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LINEAR SCHEME FOR FINITE ELEMENT SOLUTION OF

NONLINEAR PARABOLIC-ELLIPTIC PROBLEMS WITH

NONHOMOGENEOUS DIRICHLET BOUNDARY CONDITION

Dana Říhová-Škabrahová, Zlín
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Abstract. The computation of nonlinear quasistationary two-dimensional magnetic fields
leads to a nonlinear second order parabolic-elliptic initial-boundary value problem. Such
a problem with a nonhomogeneous Dirichlet boundary condition on a part Γ1 of the bound-
ary is studied in this paper. The problem is discretized in space by the finite element
method with linear functions on triangular elements and in time by the implicit-explicit
method (the left-hand side by the implicit Euler method and the right-hand side by the
explicit Euler method). The scheme we get is linear. The strong convergence of the method
is proved under the assumptions that the boundary ∂Ω is piecewise of class C3 and the
initial condition belongs to L2 only. Strong monotonicity and Lipschitz continuity of the
form a(v,w) is not an assumption, but a property of this form following from its physical
background.

Keywords: finite element method, parabolic-elliptic problems, two-dimensional electro-
magnetic field

MSC 2000 : 65N30, 65M60

1. Introduction

For two media the computation of a nonlinear quasistationary two-dimensio-
nal electromagnetic field leads to the following nonlinear parabolic-elliptic initial-

boundary value problem. Given a two-dimensional bounded domain Ω and its
subdomains ΩE , ΩP with Ω = ΩE ∪ ΩP , ΩE ∩ ΩP = ∅, measΩP > 0 and such

that Γ = ∂Ω, ∂ΩP , ∂ΩE are Lipschitz continuous and piecewise of class C3, find
a function u : Ω × (0, T ) → �

1 such that its restrictions uM := u|ΩM (M = E,P )
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satisfy the equations

σ
∂uP

∂t
=

2∑

i=1

∂

∂xi

(
νP (|graduP |)

∂uP

∂xi

)
+ fP in ΩP × (0, T ),(1)

0 =
2∑

i=1

∂

∂xi

(
νE(|graduE |)

∂uE

∂xi

)
+ fE in ΩE × (0, T ),(2)

where 0 < T < ∞ and σ = σ(x) > 0, νM = νM (s), s = |graduM |, fM = fM (x, t)
are given functions. Further, u should satisfy boundary conditions on ∂Ω:

u = u on Γ1 × (0, T ),

ν
∂u

∂n
= q on Γ2 × (0, T ),

where Γ1 ∪ Γ2 = ∂Ω, Γ1 ∩ Γ2 = ∅, meas1 Γ1 > 0 and n is the unit outward normal to
∂Ω. The initial condition is prescribed on ΩP only:

uP (x, 0) = uP
0 (x) ∀x ∈ ΩP .

On ∂ΩP ∩ ∂ΩE the function u has to satisfy for t ∈ (0, T ) the so-called transition
conditions

[u]PE =

[
ν
∂u

∂n∗

]P

E

= 0,

where n∗ denotes the unit normal to ∂ΩE ∩ ∂ΩP oriented in a unique way and [f ]PE
has the following meaning:

[f ]PE := lim
B→A

f(B)− lim
C→A

f(C)

for arbitrary points A ∈ ∂ΩP ∩ ∂ΩE , B ∈ ΩP , C ∈ ΩE .
We assume that the function u is so smooth that there exists a function z such

that

(3) z ∈ H1(Ω), zP ∈ H2(ΩP ), zE ∈ H2(ΩE), tr(z) = u on Γ1,

where Hk(Ω) (k = 0, 1, 2, . . .) denotes the Sobolev space W k
2 (Ω) and tr(v) is the

trace of the function v ∈ H1(Ω) on the boundary ∂Ω (see [12], Theorem P .73).
The function σ has the meaning of electrical conductivity, ν = 1/µ is the magnetic

reluctivity, f = Je3 with Je3 the x3-component of the density of the external current
and u is the x3-component of the magnetic vector potential, u = A3. In engineering
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applications σ is considered piecewise constant and is equal to zero in the noncon-

ductive parts of a machine and greater than zero in the conductive parts. We will
consider σ = 1 in (1) for simplicity.

We can derive equations (1), (2) from Maxwell’s equations (see [4]).

2. Formulation of the problem

Using Green’s theorem we can reformulate the initial-boundary value problem in

the following way:

������� 2.1. Let a form a(v, w) be given by the relation

(4) a(v, w) =
∑

M=E,P

aM (v, w), aM (v, w) =
∫

ΩM

νM (|grad v|)
2∑

i=1

∂v

∂xi

∂w

∂xi
dx,

where νM (s) ∈ C1([0,∞)) (M = E,P ) are functions satisfying

(5) 0 < γM � d
ds
[sνM (s)] � βM ∀s ∈ [0,∞),

where βM > γM > 0 are constants. Let z satisfy (3) and let uP
0 , f be given functions

such that

uP
0 ∈ L2(ΩP ),(6)

fM ∈ L2(I,W 1
∞(Ω̃M )), ḟM ∈ L2(I,W 1

∞(Ω̃M )) (M = E,P ),

where I = (0, T ), T > 0, ḟM denotes the strong derivative with respect to the time t
of the abstract function fM ≡ fM (t) and Ω̃M will be specified later (see (31)).

Find an abstract function u : I → H1(Ω) with the properties

u ∈ L∞(I,H1(Ω)), uP ∈ C(I, L2(ΩP )) ∩ L∞(I,H1(ΩP )),(7)

u̇P ∈ L2(I, V ∗P ),(8)

uP (0) = uP
0 ∈ L2(ΩP ),(9)

tr(u(t)) = tr z in L2(Γ1) ∀t ∈ I − E (meas1 E = 0),(10)
∫ t

0
{〈u̇P (τ), vP (τ)〉P + a(u(τ), v(τ))} dτ

=
∫ t

0
(f(τ), v(τ)) dτ ∀v ∈ L2(I, V ) ∀t ∈ I,

(11)
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where we set

(12)
∫ t

0
(f(τ), v(τ)) dτ =

∑

M=E,P

∫ t

0
(fM (τ), vM (τ))M dτ

and

V = {v ∈ H1(Ω): tr(v) = 0 on Γ1},
VP = {vP ∈ H1(ΩP ) : tr(vP ) = 0 on Γ1 ∩ ∂ΩP };

(·, ·) and (·, ·)M (M = E,P ) denote the scalar products in the spaces L2(Ω) and

L2(ΩM ), respectively. The symbol V ∗P denotes the dual space of VP and 〈·, ·〉P is the
duality between V ∗P and VP .

�����	 2.2. For greater simplicity we consider only a homogeneous Neumann

boundary condition on Γ2. The case of a nonhomogeneous one is similar to [6].

We will define a discrete problem where the nonlinearity is removed. To this end
we add to both sides of (11) the bilinear form

(13) l(v, w) =
∑

M=E,P

lM (v, w), lM (v, w) = ΘM

∫

ΩM

2∑

i=1

∂v

∂xi

∂w

∂xi
dx

where ΘM (M = E,P ) are positive constants satisfying the condition

(14) ΘM >
1
2
βM

and βM are constants from (5). Then we can write relation (11) in the form

∫ t

0
{〈u̇P (τ), vP (τ)〉P + l(u(τ), v(τ))} dτ(15)

=
∫ t

0
{ d(u(τ), v(τ)) + (f(τ), v(τ))} dτ ∀v ∈ L2(I, V ) ∀t ∈ I

where d(v, w) is defined by

(16) d(v, w) = l(v, w) − a(v, w).

It can be shown that the form a(v, w) : H1(Ω) × H1(Ω) → �
1 has a potential

J(v), i.e. that there exists a functional J(v) : H1(Ω)→ �
1 which is G-differentiable

at arbitrary v ∈ H1(Ω) and satisfies

(17) a(v, w) = J ′(v, w) ∀v, w ∈ H1(Ω),
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where J ′(v, w) is the Gâteaux derivative of J(v) at w ∈ H1(Ω). Further, J(v) is

twice G-differentiable at arbitrary v ∈ H1(Ω) and has the following properties:

J(0) = 0, J ′(0, w) = 0 ∀w ∈ H1(Ω),(18)

|J ′′(v, w, z)| � β|w|1|z|1 ∀v, w, z ∈ H1(Ω),(19)

J ′′(v, w,w) � γ|w|21 ∀v, w ∈ H1(Ω),(20)

where γ � β are positive constants not depending on v, w, z and | · |1 is a seminorm
in H1(Ω); J ′′ denotes the second Gâteaux derivative of J . Zlámal proved in [15]

that the form a(v, w) appearing in variational problems which correspond to non-
linear quasistationary electromagnetic fields has a potential J(v) with all the above
presented properties that have the following consequences.

Lemma 2.3. Let conditions (17)–(20) be satisfied. Then we have for all v, w, z ∈
H1(Ω)

a(v, v − w)− a(w, v − w) � γ|v − w|21,(21)

|a(v, w) − a(z, w)| � β|v − z|1 |w|1,(22)
1
2
γ|v|21 � J(v) � 1

2
β|v|21,(23)

a(v, v − w) � J(v) − J(w) +
1
2
γ|v − w|21,(24)

a(v, w − v) + J(v)− J(w) � −1
2
β|v − w|21.(25)

����
. For the proof see [10], p. 12. �

Let us define the functional

J(v) =
∑

M=E,P

JM (v), JM (v) =
∫

ΩM

FM (|gradv|) dx

where

FM (y) =
∫ y

0
sνM (s) ds (M = E,P ).

In [15] it is shown that J(v) satisfies estimates (19), (20) with γ = min(γE , γP ),
β = max(βE , βP ), where γM < βM (M = E,P ) are positive constants from (5).

�����	 2.4. According to definition (4) of the forms aM (v, w) (M = E,P )
all relations (21)–(25) are also true for the forms aM (v, w). In particular, the forms

aM (v, w) are Lipschitz continuous:

|aM (v, w)− aM (z, w)| � βM |v − z|1,M |w|1,M ∀v, w, z ∈ H1(ΩM ).
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Lemma 2.5. Let

(26) dM (v, w) = lM (v, w) − aM (v, w).

We have for all v, w, z ∈ H1(ΩM )

(27) |dM (v, w) − dM (z, w)| � τM |v − z|1,M |w|1,M (M = E,P )

where τM is a constant independent of v, w, z and such that

(28) 0 < τM < ΘM .

����
. We follow ideas from [15]. We estimate the functionals

LM (v) =
∫

ΩM

{
1
2
ΘM |grad v|2 − FM (|gradv|)

}
dx (M = E,P ).

With regard to [1, Chap. 2], (13) and (4) we get

L′M (v, w) =
d
dϑ
LM (v + ϑw)

∣∣
ϑ=0

(29)

=
∫

ΩM

{
ΘM

2∑

i=1

∂v

∂xi

∂w

∂xi
− νM (|grad v|)

2∑

i=1

∂v

∂xi

∂w

∂xi

}
dx

= lM (v, w)− aM (v, w).

