better performance" than the Gaussian derivative model. For example, it
is well-known that scale-space smoothing leads to shape distortions at edges
by smoothing across object boundaries, and also in estimation of surface
shape using algorithms such as shape-from-texture. Hence, it should be
emphasized that the theory developed here is rather aimed at describing the
principles of the very �rst stages of low-level processing in an uncommitted
visual system aimed at handling a large class of di�erent situations, and in
which no or very little a priori information is available.

Then, once initial hypotheses about the structure of the world have been
generated within this framework, the intention is that it should be possible
to invoke more re�ned processing, which can compensate for this, and adapt
to the current situation and the task at hand (see section 2.8 in next chapter
as well as following chapters). From the viewpoint of such approaches, the
linear scale-space model serves as the natural starting point.

1.8.2. Relations to biological vision

In fact, a certain degree of agreement can be obtained with the result from
this solely theoretical analysis and the experimental results of biological
vision systems. Neurophysiological studies by Young (1985, 1986, 1987)
have shown that there are receptive �elds in the mammalian retina and
visual cortex, whose measured response pro�les can be well modeled by
Gaussian derivatives. For example, Young models cells in the mammalian
retina by kernels termed 'di�erences of o�set Gaussians' (DOOG), which
basically correspond to the Laplacian of the Gaussian with an added
Gaussian o�set term. He also reports cells in the visual cortex, whose
receptive �eld pro�les agree with Gaussian derivatives up to order four.

Of course, far-reaching conclusions should not be drawn from such a
qualitative similarity, since there are also other functions, such as Gabor
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functions (see section 2.6.2 in next chapter) that satisfy the recorded data
up to the tolerance of the measurements. Nevertheless, it is interesting
to note that operators similar to the Laplacian of the Gaussian (center-
surround receptive �elds) have been reported to be dominant in the
retina. A possible explanation concerning the construction of derivatives
of other orders from the output of these operators can be obtained from
the observation that the original scale-space representation can always be
reconstructed if Laplacian derivatives are available at all other scales. If
the scale-space representation tends to zero at in�nite scale, then it follows
from the di�usion equation that

I(x; t) = �(I(x; 1)�I(x; t)) = �
Z 1

t0=t
@tI(x; t0)dt0 = �

Z 1

t0=t
r2I(x; t0)dt0:

Observe the similarity with the standard method for reconstructing the
original signal from a bandpass pyramid (Burt 1981).

What remains to be understood is whether there are any particular
theoretical advantages of computing the Laplacian of the Gaussian in the
�rst step. Of course, such an operation suppresses any linear illumination
gradients, and in a physiological system it may lead to robustness to
the loss of some �bers because there is substantial integration over all
available scales. Furthermore, one can contend that spatial derivatives of
the Gaussian can be approximated by di�erences of Gaussian kernels at
di�erent spatial position, and it is therefore, at least in principle, possible
to construct any spatial derivative from this representation. Remaining
questions concerning the plausibility concerning biological vision are left
to the reader's speculation and further research.

1.8.3. Foveal vision

Another interesting similarity concerns the spatial layout of receptive �elds
over the visual �eld12. If the scale-space axioms are combined with the
assumption of a �xed readout capacity per scale from the visual front-end,
it is straightforward to show that there is a natural distribution of receptive
�elds (of di�erent scales and di�erent spatial position) over the retina such
that the minimum receptive �eld size grows linearly with eccentricity, that is
the distance from the center of the visual �eld (Lindeberg and Florack 1992,
1994). A similar (log-polar) result is obtained when a conformal metric is
chosen for a non-linear scale-space (see the chapter by Florack et al. (1994)
in this book). There are several results in psychophysics, neuroanatomy
and electrophysiology in agreement with such an increase (Koenderink and

12For an introduction to the neurophysiological �ndings regarding the front-end visual
system, see e.g. the tutorial book by Hubel (1988) and the more recent book by Zeki
(1993).
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van Doorn 1978; van de Grind et al. 1986; Bijl 1991). In fact, physical
sensors with such characteristics receive increasing interest and are being
constructed in hardware (Tistarelli and Sandini 1992).
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2.1. Introduction

In the previous chapter a formal justi�cation has been given for using
linear �ltering as an initial step in early processing of image data (see
also section 2.5 in this chapter). More importantly, a catalogue has been
provided of what �lter kernels are natural to use, as well as an extensive
theoretical explanation of how di�erent kernels of di�erent orders and at
di�erent scales can be related. This forms the basis of a theoretically well-
founded modeling of visual front-end operators with a smoothing e�ect.

Of course, linear �ltering cannot be used as the only component in
a vision system aimed at deriving information from image data; some
non-linear steps must be introduced into the analysis. More concretely,
some mechanism is required for combining the output from the Gaussian
derivative operators of di�erent order and at di�erent scales into some more
explicit descriptors of the image geometry.

This chapter continues the treatment of linear scale-space by showing
how di�erent types of early visual operations can be expressed within
the scale-space framework. Then, we turn to theoretical properties of

39
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linear scale-space and demonstrate how the behaviour of image structures
over scales can be analyzed. Finally, it is described how access to
additional information suggests situations when the requirements about
uncommitted processing can be relaxed. This open-ended material serves
as a natural starting point for the non-linear approaches considered in
following chapters.

2.2. Multi-scale feature detection in scale-space

An approach that has been advocated by Koenderink and his co-workers is
to describe image properties in terms of di�erential geometric descriptors,
i.e., di�erent (possibly non-linear) combinations of derivatives. A basic
motivation for this position is that di�erential equations and di�erential
geometry constitute natural frameworks for expressing both physical
processes and geometric properties. More technically, and as we have
seen in section 1.6 in the previous chapter, it can also be shown that
spatial derivatives are natural operators to derive from the scale-space
representation.

When using such descriptors, it should be observed that a single
partial derivative, e.g. Ix1 , does not represent any geometrically meaningful
information, since its value is crucially dependent on the arbitrary choice
of coordinate system. In other words, it is essential to base the analysis
on descriptors that do not depend on the actual coordinatization of the
spatial and intensity domains. Therefore, it is natural to require the
representation to be invariant with respect to primitive transformations
such as translations, rotations, scale changes, and certain intensity
transformations1. In fact, quite a few types of low-level operations can
be expressed in terms of such multi-scale di�erential invariants de�ned
from (non-linear) combinations of Gaussian derivatives at multiple scales.
Examples of these are feature detectors, feature classi�cation methods, and
primitive shape descriptors. In this sense, the scale-space representation
can be used as a basis for early visual operations.

1In fact, it would be desirable to directly compute features that are invariant under
perspective transformations. Since, however, this problem is known to be much harder,
most work has so far been restricted to invariants of two-dimensional Euclidean operations
and natural linear extensions thereof, such as uniform rescaling and a�ne transformations
of the spatial coordinates. For an overview of geometric invariance applied to computer
vision, see the book edited by Mundy and Zisserman (1992). An excellent discussion of
the invariant properties of the di�usion equation is found in Olver (1986). Concerning
analysis of di�erential invariants, see also the chapter by Olver et al. (1994) in this book.
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2.2.1. Di�erential geometry and di�erential invariants

Florack et al. (1992, 1993) and Kanatani (1990) have pursued this
approach of deriving di�erential invariants in an axiomatic manner, and
considered image properties de�ned in terms of directional derivatives
along certain preferred coordinate directions. If the direction, along which
a directional derivative is computed, can be uniquely de�ned from the
intensity pattern, then rotational invariance is obtained automatically,
since the preferred direction follows any rotation of the coordinate system.
Similarly, any derivative is translationally invariant. These properties hold
both concerning transformations of the original signal f and the scale-
space representation I of f generated by rotationally symmetric Gaussian
smoothing.

Detailed studies of di�erential geometric properties of two-dimensional
and three-dimensional scalar images are presented by Salden et al. (1991),
who makes use of classical techniques from di�erential geometry (Spivak
1975; Koenderink 1990), algebraic geometry, and invariant theory (Grace
and Young 1965; Weyl 1946) for classifying geometric properties of the
N -jet of a signal at a given scale in scale-space.

Here, a short description will be given concerning some elementary
results. Although the treatment will be restricted to the two-dimensional
case, the ideas behind it are general and can be easily extended to higher
dimensions. For more extensive treatments, see also (ter Haar Romeny et
al. 1993; Florack 1993; Lindeberg 1994).

