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Abstract. A metrized complex of algebraic curves over an algebraically closed field κ is,
roughly speaking, a finite metric graph Γ together with a collection of marked complete
nonsingular algebraic curves Cv over κ, one for each vertex v of Γ; the marked points
on Cv are in bijection with the edges of Γ incident to v. We define linear equivalence of
divisors and establish a Riemann-Roch theorem for metrized complexes of curves which
combines the classical Riemann-Roch theorem over κ with its graph-theoretic and tropical
analogues from [AC, BN, GK, MZ], providing a common generalization of all of these
results. For a complete nonsingular curve X defined over a non-Archimedean field K,
together with a strongly semistable model X for X over the valuation ring R of K, we
define a corresponding metrized complex CX of curves over the residue field κ of K and
a canonical specialization map τCX∗ from divisors on X to divisors on CX which preserves
degrees and linear equivalence. We then establish generalizations of the specialization
lemma from [B] and its weighted graph analogue from [AC], showing that the rank of a
divisor cannot go down under specialization from X to CX. As an application, we establish
a concrete link between specialization of divisors from curves to metrized complexes and
the Eisenbud-Harris theory [EH] of limit linear series. Using this link, we formulate a
generalization of the notion of limit linear series to curves which are not necessarily of
compact type and prove, among other things, that any degeneration of a grd in a regular
family of semistable curves is a limit grd on the special fiber.
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1. Introduction

We begin by quoting the introduction from the groundbreaking paper [EH] of Eisenbud
and Harris:

“One of the most potent methods in the theory of (complex projective algebraic)
curves and their linear systems since the work of Castelnuovo has been degeneration
to singular curves... Most problems of interest about curves are, or can be, formu-
lated in terms of (families of) linear series. Thus, in order to use degenerations
to reducible curves for studying smooth curves, it is necessary to understand what
happens to linear series in the course of such a degeneration, and in particular, to
understand what structure on a reducible curve plays the part of a linear series.”

This has been very successful in practice and has led to important advances in the study
of algebraic curves (see [HM98] for an overview); we mention for example Brill-Noether
theory [EH, Bi], the geometry of the moduli space of curves [HM82, EH2], and Weierstrass
points and their monodromy [EH3, EM, EH4]. In view of the Deligne-Mumford compacti-
fication ofMg and the stable reduction theorem [DM], it is particularly natural to consider
degeneration of smooth curves to stable (or more generally semistable) curves. Eisenbud
and Harris were able to settle a number of longstanding open problems with their theory of
limit linear series on such curves, and the theory has undergone numerous developments and
improvements in the last 25 years. However, the theory of limit linear series only applies,
for the most part, to a rather restricted class of reducible curves, namely those of compact
type (i.e., nodal curves whose dual graph is a tree).

In [B], the second author introduced a new framework for degenerating linear series on
curves, degenerating linear series on a regular semistable family of curves to a linear series
on the dual graph of the special fiber. This theory, which is closely related to tropical
geometry and also to the theory of Berkovich analytic spaces, is more or less orthogonal
to the Eisenbud-Harris theory, in that it works best for special fibers which are maximally
degenerate, meaning that the dual graph has first Betti number equal to the genus of the
generic fiber. Specializing linear series to the dual graph provides no information whatsoever
when the special fiber is of compact type. Intriguingly, both the Eisenbud-Harris theory and
the second author’s theory from [B] lead to simple proofs of the celebrated Brill-Noether
theorem of Griffiths-Harris (see [EH, CDPR]).

The aim of the present paper is to introduce a theoretical framework suitable for general-
izing both the Eisenbud-Harris theory of limit linear series and the second author’s theory
of specialization from curves to graphs. The main new object of study is what we call a
metrized complex of algebraic curves over an algebraically closed field κ; this is, roughly
speaking, a finite metric graph Γ together with a collection of marked complete nonsingular
algebraic curves Cv over κ, one for each vertex v (with a marked point on Cv for each edge
of Γ incident to v). We define divisors, linear equivalence of divisors, and rank of divi-
sors on metrized complexes of curves and establish a Riemann-Roch theorem for metrized
complexes of curves which combines the classical Riemann-Roch theorem over κ with its
graph-theoretic and tropical analogues proved in [AC, BN, GK, MZ]. For a curve X de-
fined over a non-Archimedean field K, together with a strongly semistable model X for X
over the valuation ring R of K, we define a corresponding metrized complex CX of curves
over the residue field κ of K and a specialization map τCX∗ from divisors on X to divisors
on CX preserving degrees and linear equivalence. We then establish generalizations of the
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specialization lemma from [B] and its weighted graph analogue from [AC], showing that the
rank of a divisor cannot go down under specialization from X to CX. As an application,
we establish a concrete link between specialization of divisors from curves to metrized com-
plexes and the Eisenbud-Harris theory of limit linear series. Using this link, we formulate
a generalization of the notion of limit linear series to curves which are not necessarily of
compact type and prove, among other things, that any degeneration of a grd in a regular
family of semistable curves is a limit grd on the special fiber.

As mentioned above, the specialization theory from [B] works best in the case where the
family is maximally degenerate; in other cases, the dual graph of the family forgets too much
information. This loss of information was partially remedied in [AC] by looking at vertex-
weighted graphs, where the weight attached to a vertex is the genus of the corresponding
irreducible component of the special fiber. The theory of metrized complexes of curves
offers a richer solution in which one keeps track of the (normalization of the) irreducible
components Cv of the special fiber themselves, and not just their genera. From the point
of view of non-Archimedean geometry, this corresponds to retracting divisors on X to the
skeleton ΓX, a metric graph canonically embedded in the Berkovich analytic space Xan,
but also keeping track, for points retracting to a vertex of ΓX, of the tangent direction in
which the vertex is approached. This is quite natural from the valuation-theoretic point
of view: the metric graph ΓX associated to a strongly semistable model X is a canonical
subset of the Berkovich analytic space Xan, and the curve Cv over κ is naturally identified
(for each v ∈ V ) with the fiber over v of the canonical retraction map Xad → Xan (which
sends a continuous valuation of arbitrary rank in the Huber adic space Xad to its canonical
rank-1 generalization), c.f. [Te, Remark 2.6]. Though we could possibly (with quite a bit
of additional effort) have formulated many of our theorems and proofs without mentioning
Berkovich spaces, it would have resulted in a significant loss of elegance and clarity, and in
any case Berkovich’s theory seems ideally suited for the point of view taken here. We do
not, however, require any non-trivial facts from Huber’s theory of adic spaces, so we will
not mention them again even though they are certainly lurking in the background.

There are a number of connections between the ideas in the present paper and tropical
geometry; these will be explored in more detail in future work. For example, the theory
of morphisms between metrized complexes of curves studied in [ABBR1, ABBR2] sheds
interesting new light on the question of which morphisms between tropical curves are liftable.
The theory developed in [BPR] shows that there is a close connection between metrized
complexes of curves and “exploded tropicalizations” in the sense of [Pay, Definition 2.9];
we plan to say more about this in the future as well. As noted by Payne in [Pay], exploded
tropicalizations can be thought of as an algebraic analogue of the “exploded torus fibrations”
studied by Parker from a symplectic viewpoint [Par]. It could be interesting to explore
connections between loc. cit. and the present work.

The ideas in the present paper also have Diophantine applications to the study of ratio-
nal points on curves over number fields (specifically, to the method of Coleman-Chabauty).
Indeed, Eric Katz and David Zureick-Brown have recently proved a result similar to The-
orem 3.4 below (Clifford’s theorem for metrized complexes), and they use this result to
answer a question of M. Stoll. A special case of the main result in [KZB] is the following.
Let X be a smooth projective geometrically irreducible curve of genus g ≥ 2 over Q and
assume that the Mordell-Weil rank r of the Jacobian of X is less than g. Fix a prime
number p > 2r + 2 and let X be a proper (not necessarily semistable) regular model for X
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over Zp. Then (letting X̄sm denote the smooth locus of X̄)

#X(Q) ≤ X̄sm(Fp) + 2r.

We discuss the theorem of Katz and Zureick-Brown in more detail in Section 5.5 below,
explaining how limit linear series on metrized complexes of curves can be used to illuminate
their proof and put it into a broader context.

Finally, we would like to mention that the ideas presented in this paper have been used
to prove the two following recent results, see [AB] and [A14] .

The first one [AB] is the multiplicity conjecture of [CDPR]. In [AB], we apply the theory
developed in this paper to a generic chain of genus-one curves, and provide an analysis
of the Brill-Noether theory of the corresponding metrized complexes. The description of
ranks of divisors on such metrized complexes turn out to be quite similar to the example
considered [CDPR] of a generic chain of genus-one metric graphs. In particular, we are able
to provide an interpretation of the lingering paths of [CDPR] in terms of the η-function we
introduce in Section 4.6. In addition, we show that every divisor of degree d and rank r on
such a metrized complex can be completed to a limit grd. In the case ρ = 0, these results,
combined with a geometric argument, can be used to prove the conjecture of [CDPR],
namely that each divisor D of degree d and rank r on the metric graph considered in [CDPR]
can be lifted to a grd on the corresponding curve.

The second application is the non-Archimedean analogue of Mumford-Neeman theorem
on distribution of Weierstrass points. A theorem of Mumford and Neeman [N] states that
for a compact Riemann surface S, and for a line bundle L of positive degree on S, the
discrete measures µn on S supported on Weierstrass points of L⊗n converge weakly to the
Arakelov (canonical) measure on S when n goes to infinity. The first author proves the
following non-Archimedean analogue of Mumford-Neeman theorem in [A14].

Theorem 1.1 (Amini [A14]). Let X be a smooth proper curve of genus at least one over an
algebraically closed and complete non-Archimedean field of equicharacteristic zero. Let Xan

be the Berkovich analytification of X, and Γ the minimal skeleton of Xan (which is a metric
graph). Let L be a line bundle of positive degree on X, and Hn the multiset of Weierstrass
points of L⊗n. Consider the discrete measure µn := 1

|Hn|
∑

x∈Hn
δτ(x) on Γ, supported on

the set of all points τ(x), reduction of a point x ∈ Hn on Γ. The measures µn converge
weakly to the canonical admissible measure µad on Γ when n goes to infinity.

The admissible measure µad was constructed by Zhang. For any divisor D on the metric
graph Γ of degree different from −2, by extending the results of Chinburg and Rumely [CR]
in the case D = 0, Zhang associates in [Z] the unique measure µD such that for any point
x ∈ Γ, one has gµD(D,x)+gµD(x, x) = c for a unique constant c = c(D). Here gµ(., .) is the
Green function on Γ× Γ associated to the measure µ. The canonical admissible measure is
the measure µK , where K is the canonical divisor of the weighted metric graph Γ [Z].

1.1. Notation. We set the following notation, which will be used throughout this paper.

G a finite edge-weighted graph with vertex set V and edge set E
Γ a compact metric graph (geometric realization of an edge-weighted graph G)
K a complete and algebraically closed non-trivially valued non-Archimedean field
R the valuation ring of K
κ the residue field of K
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X a smooth, proper, connected algebraic curve defined over K
Xan the Berkovich analytification of X/K

X a proper and flat semistable R-model for X, usually assumed to be strongly
semistable

Cv a smooth, proper, connected algebraic curve over κ (one for each vertex v ∈ V )
C a metrized complex of algebraic curves over κ
|C| the geometric realization of C
CX the metrized complex associated to a strongly semistable R-model X of X
X0 a nodal curve defined over κ
Xv an irreducible component of X0

CX0 the regularization of the nodal curve X0

Div(C) the group of divisors on the metrized complex C
D a divisor on C
E an effective divisor on C
f a rational function on C

Dv a divisor on Cv
Ev an effective divisor on Cv
fΓ a rational function on Γ, usually the Γ-part of a rational function f on C
fv a rational function on Cv, usually the Cv-part of a rational function f on C

slpe(fΓ) the outgoing slope of fΓ along an edge (or tangent direction) e
rC the rank function on Div(C)

rC,F the restricted rank function with respect to a collection F = {Fv}v∈V of sub-
spaces of κ(Cv)

τ the retraction map from Xan to the skeleton ΓX of X
τCX∗ the specialization map from Div(X) to Div(CX)
Av the marked points of Cv in the metrized complex C
xev the point of Av corresponding to the edge (or tangent direction) e
Av the sum in Div(Cv) of the points of Av

1.2. Overview. We now discuss the contents of this paper in more detail.

An edge-weighted graph G is a connected multigraph, possibly with loop edges, having
vertex set V and edge set E, and endowed with a weight (or length) function ` : E → R>0.
A metric graph Γ is the geometric realization of an edge-weighted graph G in which each
edge e of G is identified with a line segment of length `(e). We call G a model for Γ.
Subdividing an edge of G in a length-preserving fashion changes the model but not the
underlying metric graph.

Let κ be an algebraically closed field.1 A metrized complex C of κ-curves consists of the
following data:

• A connected finite graph G with vertex set V and edge set E.
• A metric graph Γ having G as a model (or equivalently, a length function ` : E →
R>0).
• For each vertex v of G, a complete, nonsingular, irreducible curve Cv over κ.
• For each vertex v of G, a bijection e 7→ xev between the edges of G incident to v

(with loop edges counted twice) and a subset Av = {xev}e3v of Cv(κ).

1To simplify the presentation, we restrict to algebraically closed fields. In §2.3 of the January 2013 arXiv
version of this paper, we indicate how the theory can be developed over an arbitrary field κ.
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Figure 1. The geometric realization of a metrized complex of genus four.

The geometric realization |C| of C is defined to be the union of the edges of G and the
collection of curves Cv, with each endpoint v of an edge e identified with the corresponding
marked point xev. See Figure 1. When we think of |C| as a set, we identify it with the
disjoint union of Γ\V and

⋃
v∈V Cv(κ). Thus, when we write x ∈ |C|, we mean that x is

either a non-vertex point of Γ (a graphical point of C) or a point of Cv(κ) for some v ∈ V
(a geometric point of C).

The genus of a metrized complex of curves C, denoted g(C), is by definition g(C) =
g(Γ) +

∑
v∈V gv, where gv is the genus of Cv and g(Γ) is the first Betti number of Γ.

Given a metrized complex C of κ-curves, there is an associated semistable curve X0 over
κ obtained by gluing the curves Cv along the points xev (one intersection for each edge e of
G) and forgetting the metric structure on Γ. Conversely, given a semistable curve X0 over
κ together with a positive real number for each node (which we call a “length function”),
one obtains an associated metrized complex of κ-curves by letting G be the dual graph of
X0, Γ the metric graph associated to G and the given length function, Cv the normalization
of the irreducible component Xv of X0 corresponding to v, and Av the preimage in Cv of
the set of nodes of X0 belonging to Xv.