Thus LM (v) is the potential of dM (v, w).
Further, we see that

L′′M (v, w, z) =
d
dϑ
L′M (v + ϑz, w)

∣∣
ϑ=0

=
∫

ΩM

{
ΘM

2∑

i=1

∂z

∂xi

∂w

∂xi
− νM (η)

2∑

i=1

∂z

∂xi

∂w

∂xi

− ν′M (η)η
−1

2∑

i=1

∂v

∂xi

∂z

∂xi

2∑

j=1

∂v

∂xj

∂w

∂xj

}
dx

=
∫

ΩM

(grad z)TDM gradw dx,

where ν′M (s) = dνM (s)/ds, η = |grad v| and the matrix DM has the form

DM =
(
ΘM − αM − δM

(
∂v
∂x1

)2 −δM ∂v
∂x1

∂v
∂x2

−δM ∂v
∂x1

∂v
∂x2

ΘM − αM − δM
(

∂v
∂x2

)2
)
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where αM = νM (η), δM = η−1ν′M (η). The eigenvalues µ1,2 of DM are of the form

µi = ΘM − αM − 1
2
(δM ± |δM |)η2 (i = 1, 2).

It can be shown that

(30) µ1,2 =

{
ΘM − αM = ΘM − νM (η),

ΘM − αM − δMη2 = ΘM − [ηνM (η)]′.

Integration of (5) over [0, t] (t > 0) and the continuity of νM (s) yield

γM � νM (η) � βM ∀η ∈ [0,∞).

This together with (5) and (30) implies

γM � αM +
1
2
(δM ± |δM |)η2 � βM .

As we assume condition (14), we can prove that

|µi| � ΘM − �M ,

where �M = min(γM , 2(ΘM − 1
2βM )), 0 < �M < ΘM . Hence

|L′′M (v, w, z)| � τM |z|1,M |w|1,M

where 0 < τM = ΘM − �M < ΘM (M = E,P ). Using Taylor’s theorem in the form

L′M (ω + ψ, ϕ) = L
′
M (ω, ϕ) + L

′′
M (ω + ϑψ, ϕ, ψ)

where 0 < ϑ < 1 and ω, ϕ, ψ are arbitrary functions from H1(ΩM ), by (29) we
obtain relation (27). �

�����	 2.6. Lipschitz continuity (27) and its discrete form (42) with the con-
stant τM satisfying (28) will play an essential role in Theorem 4.14.
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3. Discrete problem

Let us approximate the domain Ω by a domain Ωh with a polygonal boundary
∂Ωh the vertices of which lie on ∂Ω. Let Th be a triangulation of Ωh. This trian-

gulation consists of two subtriangulations ThE and ThP such that Th = ThE ∪ ThP ,
ThE ∩ ThP = ∅, ThE and ThP are triangulations of ΩhE and ΩhP , respectively, where
ΩhM is a polygonal approximation of ΩM (M = E,P ). We assume that the points

forming the set Γ1 ∩ Γ2 are nodal points of Th. With every triangulation Th we
associate three parameters h, h and ϑh defined by

h = max
T∈Th

hT , h = min
T∈Th

hT , ϑh = min
T∈Th

ϑT

where hT and ϑT are the length of the greatest side and the smallest angle, respec-
tively, of the triangle T ∈ Th. We restrict ourselves to triangulations satisfying the

conditions

ϑh � ϑ0 > 0 ∀h ∈ (0, h0) ϑ0 = const,

h/h � C0 > 0 ∀h ∈ (0, h0) C0 = const .

The bounded domains Ω̃, Ω̃E , Ω̃P appearing in (6) satisfy

(31) Ω̃ ⊃ Ω ∪ Ωh, Ω̃M ⊃ ΩM ∪ ΩhM ∀h ∈ (0, h0).

For all v, w ∈ H1(Ωh) we define forms

ah(v, w) =
∑

M=E,P

ahM (v, w),(32)

ahM (v, w) =
∫

ΩhM

νM (|gradv|)
2∑

i=1

∂v

∂xi

∂w

∂xi
dx.

We again have

ah(v, w) = J
′
h(v, w) ∀v, w ∈ H1(Ωh)

where

(33) Jh(v) =
∑

M=E,P

JhM (v), JhM (v) =
∫

ΩhM

FM (|grad v|) dx.
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Lemma 3.1. For all v, w, z ∈ H1(Ωh) we have

ah(v, v − w)− ah(w, v − w) � γ|v − w|21,Ωh
,(34)

|ah(v, w)− ah(z, w)| � β|v − z|1,Ωh
|w|1,Ωh

,(35)
1
2
γ|v|21,Ωh

� Jh(v) � 1
2
β|v|21,Ωh

,(36)

ah(v, v − w) � Jh(v)− Jh(w) +
1
2
γ|v − w|21,Ωh

,(37)

ah(v, w − v) + Jh(v)− Jh(w) � −1
2
β|v − w|21,Ωh

.(38)

����
. See [11], Lemma 2.1. �

�����	 3.2. Similarly to (38) we can derive the relation

(39) ah(v, w − v) + Jh(v)− Jh(w) � −1
2

(
βP |v − w|21,Ph

+ βE |v − w|21,Eh

)
,

which we will use in a priori estimates.

We can also define for all v, w ∈ H1(Ωh) forms lh(v, w) by

(40) lh(v, w) =
∑

M=E,P

lhM (v, w), lhM (v, w) = ΘM

∫

ΩhM

2∑

i=1

∂v

∂xi

∂w

∂xi
dx,

where the constants ΘM (M = E,P ) satisfy condition (14). Further, we define

(41) dhM (v, w) = lhM (v, w) − ahM (v, w)

and introduce the following lemma similar to Lemma 2.5.

Lemma 3.3. For all v, w, z ∈ H1(ΩhM ) we have

(42) |dhM (v, w)− dhM (z, w)| � τM |v − z|1,Mh
|w|1,Mh

(M = E,P ),

where τM is a constant independent of v, w, z and satisfying (28), i.e. τM < ΘM .

����
. Inspecting the proof of Lemma 2.5 we see that the functional

LhM (v) =
1
2
lhM (v, v) − JhM (v) (M = E,P )

where lhM (v, w) and JhM (v) are given by (40) and (33), respectively, is the potential
of the form dhM (v, w) defined by (41). Thus in the same way we can derive an

estimate
|L′′hM (v, w, z)| � τM |z|1,Mh

|w|1,Mh

with 0 < τM < ΘM (M = E,P ) and using Taylor’s theorem we prove (42). �
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Let us define finite dimensional subspaces of H1(Ωh) ∩ C(Ωh)

Xh = {v ∈ C(Ωh) : v|T is linear for all T ∈ Th},
Vh = {v ∈ Xh : v(Pi) = 0 ∀Pi ∈ Γ1},
Wh = {v ∈ Xh : v(Pi) = z(Pi) ∀Pi ∈ Γ1}.

According to (32) and (40), we have for all v, w ∈ Xh

ah(v, w) =
∑

M=E,P

∑

T∈ThM

2∑

i=1

νM (|grad v|T )
∂v

∂xi

∣∣∣∣
T

∂w

∂xi

∣∣∣∣
T

measT,

lh(v, w) =
∑

M=E,P

∑

T∈ThM

2∑

i=1

ΘM
∂v

∂xi

∣∣∣∣
T

∂w

∂xi

∣∣∣∣
T

measT.

As the derivatives are constant on triangles no numerical integration is needed for
the computation of the forms ah(v, w) and lh(v, w). Also the term

(v, w)ΩhP
=

∑

T∈ThP

(v, w)T ∀v, w ∈ Xh

can be computed exactly without the use of numerical integration. Thus only the last

term on the right-hand side of (15) will be approximated by means of a quadrature
formula on a triangle. The symbol (fM (ti), wM )IMh

, where w ∈ Xh, will denote this

approximation of (fM (ti), wM )Mh
.

Lemma 3.4. Let g ∈W 1
∞(Ω̃) and let the quadrature formula on a triangle used

for the computation of (g, v)IΩh
be of degree of precision d = 1. Then

(43) |(g, v)Ωh
− (g, v)IΩh

| � Ch‖g‖1,∞,Ω̃‖v‖1,Ωh
∀v ∈ Xh

where the constant C does not depend on h, v and g.

����
. Lemma 3.4 is a consequence of [2, Theorem 4.1.5]. �

Let {hn}∞n=1 be a sequence such that hn > 0, hn > hn+1, lim
n→∞

hn = 0 and let

{Ωhn}∞n=1 and {Thn}∞n=1 ⊂ {Th} be the corresponding sequences of polygonal do-
mains and triangulations, respectively. Let {∆tn}∞n=1 be a sequence independent of
{hn}∞n=1 with the properties ∆tn > 0, limn→∞

∆tn = 0, rn := T/∆tn = integer.

In order to simplify the notation we will write Ωn, Xn, Vn and an(v, w), (v, w)n
instead of Ωhn , Xhn , Vhn and ahn(v, w), (v, w)Ωhn

, etc.

We discretize Problem 2.1 in space by the finite element method with linear func-
tions on triangular elements. The discretization in time is carried out by applying
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the implicit Euler method to the left-hand side and the explicit Euler method to the

right-hand side of (15). (Let us note that the idea of implicit-explicit methods goes
back to [5], [3].) We get a scheme which is linear:

(44) ∆t−1n (∆U
i
nP , vP )Pn + ln(U

i
n, v) = dn(U

i−1
n , v) + (f(ti−1), v)

I
n ∀v ∈ Vn,

where ∆U i
nP = U

i
nP − U i−1

nP , the forms ln(v, w), dn(v, w) are defined by (40) and

(45) dn(v, w) = ln(v, w)− an(v, w).

We set

(46) (f(ti−1), v)In :=
∑

M=E,P

(fM (ti−1), vM )IMn
∀v ∈ Vn.

The scheme (44) cannot be used for i = 1 as the initial value uP
0 is known on ΩP

only. Therefore, U1n is defined as follows:

(47) ∆t−1n (∆U
1
nP , vP )Pn + an(U1n, v) = (f(t1), v)

I
n ∀v ∈ Vn,

where U0nP = u
P
0n ∈ L2(ΩnP ) and uP

0n satisfy (52). Let us note that (47) is a nonlinear
scheme considered (for arbitrary i � 1) in [14], [11].
The following discrete problem approximates Problem 2.1.

������� 3.5. Let n be a given integer and let rn = T/∆tn. Let

(48) ti = i∆tn (i = 1, . . . , rn).

Let the forms an(v, w) and ln(v, w) be given by (32) and (40), respectively. Find

U i
n ∈Wn, (i = 1, . . . , rn) such that

∆t−1n (∆U
1
nP , vP )Pn + an(U

1
n, v) = (f(t1), v)

I
n ∀v ∈ Vn,(49)

U0nP = u
P
0n ∈ L2(ΩnP ),(50)

∆t−1n (∆U
i
nP , vP )Pn + ln(U

i
n, v) = dn(U i−1

n , v) + (f(ti−1), v)In ∀v ∈ Vn, i � 2,(51)

where dn(v, w) is defined by (45) and {uP
0n}∞n=1, uP

0n ∈ L2(ΩnP ) is a sequence satis-
fying the relation

(52) lim
n→∞

‖uP
0n −

◦
uP
0 ‖0,Pn = 0,

where
◦
uP
0 ∈ L2(Ω̃) is the extension of uP

0 ∈ L2(ΩP ) by zero.
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Theorem 3.6. The solution U i
n (i = 1, . . . , rn) of Problem 3.5 exists and is

unique.