Local directional derivatives
One choice of preferred directions is to introduce a local orthonormal
coordinate system (u; v) at any point P0, where the v-axis is parallel to
the gradient direction at P0, and the u-axis is perpendicular, i.e. ev =
(cos�; sin�)T and eu = (sin�;� cos�)T , where

evjP0 =
�

cos�
sin �

�
=

1q
I2x + IL2

y

�
Ix
Iy

�������
P0

: (2.1)

In terms of Cartesian coordinates, which arise frequently in standard digital
images, these local directional derivative operators can be written

@u = sin � @x � cos�@y : @v = cos�@x + sin� @y ; (2.2)

This (u; v)-coordinate system is characterized by the fact that one of the
�rst-order directional derivatives, Iu, is zero.

Another natural choice is a coordinate system in which the mixed second
order derivative is zero; such coordinates are named (p; q) by Florack et al.
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(1992). In these coordinates, in which Ipq = 0, the explicit expressions for
the directional derivatives become slightly more complicated (see Lindeberg
1994 for explicit expressions).

A main advantage of expressing di�erential expressions in terms of such
gauge coordinates is that the closed-form expressions for many di�erential
invariants become simple since a large number of terms disappear.

Monotonic intensity transformations
One approach to derive di�erential invariants is to require the di�erential
entities to be invariant with respect to arbitrary monotonic intensity
transformations2 Then, any property that can be expressed in terms of
the level curves of the signal is guaranteed to be invariant. A classi�cation
by Florack et al. (1992) and Kanatani (1990), which goes back to the
classical classi�cation of polynomial invariants by Hilbert (1893), shows
that concerning derivatives up to order two of two-dimensional images,
there are only two irreducible di�erential expressions that are invariant to
these transformations; the isophote curvature � and the owline curvature
� (see also �gure 2.1 for an illustration).

� =
2IxIyIxy � I2xIyy � I2y Ixx

(I2x + I2y )
3=2

= �Iuu
Iv

; (2.3)

� =
(I2x � I2y )Ixy � IxIy(Iyy � Ixx)

(I2x + I2y )
3=2

= �Iuv
Iv

: (2.4)

A general scheme for extending this technique to higher-order derivatives
and arbitrary dimensions has been proposed by Florack et al. (1993) and
Salden et al. (1992).

A�ne intensity transformations
Another approach is to restrict the invariance to a�ne intensity
transformations. Then, the class of invariants becomes larger. A natural
condition to impose is that a di�erential expression DI should (at least) be a
relative invariant with respect to scale changes, i.e., under a rescaling of the
spatial coordinates, I 0(x)=̂I(sx), the di�erential entity should transform as
DI 0 = skDI for some k. Trivially, this relation holds for any product of
mixed directional derivatives, and extends to sums (and rational functions)
of such expressions provided that the sum of the orders of di�erentiation is
the same for any product of derivatives constituting one term in a sum.

To give a formal description of this property, let Iumvn = Iw� denote a
mixed directional derivative of order j�j = m+ n, and let D be a (possibly

2In the chapter by Alvarez et al. (1994) this property of invariance under monotonic
intensity transformations is referred to as \morphological invariance".
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Figure 2.1. The result of computing the isophote curvature � of a sagittal NMR image
a scale levels �=1, 3, 5 and 7. (Image size: 256 � 256 pixels. Note the ridge structure at
the di�erent scales. (In section 2.2.2 and �gure 2.3 it is shown how curves representing
such ridges can be extracted using di�erential operators. These features have been used
for matching of medical images of di�erent modalities (van de Elsen et al. 1993))

non-linear) homogeneous di�erential expression of the form

DI =
IX

i=1

ci

JY
j=1

Iw�ij ; (2.5)

where j�ij j > 0 for all i = [1::I ] and j = [1::J ], and

JX
j=1

j�ij j = N (2.6)

for all i 2 [1::I ]. Then, DI is invariant with respect to translations,
rotations, and a�ne intensity transformations, and relative invariant under
uniform rescalings of the spatial coordinates.
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Tensor notation for invariant expressions
A useful analytical tool when dealing with di�erential invariants is to
express them in terms of tensor notation (Abraham 1988, Lawden 1962).
Adopt the Einstein summation convention that double occurrences of a
certain index means that summation is to be performed over that index.
Furthermore, let �ij be the symmetric Kronecker tensor and let �ij:::
represent the antisymmetric Levi-Civita connection (see Kay 1988).3 Then,
the expressions for the derivative operators along the u- and v-directions
(2.1) assume the form

@u =
Ii�ij@jp

IkIk
; @v =

Ii�ij@jp
IkIk

: (2.7)

Explicit expressions for a few di�erential invariants on the di�erent forms
respectively are shown in table 2.1 (see also ter Haar Romeny et al. (1994)).

Name Cartesian Tensor Gauge

Intensity I I I

Gradient2 I2x + I2y IiIi I2v
Laplacian Ixx + Iyy Iii Iuu + Ivv

Isophote curvature
2IxIyIxy�I2xIyy�I2y Ixx

(I2x+I2y)
3=2

IiIjIij�IiIiIjj
(IkIk)3=2

�

Iuu
Iv

Flowline curvature
IxIy(Iyy�Ixx)+Ixy(I2x�I2y)

(I2x+I2y)
3=2

IiIijIj�IiIiIjj
(IkIk)3=2

�

Iuv
Iv

TABLE 2.1. Some examples of two-dimensional di�erential invariants under
orthogonal transformations, expressed in (i) Cartesian coordinates, (ii) tensor
notation, and (iii) gauge coordinates, respectively.

2.2.2. Feature detection from di�erential singularities

The singularities (zero-crossings) of di�erential invariants play an
important role (Lindeberg 1993). This is a special case of a more general
principle of using zero-crossings of di�erential geometric expressions for
describing geometric features; see e.g. Bruce and Giblin (1984) for an
excellent tutorial. If a feature detector can be expressed as a zero-crossing of
such a di�erential expression, then the feature will also be absolute invariant
to uniform rescalings of the spatial coordinates, i.e. size changes.

3The Kronecker tensor has unity elements on the diagonal locations (equal indices),
whereas the Levi-Civita tensor has zero at these locations, and unity at the others, the
sign determined by sign of the permutation of the indices.
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Formally, this invariance property can be expressed as follows: Let SDI
denote the singularity set of a di�erential operator of the form (2.5), i.e.

SDI = f(x; t) 2 R2�R+:DI(x; t) = 0g;

and let G be the Gaussian smoothing operator, i.e., I = Gf . Under these
transformations of the spatial domain (represented by x 2 R

2) and the
intensity domain (represented by either the unsmoothed f or the smoothed
I) the singularity sets4 transform as follows:

4Here, R is a rotation matrix, �x is a vector (2 R2), whereas a, b and s are
scalar constants. The de�nitions of the transformed singularity sets are as follows;
T SDI = f(x; t):DI(x + �x; t) = 0g, RSDI = f(x; t):DI(Rx; t) = 0g, and
USDI = f(x; t):DI(sx; s2t) = 0g.
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Transformation De�nition Invariance

translation (T I)(x; t) = I(x+�x; t) SDGT f = SDT Gf = T SDGf

rotation (RI)(x; t) = I(Rx; t) SDGRf = SDRGf = RSDGf

uniform scaling (UI)(x; t) = I(sx; t) SDGUf = SDUGf = USDGf

a�ne intensity (AI)(x; t) = aI(x; t) + b SDGAf = SDAGf = SDGf

In other words, feature detectors formulated in terms of di�erential
singularities by de�nition commute with a number of elementary
transformations, and it does not matter whether the transformation is
performed before or after the smoothing step. A few examples of feature
detectors that can be expressed in this way are discussed below.