Let K be a complete and algebraically closed non-Archimedean field with residue field κ
and let X/K be a smooth, proper, connected algebraic curve. There is a metrized complex
C = CX canonically associated to any strongly semistable model X of X over the valuation
ring R of K: the special fiber X̄ of X is a semistable curve over κ, and one defines the length
of an edge e of the dual graph of X̄ to be the modulus of the open annulus red−1(z), where z is
the singular point of X̄ corresponding to e and red : X(K)→ X̄(κ) is the canonical reduction
map. Equivalently, there is a local analytic equation for z of the form xy = $ with $ in the
maximal ideal of R, and the length of e is val($). The corresponding metric graph Γ = ΓX

is called the skeleton of X, and there is a canonical retraction map τ = τX : Xan � ΓX,
where Xan denotes the Berkovich analytification of X. By restricting to X(K) and then
extending by linearity, we obtain a specialization map τ∗ : Div(X)→ Div(ΓX).

If R is a discrete valuation ring and the fibered surface X/R is regular, then one can
use intersection-theoretic methods to define and study specialization of divisors from curves
to graphs. For example, in [B], using intersection theory, a specialization homomorphism
ρ : Div(X)→ Div(G) was defined, where G is the dual graph of X̄, with the property that
ρ(D) and τ∗(D) are linearly equivalent as divisors on ΓX for all D ∈ Div(X). In the present
paper, we focus exclusively on τ∗ and its generalization to metrized complexes of curves,
though in principle all of our results can be translated (when R is a discrete valuation ring
and X is regular) into results about this alternative specialization map.
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A divisor on a metrized complex of curves C is an element D of the free abelian group
on |C|. Thus a divisor on C can be written uniquely as D =

∑
x∈|C| ax(x) where ax ∈ Z, all

but finitely many of the ax are zero, and the sum is over all points of Γ\V as well as Cv(κ)
for v ∈ V . The degree of D is defined to be

∑
ax.

To a divisor on C, we can naturally associate a divisor DΓ on Γ, called the Γ-part of D,
as well as, for each v ∈ V , a divisor Dv on Cv (called the Cv-part of D). The divisor Dv is
simply the restriction of D to Cv, i.e. Dv =

∑
x∈Cv(κ)D(x)(x), and DΓ is defined as

DΓ =
∑
x∈Γ\V

D(x)(x) +
∑
v∈V

deg(Dv)(v),

where D(x) denotes the coefficient of x in D.
In particular, the degree of D equals the degree of DΓ. One could equivalently define a

divisor on C to be an element of the form D = DΓ ⊕
∑

vDv of Div(Γ)⊕ (⊕v Div(Cv)) such
that deg(Dv) = DΓ(v) for all v in V .

The specialization map τ∗ can be enhanced in a canonical way to a map from divisors on
X to divisors on CX. The fiber τ−1(v) of the retraction map τ : X(K) → Γ over a vertex
v ∈ V can be canonically identified with red−1(Csm

v (κ)), the fiber of the reduction map
red : X(K) → X̄(κ) over the smooth locus Cv(κ) \ Av of Cv. We define τCX : X(K) → CX
by setting

τCX(P ) =

{
τ(P ) τ(P ) 6∈ V
red(P ) τ(P ) ∈ V

and we extend this by linearity to a map τCX∗ : Div(X)→ Div(CX).

Intuitively speaking, for points P of X(K) which reduce to smooth points of X̄, the map
τCX keeps track of the reduced point red(P ) ∈ X̄sm(κ), while if P reduces to a singular point
of X̄ then τCX instead keeps track of the retraction of P to the skeleton of the open annulus
red−1(P ), which is canonically identified with the relative interior of the corresponding edge
of ΓX.

A nonzero rational function f on a metrized complex of curves C is the data of a rational
function fΓ on Γ and nonzero rational functions fv on Cv for each v ∈ V . (We do not
impose any compatibility conditions on the rational functions fΓ and fv.) We call fΓ the
Γ-part of f and fv the Cv-part of f.

The divisor of a nonzero rational function f on C is defined to be

div(f) :=
∑
x∈|C|

ordx(f)(x),

where ordx(f) is defined as follows:

• If x ∈ Γ\V , then ordx(f) = ordx(fΓ), where ordx(fΓ) is the sum of the slopes of fΓ

in all tangent directions emanating from x.
• If x ∈ Cv(κ)\Av, then ordx(f) = ordx(fv).
• If x = xev ∈ Av, then ordx(f) = ordx(fv) + slpe(fΓ), where slpe(fΓ) is the outgoing

slope of fΓ at v in the direction of e.

If DΓ (resp. Dv) denotes the Γ-part (resp. the Cv-part) of div(f), then

DΓ = div(fΓ) =
∑
u∈Γ

ordu(fΓ) (u) and Dv = div(fv) + divv(fΓ), where
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(1) divv(fΓ) :=
∑
e3v

slpe(fΓ)(xev).

Divisors of the form div(f) are called principal, and the principal divisors form a subgroup
of Div0(C), the group of divisors of degree zero on C. Two divisors in Div(C) are called
linearly equivalent if they differ by a principal divisor.

Linear equivalence of divisors on C can be understood quite intuitively in terms of “chip-
firing moves”. To state this formally, for each vertex v of G, let Av be the sum of the
degG(v) points in Av and let `v be the minimum length of an edge e incident to v. Also,
for an edge e having v as an endpoint and a positive real number ε < `(e), let pev,ε be the
unique point of e at distance ε from v. Then it is not hard to show that linear equivalence of
divisors on C is the equivalence relation generated by the following three kinds of “moves”:

(1) (Firing on Cv) Choose a vertex v and replace the divisorDv with a linearly equivalent
divisor D′v on Cv.

(2) (Firing a vertex) Choose a vertex v and a positive real number ε < `v and replace
Dv with Dv −Av and DΓ with DΓ − degG(v)(v) +

∑
e3v(p

e
ε).

(3) (Firing a non-vertex) Choose a non-vertex p ∈ Γ and a positive real number ε
less than the distance from p to the nearest vertex and replace DΓ by the divisor
DΓ − 2(p) + (p+

ε ) + (p−ε ), where p±ε are the two points at distance ε from p.

The motivation for our definitions of τCX∗ and div(f) come from the following fundamental
relation, a consequence of the non-Archimedean Poincaré-Lelong formula due to Thuillier
(see §5 of [BPR]). Let f be a nonzero rational function on X and let f be the corresponding
nonzero rational function on CX, where fΓ is the restriction to Γ of the piecewise linear
function log |f | on Xan and fv ∈ κ(Cv) for v ∈ V is the normalized reduction of f to Cv
(cf. §4.4). Then

τCX∗ (div(f)) = div(f).

In particular, we have τCX∗ (Prin(X)) ⊆ Prin(CX).

A divisor E =
∑

x∈|C| ax(x) on C is called effective if ax ≥ 0 for all x (or, equivalently, if

the Γ-part EΓ and the Cv-parts Ev of E are effective for every v ∈ V ). The rank rC of a
divisor D ∈ Div(C) is defined to be the largest integer k such that D−E is linearly equivalent
to an effective divisor for all effective divisors E of degree k on C (so in particular rC(D) ≥ 0
if and only if D is linearly equivalent to an effective divisor, and otherwise rC(D) = −1).

If rX(D) denotes the usual rank function rX(D) = dim |D| = h0(D)−1 on Div(X), there
is an important semicontinuity result relating rX to rCX:

Theorem 1.2 (Specialization Theorem). For all D ∈ Div(X), we have

rX(D) ≤ rCX(τCX∗ (D)).

Since rCX(τCX∗ (D)) ≤ rΓ(τ∗(D)), Theorem 1.2 is a strengthening of the analogous special-
ization result from [B]. In conjunction with a simple combinatorial argument, Theorem 1.2
also refines the specialization lemma for vertex-weighted graphs from [AC].

We also state and prove a version of Theorem 1.2 in which one has equality rather than
just an inequality. One can naturally associate to a rank r divisor D on X not only a
divisor τCX∗ (D) on CX, but also a collection H = {Hv}v∈V of (r+ 1)-dimensional subspaces
of κ(Cv), where Hv is the reduction to Cv of all functions in H0(X,L(D)) (c.f. Section 4.4
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for a discussion of reduction of rational functions). If F = {Fv}v∈V , where Fv is any κ-
subspace of the function field κ(Cv), then for D ∈ Div(C) we define the F-restricted rank
of D, denoted rC,F (D), to be the largest integer k such that for any effective divisor E of
degree k on C, there is a rational function f on C whose Cv-parts fv belong to Fv for all
v ∈ V , and such that D − E + div(f) ≥ 0. (In terms of the “chip-firing moves” described
above, one has to be able to make D− E effective using only type (1) moves corresponding
to functions belonging to one of the spaces Fv, together with moves of type (2) or (3).) The
following variant of Theorem 1.2 will be proved as Theorem 5.9 below:

Theorem 1.3 (Specialization Theorem for Restricted Ranks). With notation as above, the
H-restricted rank of the specialization of D is equal to the rank of D, i.e., rC,H(τCX∗ (D)) = r.

The theory of divisors and linear equivalence on metrized complexes of curves generalizes
both the classical theory for algebraic curves and the corresponding theory for metric graphs
and tropical curves found in [GK, MZ]. The former corresponds to the case where G consists
of a single vertex v and no edges and C = Cv is an arbitrary smooth curve. The latter
corresponds to the case where the curves Cv have genus zero for all v ∈ V . Since any two
points on a curve of genus zero are linearly equivalent, it is easy to see that the divisor
theories and rank functions on C and Γ are essentially equivalent. More precisely, (i) two
divisors D and D′ on C are linearly equivalent if and only if their Γ-parts DΓ and D′Γ are
linearly equivalent on Γ, and (ii) for every D ∈ Div(C) we have rC(D) = rΓ(DΓ). In the
presence of higher genus curves among the Cv, the divisor theories on Γ and C can be
very different. In addition, different choices of Av can drastically change both the linear
equivalence relation and the rank function.

As with the corresponding specialization theory from [B], the main utility of Theorem 1.2
is that the rank function rC on a metrized complex of curves is surprisingly well-behaved;
for example, it satisfies an analogue of the Riemann-Roch formula. In order to state this
result, we need to define the canonical class. A canonical divisor on C, denoted K, is
defined to be any divisor linearly equivalent to

∑
v∈V (Kv + Av), where Kv is a canonical

divisor on Cv and Av is the sum of the degG(v) points in Av. The Γ-part of K is K# =∑
v (degG(v) + 2gv − 2) (v), and the Cv-part of K is Kv +Av.

The following result generalizes both the classical Riemann-Roch theorem for algebraic
curves and the Riemann-Roch theorem for metric graphs:

Theorem 1.4 (Riemann-Roch for metrized complexes of algebraic curves). Let C be a
metrized complex of algebraic curves over κ and K a divisor in the canonical class of C. For
any divisor D ∈ Div(C), we have

rC(D)− rC(K −D) = deg(D)− g(C) + 1.

The proof of Theorem 1.4 makes use of a suitable notion of reduced divisors for metrized
complexes of curves.

Taken together, Theorems 1.2 and 1.4 have some interesting consequences. For example,
the specialization theorem implies that the specialization to CX of any canonical divisor
on X has degree 2g − 2 and rank at least g − 1 (where g = g(X) = g(CX)), while the
Riemann-Roch theorem easily implies that any such divisor on CX belongs to the canonical
divisor class. Thus we have:
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Corollary 1.5. For any canonical divisor KX on X, its specialization τCX∗ (KX) belongs to
the canonical divisor class on CX.

In particular, Corollary 1.5 implies that τ∗(KX) is a canonical divisor on Γ. This fact
was proved in [B], for discretely valued R, by a completely different argument based on the
adjunction formula for arithmetic surfaces. It does not seem easy to prove the general (not
necessarily discretely valued) case using arithmetic intersection theory, since there does
not seem to be a satisfactory theory of relative dualizing sheaves and adjunction in the
non-Noetherian setting.

Our theory of linear series on metrized complexes of curves has close connections with the
Eisenbud-Harris theory of limit linear series for strongly semistable curves of compact type,
and suggests a way to generalize the Eisenbud-Harris theory to more general semistable
curves. A proper nodal curve X0 over κ is of compact type if its dual graph G is a tree.
For such curves, Eisenbud and Harris define a notion of (crude) limit grd, which we discuss
in detail in Section 5.2 below. A crude limit grd L on X0 is the data of a (not necessarily
complete) degree d and rank r linear series Lv on Xv for each vertex v ∈ V such that if two
components Xu and Xv of X0 meet at a node p, then for any 0 ≤ i ≤ r,

aLv
i (p) + aLu

r−i(p) ≥ d ,

where aLi (p) denotes the ith term in the vanishing sequence of a linear series L at p. A
crude limit series is refined if all the inequalities in the above definition are equalities. For
simplicity, all limit linear series in the remainder of this introduction will be crude.

We can canonically associate to a proper strongly curve X0 a metrized complex CX0 of
κ-curves, called the regularization of X0, by assigning a length of 1 to each edge of G, and
we write Xv for the irreducible component of X0 corresponding to a vertex v ∈ V . (This
is the metrized complex associated to any regular smoothing X of X0 over any discrete
valuation ring R with residue field κ.)

Theorem 1.6. Let CX0 be the metrized complex of curves associated to a proper strongly
semistable curve X0/κ of compact type. Then there is a bijective correspondence between
the following:

• Crude limit grd’s on X0.
• Equivalence classes of pairs (H,D), where H = {Hv}, Hv is an (r+ 1)-dimensional

subspace of κ(Xv) for each v ∈ V , and D is a divisor of degree d supported on the
vertices of CX0 with rCX0,H(D) = r. Here we say that (H,D) ∼ (H′,D′) if there is
a rational function f on CX0 such that D′ = D + div(f) and Hv = H ′v · fv for all
v ∈ V , where fv denotes the Cv-part of f.

Theorem 1.6, combined with our Riemann-Roch theorem for metrized complexes of
curves, provides an arguably more conceptual proof of the fact (originally established in
[EH]) that limit linear series satisfy analogues of the classical theorems of Riemann and
Clifford. The point is that rCX0,H(D) ≤ rCX0(D) for all D ∈ Div(CX0) and therefore upper
bounds on rCX0(D) which follow from Riemann-Roch imply corresponding upper bounds
on the restricted rank rCX0,H(D).

Motivated by Theorem 1.6, we propose the following definition. Let X0 be a proper
strongly semistable (but not necessarily compact type) curve over κ with regularization
CX0. A limit grd on X0 is an equivalence class of pairs (H = {Hv},D) as above, where Hv
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is an (r + 1)-dimensional subspace of κ(Xv) for each v ∈ V , and D is a degree d divisor on
CX0 with rCX0,H(D) = r.