����
. For the proof see [15], pp. 430–431. Let us note that the existence and

uniqueness of U i
n (i � 2) follow from the fact that the quadratic form bn(v, v), where

bn(v, w) = (vP , wP )Pn +∆tnln(v, w),

is bounded from below by C‖v‖21,Ωn
(C is a positive constant independent of n)

which is a consequence of the inequality (20) of [8], i.e.

(53) ‖v‖21,Ωh
� C(‖v‖20,Ph

+ |v|21,Ωh
) ∀v ∈ Xh.

�

Now we will extend the approximate solution of Problem 3.5 to the whole interval
[0, T ]. For this purpose we introduce some auxiliary definitions and lemmas.

Definition 3.7. A triangle T ∈ Th is called a boundary triangle if it has two
vertices lying on ∂Ω (or ∂ΩE ∩ ∂ΩP ). Let P1, P2, P3 be the vertices of a boundary

triangle T , P1 lying in ΩM (M = E,P ). The curved triangle T id with two straight
sides P1P2, P1P3 and one curved side which is formed by the part of ∂Ω (or ∂ΩE ∩
∂ΩP ) lying between the points P2, P3 is called the ideal triangle. (The triangle T is
an approximation of T id.) The ideal triangulation T idh of the domain Ω corresponding

to Th is the triangulation of Ω in which we replace all boundary triangles in Th by
their ideal triangles.

Definition 3.8. Let w ∈ Xh. The function w : Ωh∪Ω→ �
1 is called the natural

extension of w if w = w on Ωh and

w|T id = p|T id on T id ⊃ T

where p is the linear polynomial satisfying p|T = w|T and T id denotes the ideal
triangle.

Lemma 3.9. Let T id be an ideal triangle with vertices PT
i (i = 1, 2, 3), P

T
2 , P

T
3 ∈

∂Ω. Let T 0 be the closed triangle which lies in the ξ, η-plane and has vertices
P ∗1 = (0, 0), P

∗
2 = (1, 0), P

∗
3 = (0, 1). There exists a transformation

(54) x = xid(ξ, η), y = yid(ξ, η)

which maps one-to-one the reference triangle T 0 onto the ideal triangle T id in such

a way that P ∗i ↔ PT
i , (i = 1, 2, 3), P

∗
1 P

∗
j ↔ PT

1 P
T
j , (j = 2, 3), P

∗
2 P

∗
3 ↔ Σh

T and
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T0 ↔ T id, where Σh
T is the curved side of the ideal triangle T

id. Let p(ξ, η) be a

linear polynomial and let the mapping

ξ = ξid(x, y), η = ηid(x, y)

be inverse to transformation (54). Then the function

(55) w̃(x, y) = p(ξid(x, y), ηid(x, y))

has the following properties:

(1) w̃(x, y) is linear along the segments PT
1 P

T
2 , P

T
1 P

T
3 ;

(2) w̃(PT
i ) = p(P

∗
i ), i = 1, 2, 3;

(3) if w̃(PT
2 ) = w̃(P

T
3 ) = 0, then w̃(P ) = 0 ∀P ∈ Σh

T ;

(4) let the boundary ∂Ω be piecewise of class C3, let u ∈ H2(T id) and let w̃ be

uniquely determined by the conditions w̃(PT
i ) = u(PT

i ), (i = 1, 2, 3). Then we
have

(56) ‖w̃ − u‖k,T id � Ch2−k
T ‖u‖2,T id (k = 0, 1),

where the constant C does not depend on hT and u.

����
. The proof follows from [13] and [9]. �

Definition 3.10. Let T idh be the ideal triangulation of Ω corresponding to the

given triangulation Th. Let w ∈ Xh. The function ŵ ∈ H1(Ω) is said to be associated
with w if

(1) ŵ ∈ C(Ω);
(2) ŵ(Pi) = w(Pi) ∀Pi;

(3) ŵ is linear on each triangle T ∈ Th ∩ T idh and on each ideal triangle T id ∈ T idh

lying along Γ2 (i.e. ŵ = w on T id ⊃ T and ŵ|T id is the restriction of w|T to
T id ⊂ T );

(4) if T id ∈ T idh lies along Γ1 and T ∈ Th is its approximation then ŵ = w̃ on T id,
where w̃ is given by (55).

�����	 3.11. Using the rule “first indices, then bars, tildes, dots and hats” for
a function w ∈ Xn the symbol wM denotes the natural extension of wM from ΩnM

onto ΩnM ∪ ΩM and ŵM denotes the function from H1(ΩM ) ∩ C(ΩM ) associated
with wM .

It should be noted that (ŵ)M = ŵM for all w ∈ Xn while (w)M �= wM .

Using the solution of Problem 3.5 we define the finite element Rothe functions

(57) Ûn(t) = Û i−1
n + (∆Û i

n/∆tn)(t− ti−1), t ∈ [ti−1, ti], (i = 2, . . . , rn)
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where ti are given by (48) and functions Û i
n ∈ H1(Ω) are associated with U i

n. On

the interval [0,∆tn] we set

ÛnP (t) = Û0nP + (∆Û
1
nP /∆tn)t, t ∈ [0,∆tn].

As Theorem 4.14 holds for the associated functions ÛnP , Ẑn, we need Û0nP = ûP
0n.

For that reason we assume that

(58) U0nP = u
P
0n ∈ Xn.

If we use (57) we can also define

(59) Ẑn(t) = Û
1
n, t ∈ [0,∆tn], Ẑn(t) = Ûn(t), t ∈ [∆tn, T ].

4. Existence, uniqueness, convergence

Let {sP
j }, sP

j ∈ C∞0 (ΩP ), be a sequence satisfying

(60) lim
j→∞

‖zP + sP
j − uP

0 ‖0,P = 0.

For every pair j, n we define the following auxiliary discrete problem.

������� 4.1. Let an(v, w), ln(v, w), dn(v, w) and (f(ti−1), v)In be the same as
in Problem 3.5 and let rn = T/∆tn. Find Si

jn ∈ Wn, i = 1, . . . , rn (j, n fixed), such

that

∆t−1n (∆S
1
jnP , vP )Pn + an(S1jn, v) = (f(t1), v)

I
n ∀v ∈ Vn,(61)

S0jn = In(z +
◦
sP

j ) ∈Wn,(62)

∆t−1n (∆S
i
jnP , vP )Pn + ln(S

i
jn, v) = dn(S

i−1
jn , v) + (f(ti−1), v)In ∀v ∈ Vn (i � 2)(63)

where ∆Si
jnP = S

i
jnP −Si−1

jnP ,
◦
sP

j ∈ C∞0 (Ω̃) is the extension of sP
j ∈ C∞0 (ΩP ) by zero

and Inw ∈ Xn is the interpolant of a function w ∈ C(Ωn).

Theorem 4.2. The solution Si
jn (i = 1, . . . , rn) of Problem 4.1 exists and is

unique.

����
. This theorem can be proved in the same way as Theorem 3.6. �
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Lemma 4.3. Let (f(ti−1), v)In be computed by means of a quadrature formula
of degree of precision d = 1. Then we have

m∑

i=1

‖∆Si
jnP /∆tn‖20,Pn

∆tn +
m∑

i=1

‖∆Si
jn‖21,Ωn

+ ‖Sm
jn‖21,Ωn

� C(j)(64)

∀m,n (1 � m � rn)

where the constant C(j) does not depend on m and n.

����
. In what follows the symbols C, C(j) will denote positive constants

independent of hn and ∆tn with generally different values at any two different places.
A) First we prove that ‖S1jn‖1,Ωn � C(j). Choosing v = ∆S1jn ∈ Vn in (61),

using (37) and then (36) together with the discrete form of Friedrichs’ inequality [12,
(29.1)] we get

‖∆S1jnP /∆tn‖20,Pn
∆tn +

γ

2
C‖∆S1jn‖21,Ωn

+
γ

2
|S1jn|21,Ωn

(65)

� β

2
|S0jn|21,Ωn

+ (f(t1),∆S1jn)
I
n.

Let us add the term γ
2 ‖S1jn‖20,Γ1n

to both sides of (65). With regard to S1jn ∈ Wn we

have
‖S1jn‖20,Γ1n

= ‖Inz‖20,Γ1n
� ‖Inz‖20,∂Ωn

.

Applying the discrete forms of Friedrichs’ and trace inequalities [12, (29.5), (29.2)]

and the above relation to (65) we obtain

‖∆S1jnP /∆tn‖20,Pn
∆tn + ‖∆S1jn‖21,Ωn

+ ‖S1jn‖21,Ωn
(66)

� C
{
‖S0jn‖21,Ωn

+ ‖Inz‖21,Ωn
+ (f(t1),∆S1jn)

I
n

}
.

The finite element interpolation theorem for linear polynomials on a triangle and
relations (62) yield

C‖S0jn‖21,Ωn
(67)

� C
∑

M=E,P

{
‖zC

M + (
◦
sP

j )M‖1,Mn + ‖InM (zM + (
◦
sP

j )M )− (zC
M + (

◦
sP

j )M )‖1,Mn

}2

� C
∑

M=E,P

‖zC
M + (

◦
sP

j )M‖2
2,Ω̃M

� C
{
‖zE‖22,E + ‖zP‖22,P + ‖sP

j ‖22,P
}

� C(j),

where zC
M ∈ H2(Ω̃M ) is the Calderon extension of zM ∈ H2(ΩM ) (M = E,P ).

Similarly to the above,

C‖Inz‖21,Ωn
� C

∑

M=E,P

{
‖InM (zM )− zC

M‖1,Mn + ‖zC
M‖1,Mn

}2
(68)

� C
∑

M=E,P

‖zC
M‖2
2,Ω̃M

� C
{
‖zE‖22,E + ‖zP ‖22,P

}
� C.
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Lemma 3.4, assumptions (6), (46), (67) and the inequality

(69) |ab| � εa2/2 + b2/(2ε) a � 0, b � 0, ε > 0

with various values of ε imply

C|(f(t1), S0jn)
I
n| � C

{
|(f(t1), S0jn)n|(70)

+ |(f(t1), S0jn)
I
n − (f(t1), S0jn)n|

}

� C
∑

M=E,P

‖fM (t1)‖1,∞,Ω̃M
‖S0jnM‖1,Mn

� C(j)
{
‖fE‖AC(I,W 1

∞(Ω̃E))
+ ‖fP‖AC(I,W 1

∞(Ω̃P ))

}
,

C|(f(t1), S1jn)
I
n| � C

∑

M=E,P

‖fM (t1)‖1,∞,Ω̃M
‖S1jnM‖1,Mn(71)

� C
{
‖fE‖2AC(I,W 1

∞(Ω̃E))
+ ‖fP ‖2AC(I,W 1

∞(Ω̃P ))

}

+
1
2
‖S1jn‖21,Ωn

.

Using inequalities (67), (68), (70) and (71) we obtain from (66)

(72) ‖∆S1jnP /∆tn‖20,Pn
∆tn + ‖∆S1jn‖21,Ωn

+ ‖S1jn‖21,Ωn
� C(j),

which gives

(73) ‖S1jn‖1,Ωn � C(j).

B) Now we prove the inequality

m∑

i=2

‖∆Si
jnP /∆tn‖20,Pn

∆tn +
m∑

i=2

‖∆Si
jn‖21,Ωn

+
1
2
‖Sm

jn‖21,Ωn
(74)

� C(j) +
1
2
∆tn

m−1∑

i=2

‖Si
jn‖21,Ωn

(2 � m � rn).