Examples of feature detectors

Edge detection. A natural way to de�ne edges from a continuous grey-
level image I :R2! R is as the union of the points for which the gradient
magnitude assumes a maximum in the gradient direction. This method is
usually referred to as non-maximum suppression (see e.g. Canny (1986)
or Korn (1988)). Assuming that the second and third-order directional
derivatives of I in the v-direction are not simultaneously zero, a necessary
and su�cient condition for P0 to be a gradient maximum in the gradient
direction may be stated as:

�
Ivv = 0;
Ivvv < 0:

(2.8)

Since only the sign information is important, this condition can be restated
as (

I2v Ivv = I2xIxx + 2IxIyIxy + I2y Iyy = 0;
I3v Ivvv = I3xIxxx + 3I2xIyIxxy + 3IxI2yIxyy + I3yIyyy < 0:

(2.9)

Interpolating for zero-crossings of Ivv within the sign-constraints of Ivvv
gives a straightforward method for sub-pixel edge detection (Lindeberg
1993); see �gure 2.2 for an illustration.
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scale-space representation edges junction candidates
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Figure 2.2. Examples of multi-scale feature detection in scale-space using singularities
of di�erential invariants. (left) Smoothed grey-level images. (middle) Edges de�ned by
Ivv = 0 and Ivvv < 0. (right) Magnitude of ~� (see eq. (2.11)). (Scale levels from top to
bottom: �2 = 4, 16, 64, and 256. Image size: 256� 256 pixels.) (From [75].)
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Ridge detection. A ridge detector can be expressed in a conceptually
similar way by detecting zero-crossings in Iuv that satisfy I2uu � I2vv > 0
(Lindeberg 1994). A natural measure of the strength of the response is
given by Iuv ; points with Iuv > 0 correspond to dark ridges and points
with Iuu < 0 to bright ridges (see �gure 2.3).

Figure 2.3. Examples of di�erential geometric ridge detection (without thresholding):
(a){(b) dark ridges from a detail from a telephone image at scale levels �2 = 16 and 64,
(c){(d) bright ridges from an aerial image at scale levels �2 = 16 and 64. (From [75].)

Junction detection. An entity commonly used for junction detection is
the curvature of level curves in intensity data, see e.g. Kitchen and
Rosenfeld (1982) or Koenderink and Richards (1988). In terms of directional
derivatives it can be expressed as

� = �Iuu
Iv

: (2.10)

To give a stronger response near edges, the level curve curvature is usually
multiplied by the gradient magnitude Iv raised to some power k. A natural
choice is k = 3. This leads to a polynomial expression (see e.g. Brunnstr�om
et al. 1992)

j~�j = jI2vIuuj = jI2yIxx � 2IxIyIxy + I2xIyy j: (2.11)

Since the sum of the order of di�erentiation with respect to x and y is the
same for all terms in this sum, it follows that junction candidates given by
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extrema in ~� also are invariant under skew transformations (Blom 1992)
and a�ne transformations (see the chapter by Olver et al. (1994)).

Assuming that the �rst- and second-order di�erentials of ~� are not
simultaneously degenerate, a necessary and su�cient condition for a point
P0 to be a maximum in this rescaled level curve curvature is that:

8>><
>>:

@u� = 0;
@v� = 0;
H(�) = �H = �uu�vv � �2uv > 0;
sign(�)�uu < 0:

(2.12)

Interpolating for simultaneous zero-crossings in @u� and @v�) gives a sub-
pixel corner detector.

Junction detectors of higher order can be derived algebraically (Salden
et al. (1992)) by expressing the local structure up to some order in terms of
its (truncated) local Taylor expansion and by studying the roots (i.e., the
discriminant) of the corresponding polynomial. Figure 2.4 shows the result
of applying a fourth-order (rotationally symmetric) di�erential invariant
obtained in this way, D4I , to a noisy image of checkerboard pattern

D4I = �
�
Ix4Iy4 � 4Ix3yIxy3 + 3I2x2y2

�3
+ 27

�
Ix4(Ix2y2Iy4 � I2xy3)� Ix3y(Ix3yIy4 � Ix2y2Ixy3)

+Ix2y2(Ix3yIxy3 � I2x2y2)
�2

:

(2.13)

Blob detection. Zero-crossings of the Laplacian

r2I = Iuu + Ivv = Ixx + Iyy = 0 (2.14)

Figure 2.4. Fourth-order junction detector. (left) Input image 64� 64 pixels with 20 %
added Gaussian noise. (right) Magnitude of the fourth-order di�erential invariant given
by (2.13). (The periodicity is due to an implementation in the Fourier domain.)
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have been used for stereo matching (see, e.g., Marr 1992) and blob detection
(see, e.g., Blostein and Ahuja 1987). Blob detection methods can also be
formulated in terms of local extrema of the grey-level landscape (Lindeberg
1991, 1993) and extrema of the Laplacian (Lindeberg and G�arding 1993).

Analysis: \Edge detection" using zero-crossings of the Laplacian. Zero-
crossings of the Laplacian have been used also for edge detection, although
the localization is poor at curved edges. This can be understood from the
relation between the Laplace operator and the second derivative in the
gradient direction (obtained from (2.10) and (2.14))

r2I = Iuu + Ivv = Ivv + �Iv: (2.15)

which shows that the deviation between zero-crossings of r2I and zero-
crossings of Ivv increases with the isophote curvature �. This example
constitutes a simple indication of how theoretical analysis of feature
detectors becomes tractable when expressed in terms of the suggested
di�erential geometric framework.

2.2.3. Scale selection

Although the scale-space theory presented so far provides a well-founded
framework for dealing with image structures at di�erent scales and can
be used for formulating multi-scale feature detectors, it does not directly
address the problem of how to select appropriate scales for further analysis.

Whereas the problem of selecting \the best scale(s)" for handling a real-
world data set may be intractable unless at least some a priori information
about the scene contents is available, in many situations a mechanism is
required for generating hypothesis about interesting scale levels.

One general method for scale selection has been proposed in (Lindeberg
1993, 1994). The approach is based on the evolution over scales of (possibly
non-linear) combinations of normalized derivatives de�ned by

@�i =
p
t @xi ; (2.16)

where the normalized coordinates

� = x=
p
t (2.17)

are the spatial correspondences to the dimensionless frequency coordinates
!� considered in section 1.5.6 in the previous chapter. The basic idea of
the scale selection method is to select scale levels from the scales at which
di�erential geometric entities based on normalized derivatives assume local
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maxima over scales . The underlying motivation for this approach is to
select the scale level(s) where the operator response is as its strongest. A
theoretical support can also be obtained from the fact that for a large class
of polynomial di�erential invariants (homogeneous di�erential expressions
of the form (2.5)) such extrema over scales have a nice behaviour under
rescalings of the input signal: If a normalized di�erential invariant DnormL
assumes a maximum over scales at a certain point (x0; t0) in scale-space,
then if a rescaled signal f 0 is de�ned by f 0(sx) = f(x), a scale-space
maximum in the corresponding normalized di�erential entity DnormL0 is
assumed at (sx0; s

2t0).

Example: Junction detection with automatic scale selection. In junction
detection, a useful entity for selecting detection scales is the normalized
rescaled curvature of level curves,

~�norm = t2 jrI j2 Iuu: (2.18)

Figure 2.5 shows the result of detecting scale-space maxima (points that
are simultaneously maxima with respect to variations of both the scale
parameter and the spatial coordinates) of this normalized di�erential
invariant. Observe that a set of junction candidates is generated with
reasonable interpretation in the scene. Moreover, the circles (with their
areas equal to the detection scales) give natural regions of interest around
the candidate junctions.

Figure 2.5. Junction candidates obtained by selecting the 150 scale-space maxima having
the strongest maximum normalized response. (From [71, 72].)

Second stage selection of localization scale. Whereas this junction detector
is conceptually very clean, it can certainly lead to poor localization, since
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shape distortions may be substantial at coarse scales in scale-space. A
straightforward way to improve the location estimate is by determining
the point x that minimizes the (perpendicular) distance to all lines in a
neighbourhood of the junction candidate x0. By de�ning these lines with
the gradient vectors as normals and by weighting each distance by the
pointwise gradient magnitude, this can be expressed as a standard least
squares problem (F�orstner and G�ulch 1987),

min
x2R2

xTAx� 2 xT b+ c () Ax = b; (2.19)

where x = (x1; x2)
T , wx0 is a window function, and A, b, and c are

entities determined by the local statistics of the gradient directions in a
neighbourhood of x0,

A =
Z
x02R2

(rI)(x0) (rI)T(x0)wx0(x
0) dx0; (2.20)

b =
Z
x02R2

(rI)(x0) (rI)T(x0) x0wx0(x
0) dx0; (2.21)

c =
Z
x02R2

x0
T
(rI)(x0) (rI)T(x0) x0wx0(x

0) dx0: (2.22)

Figure 2.6 shows the result of computing an improved localization estimate

Figure 2.6. Improved localization estimates for the junction candidates in �gure 2.5.
(left) Circle area equal to the detection scale. (right) Circle area equal to the localization
scale. (From [71, 72].)

in this way using a Gaussian window function with scale value equal to the
detection scale and by selecting the localization scale that minimizes the
normalized residual

dmin = (c� bTA�1b)=traceA (2.23)
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over scales (Lindeberg 1993, 1994). This procedure has been applied
iteratively �ve times and those points for which the procedure did not
converge after �ve iterations have been suppressed. Notice that a sparser
set of junction candidates is obtained and how the localization is improved.