As a partial justification for this definition, we prove that if R is a discrete valuation
ring with residue field κ and X/R is a regular arithmetic surface whose generic fiber X is
smooth and whose special fiber X0 is strongly semistable, then for any divisor D on X with
rX(D) = r and deg(D) = d, our specialization machine gives rise in a natural way to a limit
grd on X0 (see Theorem 5.10 below for a precise statement, and Theorem 5.9 for a more
general statement).

2. Metrized complexes of algebraic curves

Let κ be an algebraically closed field of arbitrary characteristic and let C be a metrized
complex of κ-curves, as defined in Section 1.2.

2.1. Divisors and their rank. If G is a subgroup of R containing the lengths of all edges
of G, we write Div(C)G for the subgroup of Div(C) consisting of all divisors D such that the
support of the Γ-part of D consists entirely of G-rational points of Γ (i.e., points of Γ whose
distances to the vertices of G are in G).

Recall from Section 1.2 that the rank rC of a divisor D on C is the largest integer k such
that D−E is linearly equivalent to an effective divisor for all effective divisors E of degree k
on C. If G is any subgroup of R containing the lengths of all edges of G, one can define an
analogous rank function rC,G for divisors in Div(C)G by restricting the effective divisors E
in the above definition to lie in Div(C)G . By Corollary A.5, rC,G(D) = rC(D) for any divisor
D ∈ Div(C)G , so the restriction in the definition of rC,G does not affect the rank of divisors.

2.2. Regularization of nodal curves. Let X0 be a (reduced) connected projective nodal
curve over κ with irreducible components Xv1 , . . . , Xvk . We can associate to X0 a metrized
complex CX0, called the regularization of X0, as follows. The underlying metric graph Γ0

has model the dual graph G0 = (V0, E0) of X0. Recall that the vertex set V0 of G0 consists
of vertices v1, . . . , vk (in bijection with the irreducible components of X0) and the edges of
G0 are in bijection with singular points of X0. (Note that G0 might have loop edges.) The
length of all the edges in Γ0 are equal to one. The κ-curve Cvi in CX0 is the normalization
of Xi for i = 1, . . . , k. The collection Avi is the set of all κ-points of Cvi which lie over a
singular point of X0 in Xvi . By the definition of the dual graph, these points are in bijection
with the edges adjacent to vi in G0.

If X0 is strongly semistable, so that G0 does not have any loop edge and Cvi = Xvi ,
the rank function rCX0,Z on Div(CX0)Z can be reformulated as follows. Let Pic(X0) be the
Picard group of X0, and consider the restriction map π : Pic(X0) → ⊕i Pic(Xvi). For any
line bundle L on X0, and v ∈ V0, denote by Lv the restriction of L to Xv.

Two line bundles L and L′ in Pic(X0) are said to be combinatorially equivalent if there
exists a function f : V0 → Z such that L′v = Lv(divv(f)) in Pic(Xv) for any vertex v of G0.
(In a regular smoothing of X0, c.f. Section 5 for the definition, the role of f is to specify
a particular twist of L by a divisor supported on the irreducible components of X0.) In
particular, two line bundles L and L′ in Pic(X0) with π(L) = π(L′) are combinatorially
equivalent. In the above definition, divv is defined in analogy with (1) as follows:

divv(f) =
∑

u:{u,v}∈E0

(f(u)− f(v))(x{u,v}v )
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where x
{u,v}
v is the point of Cv labelled with the edge {u, v}. Note that the function

f : V0 → Z in the definition of combinatorially equivalent line bundles above is unique up
to an additive constant. For such an f , we denote by Lf any line bundle L′ in Pic(X0) such
that L′v = Lv(divv(f)) for all v ∈ V0.

For a line bundle L on X0, define the combinatorial rank of L, denoted rc(L), to be the
maximum integer r such that for any effective divisor E =

∑
v∈V0

E(v)(v) on G0 of degree

r, there is a line bundle L′ combinatorially equivalent to L with

dimκH
0(Xv,L′v) ≥ E(v) + 1

for all v ∈ V . In particular, if no non-negative integer r with the above property exists, the
combinatorial rank of L will be equal to −1. The combinatorial rank of L clearly depends
only on the combinatorial equivalence class of L.

Let D be a divisor in Div(CX0)Z with Xv-part Dv. We denote by L(D) any line bundle
on X0 whose restriction to Xv is L(Dv) for each vertex v of G0.

Proposition 2.1. Let X0 be a strongly semistable curve over κ and let CX0 be the corre-
sponding metrized complex. Then:

(1) Two divisors D and D′ in Div(CX0)Z are linearly equivalent iff L(D) and L(D′) are
combinatorially equivalent.

(2) For any divisor D ∈ Div(CX0)Z, the combinatorial rank of L(D) is equal to rCX0(D).

Proof. The first part follows by definition. To see the second part, let r be the combinatorial
rank of L(D). It follows from Corollary A.6 that rCX0(D) = rCX0,Z(D). Thus, it will be
enough to show that rCX0,Z(D) = r.

We first prove that rCX0,Z(D) ≥ r. Let E be an effective divisor in Div(CX0)Z with Γ-part
EΓ and Xv-part Ev. By the definition of the combinatorial rank, there exists a function
f : V0 → Z such that

dimκH
0(Xv,Lfv ) ≥ EΓ(v) + 1 for any vertex v in G0.

Since deg(Ev) = EΓ(v), this implies the existence of a global section fv of Lfv such that fv
has order of vanishing at least Ev(x) at any point x of Xv.

Let fΓ be the rational function defined by f on Γ. (Recall that fΓ|V0 = f and f is integer
affine with slope f(u)−f(v) on each edge {u, v}.) For the rational function f on CX0 defined
by fΓ and {fv}v∈V0 , one has div(f) +D − E ≥ 0. This shows that rCX0,Z(D) ≥ r.

We now prove that r ≥ rCX0,Z(D). Let L = L(D) be a line bundle on X0 defined by
D. Let E be an effective divisor of degree rCX0,Z(D) on G0, and let E be any effective
divisor in Div(CX0)Z with Γ-part equal to E. Then there exists a rational function f with
div(f) ∈ Div(CX0)Z such that div(f) +D − E ≥ 0. In particular, the Γ-part fΓ of f is linear
on each edge of G0 and div(fΓ) + DΓ ≥ 0, which shows that up to an additive constant,
the set F of all functions fΓ with these properties is finite. Let SΓ denote the finite set

{div(fΓ) | fΓ ∈ F}. Let dv = E(v), and for D0 ∈ SΓ, let SD0 be the subset of
∏
v∈V (G0)X

(dv)
v

defined by all collections of effective divisors Ev of degree dv such that there exists a rational
function f on CX0 with Γ-component fΓ satisfying D − E + div(f) ≥ 0. (Here X(n) denotes
the nth symmetric product of a curve X.) Now let S be the union over all D0 ∈ SΓ of SD0 .
Then one sees easily that:
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(i) Each SD0 is Zariski-closed in
∏
vX

(dv)
v . (Use the fact that SD0 is the projection of

a Zariski closed subset of a product of proper curves.)

(ii)
⋃
D0∈SΓ

SD0 =
∏
vX

(dv)
v .

Therefore there existsD0 ∈ SΓ such that SD0 =
∏
vX

(dv)
v . In other words, we can suppose

that the Γ-part fΓ of all the rational functions f giving D−E+div(f) ≥ 0, when the effective
divisors Ev vary, is constant (and we have D0 = div(fΓ)). If we fix a corresponding twist
LfΓ , then

dimκH
0(Xv,LfΓ

v ) ≥ E(v) + 1.

Since E was an arbitrary effective divisor of degree rCX0,Z(D) on G0, we obtain the desired
inequality.

�

3. A Riemann-Roch theorem for metrized complexes of curves

Our aim in this section is to formulate and prove a Riemann-Roch theorem for metrized
complexes of κ-curves.

Let C be a metrized complex of algebraic curves over κ. For each vertex v ∈ V , let gv be
the genus of Cv and let g(C) = g(Γ) +

∑
v gv be the genus of C. For each curve Cv, let Kv

denote a divisor of degree 2gv − 2 in the canonical class of Cv. Denote by Av the divisor in
Cv consisting of the sum of the degG(v) points in Av. The canonical class of C is defined
to be the linear equivalence class of the divisor K =

∑
v∈V (Kv +Av).

Remark 3.1. Let X0 be a strongly semistable curve. The definition of the canonical class
K in CX0 is compatible in a natural sense with the definition of the dualizing sheaf (or
sheaf of logarithmic 1-forms) ωX0/κ. Indeed, if α : X → X0 denotes the normalization of
X0, and ye,ze denote the points of X above the singular point xe of X0 for e ∈ E(G0),
then sections of the sheaf ωX0/κ on an open set U consist of all the meromorphic 1-forms
δ on X which are regular everywhere on U except for possible simple poles at ye, ze, with
Resye(δ) + Resze(δ) = 0 for all e. From this, it is easy to see that the restriction of ωX0/κ

to each component Xv of X0 is the invertible sheaf ωXv(Av) corresponding to Kv +Av for
any canonical divisor Kv on Xv.

For a divisor D on C, let rC(D) denote the rank of D as defined in Section 1.2.

Theorem 3.2 (Riemann-Roch for metrized complexes of algebraic curves). Let C be a
metrized complex of κ-curves and K a divisor in the canonical class of C. For every divisor
D ∈ Div(C), we have

rC(D)− rC(K −D) = deg(D)− g(C) + 1.

Let X0 be a strongly semistable curve of genus g over κ. For any L ∈ Pic(X0), let rc(L)
be the combinatorial rank of L as defined in Section 2. As a corollary of Theorem 3.2,
Remark 3.1, and Proposition 2.1, we have:

Corollary 3.3 (Riemann-Roch for strongly semistable curves). For any L ∈ Pic(X0),

rc(L)− rc(ωX0/κ ⊗ L
−1) = deg(L)− g(X0) + 1.
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The Riemann-Roch theorem has a number of well-known formal consequences which can
be transported to our situation. For example, we obtain the following analogue of Clifford’s
bound for the rank of a special divisor. (A divisor D on a metrized complex C is called
special if KC −D is linearly equivalent to an effective divisor.)

Theorem 3.4 (Clifford’s theorem for metrized complexes). For any special divisor D on a
metrized complex C, rC(D) ≤ deg(D)/2.

Remark 3.5. Our Riemann-Roch theorem seems to be rather different from the classical
Riemann-Roch theorem on semistable curves. We refer to [C1] for a discussion of Riemann’s
and Clifford’s theorems for linear series on semistable curves, and for examples showing the
failure of Clifford’s theorem for h0(L) with L ∈ Pic(X0) (even for line bundles in the
compactified Picard scheme of X0).

The rest of this section is devoted to the proof of Theorem 3.2. Our proof follows and
extends the original arguments of [BN] in the proof of Riemann-Roch theorem for graphs.
In particular, we are going to first extend the notion of reduced divisors to the context of
metrized complexes of algebraic curves, and then study the minimal non-special divisors.

3.1. Reduced divisors: existence and uniqueness. Let v0 be a fixed base point of
Γ. We introduce the notion of v0-reduced divisors and show that each equivalence class of
divisors on C contains a quasi-unique v0-reduced divisor, in a precise sense to be defined
immediately preceding Theorem 3.7 below.

For a closed connected subset S of Γ and a point v ∈ ∂S (the topological boundary of
S), the number of “outgoing” tangent directions at v (i.e., tangent directions emanating
outward from S) is denoted by outdegS(v); this is also the maximum size of a collection
of internally disjoint segments in Γ \ (S − {v}) with one end at v. If in addition we have
v ∈ V , we denote by divv(∂S) the divisor in Cv associated to the outgoing edges at v; this
is by definition the sum of all the points xev of Cv indexed by the edges e leaving S at v. In
what follows we refer to a closed connected subset S of Γ as a cut in Γ.

Let D be a divisor on C with Γ-part DΓ and Cv-part Dv, and let S be a cut in Γ. A
boundary point x ∈ ∂S is called saturated with respect to D and S if

• x /∈ V and outdegS(x) ≤ DΓ(x); or
• x = v for some v ∈ V and Dv − divv(∂S) is equivalent to an effective divisor on Cv.

Otherwise, x ∈ ∂S is called non-saturated. A cut S is said to be saturated if all its boundary
points are saturated. (When talking about saturated and non-saturated points, we will
sometimes omit the divisor D or the set S if they are clear from the context.)

The divisor D is said to be v0-reduced if the following three properties are satisfied:

(i) For all points x 6= v0 of Γ, DΓ(x) ≥ 0, i.e., all the coefficients of DΓ are non-negative
except possibly at the base point v0.

(ii) For all points v ∈ V \{v0} (= V if v0 does not belong to V ), there exists an effective
divisor Ev linearly equivalent to Dv on Cv.

(iii) For every cut S of Γ which does not contain v0, there exists a non-saturated point
x ∈ ∂S.

Remark 3.6. There is an efficient “burning algorithm” for checking whether or not a given
divisor D on C which satisfies (i) is v0-reduced. The algorithm can be described informally
as follows (compare with [L, §2] or [BS, §5.1]). Imagine that Γ is made of a flammable
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material, and light a fire at v0. The fire begins spreading across Γ in a continuous manner
and can only be blocked at a point x ∈ Γ if one of the following holds:

• x /∈ V and the number of burnt directions coming into x exceeds DΓ(x). (One
should imagine DΓ(x) firefighters standing at x, each of whom can block fire in one
incoming direction.)
• x = v for some v ∈ V and Dv minus the sum of the marked points corresponding

to burnt directions is not equivalent to any effective divisor on Cv.

It is straightforward to check, following the same ideas as the proof of [L, Algorithm 2.5],
that D is v0-reduced if and only if the fire eventually burns through all of Γ. We omit the
details since we will not need this result in the sequel.

We now show that every divisor D on C is linearly equivalent to a quasi-unique v0-reduced
divisor Dv0 . The quasi-uniqueness is understood in the following sense: the Γ-part Dv0

Γ of
Dv0 is unique, and for all v ∈ V , the divisor class [Dv0

v ] on Cv defined by the v-part of Dv0

is unique.

Theorem 3.7. Let C be a metrized complex of κ-curves and v0 a base point of Γ. For every
divisor D ∈ Div(C), there exists a quasi-unique v0-reduced divisor Dv0 such that Dv0 ∼ D.

Proof. Let TD be the set of all divisors D′ linearly equivalent to D such that:

• All the coefficients of the Γ-part D′Γ of D′ are non-negative at every point of Γ except
possibly at v0.
• For each point v ∈ V \ {v0}, the v-part D′v of D′ has non-negative rank on Cv.
• The coefficient of v0 in D′Γ is maximal with respect to the two properties above.