Let us choose v = ∆Si
jn ∈ Vn in (63). After summing from i = 2 to i = m we obtain

m∑

i=2

‖∆Si
jnP /∆tn‖20,Pn

∆tn +
m∑

i=2

an(S
i−1
jn ,∆Si

jn) +
m∑

i=2

ln(∆S
i
jn,∆S

i
jn)(75)

=
m∑

i=2

(f(ti−1),∆Si
jn)

I
n.
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We set κM = ΘM − 1
2βM , (M = E,P ). We have κM > 0 owing to (14), hence

κ = min(κE , κP ) > 0. It follows from (39) that

m∑

i=2

ln(∆Si
jn,∆S

i
jn) +

m∑

i=2

an(S
i−1
jn ,∆Si

jn)

�
m∑

i=2

{
κ|∆Si

jn|21,Ωn
+ Jn(S

i
jn)− Jn(S

i−1
jn )

}

= Jn(Sm
jn)− Jn(S1jn) + κ

m∑

i=2

|∆Si
jn|21,Ωn

.

Applying this relation to (75) and using the discrete form of Friedrichs’ inequality

[12, (29.1)] and (36) we obtain

m∑

i=2

‖∆Si
jnP /∆tn‖20,Pn

∆tn +
γ

2
|Sm

jn|21,Ωn
+ κC

m∑

i=2

‖∆Si
jn‖21,Ωn

(76)

� β

2
|S1jn|21,Ωn

+
m∑

i=2

(f(ti−1),∆Si
jn)

I
n.

Let us add the term γ
2 ‖Sm

jn‖20,Γ1n
to both sides of (76). Similarly as in part A using

the discrete forms of Friedrichs’ and trace inequalities [12, (29.5), (29.2)] we come to

the inequality

m∑

i=2

‖∆Si
jnP /∆tn‖20,Pn

∆tn +
m∑

i=2

‖∆Si
jn‖21,Ωn

+ ‖Sm
jn‖21,Ωn

(77)

� C

{
‖S1jn‖21,Ωn

+ ‖Inz‖21,Ωn
+

m∑

i=2

(f(ti−1),∆Si
jn)

I
n

}
.

Summation by parts gives

m∑

i=2

(f(ti−1),∆S
i
jn)

I
n = (f(tm−1), S

m
jn)

I
n − (f(t1), S1jn)

I
n(78)

−
m−1∑

i=2

(f(ti)− f(ti−1), S
i
jn)

I
n.

From Lemma 3.4, assumptions (6), (46), (73) and inequality (69) it follows that

C|(f(tm−1), Sm
jn)

I
n| � C

∑

M=E,P

‖fM(tm−1)‖1,∞,Ω̃M
‖Sm

jnM‖1,Mn(79)

� C
{
‖fE‖2AC(I,W 1

∞(Ω̃E))
+ ‖fP‖2AC(I,W 1

∞(Ω̃P ))

}

+
1
2
‖Sm

jn‖21,Ωn
,
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C|(f(t1), S1jn)
I
n| � C

∑

M=E,P

‖fM (t1)‖1,∞,Ω̃M
‖S1jnM‖1,Mn(80)

� C(j)
{
‖fE‖AC(I,W 1

∞(Ω̃E))
+ ‖fP‖AC(I,W 1

∞(Ω̃P ))

}
.

By analogy,

C

∣∣∣∣
m−1∑

i=2

(f(ti)− f(ti−1), Si
jn)

I
n

∣∣∣∣(81)

� C
∑

M=E,P

m−1∑

i=2

‖fM (ti)− fM (ti−1)‖1,∞,Ω̃M
‖Si

jnM‖1,Mn

= C
∑

M=E,P

m−1∑

i=2

∥∥∥∥
∫ ti

ti−1

ḟM (t) dt

∥∥∥∥
1,∞,Ω̃M

‖Si
jnM‖1,Mn

� C
∑

M=E,P

m−1∑

i=2

{
∆tn

∫ ti

ti−1

‖ḟM(t)‖21,∞,Ω̃M
dt

}1/2
‖Si

jnM‖1,Mn

� C
∑

M=E,P

√
∆tn ‖ḟM‖L2(I,W 1

∞(Ω̃M ))

{m−1∑

i=2

‖Si
jnM‖21,Mn

}1/2

� C
{
‖ḟE‖2L2(I,W 1

∞(Ω̃E))
+ ‖ḟP ‖2L2(I,W 1

∞(Ω̃P ))

}

+
1
2
∆tn

m−1∑

i=2

‖Si
jn‖21,Ωn

.

Relations (77), (73), (68) and (78)–(81) imply (74).

By the discrete form of Gronwall’s lemma (see [12], Theorem P .134) we obtain
from (74)

m∑

i=2

‖∆Si
jnP /∆tn‖20,Pn

∆tn +
m∑

i=2

‖∆Si
jn‖21,Ωn

+ ‖Sm
jn‖21,Ωn

� C(j) (2 � m � rn).

Finally, (64) is a consequence of this estimate and (72) where the constant C(j)

depends on (‖zE‖2,E + ‖zP‖2,P + ‖sP
j ‖2,P ). �

The norms ‖ · ‖0,Pn , ‖ · ‖1,Ωn in inequality (64) depend on n. In order to obtain
a priori estimates introduced in Corollary 4.4, where the norms ‖ ·‖0,P , ‖ ·‖1 appear,
we must consider the functions Ŝi

jnP , Ŝ
i
jn associated with S

i
jnP , S

i
jn and apply

Lemma 48.5 of [12].
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Corollary 4.4. Under the assumption of Lemma 4.3 we have for all n � n0

m∑

i=1

‖∆Ŝi
jnP /∆tn‖20,P∆tn +

m∑

i=1

‖∆Ŝi
jn‖21 + ‖Ŝm

jn‖21(82)

� C(j) ∀m,n (1 � m � rn),

where the constant C(j) does not depend on m and n.

For every pair j, n let us define the finite element Rothe functions

Ŝjn(t) = Ŝ
i−1
jn + (∆Ŝ

i
jn/∆tn) (t− ti−1), t ∈ [ti−1, ti] (i = 1, . . . , rn),(83)

ŜjnP (t) = Ŝ
i−1
jnP + (∆Ŝ

i
jnP /∆tn)(t− ti−1), t ∈ [ti−1, ti] (i = 1, . . . , rn)(84)

and the step-functions

(85) S̃jn(t) = Ŝ
i−1
jn , t ∈ [ti−1, ti) (i = 1, . . . , rn), S̃jn(T ) = Ŝ

rn−1
jn ,

where ti are given by (48).

Corollary 4.5. The finite element Rothe functions Ŝjn(t), ŜjnP (t) and the
step-functions S̃jn(t) satisfy the relations

‖Ŝjn(t)‖1 � C(j) ∀t ∈ I ∀n,(86)

‖S̃jn(t)‖1 � C(j) ∀t ∈ I ∀n,(87)

‖S̃jn − Ŝjn‖2L2(I,H1(Ω)) � C(j)∆tn ∀n,(88)
∫ T

0
‖ dŜjnP (t)/ dt‖20,P dt � C(j) ∀n.(89)

����
. All the relations follow immediately from Corollary 4.4, (67), [12,

Lemma 48.5] and the definition of functions (83)–(85). �

Lemma 4.6. For a fixed j we have

‖Ŝ0jn − (z +
◦
sP

j )‖k � Ch2−k
n

{
‖zE‖2,E + ‖zP ‖2,P(90)

+ ‖sP
j ‖2,P

}
→ 0 if n→∞ (k = 0, 1),

‖Ŝ0jnP − (zP + sP
j )‖k,P � Ch2−k

n

{
‖zP ‖2,P(91)

+ ‖sP
j ‖2,P

}
→ 0 if n→∞ (k = 0, 1).

����
. Lemma 4.6 is a consequence of (56), the finite element interpolation
theorem for linear polynomials on a triangle, assumption (3) and (62). �
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Lemma 4.7. Let f̃nM (M = E,P ) be step-functions defined by

(92) f̃nM (t) = fM (ti−1), t ∈ [ti−1, ti) (i = 1, . . . , rn), f̃nM (T ) = fM (trn−1)

where ti are given by (48) and the functions fM (M = E,P ) satisfy assumptions
(6). Then we have

(93) f̃nM → fM in L2(I,W 1
∞(Ω̃M )) (M = E,P ).

����
. The proof follows the same lines as in [12], p. 360. �

Lemma 4.8. Let j be fixed. Then there exist a subsequence {Ŝjk} of the
sequence {Ŝjn} and a function uj such that

uj ∈ L∞(I,H1(Ω)),(94)

ujP ∈ AC(I, L2(ΩP )) ∩ L∞(I,H1(ΩP )),(95)

u̇jP ∈ L2(I, L2(ΩP )),(96)

ŜjkP → ujP in C(I, L2(ΩP )),(97)

Ŝjk ⇀ uj weakly in L2(I,H1(Ω)),(98)

S̃jk ⇀ uj weakly in L2(I,H1(Ω)),(99)

dŜjkP /dt ⇀ u̇jP weakly in L2(I, L2(ΩP )),(100)

ujP (0) = zP + sP
j in C(I, L2(ΩP )).(101)

����
. A) Relation (86) yields ‖Ŝjn‖L2(I,H1(Ω)) � C(j). According to Theorem
P .132 of [12], there exist a subsequence of the sequence {Ŝjn}∞n=1 (let us denote it
again {Ŝjk}) and a function uj ∈ L2(I,H1(Ω)) such that

(102) Ŝjk ⇀ uj weakly in L2(I,H1(Ω)),

which is (98).

As the norm ‖ · ‖1 is weakly lower semicontinuous on H1(Ω) (see [7], p. 183)
relations (86) and (102) imply

‖uj(t)‖1 � lim inf
k→∞

‖Ŝjk(t)‖1 � C(j) ∀t ∈ I.

Thus uj ∈ L∞(I,H1(Ω)).
Relation (99) is a consequence of (88) and (102).
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B) From (89) it follows that

‖ŜjnP (t′′)− ŜjnP (t′)‖0,P =
∥∥∥∥
∫ t′′

t′
(dŜjnP (t)/dt) dt

∥∥∥∥
0,P

� C(j)|t′′ − t′|1/2 ∀t′, t′′ ∈ I = [0, T ].

Hence the functions ŜjnP (t) (n = 1, 2, . . .) are (for fixed j) equicontinuous on I in
the norm ‖·‖0,P . Relation (86) and Rellich’s theorem [12, Theorem P .65] imply that
the sequence {ŜjnP (t)} is relatively compact in L2(ΩP ) for every t ∈ I. According
to the generalization of the Arzelà-Ascoli theorem [12, Theorem P .101], there exist
a subsequence {ŜjkP } of the sequence {ŜjnP } and a function w ∈ C(I, L2(ΩP )) such
that

ŜjkP → w in C(I, L2(ΩP )).

This relation yields that

(103)
∫ T

0
‖ŜjkP (t)−w(t)‖20,P dt � T max

t∈I
‖ŜjkP (t)−w(t)‖20,P → 0 for k→∞.

As the form ∫ T

0
(z(t), v(t)) dt, v ∈ L2(I,H1(Ω))

is a linear bounded functional on L2(I,H1(Ω)) for every fixed z ∈ L2(I, L2(Ω)),
relation (102) implies

Ŝjk ⇀ uj weakly in L2(I, L2(Ω)).