2.2.4. Cues to surface shape (texture and disparity)

So far we have been concerned with the theory of scale-space representation
and its application to feature detection in image data. A basic functionality
of a computer vision system, however, is the ability to derive information
about the three-dimensional shape of objects in the world.

Whereas a common approach, historically, has been to compute two-
dimensional image features (such as edges) in a �rst processing step, and
then combining these into a three-dimensional shape description (e.g., by
stereo or model matching), we shall here consider the problem of deriving
shape cues directly from image data, and by using only the types of front-
end operations that can be expressed within the scale-space framework.

Examples of work in this direction have been presented by (Jones
and Malik 1992; Lindeberg and G�arding 1993; Malik and Rosenholtz
1993; G�arding and Lindeberg 1994). A common characteristic of these
methods is that they are based on measurements of the distortions that
surface patterns undergo under perspective projection; a problem which
is simpli�ed by considering the locally linearized component, leading to
computation of cues to surface shape from measurements of local a�ne
distortions.

Measuring local a�ne distortions. The method by Lindeberg and G�arding
(1993) is based on an image texture descriptor called the windowed second-
moment matrix. With I denoting the image brightness it is de�ned by

�I(q) =

Z
x02R2

(rI)(x0) (rI)T(x0) g(q � x0) dx0: (2.24)

With respect to measurements of local a�ne distortions, this image
descriptor transforms as follows: De�ne R by I(�) = R(B�) where B is
an invertible 2 � 2 matrix representing a linear transformation. Then, we
have

�I (q) = BT �R(p)B; (2.25)

where �R(p) is the second-moment matrix of R expressed at p = Bq
computed using the \backprojected" normalized window function w0(� �
p) = (detB)�1w(� � q).
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Figure 2.7. Local surface orientation estimates computed by a shape-from-texture
method based on measurements of local a�ne distortions using the windowed
second-moment matrix (2.24). (top left) An image of a sunower �eld. (top right) Blobs
detected by scale-space extrema of the normalized Laplacian. (bottom left) Surface
orientation computed under the assumption of weak isotropy. (bottom right) Surface
orientation computed under the assumption of constant area. (From [80].)

Figure 2.8. Local surface orientation estimated from the gradient of horizontal disparity
in a synthetic stereo pair with 5% noise. (left and middle left) Right and left images with
ellipse representation of �ve second-moment matrices. (middle right) Reference surface
orientation. (right) Estimated surface orientation at �ve manually matched points. (From
[33].)
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Shape-from-texture and disparity gradients. Given two measurements of
�I and �R, the relation (2.25) can be used for recovering B (up to
an arbitrary rotation). This gives a direct method for deriving surface
orientation from monocular cues, by imposing speci�c assumptions on
�R, e.g., that �R should be a constant times the unit matrix, �R = cI
(weak isotropy) or that det�R should be locally constant (constant area).
Similarly, if two cameras �xate the same surface structure, a direct estimate
of surface orientation can be obtained provided that the vergence angle is
known.

Figure 2.7 shows surface orientation estimates computed in this way.
Note that for this image the weak isotropy assumption gives the orientation
of the individual owers, whereas the constant area assumption reects
the orientation of the underlying surface. Figure 2.8 shows corresponding
results for stereo data.

2.3. Behaviour across scales: Deep structure

The treatment so far has been concerned with the formal de�nition of
the scale-space representation and the de�nition of image descriptors at
any single scale. An important problem, however, concerns how to relate
structures at di�erent scales. This subject has been termed deep structure
by Koenderink (1984). When a pattern is subject to scale-space smoothing,
its shape changes. This gives rise to the notion of dynamic shape, which as
argued by Koenderink and van Doorn (1986) is an essential component of
any shape description of natural objects.

2.3.1. Iso-intensity linking

An early suggestion by Koenderink (1984) to relate structures at di�erent
scales was to identify points across scales that have the same grey-level and
correspond to paths of steepest ascent along level surfaces in scale-space.

Since the tangent vectors of such paths must be in the tangent plane
to the level surface and the spatial component must be parallel to (Ix; Iy),
these iso-intensity paths are the integral paths of the vector �eld

(IxIt; IyIt; �(I2x + I2y )): (2.26)

Lifshitz and Pizer (1990) considered such paths in scale-space, and
constructed a multi-scale \stack" representation, in which the grey-level
at which an extremum disappeared was used for de�ning a region in the
original image by local thresholding on that grey-level.

Although the representation was demonstrated to be applicable for
certain segmentation problems in medical image analysis, Lifshitz and Pizer
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observed the serious problem of non-containment, which basically means
that a point, which at one scale has been classi�ed as belonging to a
certain region (associated with a local maximum), can escape from that
region when the scale parameter increases. Moreover, such paths can be
intertwined in a rather complicated way.

2.3.2. Feature based linking (di�erential singularities)

The main cause to problem in the iso-intensity linking is that grey-levels
corresponding to a feature tracked over scales change under scale-space
smoothing. For example, concerning a local extremum it is a necessary
consequence of the di�usion equation that the grey-level value at the
maximum point must decrease with scale. For this reason, it is more
natural to identify features across scales rather than grey-levels. A type of
representation de�ned in this way is the scale-space primal sketch of blob-
like image structures (extrema with extent) de�ned at all scales in scale-
space and linked into a tree-like data structure (Lindeberg 1991, 1993).
More generally, consider a feature that at any level of scale is de�ned by

h(x; t) = 0 (x 2 RN; t 2 R+) (2.27)

for some function h:RN � R+ ! R
M. (For example, the di�erential

singularities considered in section 2.2.2 are of this form.) Using the implicit
function theorem it is then formally easy to analyze the dependence of x on
t in the solution to (2.27). Here, some simple examples will be presented of
how such analysis can be performed; see Lindeberg (1992, 1994) for a more
extensive treatment. Consider, for simplicity, data given as two-dimensional
images. Then, it is su�cient to study the cases when M is either 1 or 2.

Pointwise entities
If M = 2 the features will in general be isolated points. The implicit
function theorem states that these points form smooth paths across scales
(one-dimensional curves in three-dimensional scale-space) provided that the
Jacobian @xh is non-degenerate. The drift velocity along such a path can
be written

@tx = �(@Tx h)�1@th:

Critical points. Concerning critical points in the grey-level landscape, we
have h = (Ix; Iy)T and the drift velocity can be written

@tx = �1

2
(HI)�1rTr(rI);
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where HI denotes the Hessian matrix of I and the fact that the spatial
derivatives satisfy the di�usion equation has been used for replacing
derivatives of I with respect to t by derivatives with respect to x.

Other structures. A similar analysis can be performed for other types
of point structures, e.g. junctions given as maxima in ~�, although the
expressions then contain derivatives of higher-order. Concerning ~�, the drift
velocity contains derivatives up to order �ve (Lindeberg 1994).

This result gives an estimate of the drift velocity of features due to scale-
space smoothing, and provides a theoretical basis for relating and, hence,
linking corresponding features across scales in a well-de�ned manner.

Curve entities
If M = 1, then the set of feature points will in general be curves when
treated at a single scale and surfaces when treated at all scales. Hence,
there is no longer any unique correspondence between points at adjacent
scales. This ambiguity is similar to the so-called \aperture problem" in
motion analysis. Nevertheless, the normal component of the drift can be
determined. If s represents a coordinate along the normal direction, then
the drift velocity can be expressed as

@ts = � ~hs
�1 ~ht = � ht

jrhj :

Curved edges. For example, concerning an edge given by non-maximum
suppression (� = Ivv = 0), the drift velocity in the normal direction
assumes the form

(@tu; @tv) = � Iv(Iuuvv + Ivvvv) + 2Iuv(Iuuu + Iuvv)

2((IvIuvv + 2IuvIuu)2 + (IvIvvv + 2I2uv)
2)
(
�u

Iv
;
�v

Iv
); (2.28)

where
�u = I2vIuvv + 2IvIuvIuu;
�v = I2vIvvv + 2IvI

2
uv ;

(2.29)

represent the components of the normal vector (�u; �v) to the edge
expressed in the (u; v) coordinate system. Unfortunately, this expression
cannot be further simpli�ed unless additional constraints are posed on I .