One shows as in [A, Proof of Theorem 2] or [BN, Proof of Proposition 3.1] that there is a
divisor D′ linearly equivalent to D on C with the property that the coefficient of every point
x ∈ Γ \ (V ∪ {v0}) is non-negative and the coefficient of D′Γ at each point v ∈ V (which
coincides with the degree of D′v) is at least gv. (The intuitive idea is to repeatedly fire v0

and then use further chip-firing moves to spread chips wherever needed on Γ, assuring that
each v ∈ V gets at least gv chips and that no p ∈ Γ except for v0 remains in debt.) By
the (classical) Riemann-Roch theorem, each D′v has non-negative rank on Cv, which shows
that TD is non-empty.

Define TD as the set of all D′Γ ∈ Div(Γ) for which there exists D′ ∈ TD whose Γ-part
is D′Γ. Each divisor D′Γ ∈ TD has degree deg(D), and all divisors in TD have the same
coefficient at v0. Thus the number N :=

∑
x∈Γ\{v0}D

′
Γ(x) is independent of the choice of a

divisor D′Γ in TD. As a consequence, TD inherits a natural topology from the topology of

Γ, since it can be embedded as a subset of SymNΓ, and is compact. Let A be the subset of
RN defined by

A :=
{

(x1, . . . , xN ) | 0 ≤ x1 ≤ x2 ≤ · · · ≤ xN
}
,

equipped with the total order defined by the lexicographical rule (xi) ≤ (yi) iff x1 =
y1, . . . , xi = yi and xi+1 < yi+1. One considers a map F : TD → A defined as follows. For
each divisor D′Γ ∈ TD, consider the multiset A(D′Γ) of points in Γ \ {v0} where each point
v 6= v0 appears in this multiset exactly D′Γ(v) times. Define F (D′Γ) to be the point of A
defined by the multiset of distances distΓ(v, v0) for v ∈ A(D′Γ), ordered in an increasing
way. It is straightforward to verify that the map F is continuous. Since TD is compact and
F is continuous, there exists a divisor Dv0

Γ in TD such that F takes its minimum value at
Dv0

Γ , i.e., F (Dv0
Γ ) = minD′Γ∈TD F (D′Γ). Let Dv0 be an element of TD whose Γ-part is Dv0

Γ .



16 OMID AMINI AND MATTHEW BAKER

Claim: The divisor Dv0 ∼ D is v0-reduced.

Properties (i) and (ii) above are clearly satisfied. The only point one needs to check is
that every cut S which does not contain v0 has a non-saturated point on its boundary. For
the sake of contradiction, suppose this is not the case, and let S be a closed connected set
violating this condition. This means that the following hold:

• For all x ∈ ∂S \ V , outdegS(x) ≤ Dv0
Γ (v).

• For each v ∈ ∂S ∩ V , Dv0
v − divv(∂S) has non-negative rank on Cv, i.e., there exists

a rational function fv on Cv such that Dv0
v − divv(∂S) + div(fv) ≥ 0.

By the definition of outdegS , there exists an ε > 0 such that for each vertex x ∈ ∂S, there
are closed segments Ix1 , . . . , I

x
outdegS(x) emanating from x with the following properties:

• For x ∈ ∂S and 1 ≤ j ≤ outdegS(x), the half-open segments Ixj \x are disjoint from
S and from each other and do not contain v0.
• Each segment Ixj has length ε, for x ∈ ∂S and 1 ≤ j ≤ outdegS(x).

These data give rise to a rational function fΓ : Γ → R which is identically zero on S, is
linear of slope −1 on each interval Ixj for x ∈ ∂S and 1 ≤ j ≤ outdegS(x), and takes the

constant value −ε at all points of Γ \
(
S ∪

⋃
x,j I

x
j

)
. Consider the divisor D∗ = Dv0 + div(f)

on C, where f is the rational function on C consisting of the rational function fΓ on Γ and
the rational functions fv on Cv. Letting D∗Γ be the Γ-part of D∗, one verifies that D∗ and
D∗Γ lie in TD and TD, respectively, and that F (D∗Γ) < F (Dv0

Γ ), contradicting the choice of
Dv0

Γ . This proves the claim and hence the existence part of the theorem.

It remains to prove the quasi-uniqueness. Assume for the sake of contradiction that
there are linearly equivalent v0-reduced divisors D and D′ on C such that either DΓ 6= D′Γ
or Dv and D′v are not linearly equivalent on Cv for some v ∈ V . Then there exists a
non-constant rational function f on C such that D′ = D + div(f). If fΓ is constant then we
obtain an immediate contradiction, so we may assume that fΓ is non-constant. Without
loss of generality, we may assume that fΓ does not take its maximum at v0 (otherwise, we
can interchange the role of D and D′). Let S be a connected component of the set of all
points where fΓ takes its maximum. Note that v0 /∈ S. For all points x ∈ ∂S, the slope
of fΓ at any outgoing segment Ixj emanating from v is at most −1. Since D is v0-reduced,

there exists a point x ∈ ∂S such that either x /∈ V and DΓ(x) < outdegS(x), or x = v for
some v ∈ V and the divisor Dv − div(∂S) has negative rank. In the first case, D′Γ(x) ≤
DΓ(x) − outdegS(x) < 0, contradicting the assumption that the coefficient of D′Γ is non-
negative at x 6= v0. In the second case, D′v ∼ Dv +

∑
e∈E: e∼v slpe(fΓ)(xev) ≤ Dv−divv(∂S),

which implies that D′v has negative rank, a contradiction. �

Remark 3.8. One can presumably give an “iterated Dhar algorithm” for algorithmically
finding a v0-reduced divisor equivalent to a given divisor D by combining the ideas in the
proof of Theorem 3.7 with the ideas behind [L, Algorithm 2.12].

3.2. Description of minimal non-special divisors. Let C be a metrized complex of
algebraic curves. For each v ∈ V , let Nv be the set of all minimal non-special divisors on
Cv:

Nv = {D ∈ Div(Cv) : deg(D) = g(Cv)− 1 and |D| = ∅}.

Remark 3.9. Recall from [H77, IV, Example 1.3.4] that a divisor D on a smooth projective
curve C of genus g over κ is called special if r(KC − D) ≥ 0. By Riemann-Roch, every
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divisor of degree at most g − 2 on C is special, and if deg(D) = g − 1 then D is special if
and only if r(D) ≥ 0. Moreover, every non-special divisor dominates a minimal non-special
divisor. This explains the term “minimal non-special divisor”.

Similarly, define the set of minimal non-special divisors on C as

N = {D ∈ Div(C) : deg(D) = g(C)− 1 and |D| = ∅}.
In this section we provide an explicit description of the minimal non-special divisors on
metrized complexes of algebraic curves, generalizing the corresponding description of mini-
mal non-special divisors on graphs and metric graphs from [BN, MZ].

An acyclic orientation on Γ is an acyclic orientation on some model of Γ, i.e., a decompo-
sition of Γ into closed directed edges with disjoint interiors such that no directed cycles are
formed. Given an acyclic orientation π on Γ, we denote by deg+

π (x) the number of tangent
directions emanating from x which are compatible with π. Note that for all but finitely
many points of Γ, deg+

π (x) = 1. For v ∈ V , we denote by E+(v) the set of edges incident
to v which (locally near v) are oriented outward from v. A point x with deg+

π (x) = 0 is
called a sink. It is well known and easy to prove that every acyclic orientation contains at
least one sink (start at any point and follow the orientation until you get stuck, which must
eventually happen by acyclicity).

Given a collection of minimal non-special divisors Dv ∈ Nv for each v ∈ V , together with
an acyclic orientation π of Γ, define a corresponding divisor Dπ,{Dv} by the formula

Dπ,{Dv} =
∑
x∈Γ\V

(deg+
π (x)− 1)(x) +

∑
v∈V

(Aπv +Dv) ,

where Aπv is the sum of all points xev ∈ Av for which the π-orientation on e points away
from v.

The Γ-part of Dπ,{Dv} is

Dπ
Γ :=

∑
x∈Γ

(deg+
π (x) + gx − 1)(x)

and the Cv-part of Dπ,{Dv} is Dπ
v := Aπv +Dv. If G̃ = (Ṽ , Ẽ) is a (loopless) model of Γ such

that the orientation π of Γ is induced by an acyclic orientation G̃π on the edges of G̃, then
the degree of Dπ,{Dv} is given by

deg(Dπ,{Dv}) =
∑
v∈Ṽ

(
deg+

π (v) + gv − 1
)

=
[∑
v∈Ṽ

(
deg+

π (v)− 1
)]

+
∑
v∈V

gv = g(Γ)− 1 +
∑
v

gv = g(C)− 1.

A divisorM∈ Div(C) of the form Dπ,{Dv} is called a moderator on C. (This terminology

comes from [MZ].) Given a moderator M = Dπ,{Dv}, the dual moderator M̄ is defined to

be Dπ̄,{Kv−Dv}, where π̄ is obtained from π by reversing the orientation of every oriented
segment. It is easy to see that M+ M̄ belongs to the canonical class on C.

The following two lemmas are essentially what we need for the proof of Theorem 3.2.

Lemma 3.10. For any acyclic orientation π of Γ and any collection Dv ∈ Nv of minimal
non-special divisors on Cv, the moderator Dπ,{Dv} is a minimal non-special divisor on C.
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Proof. Suppose for the sake of contradiction that there is a rational function f on C such that

Dπ,{Dv}+ div(f) ≥ 0. Let G̃ = (Ṽ , Ẽ) be a (loopless) model of Γ such that the orientation π

of Γ is induced by an acyclic orientation G̃π on the edges of G̃. Let S be the closed subset
of Γ consisting of all the points of Γ where the Γ-part fΓ of f takes its maximum value. It

is easy to see that ∂S ⊆ Ṽ , since at a hypothetical point x ∈ ∂S \ Ṽ we would necessarily
have Dπ

Γ(x) + divx(fΓ) < 0, contradicting the assumption on f.

Note that since ∂S ⊂ Ṽ , for any edge e of G̃ either S contains e entirely or S does not
intersect the interior of e. Consider now the restriction of the orientation π to the induced
subgraph G̃[Ṽ ∩S]. The resulting directed graph G̃π[Ṽ ∩S] is acyclic and therefore contains
a sink vertex u.

Claim: u ∈ ∂S.

It suffices to prove that no sink vertex of the directed graph G̃π belongs to S, so assume

for the sake of contradiction that w ∈ S is a sink vertex of G̃π. There are two cases to
consider:

• If w ∈ V , then Dw + div(fw) ≥ Dπ
w + divw(fΓ) + div(fw) ≥ 0 (since fΓ achieves its

maximum value at w and we supposed that Dπ,{Dv}+ div(f) ≥ 0), contradicting the
assumption that Dw is a minimal non-special divisor on Cw.
• If w /∈ V , then by definition the coefficient of w in Dπ

Γ is at most −1, from which it

follows that the coefficient of w in Dπ,{Dv} + div(f) is negative, a contradiction.

This proves the claim.

By our choice of u ∈ ∂S and the definition of S, fΓ has strictly negative slope along all
outgoing edges at u, and it has slope zero along all other edges incident to u. This shows
in particular that ordu(fΓ) ≤ −outdegS(u) ≤ −deg+

π (u). There are now two different cases
to consider, both of which will lead to a contradiction (and hence complete our proof of the
lemma):

• If u ∈ Ṽ \ V , then Dπ
Γ(u) + ordu(fΓ) ≤ deg+

π (u) − 1 − deg+
π (u) < 0, contradicting

the choice of the rational function f on C.
• If u ∈ V , then for each edge e incident to u we have slpe(fΓ) ≤ 0, with strict

inequality if e is an outgoing edge at u in G̃π (because u is a sink of the oriented graph

G̃π[S∩Ṽ ]). By the definition of Dπ
u , we infer that Dπ

u+
∑

e∈Ẽ:e∼u slpe(fΓ)(xeu) ≤ Du,

which shows that Dπ
u +

∑
e∈Ẽ:e∼u slpe(fΓ)(xeu) + div(fu) is not effective, since Du is

minimal non-special. This contradicts our assumptions on f.

�

For v0 ∈ Γ, we denote by AOv0(Γ) the set of all acyclic orientations of Γ with a unique
sink at v0, i.e., such that v0 has out-degree zero and all other points of Γ have out-degree
at least one.

Lemma 3.11. Let D be a v0-reduced divisor on C. Then rC(D) ≥ 0 if and only if the
following two conditions hold:

• The coefficient DΓ(v0) of DΓ at v0 is non-negative.
• If v0 ∈ V , the divisor Dv0 on Cv0 has non-negative rank.

More precisely, if the above conditions do not both hold, then there exists a moderator
M = Dπ,{D∗v} with π ∈ AOv0(Γ) such that D ≤M.
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Proof. The intuitive idea is that one constructs the moderator M = Dπ,{D∗v} using the
burning algorithm described in Remark 3.6. Beginning with a v0-reduced divisor D, burn
through Γ following the algorithm and keep track of the direction in which the fire spreads;
reversing all the arrows defines an acyclic orientation π ∈ AOv0(Γ). IfM is the correspond-
ing moderator, one checks that D ≤ M outside v0, and if D is not effective then D ≤ M
everywhere. A more rigorous version of this argument is as follows.

First suppose that DΓ(v0) ≥ 0, and in the case v0 ∈ V that there exists a rational
function fv0 on Cv0 such that Dv0 + div(fv0) ≥ 0. We infer that DΓ ≥ 0, and since each
Dv for v ∈ V \ {v0} is of non-negative rank, there exists a rational function fv on Cv such
that Dv + div(fv) ≥ 0. Let f be a rational function on C consisting of a constant rational
function on Γ and fv on Cv for v ∈ V . We obviously have D + div(f) ≥ 0, which implies
that rC(D) ≥ 0.

For the other direction, assume that DΓ(v0) < 0 if v0 /∈ V , and that Dv0 has negative
rank if v0 ∈ V . To show that rC(D) = −1, by Lemma 3.10 it will be enough to show the
existence of an acyclic orientation π ∈ AOv0(Γ) and a set of minimal non-special divisors

D∗v ∈ Nv such that D ≤ Dπ,{D∗v}.