With regard to this result and (103) we obtain w(t) = ujP (t) in L2(ΩP ) and (97)
holds.

C) For every t ∈ I and for every k we have (for a fixed j)

(104) (ŜjkP (t), vP )P − (Ŝ0jkP , vP )P =
∫ t

0

(
(dŜjkP (τ)/ dτ), vP

)
P
dτ ∀vP ∈ L2(ΩP ).

According to (89) and Theorem P .132 of [12], we can extract a subsequence (we will
denote it again { dŜjkP /dt}) of the sequence { dŜjkP /dt} such that

(105) dŜjkP /dt ⇀ gjP weakly in L2(I, L2(ΩP )).

Passing to the limit for k →∞ in (104) and using (97), (91) and (105) we obtain

(ujP (t), vP )P − (zP + sP
j , vP )P =

∫ t

0
(gjP (τ), vP )P dτ ∀vP ∈ L2(ΩP ).
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Using [12, Corollary P .112(b)] we can write this relation in the form

(
ujP (t)− zP − sP

j −
∫ t

0
gjP (τ) dτ, vP

)

P

= 0 ∀vP ∈ L2(ΩP ).

From the last relation we get

ujP (t) = zP + sP
j +

∫ t

0
gjP (τ) dτ.

Thus according to [12, Theorem P .113], ujP ∈ AC(I, L2(ΩP )), ujP (t) satisfies the
initial condition (101) and we have

(106) u̇jP (t) = gjP (t) a.e. in I.

By (105) we have

∫ T

0

(
( dŜjkP (t)/ dt), vP (t)

)
P
dt(107)

→
∫ T

0
(gjP (t), vP (t))P dt ∀vP ∈ L2(I, L2(ΩP )).

Relations (106) and (107) imply (100).

Relation (106) gives u̇jP ∈ L2(I, L2(ΩP )), which is (96). �

In the next lemma and remarks we introduce some relations which we will need

in the proof of Theorem 4.12.

Lemma 4.9. Let wM , vn, vnM be the natural extensions of wM , vn, vnM , re-

spectively. Let v̂n, v̂nM , ŵM be functions associated with vn, vnM , wM , respectively.

Then we have

(108) ‖wM‖2k,εnM
� Chn‖wM‖2k,Mn

∀w ∈ Xn (ε = τ, ω) (k = 0, 1),

where the constant C does not depend on n and w and εnM = τnM , ωnM are defined

by

(109) ωnM = ΩM − ΩnM , τnM = ΩnM − ΩM (M = E,P ).
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Further, we have

lim
n→∞

‖vn − v‖1 = 0, lim
n→∞

‖vnM − vM‖1,M = 0 ∀v ∈ V,(110)

lim
n→∞

‖v̂n − v‖1 = 0 ∀v ∈ V,(111)

‖vnM‖1,M � K(v) ∀v ∈ V (M = E,P ),(112)

‖v̂n‖1 � K(v) ∀v ∈ V,(113)

‖vnM − v̂nM‖1,M � K(v)hn ∀v ∈ V (M = E,P ),(114)

‖ŵM − wM‖k,M � Chn‖wM‖k,Mn ∀w ∈ Xn (M = E,P ) (k = 0, 1),(115)

where K(v) is a constant depending only on v and Ω.

����
. See [12, Lemma 28.8] or [11], pp. 359–360 and [11], pp. 361–362. �

�����	 4.10. We will also use the following notation:

aεnM (v, w) =
∫

εnM

νM (|grad v|)
2∑

i=1

∂v

∂xi

∂w

∂xi
dx,

lεnM (v, w) = ΘM

∫

εnM

2∑

i=1

∂v

∂xi

∂w

∂xi
dx,

where εnM = τnM , ωnM , (M = E,P ) are defined by (109).

The forms aεnM (v, w) and lεnM (v, w) are bounded and we have

|aεnM (v, w)| � βM |v|1,εnM |w|1,εnM ∀v, w ∈ H1(Ω̃),
|lεnM (v, w)| � ΘM |v|1,εnM |w|1,εnM ∀v, w ∈ H1(Ω̃).

����
. The proof is similar to that in [11], p. 362. �

�����	 4.11. Let us define an auxiliary finite element Rothe function

(116) SjnP (t) = S
i−1
jnP + (∆S

i
jnP /∆tn)(t− ti−1), t ∈ [ti−1, ti] (i = 1, . . . , rn)

125



and step-functions

s̃jn(t) = S
i−1
jn , t ∈ [ti−1, ti) (i = 1, . . . , rn),(117)

s̃jn(T ) = S
rn−1
jn ,

s̃jnM (t) = S
i−1
jnM , t ∈ [ti−1, ti) (i = 1, . . . , rn),(118)

s̃jnM (T ) = S
rn−1
jnM (M = E,P ),

S̃jnM (t) = Ŝ
i−1
jnM , t ∈ [ti−1, ti) (i = 1, . . . , rn),(119)

S̃jnM (T ) = Ŝ
rn−1
jnM (M = E,P ),

f̃n(t) = f(ti−1), t ∈ [ti−1, ti) (i = 1, . . . , rn),(120)

f̃n(T ) = f(trn−1),

ϕ̃n(t) = ϕ(ti), t ∈ (ti−1, ti] (i = 1, . . . , rn),(121)

ϕ̃n(0) = ϕ(t1),

where ti are defined by (48), S
i−1
jn , S

i−1
jnM denote natural extensions of S

i−1
jn , S

i−1
jnM ,

the symbol Ŝi−1
jnM denotes the function associated with S

i−1
jnM and ϕ ∈ C∞(I).

Theorem 4.12. The function uj from Lemma 4.8 and the strong derivative u̇jP

of ujP form the unique pair satisfying the relations

∫ t

0
(u̇jP (τ), vP (τ))P dτ +

∫ t

0
a(uj(τ), v(τ)) dτ(122)

=
∫ t

0
(f(τ), v(τ)) dτ ∀v ∈ L2(I, V ) ∀t ∈ I,

ujP (0) = zP + s
P
j ,(123)

tr(uj(t)) = tr z in L2(Γ1) ∀t ∈ I − Ej ,(124)

where meas1Ej = 0 and we have

ŜjnP → ujP in C(I, L2(ΩP )),(125)

Ŝjn → uj in L2(I,H1(Ω)),(126)

S̃jn → uj in L2(I,H1(Ω)),(127)

dŜjnP /dt ⇀ u̇jP weakly in L2(I, L2(ΩP )).(128)

����
. A) Let w ∈ V be an arbitrary, but fixed function. Let {wn}, where
wn ∈ Vn, be such a sequence that

(129) lim
n→∞

‖wn − wC‖1,Ωn = 0, lim
n→∞

‖wnM − wC‖1,Mn = 0 (M = E,P ),
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where wC is the Calderon extension of w. The existence of {wn} is guaranteed by
Theorem 31.4 of [12]. We consider a function ϕ ∈ C∞(I). Let us set v = wnϕ(ti),
wn ∈ Vn in (63), v = wnϕ(t1) in (61) and let us multiply these relations by ∆tn.
After summing up from i = 1 to i = rn we get

rn∑

i=1

(∆Si
jnP , wnP )Pnϕ(ti) + ∆tnan(S1jn, wn)ϕ(t1)(130)

+ ∆tn

rn∑

i=2

an(S
i−1
jn , wn)ϕ(ti)

= −∆tn
rn∑

i=2

ln(∆Si
jn, wn)ϕ(ti) + ∆tn(f(t1), wn)In ϕ(t1)

+ ∆tn

rn∑

i=2

(f(ti−1), wn)Inϕ(ti).

Let us use the auxiliary functions (116), (117), (120) and (121). Then we can write

(130) in the form

∫ T

0
( dSjnP (t)/ dt, wnP )Pn ϕ̃n(t) dt+

∫ T

0
an(s̃jn(t), wn)ϕ̃n(t) dt(131)

+ ∆tn[an(S
1
jn, wn)− an(S

0
jn, wn)]ϕ(∆tn)

= −∆tn
rn∑

i=2

ln(∆Si
jn, wn)ϕ(ti) +

T∫

0

(f̃n(t), wn)Inϕ̃n(t) dt

+∆tn(f(∆tn), wn)
I
nϕ(∆tn)−∆tn(f(0), wn)

I
nϕ(∆tn).

Let us use the functions given by (84), (85), (92), (116)–(120). As we have

a(S̃jk(t), ŵk) =
∑

M=E,P

aM (S̃jkM (t), ŵkM ),

ak(s̃jk(t), wk) =
∑

M=E,P

{aM (s̃jkM (t), wkM ) + aτkM
(s̃jkM (t), wkM )

− aωkM
(s̃jkM (t), wkM )},

where {k} is the subsequence of the sequence {n} appearing in Lemma 4.8 and the
sets εkM , (ε = τ, ω, M = E,P ) are defined in (109), we can write relation (131) for
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a subsequence {k} of {n} in the following way:
∫ T

0
(dŜjkP (t)/ dt, ŵkP )P ϕ̃k(t) dt+

3∑

m=1

Am
kP +

∫ T

0
a(S̃jk(t), ŵk)ϕ̃k(t) dt(132)

+
3∑

m=1

∑

M=E,P

Bm
kM +R

1
k +

3∑

m=1

∑

M=E,P

Cm
kM −R2k −

3∑

m=1

∑

M=E,P

Dm
kM

= −R3k −
3∑

m=1

∑

M=E,P

Em
kM +

∫ T

0
(f̃k(t), ŵk)ϕ̃k(t) dt

+
3∑

m=1

∑

M=E,P

Fm
kM +R

4
k +

3∑

m=1

∑

M=E,P

Gm
kM −R5k −

3∑

m=1

∑

M=E,P

Hm
kM

where we define

A1kP =

T∫

0

( dŜjkP (t)/dt, wkP − ŵkP )P ϕ̃k(t) dt,

A2kP =
∫ T

0
( dSjkP (t)/dt− dŜjkP (t)/dt, wkP )P ϕ̃k(t) dt,

A3kP =
∫ T

0
[( dSjkP (t)/dt, wkP )τkP

− (dSjkP (t)/dt, wkP )ωkP
]ϕ̃k(t) dt,

B1kM =
∫ T

0
aM (S̃jkM (t), wkM − ŵkM )ϕ̃k(t) dt,

B2kM =
∫ T

0
[aM (s̃jkM (t), wkM )− aM (S̃jkM (t), wkM )]ϕ̃k(t) dt,

B3kM =
∫ T

0
[aτkM

(s̃jkM (t), wkM )− aωkM
(s̃jkM (t), wkM )]ϕ̃k(t) dt,

C1kM = ∆tkaM (Ŝ
1
jkM , wkM − ŵkM )ϕ(∆tk),

C2kM = ∆tk[aM (S1jkM , wkM )− aM (Ŝ1jkM , wkM )]ϕ(∆tk),

C3kM = ∆tk[aτkM
(S1jkM , wkM )− aωkM

(S1jkM , wkM )]ϕ(∆tk),

D1kM = ∆tkaM (Ŝ0jkM , wkM − ŵkM )ϕ(∆tk),

D2kM = ∆tk[aM (S0jkM , wkM )− aM (Ŝ0jkM , wkM )]ϕ(∆tk),

D3kM = ∆tk[aτkM
(S0jkM , wkM )− aωkM

(S0jkM , wkM )]ϕ(∆tk),

E1kM = ∆tk

rk∑

i=2

lM (∆Ŝi
jkM , wkM − ŵkM )ϕ(ti),

E2kM = ∆tk

rk∑

i=2

lM (∆(Si
jkM − Ŝi

jkM ), wkM )ϕ(ti),
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E3kM = ∆tk