Straight edges. For a straight edge, however, where all partial derivatives
with respect to v are zero, it reduces to

(@tu; @tv) = �1

2

Ivvvv
Ivvv

(0; 1): (2.30)
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This analysis can be used for stating a formal description of the edge
focusingmethod developed by Bergholm (1987), in which edges are detected
at a coarse scale and then tracked to �ner scales; see also Clark (1989) and
Lu and Jain (1989) concerning the behaviour of edges in scale-space. (An
extension of the edge focusing idea is also presented in the chapter by
Richardson and Mitter (1994) in this book.)

Linking in pyramids. Note the qualitative di�erence between linking
across scales in the scale-space representation of a signal and the
corresponding problem in a pyramid. In the �rst case, the linking process
can be expressed in terms of di�erential equations, while in the second case
it corresponds to a combinatorial matching problem. It is well-known that
it is a hard algorithmic problem to obtain stable links between features in
di�erent layers in a pyramid.

2.3.3. Bifurcations in scale-space

The previous section states that the scale linking is well-de�ned whenever
the appropriate submatrix of the Jacobian of h is non-degenerate, When
the Jacobian degenerates, bifurcations may occur.

Concerning critical points in the grey-level landscape, the situation is
simple. In the one-dimensional case, the generic bifurcation event is the
annihilation of a pair consisting of a local maximum and a minimum point,
while in the two-dimensional case a pair consisting of a saddle point and
an extremum can be both annihilated and created5 with increasing scale.
A natural model of this so-called fold singularity is the polynomial

I(x; t) = x31 + 3x1(t� t0) +
NX
i=2

�(x2i + t� t0); (2.31)

which also satis�es the di�usion equation; see also Poston and Stewart
(1978), Koenderink and van Doorn (1986), Lifshitz and Pizer (1990), and
Lindeberg (1992, 1994). The positions of the critical points are given by

x1(t) = �
p
t0 � t (xi = 0; i > 1) (2.32)

i.e. the critical points merge along a parabola, and the drift velocity tends
to in�nity at the bifurcation point.

Johansen (1994) gives a more detailed di�erential geometric study of
such bifurcations, covering also a few cases that are generically unstable
when treated in a single image. Under more general parameter variations,
however, such as in image sequences, these singularities can be expected to

5An example of a creation event is given at the end of section 1.5.5 in previous chapter.
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be stable in the sense that a small disturbance of the original signal causes
the singular point to appear at a slightly di�erent time moment.

2.4. Scale sampling

Although the scale-space concept comprises a continuous scale parameter,
it is necessary to actually compute the smoothed representations at some
discrete set of sampled scale levels. The fact that drift velocities may
(momentarily) tend to in�nity indicates that in general some mechanism for
adaptive scale sampling must be used. Distributing scale levels over scales
is closely related to the problem of measuring scale di�erences. From the
dimensional analysis in section 1.5.6 in previous chapter it follows that the
scale parameter � provides a unit of length unit at scale t = �2. How should
we then best parametrize the scale parameter for scale measurements? As
we shall see in this section, several di�erent ways of reasoning, in fact, lead
to the same result.

2.4.1. Natural scale parameter: E�ective scale

Continuous signals. For continuous signals, a natural choice of
transformed scale parameter � is given by

� = log
�

�0
(2.33)

for some �0 and �0. This can be obtained directly from scale invariance: If
the scale parameter � (which is measured by dimension [length]) is to be
parametrized by a dimensionless scale parameter � , then scale-invariance or
self-similarity implies that d�=� must be the di�erential of a dimensionless
variable (see section 1.5.6 in the previous chapter and Florack et al. 1992).
Without loss of generality one can let d�=� = d� and select a speci�c
reference scale �0 to correspond to � = 0. Hence, we obtain (2.33).

In a later chapter in this book by Eberly (1994), this idea is pursued
further and he considers the problem of combining measurements of scale
di�erences in terms of d� = d�=� with measurements of normalized spatial
di�erences in terms of d� = dx=�.

Discrete signals. Some more care must be taken if the lifetime of a
structure in scale-space is to be used for measuring signi�cance in discrete
signals, since otherwise a structure existing in the original signal (assigned
scale value zero) would be assigned an in�nite lifetime. An analysis in
(Lindeberg 1991, 1993) shows that a natural way to introduce such a scale
parameter for discrete signals is by

�(t) = A +B log p(t); (2.34)
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where p(t) constitutes a measure of the \amount of structure" in a signal
at scale t. For practical purposes, this measure is taken as the density of
local extrema in a set of reference data.

Continuous vs. discrete models. Under rather general conditions on a one-
dimensional continuous signal it holds that the number of local extrema in
a signal decrease with scale as p(t) � 1

t� for some � > 0 (see section 2.7).
This means that �(t) given by (2.34) reduces to (2.33). For discrete signals,
on the other hand, �(t) is approximately linear at �ne scales and approaches
the logarithmic behaviour asymptotically when t increases.

In this respect, the latter approach provides a well-de�ned way to
express the notion of e�ective scale to comprise both continuous and
discrete signals as well as for modeling the transition from the genuine
discrete behaviour at �ne scales to the increasing validity of the continuous
approximation at coarser scales.

2.5. Regularization properties of scale-space kernels

According to Hadamard, a problem is said to be well-posed if: (i) a solution
exists, (ii) the solution is unique, and (iii) the solution depends continuously
on the input data. It is well-known that several problem in computer vision
are ill-posed; one example is di�erentiation. A small disturbance in a signal,
f(x) 7! f(x) + " sin!x, where " is small and ! is large, can lead to an
arbitrarily large disturbance in the derivative

fx(x) 7! fx(x) + !" cos!x; (2.35)

provided that ! is su�ciently large relative to 1=�.
Regularization is a technique that has been developed for transforming

ill-posed problems into well-posed ones; see Tikhonov and Arsenin (1977)
for an extensive treatment of the subject. Torre and Poggio (1986) describe
this issue with application to one of the most intensely studied subproblems
in computer vision, edge detection, and develop how regularization can be
used in this context. One example of regularization concerning the problem
\given an operatorA and data y �nd z such thatAz = y" is the transformed
problem \�nd z that minimizes the following functional"

min
z

(1� �) jjAz � yjj2 + � jjPzjj2; (2.36)

where P is a stabilizing operator and � 2 [0; 1] is a regularization parameter
controlling the compromise between the degree of regularization of the
solution and closeness to the given data. Variation of the regularization
parameter gives solutions with di�erent degree of smoothness; a large value
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of � may give rise a smooth solution, whereas a small value increases
the accuracy at the cost of larger variations in the estimate. Hence, this
parameter has a certain interpretation in terms of spatial scale in the
result. (It should be observed, however, that the solution to the regularized
problem is in general not a solution to the original problem, not even in
the case of ideal noise-free data.)

In the special case when P = @xx, and the measured data points are
discrete, the solution of the problem of �nding S:R! R that minimizes

min
S

(1� �)
X

(fi � S(xi))
2 + �

Z
jSxx(xi)j2dx (2.37)

given a set of measurements fi is given by approximating cubic splines;
see de Boor (1978) for an extensive treatment of the subject. Interestingly,
this result was �rst proved by Schoenberg (1946), who also proved the
classi�cation of P�olya frequency functions and sequences, which are the
natural concepts in mathematics that underlie the scale-space kernels
considered in sections 1.5.4{1.5.5 and section 1.7.1 in previous chapter.
Torre and Poggio made the observation that the corresponding smoothing
�lters are very close to Gaussian kernels.

The strong regularization property of scale-space representation can be
appreciated in the introductory example. Under a small high-frequency
disturbance in the original signal f(x) 7! f(x)+" cos!x, the propagation of
the disturbance to the �rst-order derivative of the scale-space representation
is given by

Ix(x; t) 7! Ix(x; t) + " !e!
2t=2 cos!x: (2.38)

Clearly, this disturbance can be made arbitrarily small provided that the
derivative of the signal is computed at a su�ciently coarse scale t in scale-
space. (The subject of regularization is also treated in the chapters by
Mumford, Nordstr�om, Leaci and Solimini in this book.)