Let Ṽ be the union of V and all the points in the support of DΓ. Note that in both

cases above, v0 ∈ Ṽ . Let G̃ = (Ṽ , Ẽ) be the corresponding model of Γ. We are going to

recursively define an orientation π of G̃ and the collection {D∗v} by handling at each step the

orientation of all the edges incident to a vertex v ∈ Ṽ and the minimal non-special divisor

D∗v in the case v ∈ V . We start by considering the vertex v0 ∈ Ṽ . The orientations of all
the edges incident to v0 are defined so that deg+

π (v0) = 0; in other words, all these oriented
edges are incoming at v0. Note that in the case v0 /∈ V , we have DΓ(v0) ≤ −1 = Dπ

Γ(v0). In
the case v0 ∈ V , since r(Dv0) < 0 it follows from the Riemann-Roch theorem for Cv0 that
there exists a minimal non-special divisor D∗v0

such that Dv0 ≤ D∗v0
.

Suppose that the orientation of all edges adjacent to vertices v0, . . . , vi ∈ Ṽ has been
defined, and that for all vj ∈ V with j ≤ i, a minimal non-special divisor D∗v on Cv has

been given. Let Si be a connected component of the induced subgraph G̃[Ṽ \ {v0, . . . , vi}].
Since D is v0-reduced and Si is a cut not containing v0, there exists a point vi+1 on the

boundary of Si which is non-saturated. (Note that vi+1 also lies in Ṽ .) This means that
either:

(1) vi+1 ∈ Γ \ V and outdegSi
(vi+1) > DΓ(vi+1); or

(2) vi+1 ∈ V and Dv − divv(∂Si) has negative rank.

All outgoing edges from Si adjacent to vi+1 have already been oriented (and are outgoing
from vi+1 by the definition of the orientation π). Orient all other edges incident to vi+1 in
such a way that they are all incoming at vi+1. Note that deg+

π (vi+1) = outdegSi
(vi+1), and

so in Case (1),

DΓ(vi+1) ≤ deg+
π (vi+1)− 1.

In Case (2), since r(Dv − divv(∂Si)) = −1, it follows from the Riemann-Roch theorem for
Cv that there exists a minimal non-special divisor D∗v such that

Dv − divv(∂Si) ≤ D∗v .
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This shows that Dv ≤ divv(∂Si) +D∗v . By the definition of the orientation π we must have
D∗πv+1 = divvi+1(∂Si) +D∗v . Therefore, by the definition of the orientation π at vi+1 and the
choice of D∗vi+1

, we have Dvi+1 ≤ D∗πvi+1
.

Let π be the orientation of Γ just constructed, and let {D∗v}v∈V be the collection of
minimal non-special divisors on Cv defined above. By the definition of π, the only vertex of

Ṽ with out-degree zero is v0 and thus π belongs to AOv0(Γ). We clearly have D ≤ Dπ,{D∗v}
as well, which completes the proof. �

As a corollary of the above lemma, we obtain:

Corollary 3.12. Any minimal non-special divisor D on C is linearly equivalent to a mod-
erator.

Proof. Fix v0 ∈ Γ. Let D be a minimal non-special divisor on C and let Dv0 be the v0-
reduced divisor linearly equivalent to D. By Lemma 3.11, there exists a moderatorM such
that Dv0 ≤ M. The effective divisor M−Dv0 has degree zero, and so must be equal to
zero. �

3.3. Proof of Theorem 3.2. The proof of Theorem 3.2 can now be completed using (a
slight simplification of) the idea behind the proof of Riemann-Roch theorem for graphs given
in [BN]. The key is the following formula, which provides a useful description of the rank
of D in terms of minimal non-special divisors. We denote by deg+(D) (resp. deg−(D)) the
sum of non-negative (resp. non-positive) coefficients in D. (Note that deg+(D)+deg−(D) =
deg(D)).

Proposition 3.13. For any divisor D on C, we have

rC(D) = min
N∈N

deg+(D −N )− 1.

Proof. Fix N ∈ N, and let E be the non-negative part of D − N , which is of degree
deg+(D −N ). Then rC(D) ≤ deg+(D −N ), since D − E ≤ N and r(N ) = −1 imply that
|D − E| = ∅. This shows that rC(D) ≤ minN∈N deg+(D −N )− 1.

To prove the opposite inequality, let E be an effective divisor of degree rC(D)+1 such that
|D−E| = ∅. By Lemma 3.11, there exists N ∈ N such that D−E ≤ N , or equivalently, D−
N ≤ E . In particular, deg+(D−N ) ≤ deg(E) = rC(D)+1, which proves the proposition. �

To finish the proof of Theorem 3.2, note that

deg+(D −N ) = deg(D −N )− deg−(D −N ) = deg(D)− g + 1 + deg+(N −D)

and observe that N −D = K −D − (K −N ). If N is linearly equivalent to the moderator
M, c.f. Corollary 3.12, then K−N is linearly equivalent to the dual moderator M̄, and so
belongs to N. Thus, by Proposition 3.13, we have

rC(D) = deg(D)− g + 1 + min
N∈N

deg+(K −D − (K −N ))− 1

= deg(D)− g + 1 + min
N ′∈N

deg+(K −D −N ′)− 1 = deg(D)− g + 1 + rC(K −D).



LINEAR SERIES ON METRIZED COMPLEXES OF ALGEBRAIC CURVES 21

4. The specialization map and specialization inequality

Let K be a complete and algebraically closed non-Archimedean field with non-trivial
absolute value |.|, R the valuation ring of K, and κ its (algebraically closed) residue field.
Let G = val(K×) be the value group of K. Let X be a smooth, proper, connected curve over
K and let Xan be the Berkovich analytic space associated to X. (We assume the reader
is familiar with the theory of Berkovich analytic curves, see e.g. [BPR, Section 5] which
contains everything we need.)

Our first goal will be to define a metrized complex CX associated to a strongly semistable
R-model X for X. We then define a specialization homomorphism from Div(X) to Div(CX)
and prove a specialization inequality which refines Lemma 2.8 and Corollary 2.11 from
[B]. Finally, we give some applications to specialization of canonical divisors, Brill-Noether
theory, and Weierstrass points as in loc. cit.

4.1. The metrized complex associated to a semistable model. Recall that a con-
nected reduced algebraic curve over κ is called semistable if all of its singularities are ordinary
double points, and is called strongly semistable if in addition its irreducible components are
all smooth. A (strongly) semistable model for X is a flat and integral proper relative curve
X over R whose generic fiber is isomorphic to X and whose special fiber X̄ is a (strongly)
semistable curve.

Given a semistable model X for X, there is a canonical associated reduction map red :
X(K) → X̄(κ) which is defined using the natural bijection between X(K) and X(R). This
extends naturally to a map red : Xan → X̄.

We define a metrized complex associated to a strongly semistable model X for X as
follows. Let G be the dual graph of X̄, so that vertices of G correspond to irreducible
components of X̄ and edges ofG correspond to intersections between irreducible components.
If xe is the ordinary double point of X̄ corresponding to an edge e of G, the formal fiber
red−1(xe) is isomorphic to an open annulus A. We define the length of the edge e to be the
length of the skeleton of A, i.e., the modulus log(b)− log(a) of A ∼= {x ∈ (A1)an | a < |T |x <
b}. (The modulus of an open annulus is well-defined independent of the choice of such an
analytic isomorphism.) In this way, we have defined a metric graph Γ = ΓX associated to
X together with a model G. The irreducible components Cv of X̄ correspond bijectively to
the vertices v of G, and we let Av ⊂ Cv be the finite set of double points of X̄ contained
in Cv, so that there is a natural bijection between Av and the edges of G incident to v. In
this way we have defined a metrized complex CX canonically associated to X.

One can show that essentially every metrized complex of curves comes from this con-
struction. The following result is proved in [ABBR1, Theorem 3.24].

Theorem 4.1. Let C be a metrized complex of κ-curves whose edge lengths are contained
in the value group of K. There exists a smooth, proper, connected curve X over K and a
semistable model X for X such that C ∼= CX.

4.2. The metrized complex associated to a semistable vertex set. It is sometimes
useful to define skeleta and metrized complexes in terms of semistable vertex sets rather
than semistable models. (By [BPR, Theorem 5.38], there is a bijective correspondence
between the latter two objects.) A semistable vertex set for Xan is a finite set V of type 2
points of Xan such that the complement of V in Xan is isomorphic (as a K-analytic space)
to the disjoint union of a finite number of open annuli and an infinite number of open
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balls. (Such a disjoint union is called the semistable decomposition of Xan associated to
V .) Any finite set of type 2 points of Xan is contained in a semistable vertex set ([BPR,
Proposition 5.27]). The skeleton Γ = Σ(Xan, V ) of Xan with respect to a semistable vertex
set V is the union (inside Xan) of V and the skeletons of each of the open annuli in the
semistable decomposition associated to V . Using the canonical metric on the skeletons of
these open annuli, Γ can be naturally viewed as a (finite) metric graph contained in Xan

(see [BPR, Definition 5.17] for more details). The skeleton Γ comes equipped with a natural
model G whose vertices are the points of V and whose edges correspond bijectively to the
open annuli in the semistable decomposition associated to V . A semistable vertex set V is
called strongly semistable if the graph G has no loop edges. Every semistable vertex set is
contained in a strongly semistable vertex set.

Given a strongly semistable vertex set V for Xan, there is a canonical corresponding
metrized complex CV of κ-curves. Indeed, we have already defined a metric graph Γ =
Σ(Xan, V ) corresponding to V , together with a corresponding model G. For v ∈ V , let

Cv be the unique smooth projective curve over κ with function field H̃(v). (For x ∈ Xan

of type 2, recall that the residue field H̃(x) of the completed residue field H(x) of x has
transcendence degree one over κ.) It remains to specify, for each v ∈ V , a bijection ψv from
the edges of G incident to v to a subset Av of Cv(κ). Given such an edge e, we define ψ(e)
to be the point of Cv(κ) corresponding to the tangent direction at v defined by e. (Recall
from [BPR, Paragraph 5.67] that if x is of type 2, there is a canonical bijection between Tx

and the set of discrete valuations on H̃(x) = κ(Cx) which are trivial on κ.)

Remark 4.2. Passing to a larger semistable vertex set is compatible with linear equivalence
of divisors and does not change the rank of divisors. One can thus associate a canonical
group PicCXan to Xan, defined as Pic(CV ) for any semistable vertex set V , together with
a canonical rank function r : PicCXan → Z.

One can define in a similar way semistable vertex sets and skeleta for an affine curve X ′

(see [BPR, Definition 5.19]). In this case, one must also allow a finite number of punctured
open balls in the semistable decomposition and the skeleton is a topologically finite but
not necessarily finite length metric graph – it will contain a finite number of infinite rays
corresponding to the points of X \X ′, where X is the projective completion of X ′.

4.3. Specialization of divisors from curves to metrized complexes. There is a
canonical embedding of ΓX in the Berkovich analytification Xan of X, as well as a canonical
retraction map τ : Xan → ΓX. In addition, there is a canonical reduction map red : Xan → X̄
sending X(K) surjectively onto the closed points of X̄. The retraction map τ induces by lin-
earity a specialization map τ∗ : Div(X)→ Div(ΓX) which is studied in [B]. We can promote
this to a map τCX∗ whose target is the larger group Div(CX) as follows. If P ∈ Xan satisfies
τ(P ) = v ∈ V then either P is the unique point of Xan with red(P ) equal to the generic point
of Cv, or else red(P ) is a nonsingular closed point of Cv. The map τCX∗ : Div(X)→ Div(CX)
is obtained by linearly extending the map τCX : X(K)→ Div(CX ) defined by

τCX(P ) =

{
τ(P ) τ(P ) 6∈ V
red(P ) τ(P ) ∈ V.

4.4. Reduction of rational functions and specialization of principal divisors. In
this section, we show that if D is a principal divisor on X, then τCX∗ (D) is a principal divisor
on CX. In fact, we show a more precise result (Theorem 4.5 below).
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Let x ∈ Xan be a point of type 2. Given a nonzero rational function f on X, choose

c ∈ K× such that |f(x)| = |c|. Define fx ∈ κ(Cx)× to be the image of c−1f in H̃(x) ∼= κ(Cx).
Although fx is only well-defined up to multiplication by an element of κ×, its divisor div(fx)
is canonical and the resulting map Prin(X) → Prin(Cx) is a homomorphism. We call fx
the normalized reduction of f .

If H is a K-linear subspace of K(X), the collection of all possible reductions of nonzero
elements of H, together with {0}, forms a κ-vector space Hx. For later use we note the
following elementary lemma, which says that dimH = dimHx:

Lemma 4.3. Let X be a smooth proper curve over K, and x ∈ Xan a point of type 2. The

κ-vector space Hx defined by the reduction to H̃(x) of an (r + 1)-dimensional K-subspace
H ⊂ K(X) has dimension r + 1.

Proof. The inequality dimκ(Hx) ≤ r + 1 follows from the observation that if f0, . . . , fn are
linearly dependent in H, with |fi| = 1 for all i, then the reductions f0,x, . . . , fn,x are linearly
dependent in Hx.

To prove dimκ(Hx) ≥ r + 1, choose a K-basis f0, . . . , fr for H consisting of elements
of norm 1 and let f0,x, . . . , fr,x in Hx be the corresponding reductions. It is not true that
f0,x, . . . , fr,x necessarily form a basis of Hx: for example, if f and g are linearly independent
functions of norm 1 and c is any scalar with |c| < 1, then f and f+cg are linearly independent
but they have the same reduction. However, by the following procedure one can construct
another basis g0, . . . , gr of H with |gi| = 1 for all i such that the reductions gi,x are linearly
independent over κ. Define g0 = f0, and recursively define gi+1 as follows: among all the
rational functions of the form fi+1 −

∑
j≤i ajgj with |aj | ≤ 1 for all j, choose one, call it

hi+1, whose norm is minimal. Note that |fi+1 −
∑

j≤i ajgj | ≤ 1 so such an element exists

by compactness. Let ci+1 be a scalar with |ci+1| = |hi+1| and define gi+1 = c−1
i+1hi+1. It is

clear that the {gi} form a basis of H. We claim that the reductions gi,x form a basis of Hx.
Indeed, if not then there exists a minimal index i and scalars bj with |bj | ≤ 1 for j = 0, . . . , i
such that |gi+1 −

∑
j≤i bjgj | < 1. But this implies that |fi+1 −

∑
j≤i(aj + ci+1bj)gj | < ci+1,

contradicting the choice of hi+1. �

We recall the following useful result from [BPR, Theorem 5.69].

Theorem 4.4 (Slope Formula). Let f be a nonzero rational function on X, let X ′ be an
open affine subset of X on which f has no zeros or poles, and let F = − log |f | : (X ′)an → R.
Let V be a semistable vertex set for X ′, and let Σ = Σ(X ′, V ) be the corresponding skeleton.
Then:

(1) F = F ◦ τΣ where τΣ : (X ′)an → Σ is the retraction.
(2) F is piecewise linear with integer slopes, and F is linear on each edge of Σ.
(3) If x is a type-2 point of Xan and ~ν ∈ Tx corresponds to the discrete valuation ordv

on κ(Cx), then d~νF (x) = ordv(fx).
(4) F is harmonic at all x ∈ H(Xan).
(5) Let x ∈ X \ X ′, let e be the ray in Σ whose closure in Xan contains x, let y ∈ V

be the other endpoint of e, and let ~ν ∈ Ty be the tangent direction represented by e.
Then d~νF (y) = ordx(f).