rk∑

i=2

[lτkM
(∆Si

jkM , wkM )− lωkM
(∆Si

jkM , wkM )]ϕ(ti),

F 1kM =
∫ T

0
(f̃kM (t), wkM − ŵkM )M ϕ̃k(t) dt,

F 2kM =
∫ T

0
[(f̃kM (t), wkM )τkM

− (f̃kM (t), wkM )ωkM
]ϕ̃k(t) dt,

F 3kM =

T∫

0

[(f̃kM (t), wkM )
I
Mk

− (f̃kM (t), wkM )Mk
]ϕ̃k(t) dt,

G1kM = ∆tk(fM (∆tk), wkM − ŵkM )Mϕ(∆tk),

G2kM = ∆tk[(fM (∆tk), wkM )τkM
− (fM (∆tk), wkM )ωkM

]ϕ(∆tk),

G3kM = ∆tk[(fM (∆tk), wkM )
I
Mk

− (fM (∆tk), wkM )Mk
]ϕ(∆tk),

H1kM = ∆tk(fM (0), wkM − ŵkM )Mϕ(∆tk),

H2kM = ∆tk[(fM (0), wkM )τkM
− (fM (0), wkM )ωkM

]ϕ(∆tk),

H3kM = ∆tk[(fM (0), wkM )
I
Mk

− (fM (0), wkM )Mk
]ϕ(∆tk),

R1k = ∆tk a(Ŝ
1
jk, ŵk)ϕ(∆tk),

R2k = ∆tk a(Ŝ
0
jk, ŵk)ϕ(∆tk),

R3k = ∆tk

rk∑

i=2

l(∆Ŝi
jk, ŵk)ϕ(ti),

R4k = ∆tk (f(∆tk), ŵk)ϕ(∆tk),

R5k = ∆tk(f(0), ŵk)ϕ(∆tk).

B) Let the symbol H∗(Ω) denote the dual space of H1(Ω). For every k ∈ {k} and
every t ∈ I we can define χjk(t) ∈ H∗(Ω) by the relation

(133) 〈χjk(t), w〉 := a(S̃jk(t), w) ∀w ∈ H1(Ω).

From (85) it follows that

‖χjk(t)‖∗ ≡ sup
‖w‖1=1

〈χjk(t), w〉 = sup
‖w‖1=1

a(Ŝi−1
jk , w), t ∈ [ti−1, ti) (i = 1, . . . , rn).

By (22) (with z = 0) and (82) from Corollary 4.4 we get ‖χjk(t)‖∗ � βC(j) ∀t ∈ I.
Thus χjk ∈ L∞(I,H∗(Ω)) and we have

(134) ‖χjk‖L2(I,H∗(Ω)) �
√
TβC(j),

where T is the length of the interval I. This result, the reflexivity of H1(Ω) and
Theorems P .133, P .125, P .132 of [12] imply the existence of a subsequence of {k}
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(we denote it again by {k}) and an abstract function χj ∈ L2(I,H∗(Ω)) such that

(135) χjk ⇀ χj weakly in L2(I,H∗(Ω)).

It is not difficult to prove that (details are omitted)

lim
k→∞

∫ T

0
(dŜjkP (t)/ dt, ŵkP )P ϕ̃k(t) dt =

∫ T

0
(u̇jP (t), wP )Pϕ(t) dt,(136)

lim
k→∞

∫ T

0
a(S̃jk(t), ŵk)ϕ̃k(t) dt =

∫ T

0
〈χj(t), w〉ϕ(t) dt,(137)

lim
k→∞

∫ T

0
(f̃k(t), ŵk)ϕ̃k(t) dt =

∫ T

0
(f(t), w)ϕ(t) dt,(138)

lim
k→∞

Am
kP = 0, lim

k→∞
Bm

kM = 0 (m = 1, 2, 3;M = E,P ),(139)

lim
k→∞

Cm
kM = 0, lim

k→∞
Dm

kM = 0 (m = 1, 2, 3;M = E,P ),(140)

lim
k→∞

Em
kM = 0, lim

k→∞
Fm

kM = 0 (m = 1, 2, 3;M = E,P ),(141)

lim
k→∞

Gm
kM = 0, lim

k→∞
Hm

kM = 0 (m = 1, 2, 3;M = E,P ),(142)

lim
k→∞

Rm
k = 0 (m = 1, . . . , 5),(143)

where {k} is the same subsequence of {n} as in (135). We show (136)–(138) only; the
other relations can be proved using techniques from the proofs of [11, Theorem 3.8]

and [12, Theorem 46.4], where relations similar to (139)–(143) have been proved.

Let us express the term on the left-hand side of (136) in the form

∫ T

0

(
dŜjkP (t)/dt, ŵkP

)
P
ϕ̃k(t) dt =

∫ T

0

(
dŜjkP (t)/ dt, ŵkP − wP

)
P
ϕ̃k(t) dt

+
∫ T

0

(
dŜjkP (t)/dt, wP

)
P
(ϕ̃k(t)− ϕ(t)) dt+

∫ T

0

(
dŜjkP (t)/dt, wP

)
P
ϕ(t) dt.

Relation (136) follows from (100), (89), (111) and [12, Lemma 46.2].

Similarly, using (133) let us write

∫ T

0
a
(
S̃jk(t), ŵk

)
ϕ̃k(t) dt =

∫ T

0
〈χjk(t), ŵk〉ϕ̃k(t) dt =

=
∫ T

0
〈χjk(t), ŵk − w〉ϕ̃k(t) dt+

∫ T

0
〈χjk(t), w〉(ϕ̃k(t)− ϕ(t)) dt

+
∫ T

0
〈χjk(t), w〉ϕ(t) dt.
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Relations (134), (111), [12, Lemma 46.2] and (135) imply (137).

Finally, we can write

∫ T

0
(f̃k(t), ŵk)ϕ̃k(t) dt =

∑

M=E,P

{∫ T

0

(
f̃kM (t), ŵkM − wM

)
M
ϕ̃k(t) dt

+
∫ T

0

(
f̃kM (t), wM

)
M
(ϕ̃k(t)− ϕ(t)) dt

+
∫ T

0

(
f̃kM (t), wM )Mϕ(t) dt

}
.

Relations (111), (93), [12, Lemma 46.2] and (12) yield (138).

Passing to the limit for k →∞ in (132) and using (136)–(143) we obtain

∫ T

0
(u̇jP (t), wP )Pϕ(t) dt+

∫ T

0
〈χj(t), w〉ϕ(t) dt(144)

=
∫ T

0
(f(t), w)ϕ(t) dt ∀w ∈ V ∀ϕ ∈ C∞(I).

C) Restricting (144) to ϕ ∈ C∞0 (I) we get

∫ T

0
{(u̇jP (t), wP )P + 〈χj(t), w〉 − (f(t), w)}ϕ(t) dt = 0 ∀w ∈ V ∀ϕ ∈ C∞0 (I).

Hence by [12, Lemma P .128]

(u̇jP (t), wP )P + 〈χj(t), w〉 = (f(t), w) ∀t ∈ I − Ew ∀w ∈ V,

where meas1Ew = 0. Let us integrate this relation over the interval [t′, t′′] ⊂ I. We
obtain

∫ t′′

t′
{(u̇jP (t), wP )P + 〈χj(t), w〉} dt(145)

=
∫ t′′

t′
(f(t), w) dt ∀t′ < t′′ ∈ [0, T ] ∀w ∈ V.

Let us choose v ∈ L2(I, V ) and t ∈ I arbitrarily. Let {zn} ⊂ L2(I, V ) be a sequence

of step-functions such that

(146) zn → v in L2(I, V ).
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The existence of the sequence {zn} with the property (146) is guaranteed by [12,
Theorem P .118]. Then according to (145), we can write

(147)
∫ t

0
{(u̇jP (τ), znP (τ))P + 〈χj(τ), zn(τ)〉} dτ =

∫ t

0
(f(τ), zn(τ)) dτ.

Passing to the limit for n→∞ we conclude
∫ t

0
{(u̇jP (τ), vP (τ))P + 〈χj(τ), v(τ)〉} dτ

=
∫ t

0
(f(τ), v(τ)) dτ ∀v ∈ L2(I, V ) ∀t ∈ I.(148)

D) In this part we prove that

(149) Ŝjk → uj, S̃jk → uj in L2(I,H
1(Ω)).

The strong monotonicity (21) of a(v, w) gives

∫ T

0
a
(
S̃jk(t), S̃jk(t)− uj(t)

)
dt−

∫ T

0
a
(
uj(t), S̃jk(t)− uj(t)

)
dt(150)

� γ

∫ T

0

∣∣S̃jk(t)− uj(t)
∣∣2
1
dt.

From (99) it follows that

(151) lim
k→∞

∫ T

0
a
(
uj(t), S̃jk(t)− uj(t)

)
dt = 0.

According to (133), (135), we have

(152) lim
k→∞

∫ T

0
a
(
S̃jk(t), uj(t)

)
dt =

∫ T

0
〈χj(t), uj(t)〉 dt.

We will prove that

lim sup
k→∞

∫ T

0
a
(
S̃jk(t), S̃jk(t)

)
dt(153)

�
∫ T

0
〈χj(t), z +

◦
sP

j 〉dt+
∫ T

0
(f(t), uj(t)− z − ◦

sP
j ) dt

− 1
2

∥∥ujP (T )− zP − sP
j

∥∥2
0,P

.
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We consider (61) and (63) only for {k} ⊂ {n} and multiply these relations by ∆tk.
We choose v = R1jk ∈ Vk in (61) and v = R

i−1
jk ∈ Vk in (63), where

Ri−1
jk = S

i−1
jk − S0jk, Ri−1

jkP = S
i−1
jkP − S0jkP , i � 2.

Summing up from i = 1 to i = rk we obtain

(∆S1jkP , R
1
jkP )Pk

+
rk∑

i=2

(∆Si
jkP , R

i−1
jkP )Pk

+∆tkak(S1jk, R
1
jk)

+ ∆tk

rk∑

i=2

ak(S
i−1
jk , Ri−1

jk )

= ∆tk(f(t1), R1jk)
I
k +∆tk

rk∑

i=2

(f(ti−1), R
i−1
jk )

I
k

−∆tk
rk∑

i=2

lk(∆Si
jk, R

i−1
jk ).