2.6. Related multi-scale representations

2.6.1. Wavelets

A type of multi-scale representation that has attracted a great interest in
both signal processing, numerical analysis, and mathematics during recent
years is wavelet representation, which dates back to Str�omberg (1983) and
Meyer (1989, 1992). A (two-parameter) family of translated and dilated
(scaled) functions

ha;b(x) = jaj�1=2 h(x� b

a
) a; b 2 R; a 6= 0 (2.39)
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de�ned from a single function h:R! R is called a wavelet . Provided that
h satis�es certain admissibility conditions

Z 1

!=�1

jĥ(!)j2
j!j d! <1; (2.40)

the representation Wf :Rnf0g�R! R given by

(Wf)(a; b) =< f; ha;b >= jaj�1=2
Z
x2R

f(x) h(
x� b

a
)dx (2.41)

is called the continuous wavelet transform of f :R ! R. From this
background, scale-space representation can be considered as a special case
of continuous wavelet representation, where the scale-space axioms imply
that the function h must be selected as a derivative of the Gaussian kernel .
In traditional wavelet theory, the zero-order derivative is not permitted; it
does not satisfy the admissibility condition, which in practice implies thatZ 1

x=�1
h(x) dx = 0: (2.42)

There are several developments of this theory concerning di�erent special
cases. A particularly well studied problem is the construction of orthogonal
wavelets for discrete signals, which permit a compact non-redundant multi-
scale representation of the image data. This representation was suggested
for image analysis by Mallat (1989, 1992). We shall not attempt to review
any of that theory here. Instead, the reader is referred to the rapidly growing
literature on the subject; see e.g. the books by Daubechies (1992) and
Ruskai et al. (1992).

2.6.2. Tuned scale-space kernels

Interestingly, it is possible to obtain other scale-space kernels by expanding
the scale-space axioms in section 1.5.6 in the previous chapter by providing
additional information. This operation is called tuning (Florack et al. 1992).
Although the Gaussian family is complete in the sense that Gaussian
derivatives up to some order n completely characterize the local image
structure in terms of its nth-order Taylor expansion at any scale, this family
may not always be the most convenient one. When dealing with time-
varying imagery, for example, local optic ow may be obtained directly
from the output of a Gaussian family of space-time �lters, but it may be
more convenient to �rst tune these �lters to the parameter of interest (in
this case the velocity vector �eld). Another example is to tune the low-level
processing to a particular spatial frequency, which leads to the family of
Gabor functions.
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Gabor functions

If a family of kernels is required to be selective for a particular spatial
frequency, the dimensional analysis must be expanded to include the
wavenumber k of that spatial frequency:

Î f̂ ! � k

Luminance 1 1 0 0 0

Length 0 0 -1 -1 -1.

According to the Pi-theorem, there are now three dimensionless
independent entities; Î=f̂ , !�, and k!. Reasoning along similar lines lines
as in section 1.5.6 in the previous chapter results in the family of Gabor
�lters,

Gb(x; t; k) =
1p
2�t

e�xT x=2t e�ikT x; (2.43)

which are essentially sine and cosine functions modulated by a Gaussian
weighting function. Historically, these functions have been extensively used
in e.g. texture analysis (see �gure 2.9 for graphical illustrations).

-4 -2 2 4

0.1

0.2

0.3

0.4

-4 -2 2 4

-0.2

-0.1

0.1

0.2

0.3

0.4

-4 -2 2 4

-0.05

0.05

0.1

0.15

0.2

-4 -2 2 4

-0.2

-0.1

0.1

0.2

Figure 2.9. Examples of Gabor functions; (left) (t = 1; k = 1), (middle left)
(t = 1; k = 3), (middle right) (t = 3; k = 1), (right) (t = 3; k = 3).

Velocity tuned kernels

It the family of kernels is tuned to a certain spatial velocity c, the Pi-
theorem diagram is expanded with both time and velocity:

Î f̂ ! �x t �t c

Luminance 1 1 0 0 0 0 0

Length 0 0 -1 1 0 0 1

Time 0 0 0 0 1 1 -1

.
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Here, the spatial width of the kernel is denoted by �x and t represents time.6

We obtain a family of velocity-tuned spatio-temporal kernels comprising a
temporal scale �� indicating the temporal width of the kernel.

Gb(x; t; �x; �� ; c) =
1p
2��2x

1p
2��2�

e�(x�ct)
2=2�2x e�t

2=2�2� : (2.44)

Example. Consider a point stimulus I0(~x; t) = �(x � c0t) moving with
a constant velocity c0. Convolving this input image sequence with the
velocity-tuned kernels yields

Ic;�x;�� (x; t) =
Aq

2��2�
D
e(x�c0t)

2=2�2
� (2.45)

where � = jc � c0j=c0 and �� = �
p
1 +�2. This is an ensemble of

Gaussian blobs centered at the location of the stimulus and with the most
pronounced member being the kernel with the tuning velocity equal to the
stimulus velocity (� = 0). This framework is well suited for the detection
of simultaneous velocities (motion transparency) (Florack [26] 1992).

2.7. Behaviour across scales: Statistical analysis

In section 2.3 we analyzed the qualitative behaviour over scales of
image features using di�erential geometric techniques. When to describe
global properties, such as the evolution properties over scales of the
number of local extrema, or irregular properties, such as the behaviour
of noise in scale-space, other tools are needed. Here, we shall exemplify
how such analysis can be performed statistically or based on statistical
approximations.

2.7.1. Decreasing number of local extrema

Stationary processes. According to a result by Rice (1945), the density of
local maxima � for a stationary normal process can be estimated by the
second- and fourth-order moments of the spectral density S

� =
1

2�

vuutR1�1 !4S(!)d!R1
�1 !2S(!)d!

: (2.46)

6Here, the temporal Gaussian kernel has in�nite tails, which in principle extend from
minus in�nity (the past) to plus in�nity (the future). To cope with this (time) causality
problem, Koenderink (1988) proposed to reparameterize the time scale in a logarithmic
way so as to map the present (unreachable) moment to in�nity.
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Using this result it is straightforward to analyze how the number of
local extrema can be expected to decrease with scale in the scale-space
representation of various types of noise (Lindeberg 1991, 1993). For noise
with a self-similar spectral density of the form

S(!) = !�� (0 � � < 3); (2.47)

the density of local extrema decreases with scale as

p�(t) =
1

2�

s
3� �

2

1p
t
; (2.48)

showing that the density is basically inversely proportional to the value of
the scale parameter provided that the scale parameter is measured in terms
of � =

p
t.

Dimensional analysis. A corresponding result can be obtained from
dimensional analysis. Assuming that an input image is su�ciently \generic"
such that, roughly speaking, structures at all scales within the scale range of
the image are equally represented, let us assume that this data set contains
an equal amount of structure per natural volume element independent of
scale. This implies that the density of \generic local features" N�(�) will
be proportional to the number of samples N(�), and we can expect the
decrease of local extrema during a short scale interval (measured in terms
of e�ective scale �) to be proportional to the number of features at that
scale, i.e.,

@�N� = ��DN� ; (2.49)

where D denotes the dimensionality of the signal. It follows immediately
that the density of local extrema as function of scale is given by

N�(�) = �e�D� ; (2.50)

and in terms of the regular scale parameter, t, we have

Nt(t) = N0 t
�D=2: (2.51)

Experiments. Figure 2.10 shows experimental results from real image data
concerning the evolution over scales of the number of local extrema and the
number of elliptic regions (connected regions satisfying IxxIyy � I2xy > 0)
respectively. Note the qualitative similarities between these graphs. Observe
also that a straight-line approximation is only valid in the interior part of
the interval; at �ne scales there is interference with the inner scale of the
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image given by its sampling density and at coarse scales there is interference
with the outer scale of the image given by its �nite size.

2.7.2. Noise propagation in scale-space derivatives

Computing higher-order spatial derivatives in the presence of noise is known
to lead to computational problems. In the Fourier domain this is e�ect is
usually explained in terms of ampli�cation of higher frequencies

F
(

@n1+:::+nD I

@xn11 : : : @xnDD

)
= (i!1)

n1 : : : (i!D)
nD FfIg: (2.52)

Given that the noise level is known a priori , several studies have been
presented in the literature concerning design of \optimal �lters" for
detecting or enhancing certain types of image structures while amplifying
the noise as little as possible. From that viewpoint, the underlying idea of
scale-space representation is di�erent. Assuming that no prior knowledge is
available, it follows that noise must be treated as part of the incoming
signal; there is no way for an uncommitted front-end vision system to
discriminate between noise and \underlying structures" unless speci�c
models are available.