To each nonzero rational function f on X and each strongly semistable model X for X,
one can associate a rational function f on CX whose Γ-part fΓ is the restriction to Γ = ΓX
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of the piecewise linear function F = log |f | on Xan and whose Cv-part is the normalized
reduction fv (which is well-defined up to multiplication by a non-zero scalar).2

As an application of Theorem 4.4, we obtain the following important formula:

Theorem 4.5. For every nonzero rational function f on X,

τCX∗ (div(f)) = div(f).

Proof. Let D be the support of div(f) in X. We apply Theorem 4.4 to X ′ = X \ D, the
invertible rational function f on X ′, and a semistable vertex set V ′ for X ′ which contains
V . Let Σ = Σ(X ′ an, V ′) and Γ = Σ(X,V ). Since V is a semistable vertex set for X, the
closure of Σ \ Γ in Σ is a disjoint union of metric trees T1, . . . , Ts. For each tree Ti, denote
by xi1, . . . , x

i
ni

all the points in D ⊂ X(K) which are in the closure of rays in Ti, and let

Ti = Ti ∪ {xi1, . . . , xini
}. Denote by yi the unique point of Γ ∩ Ti. In addition, if yi ∈ V , let

zij = τCX∗ (xij) ∈ Cyi(κ).

For each i ∈ {1, . . . , s}, the restriction of F = log |f | to Ti is harmonic at every point of
Ti \{yi, xi1, . . . , xini

} by (4). By (5), log |f | is linear in a sufficiently small neighborhood of xij
in Ti, and has (constant) slope ordxij

(f) along the unique tangent direction in this interval

toward the point yi. We infer that the order of F |Ti at yi is equal to −
∑

1≤j≤ni
ordxij

(f).

By (1), F is constant on any connected component of Xan \ Σ. By (4), the restriction fΓ

of F to Γ satisfies ordyi(fΓ) = −ordyi(F |Ti) =
∑

1≤j≤ni
ordxij

(f). Since fΓ is linear on each

edge of Γ by (2), it follows that τ∗(div(f)) = div(fΓ).

Fix i ∈ {1, . . . , s} and suppose that yi ∈ V . For any tangent direction ~ν ∈ Tyi , by (3) we
have d~νF = −ordν(fyi). Since F is locally constant on Xan \ Σ, we infer that d~νF = 0 for
any ~ν ∈ Tx not corresponding to a direction in Σ. This shows that div(fyi) is supported on
{zi1, . . . , zini

} ∪ Ayi . By (3), for any point ν in Ayi , corresponding to a tangent direction ~ν,
we have d~νfΓ + ordν(fyi) = 0. This shows that the coefficient of ν in div(f) is zero. For a

point ν ∈ {zi1, . . . , zini
}, let T i,ν be the closure in Σ of the connected component of Σ \ yi

which contains all the points xij with zij = ν. By (1) and (4), F is harmonic at any point of

T i,ν \ (D∪{yi}), and is linear of slope ordxij
(f) in a sufficiently small neighborhood of xij in

Ti,ν along the unique tangent direction in this interval toward the point yi. By (3), we infer

that ordν(fyi) = −d~ν(F ) =
∑

xij : zij=ν ordxij
(f). We conclude that τCX∗ div(f) = div(f). �

In particular, it follows that τCX∗ (Prin(X)) ⊆ Prin(CX).

4.5. The specialization inequality. Fix a strongly semistable R-model X for X and let
CX be the metrized complex associated to X. The following is a variant of Lemma 2.8 and
Corollary 2.11 from [B]:

Theorem 4.6 (Specialization Inequality). For every divisor D ∈ Div(X),

rX(D) ≤ rCX(τCX∗ (D)).

2We take F = log |f | instead of − log |f | because our convention is that ordu(F ) is the sum of the outgoing
slopes of F at u. One could equally well take the opposite convention, defining ordu(F ) to be minus the
sum of the outgoing slopes of F at u, and then defining F to be − log |f |. Such a modification would also
necessitate a change of sign in our definition of divv(F ).
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Proof. Let D := τCX∗ (D). It suffices to prove that if rX(D) ≥ k, then rCX(D) ≥ k as well.
The base case k = −1 is obvious. Now suppose k = 0, so that rX(D) ≥ 0. Then there exists
an effective divisor E ∈ Div(X) with D−E ∈ Prin(X). Since τCX∗ is a homomorphism and
takes principal (resp. effective) divisors on X to principal (resp. effective) divisors on CX,
we have D = τCX∗ (D) ∼ τCX∗ (E) ≥ 0, so that rCX(D) ≥ 0 as well.

We may therefore assume that k ≥ 1. For each v ∈ V , let Rv ⊂ Cv(κ)\Av be a subset of
size gv +1 and denote by R the union of the Rv. By Theorem A.1, R is a rank-determining
set in C. Let E be an effective divisor of degree k with support in R. For each x ∈ supp(E),
there exists a point P ∈ X(K) whose reduction is x, so there is an effective divisor E of
degree k on X with τCX∗ (E) = E . By our assumption on the rank of D, rX(D − E) ≥ 0,
and so rCX(D − E) ≥ 0. Since this is true for any effective divisor of degree k with support
in R, and since R is rank-determining, we infer that rCX(D) ≥ k as desired. �

Remark 4.7. There are many examples where the inequality in Theorem 4.6 can be strict.
For example, if gv = 0 for all v ∈ V then rCX(τCX∗ (D)) = rΓ(τ∗(D)) and thus the examples
of strict inequality from [B] apply. At the other extreme, if C = X̄ is smooth (so that G is a
point) then the specialization inequality becomes the well-known semicontinuity statement
h0(D) ≤ h0(D̄), where D̄ ∈ Div(C) is the reduction of D, and it is clear that such an
inequality can be strict; for example, take D = (P )− (Q) where X has genus at least 1 and
P,Q ∈ X(K) are distinct points with the same reduction in C(κ).

4.6. Refined versions of weighted specialization lemma. In this section we use the
specialization lemma for divisors on metrized complexes to provide a framework for obtain-
ing stronger versions of the weighted specialization lemma from [AC]. Our key technical tool
for this will be the “η-function” on a metrized complex. To help motivate the definition, we
first study an analogous η-function which controls the rank of divisors on connected sums.

4.6.1. The η-function and the rank of divisors on connected sums. Suppose the underlying
graph of a metrized complex C has a bridge edge e = {v1, v2}, and denote by C1 and C2

the two metrized complexes obtained by removing the edge e from C (vi is a vertex of Ci).
Denote by x1 and x2 the points of C1 and C2, respectively, corresponding to the edge e. We
say that C is a connected sum of C1 and C2.

There is an addition map Div(C1) ⊕ Div(C2) → Div(C) which associates to any pair of
divisors (D1,D2) ∈ Div(C1) ⊕ Div(C2) the divisor D1 + D2 on C whose restriction to each
Ci is Di.

The following proposition provides a precise description of the C-rank of D1 + D2 in
terms of the two rank functions rC1(·) and rC2(·). In order to state the result, we introduce
a function η = ηx2,D2 : N∪{0} → Z defined by the condition that η(k) is the smallest integer
n such that rC2(D2 +n(x2)) = k. (By the Riemann-Roch theorem for C2, η is well-defined.)

Proposition 4.8. With notation as above, we have

(2) rC(D) = min
k∈N∪{0}

{
k + rC1(D1 − η(k)(x1))

}
.

Proof. We prove the equality of the two sides of Equation (2) by showing that the inequal-
ities ≤ and ≥ both hold. By Theorem A.1, we can assume that all the effective divisors we
consider below are supported on geometric points (i.e., on points of the curves Cv).

(≥) Let r be the right-hand term in (2) and let E be an effective divisor of degree r on C
supported on geometric points. We need to show the existence of a rational function f on
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C such that div(f) + D − E ≥ 0. There is a (unique) decomposition of E as E = E1 + E2

with E1 and E2 effective divisors of degree r − k and k, respectively, having support on
geometric points. By the definition of η, there exists a rational function f2 on C2 such that
div(f2) + η(k)(x2) + D2 − E2 ≥ 0. By the choice of r as the minimum in Equation (2),
we have rC1

(
D1 − η(k)(x1)

)
≥ r − k, so there exists a rational function f1 on C1 such that

div(f1) + D1 − η(k)(x1)− E1 ≥ 0. We can in addition suppose that the Γ1-part of f1 takes
value zero at v1. Up to adding a constant to the Γ1-part of f1, we can define a rational
function f which restricts to f1 and f2 on C1 and C2, respectively, and which is linear of slope
−η(k) on the oriented edge (v1, v2) in Γ. For this rational function, we clearly have

div(f) +D − E = div(f1) +D1 − η(k)(x1)− E1

+ div(f2) +D2 + η(k)(x2)− E2 ≥ 0.

(≤) It will be enough to show that for each k ∈ N ∪ {0}, the inequality

rC(D) ≤ k + rC1

(
D1 − η(k)(x1)

)
holds. Let r̃ = rC(D). We can obviously restrict to the case k ≤ r̃. For each effective divisor
E2 of degree k supported on geometric points of C2, let fE2 be a rational function on C2 with
the property that the coefficients of div(fE2) +D2 − E2 outside x2 are all non-negative, and
such that in addition, the coefficient of x2 in div(fE2) +D2−E2 is maximized among all the
rational functions with this property. Denote by nE2 the coefficient of x2 in div(fE2)+D2−E2

and let Ē2 be an effective divisor of degree k on C2, supported on geometric points of C2,
for which n := nĒ2 is minimal, i.e.,

nĒ2 = min{nE2 | E2 ≥ 0 : deg(E2) = k}.
Note that by the choice of n, for an effective divisor E2 of degree k supported on geometric
points of C2 and the rational function fE2 , we have div(fE2) + D2 − E2 − n(x2) ≥ 0, which
shows that rC2(D2 − n(x2)) ≥ k. By the definition of η, it follows that η(k) ≤ −n.

By the definition of fĒ2 , for any rational function f2 on C2 with the property that div(f2)+

D2− Ē2 has non-negative coefficients outside x2, the coefficient of x2 in div(f2) +D2− Ē2 is
at most n ≤ −η(k).

Let E1 be an effective divisor of degree r̃−k on C1 supported on geometric points. There
exists a rational function f on C such that div(f) + D − E1 − Ē2 ≥ 0. Let f1 and f2 be the
restrictions of f to C1 and C2, respectively. By the preceding paragraph, the coefficient of
x2 in div(f2) +D2−Ē2 is at most −η(k). Since the coefficient of x2 in div(f) +D−E1−Ē2 is
non-negative, the Γ-part of f has slope at least η(k) along the tangent direction emanating
from v2 which corresponds to x2. Since the coefficients of div(f) at the interior points of
the edge {v1, v2} are all non-negative, it follows that the slope of the Γ-part of f along the
tangent direction emanating from v1 on the edge {v1, v2} is at most −η(k), which by the
assumption div(f) +D − E1 − Ē2 ≥ 0 implies that the coefficient of x1 in div(f1) +D1 − E1

must be at least η(k). It follows that div(f1) + D1 − η(k)(x1) − E1 ≥ 0. Since E1 was an
arbitrary effective divisor of degree r̃ − k supported on geometric points of C1, it follows
that rC1

(
D1 − η(k)(x1)

)
≥ r̃ − k, and the claim follows. �

Remark 4.9. In the same spirit, consider two metric graphs Γ1 and Γ2, and suppose that
two distinguished points v1 ∈ Γ1 and v2 ∈ Γ2 are given. The wedge or direct sum of (Γ1, v1)

and (Γ2, v2), denoted Γ̃ = Γ1 ∨Γ2, is the metric graph obtained by identifying the points v1

and v2 in the disjoint union of Γ1 and Γ2. Denote by v ∈ Γ̃ the image of v1 and v2 in Γ̃. (By
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abuse of notation, we will use v to denote both v1 in Γ1 and v2 in Γ2.) We refer to v ∈ Γ̃

as a cut-vertex and to Γ̃ = Γ1 ∨ Γ2 as the decomposition corresponding to the cut-vertex

v. Note that there is an addition map Div(Γ1) ⊕ Div(Γ2) → Div(Γ̃) which associates to

any pair of divisors D1 and D2 in Div(Γ1) and Div(Γ2) the divisor, D1 + D2 on Γ̃ defined
by pointwise addition of coefficients in D1 and D2. Let r1(·), r2(·), and r̃(·) = rΓ1∨Γ2(·) be

the rank functions in Γ1,Γ2, and Γ̃, respectively. For any non-negative integer k, denote by
ηv,D2(k), or simply η(k), the smallest integer n such that r2

(
D2 + n(v)

)
= k. Then for any

divisor D1 in Div(Γ1), we have (by an entirely similar argument)

(3) r̃(D1 +D2) = min
k∈N∪{0}

{
k + r1

(
D1 − η(k) (v)

)}
.

Remark 4.10. The above formalism is very handy for studying metric graphs such as the
chain of cycles used in [CDPR]. In particular, the lingering lattice paths studied in [CDPR]
in connection with a tropical proof of the Brill-Noether theorem can be understood in a
natural way as values of η-functions. The η-function formalism is also useful for studying
limit linear series, see for example the proof of Theorem 5.4 below.

We now define a partial analogue of the η-function introduced above for a general metrized
complex C and provide an analogue of Proposition 4.8.

Consider a divisor D on C with Cv-part Dv for v ∈ V . For every vertex v of G, define
the function ηv : N ∪ {0} → N ∪ {0} as follows. For any k ≥ 0, ηv(k) is the smallest integer

n ≥ 0 such that there exists a divisor D̃v of degree n− deg(Dv) supported on the points of

Av ⊂ Cv(κ) such that rCv(Dv + D̃v) = k. For any effective divisor E =
∑

v∈V (G)E(v)(v)

on G, define

η(E) :=
∑

v∈V (G)

ηv(E(v)) (v).

Note that the definition of η depends on the data of the divisors Dv ∈ Div(Cv).

Proposition 4.11. Let C be a metrized complex of algebraic curves over κ. For any divisor
D on C with Γ-part DΓ, we have

rC(D) ≤ min
E≥0

(
deg(E) + rΓ(DΓ − η(E))

)
,

where the minimum is over all effective divisors E on G.