As R̂1jk = ∆Ŝ
1
jk ∈ V , R̂i−1

jk = Ŝ
i−1
jk − Ŝ0jk ∈ V the previous relation yields

∫ T

0
(S̃jk(t), S̃jk(t)) dt = −(∆Ŝ1jkP ,∆Ŝ

1
jkP )P(154)

− (∆Ŝ1jkP ,∆(S
1
jkP − Ŝ1jkP ))P − (∆(S1jkP − Ŝ1jkP ),∆S

1
jkP )P

− {(∆S1jkP ,∆S
1
jkP )τkP

− (∆S1jkP ,∆S
1
jkP )ωkP

}

−
rk∑

i=2

(
∆Ŝi

jkP , R̂
i−1
jkP

)
P
−

rk∑

i=2

(
∆Ŝi

jkP , R
i−1
jkP − R̂i−1

jkP

)
P

−
rk∑

i=2

(
∆(Si

jkP − Ŝi
jkP ), R

i−1
jkP

)
P
−

rk∑

i=2

{(∆Si
jkP , R

i−1
jkP )τkP

− (∆Si
jkP , R

i−1
jkP )ωkP

}

+
∫ T

0
a(S̃jk(t), Ŝ

0
jk) dt−∆tka(Ŝ1jk, R̂

1
jk)

−∆tk
∑

M=E,P

aM (Ŝ
1
jkM , R1jkM − R̂1jkM )−

−∆tk
∑

M=E,P

{aM (S1jkM , R1jkM )− aM (Ŝ1jkM , R1jkM )}

−∆tk
∑

M=E,P

{aτkM
(S1jkM , R1jkM )− aωkM

(S1jkM , R1jkM )}

−∆tk
rk∑

i=2

∑

M=E,P

aM (Ŝ
i−1
jkM , Ri−1

jkM − R̂i−1
jkM )
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−∆tk
rk∑

i=2

∑

M=E,P

{aM (S
i−1
jkM , Ri−1

jkM )− aM (Ŝ
i−1
jkM , Ri−1

jkM )}

−∆tk
rk∑

i=2

∑

M=E,P

{aτkM
(Si−1

jkM , Ri−1
jkM )− aωkM

(Si−1
jkM , Ri−1

jkM )}

+
∫ T

0
(f̃k(t), S̃jk(t)) dt−

∫ T

0
(f̃k(t), Ŝ0jk) dt

+∆tk

rk∑

i=2

∑

M=E,P

(fM (ti−1), R
i−1
jkM − R̂i−1

jkM )M

+∆tk

rk∑

i=2

∑

M=E,P

{(
fM (ti−1), R

i−1
jkM

)
τkM

−
(
fM (ti−1), R

i−1
jkM

)
ωkM

}

+∆tk

rk∑

i=2

∑

M=E,P

{(
fM (ti−1), R

i−1
jkM

)I

Mk
− (fM (ti−1), R

i−1
jkM )Mk

}

+∆tk
(
f(t1), R̂1jk

)
+∆tk

∑

M=E,P

(
fM (t1), R1jkM − R̂1jkM

)
M

+∆tk
∑

M=E,P

{(
fM (t1), R1jkM

)
τkM

− (fM (t1), R1jkM )ωkM

}

+∆tk
∑

M=E,P

{(
fM (t1), R1jkM

)I

Mk
− (fM (t1), R1jkM )Mk

}

−∆tk
rk∑

i=2

l(∆Ŝi
jk, R̂

i−1
jk )−∆tk

rk∑

i=2

∑

M=E,P

lM (∆Ŝ
i
jkM , Ri−1

jkM − R̂i−1
jkM )

−∆tk
rk∑

i=2

∑

M=E,P

lM (∆(Si
jkM − Ŝi

jkM ), R
i−1
jkM )

−∆tk
rk∑

i=2

∑

M=E,P

{lτkM
(∆Si

jkM , Ri−1
jkM )− lωkM

(∆Si
jkM , Ri−1

jkM )}.

Now we estimate the first and the fifth term on the right-hand side of (154). By
relation (84) we can write

−(∆Ŝ1jkP ,∆Ŝ
1
jkP )P −

rk∑

i=2

(
∆Ŝi

jkP , R̂
i−1
jkP

)
P

(155)

= −
∥∥∆Ŝ1jkP

∥∥2
0,P

−
rk∑

i=2

(
R̂i

jkP − R̂i−1
jkP , R̂

i−1
jkP

)
P
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= −
∥∥∆Ŝ1jkP

∥∥2
0,P

−
rk∑

i=2

(
R̂i

jkP − R̂i−1
jkP ,

1
2
(R̂i−1

jkP − R̂i
jkP ) +

1
2
(R̂i−1

jkP + R̂
i
jkP )

)
P

= −
∥∥∆Ŝ1jkP

∥∥2
0,P
+
1
2

rk∑

i=2

∥∥∆Ŝi
jkP

∥∥2
0,P

− 1
2

rk∑

i=2

(∥∥R̂i
jkP

∥∥2
0,P

−
∥∥R̂i−1

jkP

∥∥2
0,P

)

� 1
2
∆tk

∫ T

0

∥∥dŜjkP (t)/dt
∥∥2
0,P
dt− 1

2

∥∥ŜjkP (T )− Ŝ0jkP

∥∥2
0,P
.

Relation (89) implies

(156) lim
k→∞

∆tk

T∫

0

∥∥dŜjkP (t)/ dt
∥∥2
0,P
dt � C(j) lim

k→∞
∆tk = 0.

According to (97) and (91) we have

(157) lim
k→∞

‖ŜjkP (T )− Ŝ0jkP ‖0,P = ‖ujP (T )− zP − sP
j ‖0,P .

Thus relations (155)–(157) give

lim sup
k→∞

{
−

(
∆Ŝ1jkP ,∆Ŝ

1
jkP

)
P
−

rk∑

i=2

(
∆Ŝi

jkP , R̂
i−1
jkP

)
P

}

� − 1
2
‖ujP (T )− zP − sP

j ‖20,P .(158)

Using (90), (133) and (135) we find

(159) lim
k→∞

∫ T

0
a
(
S̃jk(t), Ŝ0jk

)
dt =

∫ T

0

〈
χj(t), z +

◦
sP

j

〉
dt.

Further, taking into account (12), (93), (99) and (90) we obtain

lim
k→∞

T∫

0

(
f̃k(t), S̃jk(t)

)
dt =

∫ T

0
(f(t), uj(t)) dt,(160)

lim
k→∞

∫ T

0

(
f̃k(t), Ŝ0jk

)
dt =

∫ T

0
(f(t), z +

◦
sP

j ) dt.(161)
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It is not difficult (only technical) to prove that the remaining terms on the right-

hand side of (154) tend to zero with k → ∞ (j is fixed). (The proof is a simple
modification of considerations introduced in part C of the proof of Theorem 3.8 in
[11]. Thus summarizing we see that all results (158)–(161) and relation (154) imply

(153).
In part E we will prove that

T∫

0

〈χj(t), uj(t)〉dt =
∫ T

0

〈
χj(t), z +

◦
sP

j 〉dt+
∫ T

0

(
f(t), uj(t)− z − ◦

sP
j

)
dt(162)

− 1
2

∥∥ujP (T )− zP − sP
j

∥∥2
0,P
.

Comparing this result with (153) we obtain

(163) lim sup
k→∞

∫ T

0
a
(
S̃jk(t), S̃jk(t)

)
dt �

∫ T

0
〈χj(t), uj(t)〉dt.

Relations (152) and (163) yield

lim sup
k→∞

∫ T

0
a
(
S̃jk(t), S̃jk(t)− uj(t)

)
dt � 0.

This relation together with (150) and (151) implies

lim sup
k→∞

∫ T

0
|S̃jk(t)− uj(t)|21 dt � 0.

Therefore, we have

(164) lim
k→∞

∫ T

0
|S̃jk(t)− uj(t)|21 dt = 0.

By (97) we get

(165)
∫ T

0
‖ŜjkP (t)−ujP (t)‖20,P dt � T max

t∈I
‖ŜjkP (t)−ujP (t)‖20,P → 0 for k→∞.

According to (88), it follows that

(166) lim
k→∞

‖S̃jkP − ŜjkP ‖2L2(I,L2(ΩP )) = 0.

As

‖S̃jkP − ujP ‖L2(I,L2(ΩP )) � ‖S̃jkP − ŜjkP ‖L2(I,L2(ΩP )) + ‖ŜjkP − ujP ‖L2(I,L2(ΩP )),
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relations (165) and (166) yield

(167) lim
k→∞

‖S̃jkP − ujP ‖L2(I,L2(ΩP )) = 0.

Now we use the continuous form of inequality (53) (see [8, (1)]):

(168) ‖u‖21 � C(‖u‖20,P + |u|21) ∀u ∈ H1(Ω).

Thus relations (164), (167) and (168) give

lim
k→∞

‖S̃jk − uj‖L2(I,H1(Ω)) = 0

and relation (149)2 holds. Moreover, relations (149)2 and (88) imply (149)1.
E) Now we prove relation (162) used in part D. Let us define

(169) Q̂i−1
jk := Ŝ

i−1
jk − Îk(z +

◦
sP
j ) ∈ V,

where Ik(w) ∈ Xh is the interpolant of w and Îk(w) denotes the function associated
with Ik(w). By (62), (67), [12, Lemma 48.5] and a priori estimates (82) we obtain

‖Q̂i−1
jk ‖1 � ‖Ŝi−1

jk ‖1 + ‖Ŝ0jk‖1 � C(j).

Hence for the step-functions

(170) Q̃jk(t) = Q̂
i−1
jk , t ∈ [ti−1, ti) (i = 1, . . . , rk)

we have

(171) ‖Q̃jk‖L2(I,V ) � C(j)
√
T (k = 1, . . . , rk).

According to (171) and the reflexivity of L2(I, V ) (which follows from [12, Theo-

rem P .125] and Theorem P .132 of [12], there exist a subsequence of the sequence {k}
(we denote it again by {k}) and a function wj ∈ L2(I, V ) such that

(172) Q̃jk ⇀ wj in L2(I, V ) ⊂ L2(I,H1(Ω)).

Now let {Φ} be a set of all linear functionals on L2(I,H1(Ω)). Using (99) we have
for an arbitrary functional Φ ∈ {Φ}

(173) lim
k→∞

Φ(S̃jk) = Φ(uj).
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As by (90) and (62)

lim
k→∞

∥∥z + ◦
sP

j − Îk(z +
◦
sP

j )
∥∥
1
= 0,

we have

(174) lim
k→∞

Φ(Îk(z +
◦
sP

j )) = Φ(z +
◦
sP

j ) ∀Φ ∈ {Φ}.

Relations (85), (169) and (170) imply

(175) Q̃jk(t) = S̃jk(t)− Îk(z +
◦
sP
j ).

Let us choose Φ ∈ {Φ} arbitrarily. The linearity of the functional Φ and relations
(175), (173), (174) give

(176) lim
k→∞

Φ(Q̃jk) = lim
k→∞

Φ(S̃jk)− lim
k→∞

Φ(Îk(z +
◦
sP

j )) = Φ(uj − z − ◦
sP

j ).

On the other hand, relation (172) implies

(177) lim
k→∞

Φ(Q̃jk) = Φ(wj).

Hence relations (176) and (177) and the uniqueness of the weak limit yield wj =

uj − z − ◦
sP

j in L2(I,H
1(Ω)). Thus we have

(178) wj(t) = uj(t)− z − ◦
sP

j in H1(Ω) ∀t ∈ I − Ej .

Let us set now v = wj ∈ L2(I, V ) in relation (148):

(179)
∫ t

0
{(u̇jP (τ), wjP (τ))P + 〈χj(τ), wj(τ)〉} dτ =

∫ t

0
(f(τ), wj(τ)) dτ.

As the equality in L2(Ω) means the equality almost everywhere, it follows from the

properties of the Lebesgue integral and (178), (179) that we have

∫ t

0

(
u̇jP (τ), ujP (τ) − zP − sP

j

)
P
dτ +

∫ t

0

〈
χj(τ), uj(τ) − z − ◦

sP
j

〉
dτ(180)

=

t∫

0

(
f(τ), uj(τ)− z − ◦

sP
j

)
dτ.