In this context it is of interest to study analytically how sensitive
the Gaussian derivative kernels are to noise in the input. Here, we shall
summarize the main results from a treatment by Blom (1993) concerning
additive pixel-uncorrelated Gaussian noise with zero mean. This noise is
completely described by its mean (assumed to be zero) and its variance.
The ratio between the variance < M2

mxmy
> of the output noise, and the
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Figure 2.10. Experimental results showing the number of image features as function of
scale in log-log scale. (left) The number of local extrema in a noisy pattern. (right) The
number of elliptic regions (connected regions satisfying IxxIyy � I2xy > 0).
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variance < N2 > of the input is a natural measure of the noise attenuation.
In summary, this ratio as a function of the scale parameter � and the orders
of di�erentiation, mx and my , is given by

< M2
mxmy

>

< N2 >
=

�2

4��2
� Q2mxQ2my

(4�2)mx+my
(2.53)

where Qn are de�ned by

Qn =

8><
>:

1 n = 0
0 n oddQn=2
i=1(2i� 1) n even

(2.54)

and the factor �2=4��2 describes the inuence of the kernel width and � is
a measure of the extent of spatial correlation.

It can be seen thatQn increases rapidly with n; we have Q0 = 1, Q2 = 1,
Q4 = 3, Q6 = 15, Q8 = 105, and Q10 = 945. In table 2.2 explicit values
are given up to order four. Figure 2.11 shows graphical illustrations for G,
Gxx, Gxxxx and Gxxyy . Note the marked inuence of increasing the scale.

derivative 8�
�2

<M2>
<N2>

I 1

�2

Ix; Iy
1

2 �4

Ixx; Iyy
3

4 �6

Ixy
1

4 �6

Ixxx; Iyyy
15

8 �8

derivative 8�
�2

<M2>
<N2>

Ixxy ; Ixyy
3

8 �8

Ixxxx ; Iyyyy
105

16�10

Ixxxy ; Ixyyy
15

16�10

Ixxyy
9

16�10

TABLE 2.2. Ratio between the variance of the output noise and the variance
of the input noise for Gaussian derivative kernels up to order four. (Adapted
from Blom 1993.)

2.8. Non-uniform smoothing

Whereas the linear scale-space concept and the associated theory for feature
detection provides a conceptually clean model for early visual computations
which can also be demonstrated to give highly useful results, there are
certain limitations in basing a vision system on rotationally symmetric
Gaussian kernels only. For example, smoothing across \object boundaries"
may a�ect both the shape and the localization of edges in edge detection.
Similarly, surface orientation estimates computed by shape from texture
algorithms are a�ected, since the anisotropy of a surface pattern may
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decrease when smoothed using a rotationally symmetric Gaussian. These
are some basic motivations for considering non-linear extensions of the
linear scale-space theory, as will be the subject of the following chapters in
this book.

2.8.1. Shape distortions in computation of surface shape.

It is illuminating to consider in more detail the problem of deriving cues
to surface shape from noisy image data. For simplicity, let us restrict
the analysis to the monocular case, the shape-from-texture problem. The
underlying ideas are, however, of much wider validity and apply to problems
such as shape-from-stereo-cues and shape-from-motion.

Model. Following (Lindeberg 1994; Lindeberg and G�arding 1994) consider
a non-uniform Gaussian blob

f(x1; x2) = g(x1; l21) g(x2; l22) (l1 � l2 > 0); (2.55)

as a simple linearized model of the projection of a rotationally symmetric
Gaussian blob, where l1 and l2 are characteristic lengths in the x1- and
x2-coordinate directions and g (here) is the one-dimensional Gaussian,

g(x1; t) =
1p
4�t

e�x
2
1
=4t: (2.56)

The slant angle (the angle between the visual ray and the surface normal)
� and the foreshortening � = cos� are given by

� = cos� = l2=l1; (2.57)

and the tilt direction (the direction of the projection of the surface normal
onto the image plane) is

� = �=2: (2.58)

E�ects due to scale-space smoothing. From the semi-group property of
the Gaussian kernel g(�; t1) � g(�; t2) = g(�; t1 + t2), it follows that the
scale-space representation of f at scale t is

I(x1; x2; t) = g(x1; l21 + t) g(x2; l22 + t): (2.59)

Thus, under scale-space smoothing the estimate of foreshortening varies as

�̂(t) =

s
l22 + t

l21 + t
; (2.60)
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i.e., it increases and tends to one, which means that after a su�ciently large
amount of smoothing the image will eventually be interpreted as at.

Hence, in cases when non-in�nitesimal amounts of smoothing are
necessary (e.g., due to the presence of noise), the surface orientation
estimates will by necessity be biased . Observe in this context that no
assumptions have been made here about what actual method should be used
for computing surface orientation from image data. The example describes
essential e�ects of the smoothing operation that arise in any shape-from-X
method that contains a smoothing module and interprets a non-uniform
Gaussian blob as the projection of a rotationally symmetric one.

Shape adaptation of the smoothing kernels. If, on the other hand, we have
initial estimates of the slant angle and the tilt direction (�̂; �̂) computed,
say by using rotationally symmetric Gaussian smoothing, a straightforward
compensation technique is to let the scale parameter in the (estimated)
tilt direction, denoted tt̂, and the scale parameter in the perpendicular
direction, denoted t

b̂
, be related by

tt̂ = tb̂ cos
2 �̂: (2.61)

If this estimate is correct, then the slant estimate will be una�ected by the
non-uniform smoothing operation. To illustrate this property, assume that
the tilt estimate is correct (�̂ = � = �=2) and convolve the signal with a
non-uniform Gaussian kernel

g(x1; x2; tt̂; tb̂) = g(x1; tt̂) g(x2; tb̂); (2.62)

which gives
I(x1; x2; t) = g(x1; l21 + tb̂) g(x2; l22 + tt̂): (2.63)

Then, the new foreshortening estimate is

�̂ = �(�̂; tt̂; tb̂) =

s
l22 + tt̂
l21 + t

b̂

= j cos�j
s
1 +

tb̂
l21 + t

b̂

�
cos2 �̂

cos2 �
� 1

�
: (2.64)

Clearly, �̂ = � if �̂ = �. In practice, we cannot of course assume that true
values of (�; �) are known, since this requires knowledge about the solution
to the problem we are to solve. A more realistic formulation is therefore
to �rst compute initial surface orientation estimates using rotationally
symmetric smoothing (based on the principle that in situations when no
a priori information is available, the �rst stages of visual processes should
be as uncommitted as possible and have no particular bias). Then, when a

hypothesis about a certain surface orientation (�̂0; �̂0) has been established,
the estimates can be improved iteratively.
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More generally, it can be shown that by extending the linear scale-space
concept based on the rotationally symmetric Gaussian kernel towards an
a�ne scale-space representation based on the non-uniform Gaussian kernel
with its shape speci�ed by a (symmetric positive semi-de�nite) covariance
matrix, �t,

g(x1; �t) =
1

2�
p
det �t

e�x
T��1t x=2 where x 2 R2; (2.65)

a shape-from-texture method can be formulated such that up to �rst order
of approximation, the surface orientation estimates are una�ected by the
smoothing operation. In practice, this means that the accuracy is improved
substantially, typically by an order of magnitude in actual computations.

A�ne scale-space. A formal analysis in (Lindeberg 1994; Lindeberg and
G�arding 1994) shows that with respect to the above treated sample
problem, the true value of �̂ corresponds to a convergent �xed point for
(2.64). Hence, for the pattern (2.55) the method is guaranteed to converge
to the true solution, provided that the initial estimate is su�ciently close
to the true value.

The essential step in the resulting shape-from-texture method with
a�ne shape adaptation is to adapt the kernel shape according to the local
image structure. In the case when the surface pattern is weakly isotropic
(see section 2.2.4) a useful method is to measure the second-moment matrix
�I according to (2.24) and then letting �t = ��1I .

2.8.2. Outlook

General. An important point with the approach in the previous section
is that the linear scale-space model is used as an uncommitted �rst stage of
processing . Then, when additional information has become available (here,
the initial surface orientation estimates) this information is used for tuning
the front-end processing to the more speci�c tasks at hand.

Adapting the shape of the smoothing kernel in a linear way constitutes
the presumably most straightforward type of geometry-driven processing
that can be performed. In the case when the surface pattern is weakly
isotropic, this shape adaptation has a very simple geometric interpretation;
it corresponds to rotationally symmetric smoothing in the tangent plane to
the surface.