Proof. Fix an effective divisor E supported on the vertices of G. We need to prove that

rC(D) ≤ deg(E) + rΓ(DΓ − η(E)).

For the sake of contradiction, suppose this is not the case, i.e., that deg(E)+rΓ(DΓ−η(E)) <
rC(D). Since rC(D) − deg(E) > rΓ(DΓ − η(E)), Luo’s Theorem (which is a special case of
Theorem A.1) implies that there exists a divisor E0 of degree rC(D)−deg(E) supported on
Γ \ V (G) such that |DΓ − E0

Γ − η(E)| = ∅.
Consider all the effective divisors on C of the form E0 +

∑
v∈V Ev, where each Ev is an

effective divisor of degree E(v) on Cv. Note that E0+
∑

v∈V Ev has degree rC(D), so that by
the definition of the rank function, for any choice of effective divisors Ev on Cv there exists
a rational function f on C such that div(f) +D−E0−

∑
v Ev ≥ 0. Denote by fΓ and fv the

different parts of f, so in particular we have div(fΓ) +DΓ−E0−E ≥ 0. One can assume as
in the proof of Proposition 2.1 that the slope of fΓ along the edges incident to each vertex
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of G is fixed. This shows the existence of the divisor D̃v = divv(fΓ) supported on the points

Av ⊂ Cv(κ) such that Dv + D̃v has rank at least E(v) = deg(Ev) on Cv. By the definition

of ηv, D̃v has degree at least ηv(E(v)) − deg(Dv). Since the degree of D̃v is the sum of
the slopes of fΓ along the edges adjacent to v, which is by definition ordv(fΓ), for each
v ∈ V (G) we obtain ordv(fΓ) ≥ ηv(E(v))− deg(Dv), i.e., ordv(fΓ) +DΓ(v)− ηv(E(v)) ≥ 0.
In addition, for each non-vertex point u ∈ Γ we must have ordu(fΓ) +DΓ(u)− E0(u) ≥ 0.
This implies that |DΓ − E0 − η(E)| 6= ∅, a contradiction. �

4.6.2. Weighted specialization lemma. Let K be a complete and algebraically closed non-
Archimedean field with non-trivial absolute value |.|, R the valuation ring of K, and and κ
its residue field. Let G = val(K×) be the value group of K. Let X be a smooth, proper,
and connected K-curve and fix a semistable R-model X. Let (Γ, ω) denote the skeleton
of X together with the weight function ω : V → N defined by ω(v) = gv. Let W =∑

v∈V gv(v). Following [AC], we define a metric graph Γ# by attaching gv loops of arbitrary
positive length at each point v ∈ Γ (see [AC] for a discussion of the intuition behind this
construction.)

Any divisor D in Γ defines a divisor on Γ# with the same support and coefficients (by
viewing Γ as a subgraph of Γ#). By an abuse of notation, we will also denote this divisor by
D. However, we distinguish the ranks of D in Γ and Γ# by using the notation rΓ(D) for the
former and rΓ#(D) for the latter. Following [AC], the weighted rank r# of D is defined by
r#(D) := rΓ#(D). Applying the formalism of the η-function from the previous subsection,
we obtain the following useful formula for r#:

Corollary 4.12. For every D ∈ Div(Γ), we have

r#(D) = min
0≤E≤W

(
deg(E) + rΓ(D − 2E)

)
.

Proof. Proceeding by induction, we are reduced to the case deg(W) = 1. This case follows

from (3) applied to Γ1 = Γ, Γ2 a circle, Γ̃ = Γ1 ∨ Γ2, D1 = D, and D2 = 0, since in this
case one has η(0) = 0, η(1) = 2, and η(k) = k + 1 for k > 1. �

The following result is a generalization to metric graphs Γ, and to smooth curves X over
not necessarily discrete non-Archimedean fields, of the corresponding statement for graphs
which was obtained by different methods in [AC].

Theorem 4.13 (Weighted specialization inequality). For every divisor D ∈ Div(X), we
have rX(D) ≤ r#(τ∗(D)).

Proof. Let D = τCX∗ (D) and note that the Γ-part DΓ of D is equal to τ∗(D). Applying
Proposition 4.11, we obtain

(4) rCX(τCX∗ (D)) ≤ min
E≥0

(
deg(E) + rΓ

(
τ∗(D)− η(E)

) )
.

For each vertex v of G, define the function η̄v : N ∪ {0} → N ∪ {0} by η̄v(k) = 2k for
k ≤ gv and η̄v(k) = k + gv for k ≥ gv. If E is an effective divisor supported on vertices of
G, define η̄(E) =

∑
v η̄(E(v))(v).

By the definition of ηv and Clifford’s theorem for the curve Cv, for any integer k ≥ 0 we
have ηv(k) ≥ η̄v(k). Combining this with (4), we get the inequality

(5) rCX(τCX∗ (D)) ≤ min
E≥0

(
deg(E) + rΓ

(
τ∗(D)− η̄(E)

) )
.
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Note that for E(v) > gv, we have η̄v(E(v)) = gv + E(v) and so, whatever the other coeffi-
cients of E are, we have

deg(E) + rΓ

(
τ∗(D)− η̄(E)

)
= deg(E − (v)) + 1 + rΓ

(
τ∗(D)− η̄(E − (v))− (v)

)
≥ deg(E − (v)) + rΓ(τ∗(D)− η̄(E − (v))).

In other words, in taking the minimum in (5), one can restrict to effective divisors E with
E(v) ≤ gv for all v, i.e., 0 ≤ E ≤ W. Finally, applying (5), Theorem 4.6, and Corollary 4.12,
we obtain the inequality rX(D) ≤ r#(τ∗(D)). �

4.7. Some applications. We give some direct applications of the results of this section.

4.7.1. Specialization of canonical divisors. Let KX be a canonical divisor on the curve
X/K. By Theorem 4.6, we have rCX

(
τCX∗ (KX)

)
≥ r(KX) = g(X)− 1 = g(CX)− 1. By the

Riemann-Roch theorem for metrized complexes (Theorem 3.2), the divisor τCX∗ (KX) − K
has degree zero and non-negative rank, and thus τCX∗ (KX) ∼ K. In particular, we have
τ∗(KX) ∼ K#.

Remark 4.14. As mentioned in the Introduction, for discretely valued R the fact that
τ∗(KX) ∼ K# follows from the adjunction formula for arithmetic surfaces. But it does
not seem straightforward to generalize that argument to the not necessarily discretely val-
ued case.

4.7.2. Brill-Noether theory. The following result is an immediate consequence of Theo-
rem 4.1 combined with Theorem 4.6.

Corollary 4.15 (Brill-Noether existence theorem). Let κ be a field and let g, r, d be nonneg-
ative integers. If the Brill-Noether number ρrd(g) := g−(r+1)(g−d+r) is nonnegative, then

for every metrized complex C of κ-curves with g(C) = g, there exists a divisor D ∈ Divd+(C)
such that rC(D) ≥ r.

Remark 4.16. In particular, combining the original Specialization Lemma from [B] with
Theorem 4.1 yields a new proof of [B, Theorem 3.20], which says that if ρrd(g) ≥ 0 then

for every metrized graph of genus g there exists D ∈ Divd+(Γ) such that r(D) ≥ r. The
present proof is more direct in that one does not need the approximation arguments given
in Lemma 3.17 and Corollary 3.18 of loc. cit.

Remark 4.17. The notion of Brill-Noether rank on metric graphs introduced in [LPP] and
the corresponding specialization lemma extend to the context of metrized complexes as
well. Let C be a metrized complex of κ-curves, and let W r

d (C) ⊂ Picd(C) be the subset
of all divisors of degree d and rank at least r. Define wrd(C) to be the largest integer n
such that for every effective divisor E of degree r + n on C, there exists D ∈ W r

d (C) such
that D − E ≥ 0. If W r

d (C) = ∅, define wrd(C) = −1. If X is a strongly semistable R-model

of a proper smooth curve X/K such that CX = C, and W r
d (X) ⊂ Picd(X) denotes the

Brill-Noether locus of X, then we have the inequality wrd(C) ≥ dim W r
d (X).

4.7.3. Weierstrass points on metrized complexes of κ-curves. Let C be a metrized complex
of κ-curves. We say that a point x in C is a Weierstrass point if rC

(
g(C)(x)

)
≥ 1. By

Theorem 4.6, the specialization of a Weierstrass point on X is a Weierstrass point on C.
And by Theorem 4.1 combined with Theorem 4.6, any metrized complex of κ-curves of
genus at least two has at least one Weierstrass point.
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5. Limit linear series

Our aim in this section is to compare our divisor theory on metrized complexes with the
Eisenbud-Harris theory of limit linear series for curves of compact type [EH]. As we will
see, our comparison results lead naturally to a generalization of the notion of limit linear
series to nodal curves which are not necessarily of compact type. Note that since Eisenbud
and Harris work over a discrete valuation ring, in order to compare our theory to theirs we
will sometimes restrict to this setting; we note, however, that most of our results hold over
the valuation ring of an arbitrary non-trivially valued non-Archimedean field.

5.1. Degeneration of linear series. We start by reviewing some basic facts and defini-
tions concerning the degeneration of linear series in families. Let Y be a smooth projective
curve over κ. Recall that a linear series L of (projective) dimension r and degree d, or
simply a grd, over Y consists of a pair (L, H) with L an invertible sheaf of degree d on Y
and H a subspace of H0(Y,L) of κ-dimension r + 1.

Let φ : X → B = SpecR be a regular smoothing of a strongly semistable curve X0 over
a discrete valuation ring R with fraction field K. This means that φ is proper, X is regular,
the generic fiber Xη of φ is smooth, and the special fiber of φ is X0. Denote by G = (V,E)
the dual graph of X0 and let {Xv}v∈V (G) be the set of irreducible components of X0.

Proposition 5.1. Any line bundle Lη on Xη extends to X . The restriction of any two
extensions L1 and L2 of Lη to the special fiber X0 are combinatorially equivalent (c.f.
Section 2.2).

Proof. The first part is a well-known consequence of the regularity of X (see for example
[H77, Chapter II, 6.5(a) and 6.11]). For the second part, note that any two extensions L1

and L2 of Lη differ by a divisor supported on the special fiber X0. In other words, there
exist integers nv for each vertex v of the dual graph of X0 such that L1 ' L2(

∑
v nvXv). It

is now easy to see that, in the notation of Section 2.2, π(L1|X0) and π(L2|X0) differ by the
divisor of the function fG : V (G)→ Z which sends v to nv. �

Consider now a grd Lη = (Lη, Hη) on Xη and choose an extension L of Lη to X . Since
cohomology commutes with flat base change, there is a natural isomorphism H0(Xη,Lη) ∼=
H0(X,L)⊗RK and Hη corresponds to a free R-submodule H of H0(X ,L) such that H ⊗R
K ∼= Hη. The restriction H0 of H to the special fiber X0 is an (r+ 1)-dimensional subspace
of H0(X0,L0). This shows the existence of the limit of a grd once the extension L of Lη is
fixed. However, since the extension is not unique, the limit pair (L0, H0) is not unique. If
one were to restrict to a single such extension, there would inevitably be a loss of important
information; this can be seen, for example, in the study of limits of ramification points
and in the study of limits of smooth hyperelliptic, and more generally, smooth d-gonal
curves, see for example [HM82, EH, EM, R]. Some of the difficulties in formulating a good
notion of limits for linear series are already manifest in the atypical behavior of linear series
on reducible curves, since (as mentioned earlier) they do not satisfy many of the classical
theorems which govern the behavior of (global sections of) linear series on irreducible curves.

The Eisenbud-Harris theory of limit linear series on curves of compact type provides a
way to keep track of the geometry in the limit by choosing an aspect of the limit for each
irreducible component, with some extra conditions relating these different aspects at nodes
(see below for a precise definition). We refer to [O1, O2] for recent refinements of the
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Eisenbud-Harris theory, and to [E, EM] for generalizations of this theory to certain curves
not of compact type.

5.2. Limit linear series for curves of compact type. We recall the definition of limit
linear series for curves of compact type, following [EH].

We first need to recall the sequence of orders of vanishing of a grd L = (L, H) at a point
on a smooth projective curve Y over κ. For any closed point p on Y and any section f ∈ H,
denote by ordp(f) the order of vanishing of f at p. The orders of vanishing at p of all the
sections of L in H define a sequence of integers 0 ≤ aL0 (p) < aL1 (p) < · · · < aLr−1(p) < aLr (p).
(This sequence is obtained by induction: let fr be the section in H with the highest order
of vanishing, and define fr−i inductively as a section in H with the highest possible order
of vanishing at p among all sections which are linearly independent of the first i sections
fr, . . . , fr−i+1. Then ai(p) = ordp(fi).)

Let X0 be a strongly semistable curve over κ, let G = (V,E) be the dual graph of X0,
and for any v ∈ V , let Xv be the corresponding irreducible component of X0. When G is a
tree, the curve X0 is called of compact type: in this case, Pic0(X0) is compact.
(Recall that in general, we have an exact sequence of algebraic groups

0→ H1(G,Z)⊗Gm → Pic0(X0)→
∏
v∈V0

Pic0(Xv)→ 0.)

Let X0 be a curve of compact type. A crude limit grd L over X0 is by definition the data
of a grd Lv = (Lv, Hv) over Xv for each vertex v ∈ V , called the Xv-aspect of L, such that
the following property holds: If the two components Xu and Xv of X0 meet at a node p
corresponding to an edge {u, v} in E, then

(6) aLv
i (p) + aLu

r−i(p) ≥ d

for all 0 ≤ i ≤ r. A crude limit linear series is a refined limit linear series if all the
inequalities in (6) are equalities.

We are now going to associate to L a degree d divisor on the regularization of X0 (c.f.
Section 2.2 for the definition). Roughly speaking, this amounts to choosing a divisor of
degree d on each Xv in the divisor class of Lv. However, the global divisor on CX0 defined
by such a collection of divisors does not have degree d. To fix this problem, we need to
choose a root r for the tree G and modify the local divisors using the root. This is done as
follows.

Let Γ be the metric graph associated to G and let CX0 be the regularization of X0. For
each vertex v of G, let Dv be a divisor of degree d on Xv in the divisor class defining Lv
(i.e., L(Dv) ' Lv). The subspace Hv ⊆ H0(Xv,L(Dv)) can be naturally regarded as a
subspace of κ(Xv). Let r be a fixed vertex of G and let Gr denote G considered as a rooted
tree with root r. For any vertex u 6= r in G, consider the unique path from u to r in G and
let eu be the edge adjacent to u along this path. Let xu be the node of Xu corresponding
to the edge eu. Consider the divisor D of degree d on CX0 defined by

(7) DΓ := Dr +
∑
u6=r

Du, where Du := Du − d(xu).
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We will see below that D has rank at least r in CX0. In order to derive a more precise
characterization of crude limits in terms of a suitable rank function, we need to introduce
a refined notion of rank on a metrized complex which takes into account the spaces Hv.