Let us set t = T in (180). For the validity of (162) it remains to prove

(181)
∫ T

0

(
u̇jP (t), ujP (t)− zP − sP

j

)
P
dt =

1
2

∥∥ujP (T )− zP − sP
j

∥∥2
0,P
.
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We see that

(182)
∫ T

0

(
u̇jP (t), ujP (t)

)
P
dt =

1
2

(
ujP (T ), ujP (T )

)
P
− 1
2
(ujP (0), ujP (0))P .

According to [12, Theorem P .112(b)], we have
∫ T

0

(
u̇jP (t), zP + s

P
j

)
P
dt =

(∫ T

0
u̇jP (t) dt, zP + s

P
j

)

P

(183)

=
(
ujP (T ), zP + sP

j

)
P
−

(
ujP (0), zP + sP

j

)
P
.

As by (101) we have ujP (0) = zP +sP
j , subtracting (183) from (182) we obtain (181).

F) Relation (123) is relation (101) from Lemma 4.8.
G) Now we prove relation (124). By virtue of (178), relation

(184) wj(t) = uj(t)− z − ◦
sP

j ∀t ∈ I − Ej

is satisfied almost everywhere in Ω. Then the both sides of (184) are equal from the
point of view of the space H1(Ω). As wj ∈ L2(I, V ) we have tr(wj(t)) = 0 on Γ1.

This relation and (184) imply (124).

H) Using the Lipschitz continuity (22) of the form a(v, w) we can write

∣∣∣∣
t∫

0

{
a
(
uj(τ), v(τ)

)
− a

(
S̃jk(τ), v(τ)

)
} dτ

∣∣∣∣

� β‖uj − S̃jk‖L2(I,H1(Ω)) ‖v‖L2(I,V ) ∀v ∈ L2(I, V ) ∀t ∈ I.

Passing to the limit for k → ∞ and taking into account (133), (135) and (149)2 we
find ∫ t

0
a
(
uj(τ), v(τ)

)
dτ =

∫ t

0
〈χj(τ), v(τ)〉dτ ∀v ∈ L2(I, V ) ∀t ∈ I.

Combining this result with (148) we obtain (122).

I) Now we prove the uniqueness of the solution of problem (122)–(124). Let us

assume that there exist two functions u1j , u
2
j satisfying together with their strong

derivatives u̇1j , u̇
2
j relations (122)–(124). Then we have

∫ t

0

{(
u̇1jP (τ) − u̇2jP (τ), vP (τ)

)
P
+ a

(
u1j(τ), v(τ)

)
− a

(
u2j(τ), v(τ)

)}
dτ = 0(185)

∀v ∈ L2(I, V ) ∀t ∈ I,
u1jP (0)− u2jP (0) = 0.(186)
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Choosing w = u1j − u2j and using (124) we obtain

(187) tr(w(t)) = 0 in L2(Γ1) ∀t ∈ I − Ej .

By virtue of the equality meas1Ej = 0, relation (187) and the fact that ui
j ∈

L2(I,H1(Ω)) (i = 1, 2), we have w ∈ L2(I, V ). Thus we can set v = w in (185).

Using the strong monotonicity (21) of a(v, w), (186) and Friedrichs’ inequality [12,
Theorem P .84] we obtain after integrating (185)

1
2
‖u1jP (t)− u2jP (t)‖20,P + C

∫ t

0
‖u1j(τ)− u2j(τ)‖21 dτ � 0 ∀t ∈ I.

This inequality implies u1jP (t) = u
2
jP (t) in L2(ΩP ) ∀t ∈ I and

∫ t′′

t′
‖u1j(t)− u2j(t)‖21 dt = 0 ∀t′, t′′ ∈ I.

Hence ‖u1j(t)− u2j(t)‖1 = 0 for almost all t ∈ I.
J) It remains to prove (125)–(128). Till now we have proved (97), (100) and

(149), where {k} is a subsequence of the sequence {n}. However, the uniqueness of
the solution uj of the variational problem (122)–(124) implies that {k} ≡ {n} (for
details see [10], p. 26). Thus relations (125)–(128) hold. �

Theorem 4.13. The solution of Problem 2.1 exists and is unique and we have

ujP → uP in C(I, L2(ΩP )),(188)

uj → u in L2(I,H
1(Ω)),(189)

u̇jP ⇀ u̇P weakly in L2(I, V ∗P ).(190)

����
. With small modifications we can follow the proof of [11, Theorem 3.10],
only we consider the space L2(I,H1(Ω)) instead of L2(I, V ). We show just the

differences.
Relation (189) gives u ∈ L2(I,H1(Ω)). However, we need to prove that u ∈

L∞(I,H1(Ω)). From (189) it also follows that

(191) uj ⇀ u in L2(I,H1(Ω)).

As the norm ‖·‖1 is weakly lower semicontinuous on H1(Ω), similarly as in the proof
of Lemma 4.8, owing to (191) and (94) we get

‖u(t)‖1 � lim inf
j→∞

‖uj(t)‖1 � C ∀t ∈ I.
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Thus u ∈ L∞(I,H1(Ω)). This fact together with (188) gives (7).
Now we prove (10). We can write

(192)
∫ T

0
‖z − u(t)‖0,Γ1 dt �

∫ T

0
‖z − uj(t)‖0,Γ1 dt+

∫ T

0
‖uj(t)− u(t)‖0,Γ1 dt.

By virtue of (124), we have

∫ T

0
‖z − uj(t)‖0,Γ1 dt = 0.

Relation (189) and [12, Theorem P .73(b)] imply
∫ T

0
‖uj(t)− u(t)‖0,Γ1 dt � C

∫ T

0
‖uj(t)− u(t)‖1 dt→ 0.

These results and (192) prove (10). �

Using Theorems 4.12, 4.13 and Lemma 3.3 which is essential we can prove the

main result of this paper.

Theorem 4.14. Let (52) and (58) be satisfied. Then we have

ÛnP → uP in C(I, L2(ΩP )),(193)

Ẑn → u in L2(I,H1(Ω))(194)

where the functions ÛnP (t) and Ẑn(t) are given by relations (57)–(59) and u is the
solution of Problem 2.1.

����
. A) The idea of the proof is the same as that of the proof of Theorem 3.11
in [11]. We derive only relations (204) and (205) which correspond to similar ones

in the proof mentioned, but their proofs are completely different. Let us set

(195) Ri
jn = S

i
jn − U i

n (i = 1, . . . , rn), Ri
jnP = S

i
jnP − U i

nP (i = 0, 1, . . . , rn).

We have Ri
jn ∈ Vn (i = 1, . . . , rn).

Subtracting (49) from (61) and (51) from (63) and multiplying by ∆tn we obtain

(∆R1jnP , vP )Pn +∆tn{an(S1jn, v)− an(U1n, v)} = 0 ∀v ∈ Vn,(196)

(∆Ri
jnP , vP )Pn +∆tnln(R

i
jn, v)−∆tn

{
dn(S

i−1
jn , v)− dn(U i−1

n , v)
}
= 0,(197)

v ∈ Vn (i = 2, . . . , rn).
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It is easy to derive the identity

(198) (∆Ri
jnP , R

i
jnP )Pn =

1
2
‖∆Ri

jnP ‖20,Pn
+
1
2
‖Ri

jnP ‖20,Pn
− 1
2
‖Ri−1

jnP ‖20,Pn
.

Let us set v = R1jn in (196). Using the strong monotonicity (34) of the form
an(v, w), the discrete form of Friedrichs’ inequality [12, (29.1)] and identity (198)

with i = 1 we find

(199) ‖R1jnP ‖20,Pn
+ C∆tn‖R1jn‖21,Ωn

� ‖R0jnP ‖20,Pn
.

Let us choose v = Ri
jn in (197) and sum from i = 2 to i = m � rn. Owing to (198)

we have

m∑

i=2

(∆Ri
jnP , R

i
jnP )Pn =

1
2

m∑

i=2

‖∆Ri
jnP ‖20,Pn

+
1
2
‖Rm

jnP ‖20,Pn
− 1
2
‖R1jnP ‖20,Pn

(200)

� 1
2
‖Rm

jnP ‖20,Pn
− ‖R1jnP ‖20,Pn

.

Applying Lemma 3.3, (40), inequality (69) and the discrete form of Friedrichs’ in-

equality [12, (29.1)] we obtain the bound

∆tn

m∑

i=2

{
ln(R

i
jn, R

i
jn)−

(
dn(S

i−1
jn , Ri

jn)− dn(U
i−1
n , Ri

jn)
)}

(201)

� ∆tn
m∑

i=2

∑

M=E,P

{
ΘM |Ri

jnM |21,Mn
− τM |Ri−1

jnM |1,Mn |Ri
jnM |1,Mn

}

� ∆tn
m∑

i=2

∑

M=E,P

{
ΘM |Ri

jnM |21,Mn
− 1
2
τM (|Ri−1

jnM |21,Mn
+ |Ri

jnM |21,Mn
)

}

=
1
2
∆tn

∑

M=E,P

{
τM |Rm

jnM |21,Mn
− τM |R1jnM |21,Mn

+ 2�M

m∑

i=2

|Ri
jnM |21,Mn

}

� ∆tn�C
m∑

i=2

‖Ri
jn‖21,Ωn

− 1
2
∆tnτ‖R1jn‖21,Ωn

,

where τ = max(τE , τP ) > 0, � = min(�E , �P ) > 0 and 0 < τM = ΘM − �M < ΘM ,

�M = min(γM , 2(ΘM − 1
2βM )) (M = E,P ).

Thus using (200), (201) and (199) we have

‖Rm
jnP ‖20,Pn

+ C∆tn

m∑

i=2

‖Ri
jn‖21,Ωn

� ‖R1jnP ‖20,Pn
+ τ∆tn‖R1jn‖21,Ωn

� ‖R0jnP ‖20,Pn
(m = 2, . . . , rn).
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This relation together with (199), (195) gives

‖Rm
jnP ‖20,Pn

� ‖R0jnP ‖20,Pn
(0 � m � rn),(202)

C∆tn

m∑

i=1

‖Si
jn − U i

n‖21,Ωn
� ‖R0jnP ‖20,Pn

(1 � m � rn).(203)

As by (195), (50) and (62) we see that

R0jnP = InP (zP + sP
j )− uP

0n,

relations (202), (203) and [12, Lemma 48.5] imply

‖R̂m
jnP ‖0,P � C‖InP (zP + sP

j )− uP
0n‖0,Pn (0 � m � rn),(204)

C∆tn

rn∑

i=1

‖Ŝi
jn − Û i

n‖21 � C∗‖InP (zP + sP
j )− uP

0n‖20,Pn
.(205)

Relations (204) and (205) are analogous to [11, (3.91)] and the last relation in [11],

p. 375, respectively. With only small modifications we can now follow the proof of
Theorem 3.11 of [11]. �

�����	. This paper is a generalization of the results of [15] and [11]: a linear

scheme of [15] is generalized to the case of a domain with a nonpolygonal boundary
and a nonhomogeneous Dirichlet boundary condition is taken into account.

As some theorems and lemmas from [15], [11] and [12] are applied in the proofs

of the theorems mentioned above it would be suitable to present them. However, to
keep the extent of the paper within reasonable limits only the appropriate references

were given.
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