Edge detection. Whereas the a�ne shape adaptation is conceptually
simple, it has an interesting relationship to the non-linear di�usion schemes
that will be considered in later chapters. If the shape adaptation scheme is
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applied at edge points, then it leads to a larger amount of smoothing along
the edge than in the perpendicular direction. In this respect, the method
constitutes a �rst step towards linking processing modules based on sparse
edge data to processing modules based on dense �lter outputs.

Biological vision. Referring to the previously mentioned relations between
linear scale-space theory and biological vision one may ask: Are there
corresponding geometry-driven processes in human vision? Besides the
well-known fact that top-down expectations can inuence visual processes
at rather low levels, a striking fact is the abundance of �bers projecting
backwards (feedback) between the di�erent layers in the visual front-end,
being more the rule then exception (Zeki 1993; Chapter 31).

At the current point, however, it is too early to give a de�nite answer to
this question. We leave the subject of non-linear scale-space to the following
chapters where a number of di�erent approaches will be presented.
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of scale-space, 14, 31

conductivity, 17
continuous scale parameter, 11
corner detection, 52, 55
creation, 63
creation of maxima, 20
critical points

across scales, 61
Crowley, 8
curvature

owline, 46
isophote, 46, 47, 52, 54

deep structure, 15, 58
detection scale, 57
di�erential invariant, 44, 46

tensor notation, 48
di�erential operator, 43{63

singularity set, 49
di�erential singularities, 49, 60
di�usion, 6

di�usion equation, 16, 17, 35, 38
di�usion smoothing, 34
dimensional analysis, 20, 22, 64, 68,

71
directional derivative, 32, 46
discrete analogue of Gaussian, 34
discrete derivative approximation, 38
discrete scale-space, 33{38
discrete scale-space kernel, 33
disparity gradient, 58
drift velocity

of critical points, 61
of edges, 62
of junctions, 61

dynamic shape, 58

early vision, 3
edge

di�erential de�nition, 50
displacement, 54
linking across scales, 62

edge detection, 50, 77
subpixel, 50

edge focusing, 62
e�ective scale, 64
Einstein summation convention, 48
embedding, 11
erosion, 20
Euclidean invariance, 44
Euler forward scheme, 35

feature detection, 49
commutative properties, 50
linking across scales, 60

�lter coe�cients, 8
�nite support, 34
fold singularity, 63
F�orstner, 56
Fourier transform

in pyramid, 10
foveal vision, 41
frequency tuning, 68
front-end, visual front-end1

Gabor function, 68
gauge coordinates, 46, 49

80
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Gaussian derivative kernels, 27
graphs, 28, 29
noise propagation, 72
properties, 31

Gaussian kernel, 5, 12, 18
de�nition, 12
discrete analogue, 34
non-uniform, 76
special properties, 26
uniqueness, 16, 18, 19, 30, 34
uniqueness of, 39
wavelet representation, 67

Gaussian pyramid, 9
generating function, 33
geometry-driven di�usion, 77
Green's function, 17
group

semi, 19

heat equation, di�usion equation1
Hermite polynomial, 30
Hilbert, 46
Hille, 37
homogeneity, 16
Hubel, 41
Hummel, 17

ill-posed problem, 65
image derivatives, 27
image size

reduction in pyramid, 8
in�nitesimal generator, 26, 37
in�nitesimal generators, 25
in�nitesimal scale-space generator, 37
in�nitesimal smoothing, 34
inner scale, 15
interval tree, 14
invariance, 3

of di�erential singularities, 49
iso-intensity linking, 60
iso-intensity path, 60
isotropy, 16, 22

jet bundle, 30
junction

linking across scales, 61
junction detection, 52

scale selection, 55

Kanatani, 45

Karlin, 33
Kitchen, 52
Koenderink, 1, 15
Korn, 50
Kronecker tensor, 48

Laplace operator, 54
discretization, 38

Laplace-Stieltjes transform, 18
Laplacian of the Gaussian, 40
Laplacian pyramid, 10
level curve curvature, 53
level surface

non-creation of, 17
Levi-Civita connection, 48
Lifshitz, 20
linking

across scales, 58{63
locality, 37
localization scale, 57
log-polar transformation, 41
low-pass pyramid, 8

Marr, 1
maxima

decrease over scales, 70
linking across scales, 61
non-creation of, 17{19
non-enhancement, 36, 60

maximum principle, 36
measurement

scale aspect, 2, 4
minima

linking across scales, 61
modi�ed Bessel function, 35
Morrison, 16
moving average, 34
multi-grid method, 11
multi-scale N-jet representation, 30
multi-scale representation, 4{6

N-jet representation, 30
natural scale parameter, 64
noise

analysis in scale-space, 70, 72
non-containment, 60
non-creation of structure, 4, 36

violation, 20
non-enhancement of extrema, 26, 36,

39, 60
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non-maximum suppression, 50, 62
non-uniform smoothing, 74{77
normal process, 70
normalization

of pyramid coe�cients, 10
normalized coordinates, 55
normalized derivatives, 54
normalized di�erential invariant, 55
normalized residual, 56

optic ow, 68
outer scale, 15

interference with, 72
oversampled pyramid, 11

parabolic di�erential equation, 39
perceptual saliency, 14
Phillips, 37
Pi theorem, 20
Pizer, 20
Poggio, 17
positivity, 10, 37
power spectra, 70
primal sketch, 60
pyramid, 7{14, 16

linking in, 63
P�olya frequency function, 66

quad-tree, 6{7

receptive �eld, 3, 39
recursive �ltering, 34
reduce

operation in pyramid, 8
regularization

property of scale-space, 27
relative invariant, 47
representation, 1
rescaled level curve curvature, 53
resolution, 2, 6, 15
retinotopic processing, 3
Rice, 70
ridge detection, 52
Rosenfeld, 6
rotational symmetry, 25, 38, 76, 77

scale, 1{4
scale invariance, 20, 22, 36, 39, 64
scale parameter, 12

reparametrization, 64

scale sampling, 64{65
scale selection, 54{56
scale-space, 3

axiomatic formulations, 14{26
basic idea, 4
commutative property, 14, 31
continuous signals, 14{32
de�nition, 12
discrete signals, 33{38
linear, 12{41
non-uniform, 74{77
overview, 1{6, 11{16

scale-space kernel, 18
classi�cation, 18
discrete, 33
P�olya frequency function, 66
semi-group of, 19
tuned, 68

scale-space maxima, 55
Schoenberg, 18, 33, 66
Schr�odinger equation, 30
Schwartz distribution, 27
second-moment matrix, 56, 58, 77
second-order smoothing, 37, 39
segmentation

split-and-merge, 7
semi-discretized di�usion equation, 35,

37
semi-group, 19

and in�nitesimal generator, 37
and non-creation of structure, 19,

34
and scale invariance, 20
arbitrary parametrization, 21

separability, 8, 25
shape adaptation, 75
shape distortions, 55, 74
shape of surfaces

computation of, 57, 74
shape-from-motion, 74
shape-from-stereo, 57{58, 74
shape-from-texture, 57{58, 74
singularity

di�erential, 49
singularity set, 49
slant, 74
spectral density, 70
split-and-merge, 7
spurious structure, 5
stability over scales, 15
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steerable �lters, 32
stereo

shape from, 57, 74
stereo matching, 54

tensor notation, 48
texture

shape from, 57, 74
tilt, 75
transformation

intensity, 46
invariance requirements, 3, 19, 30,

44
log-polar, 41
spatial, 46

truncated exponential functions, 18
tuned scale-space kernel, 68
two-point weighted average, 34

uncertainty relation, 26
uncommitted visual front-end, 72, 77
uncommitted visual system, 3, 39, 76
unimodality, 10, 18

van Doorn, 30
variation-diminishing transformations,

18
velocity tuning, 69
vision, 1
visual front-end, 3, 39

wavelet representation, 67
wavelet transform, 67
weak isotropy, 58
weighted average, 34
well-posed problem, 65
windowed second-moment matrix, 58
Witkin, 11

Young, 39
Yuille, 17

zero-crossings
blob detection, 54
edge detection, 50
in feature detection, 49
non-creation of, 14, 17{19
of Laplacian, 15, 17
localization error, 54

ordering across scales, 12
ridge detection, 52