5.2.1. A refined notion of rank for divisors on a metrized complex. Let C be a metrized
complex of algebraic curves, Γ the underlying metric graph with model G, and {Cv} the
corresponding family of smooth projective curves over κ. Suppose we are given, for each
v ∈ V , a non-empty κ-linear subspace Fv of κ(Cv). We denote by F the collection of all
Fv. Define the F-rank of a divisor D on C, denoted rC,F (D), to be the maximum integer r
such that for any effective divisor E of degree r, there exists a nonzero rational function f
on C, with Cv-parts fv ∈ Fv for all v ∈ V , such that D + div(f)− E ≥ 0.

The following proposition provides an upper bound for rC,F in terms of the maximal
dimension of Fv for v ∈ V (G).

Proposition 5.2. Let s = max
(
0,minv∈V (G)(dimκ(Fv)− 1)

)
. Then for any divisor D on

C, we have rC,F (D) ≤ s.

Proof. If dimκ(Fv) = 0 for some v, then either rC,F (D) = 0 (if D ≥ 0) or rC,F (D) = −1
(otherwise), and the proposition holds. For the sake of contradiction, suppose now that
rC,F (D) ≥ s + 1 ≥ 1. Let v be a vertex with s = dimκ(Fv) − 1. For any effective divisor
Ev of degree s + 1 on Cv, there exists a rational function f on C with fv ∈ Fv such that
D − Ev + div(f) ≥ 0. Taking Γ-parts shows that DΓ − (s + 1)(v) + div(fΓ) ≥ 0. For a
generic choice of Ev, we can assume as in the proof of Proposition 2.1 that the slopes of fΓ

on the edges adjacent to v are fixed. For the divisor D′v = Dv + divv(fΓ), this shows that
for any choice of Ev on Cv, there exists an element fv ∈ Fv with D′v − Ev + div(fv) ≥ 0.
This contradicts the assumption that dimκ(Fv) = s+ 1, since Fv can define a linear system
of projective dimension at most s on Cv. �

In Section 4.6.1, we provided a formula for the rank of a divisor on a metrized complex C
which is a connected sum of two metrized complexes C1 and C2. We now state a straight-
forward generalization of Proposition 4.8 to restricted ranks, which will be used in the next
section.

Suppose that the underlying graph of C has a bridge edge e = {v1, v2} and let C1 and C2

be the two metrized complexes obtained by removing the edge e. Let Γ1, Γ2, and Γ be the
underlying metric graphs of C1, C2, and C respectively (with vi a vertex of Γi). Denote by
x1 and x2 the points of C1 and C2, respectively, corresponding to the edge e. Let F be a
family of spaces of rational functions Fv for vertices v of Γ, and denote by F1 (resp. F2)
the collection of those Fv for v a vertex of Γ1 (resp. Γ2).

Proposition 5.3. Let D = D1 + D2 be the sum of divisors D1 and D2 on C1 and C2,
respectively. For a non-negative integer k, define η(k) to be the smallest integer n such that
rC1,F1

(
D1 + n(x1)

)
= k. Then

(8) rC,F (D) = min
k≥0

{
k + rC2,F2(D2 − η(k)(x2))

}
.

5.2.2. Characterization of limit linear series in terms of the refined rank function. We retain
the terminology from the previous sections. Let X0 be a curve of compact type, G = (V,E)
the dual graph, CX0 the regularization of X0, and let L be a collection of grd’s Lv = (Lv, Hv)

on Xv, one for each v ∈ V . Fix a root vertex r ∈ V and divisors Dv ∈ Div(Xv) such that
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L(Dv) ∼ Lv, and let D be the divisor defined by (7). Denote by H the family of all
Hv ⊆ H0(Xv,L(Dv)) ⊂ κ(Xv).

Theorem 5.4. The following two assertions are equivalent:

(i) L is a crude limit grd on X0.
(ii) rCX0,H(D) = r.

Proof. Denote by r1, . . . , rh all the children of r in the rooted tree Gr. For each 1 ≤ i ≤ h,
denote by xi = xri and yi the κ-points of Xri and Xr, respectively, which correspond to the
edge {r, ri}.

Proof of (i)⇒ (ii): Let L be a crude limit grd and let s ≤ r be a non-negative integer. Let
Fr ⊂ Hr be a subspace of dimension s+ 1, and denote by F the collection of Fr and Hv for
v 6= r in V . We will prove that rCX0,F (D) = s. The result then follows by taking F = H.

By Proposition 5.2, we have rCX0,F (D) ≤ s, so it will be enough to prove the reverse
inequality rCX0,F (D) ≥ s. The proof proceeds by induction on |V |, and by applying Propo-
sition 5.3. For the base case of our induction, we have |V | = 1, and thus CX0 = Xr and
rXr,{Fr}(Dr) = s.

Now suppose that the claim holds for all metrized complexes on at most |V | − 1 vertices.
For each 1 ≤ i ≤ h, denote by Gi the rooted tree at ri obtained by removing the edge {r, ri}
from G, and let Γi be the metric graph obtained from Gi by taking all edge lengths to be
1. Let Ci be the sub-metrized complex of CX0 with underlying metric graph Γi and curves
Xv for v a vertex of Gi, and denote by Di the restriction of D to Ci, i.e., Di,v = Dv for
all vertices v of Gi. Denote by Hi the family of all Hv for v a vertex of Gi. Let ηi be the
η-function associated to the bridge edge {r, ri}, so that ηi(k) is the smallest integer n such
that rCi,Hi(Di + n(xi)) = k. Repeatedly applying Proposition 5.3 reduces the calculation
of rCX0,F (D) to the calculation of the restricted ranks of certain divisors on the metrized
complex Xr (with a single vertex r and a unique curve Xr) with respect to the subspace
Fr ⊂ κ(Xr); more precisely,

rCX0,F (D) = min
s1,...,sh≥0

{
s1 + · · ·+ sh + rXr,{Fr}

(
Dr −

h∑
i=1

ηi(si)(yi)
) }
.

We are thus led to prove that each term s1 + · · ·+ sh+ rXr,{Fr}
(
Dr−

∑h
i=1 ηi(si)(yi)

)
in the

above formula, for non-negative integers si, is bounded below by s. We may clearly assume
that s1 + · · ·+ sh ≤ s+ 1.

Claim 5.5. For each 1 ≤ i ≤ h, ηi(si) ≤ d− a
Lri
r−si(xi).

Proof of the claim. By definition, the subspace Fri of Hri consisting of all global sections of

Lri having an order of vanishing at least a
Lri
r−si(xi) at xi has dimension si + 1. Let D′i be the

divisor defined on Ci by the data of the linear series Lv = (L(Dv), Hv), for v a vertex of Gi,
and the root ri, as in (7). Note that D′i = Di + d(xi). Let Fi be the collection of Fri and
Hv, for v 6= ri a vertex of Gi. By the induction hypothesis applied to the subcurve of X0

consisting of all curves Xv for v a vertex of Gi and the crude limit linear series {Lv}v∈V (Gi),
we have rCi,Fi(D′i) = si. On the other hand, by the definition of Fri , we have

rCi,Fi(D
′
i) = rCi,Fi(D

′
i − a

Lri
r−si(xi)(xi))
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and thus

rCi,Fi(Di + (d− aLri
r−si(xi))(xi)) = rCi,Fi(D

′
i − a

Lri
r−si(xi)(xi)) = si.

By the definition of ηi(si), we infer that ηi(si) ≤ d− a
Lri
r−si(xi), which proves the claim.

To finish the proof of (i)⇒ (ii), note that since L is a crude limit grd, we have

aLr
si (yi) ≥ d− a

Lri
r−si(xi).

This shows that the space of all global sections of Lr with an order of vanishing at least η(si)
at yi has codimension at most si. The intersection of all these spaces with Fr has dimension

at least s+ 1−
∑h

i=1 si, which shows that rXr,{Fr}
(
Dr −

∑h
i=1 ηi(si)(yi)

)
≥ s−

∑h
i=1 si.

Proof of (ii) ⇒ (i): By Corollary A.6, in calculating rCX0,H(D) we can restrict to effective
divisors in Div(CX0)Z. In this case, since G is a tree, we can suppose that all the rational
functions on Γ which appear in the calculation of rCX0,H arise via linear interpolation from
integral functions fG : V → Z. Since G is a tree, the data of an integral function fG on V is
equivalent, up to an additive constant, to an assignment of labels auv ∈ Z to each oriented
edge uv of G such that auv = −avu for any {u, v} ∈ E. (Set auv = fG(u)− fG(v).) In what
follows, we denote by pv the unique parent of a vertex v 6= r in the rooted tree Gr.

Suppose now that rCX0,H(D) = r. We first observe that, for any other choice of a root
vertex r′, if D′ denotes the corresponding divisor on CX0 defined as in (7) then the two
divisors D and D′ differ by the principal divisor div(f), where f is a rational function with
Γ-part fG and constant Xv-part for all v ∈ V . Thus rCX0,H(D′) = r, so it will be enough
to prove the validity of Condition (6) for the root r and a child u of r among r1, . . . , rh.

Denote by xu and yu the κ-points of Xu and Xr, respectively, corresponding to the
edge {r, u}, and let 0 ≤ i ≤ d. For any effective divisor E = Er + Eu, where Er and Eu
are effective divisors of degree r − i and i on Xr and Xu, respectively, there must exist a
rational function f with fw ∈ Hw for all w such that D − E + div(f) ≥ 0. For any two
adjacent vertices w and z in G, let awz = f(w)− f(z) as above. Since for any vertex w 6= r,
Dw has degree zero, a simple induction starting from the leaves and going towards the root
shows that awpw ≥ 0. This in particular implies that Dr + div(fr) − Er − aur(yu) ≥ 0 and
Du + div(fu)− Eu − (d− aur)(xu) ≥ 0. For a generic choice of Er and Eu, we can assume
as in the proof of Proposition 2.1 that aur = a is a constant. In other words, there exists an
integer 0 ≤ a ≤ d such that the sublinear system of Hr (resp., Hu) which consists of those
sections with an order of vanishing at least a (resp. d − a) at yu (resp. xu) has projective
dimension at least r − i (resp. i). By the definition of the sequences aLr(·) and aLu(·), this

simply means that aLr
i (yu) ≥ a and aLu

r−i(xu) ≥ d−a. It follows that aLr
i (yu)+aLu

r−i(xu) ≥ d,
which is Condition (6) for the two irreducible components Xr and Xu of X0. �

Corollary 5.6. Let κ be of characteristic zero. Then L is a refined limit series iff rC,H(D) =
r and all the ramification points of Lv are smooth points of Xv for all v ∈ V (G).

Proof. This is a direct consequence of Theorem 5.4 above and the Plücker formula, c.f. [EH,
Proposition 1.1]. �

We note that the a priori dependence of the family H on the Xv-aspects Lv can be
removed, and recovered from the condition on the rank, in the following sense. For any
crude limit grd L on X0 with Xv-aspect Lv = (Lv, Hv), choose a divisor Dv ∈ Divd(Xv) with
Lv ' L(Dv). Two divisors D and D′ in Div(CX0)Z are called combinatorially equivalent if
they differ by the divisor of a rational function f on CX0 with all fv constant.
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The following result is essentially a reformulation of Theorem 1.6 from the Introduction
and easily implies the result stated there.

Theorem 5.7. Let X0 be a curve of compact type and CX0 the regularization of X0. Then
there is a bijective correspondence between the following:

• Pairs (L, {Dv}) consisting of a crude limit grd L on X0 and a collection of divisors
Dv on Xv with Lv ' L(Dv) for any irreducible component Xv of X0; and
• Pairs (H, [D]), where H = {Hv}, Hv is an (r + 1)-dimensional subspace of κ(Xv)

for each v ∈ V , and [D] is the combinatorial linear equivalence class of a divisor
D ∈ Div(CX0)Z of degree d on CX0 with rCX0,H(D) = r.

In particular, the data of a crude limit grd on X0 is equivalent to the data of a pair (H, [D])
with rCX0,H(D) = r.

Proof. We already know by Theorem 5.4 that any crude limit grd gives a pair (H, [D]) with
rCX0,H(D) = r.

Let H be a collection of (r + 1)-dimensional subspaces Hv ⊂ κ(Xv) for v ∈ V , and let
D be a divisor of degree d in Div(CX0)Z with rCX0,H(D) = r. We show the existence of a
grd Lv = (Lv, Hv) on Xv for each v ∈ V such that the collection L = {Lv} defines a crude

limit grd on X0, and such that D is (combinatorially) linearly equivalent to the divisor DL
associated to L by (7).

Let DΓ (resp. Dv) denote the Γ-part (resp. Xv-part) of D. Since Γ has genus zero, for any
vertex v in V (G) there exists a rational function fΓ on Γ such that DΓ + div(fΓ) = d(v).

Define D̃v := Dv + divv(fΓ), where divv(fΓ) is defined as in (1). We claim that Hv ⊂
H0(Xv,Lv); this amounts to showing that div(f) + D̃v ≥ 0 for any f ∈ Hv. If we denote
by H ′v the subspace of Hv consisting of all rational functions in Hv with this property, it
will be enough show that dimκ(H ′v) = r + 1.

First, we note that for any rational function f ′Γ on Γ with DΓ + div(f ′Γ) ≥ 0, we have
divv(fΓ) − divv(f

′
Γ) ≥ 0. Indeed, DΓ + div(f ′Γ) ≥ 0 implies that for any edge e adjacent

to v, the slope of fΓ in the tangent direction corresponding to e is bounded above by the
sum of the coefficients DΓ(w) of the points w lying on the connected component of Γ \ {v}
which contains the edge e. This sum is precisely the slope of fΓ in the tangent direction
corresponding to e.

For any effective divisor E of degree r on Xv, let E denote the corresponding divisor on
CX0. Since rCX0,H(D) = r, there exists a rational function fE such that div(fE)+D−E ≥ 0.

Since div(fEΓ ) + DΓ ≥ 0, the preceding remark implies that D̃v = Dv + divv(fΓ) ≥ Dv +

divv(f
E
Γ ). By the definition of div(f), we conclude that div(fEv ) + D̃v − E ≥ 0, and in

particular fEv belongs to H ′v. Since this holds for any E, we infer that the linear series on
Xv defined by H ′v has (projective) dimension at least r and so H ′v has dimension at least
r+1, thus H ′v = Hv. We conclude that Lv = (Lv, Hv) is a grd on Xv, and thus the collection

of Lv for v ∈ V defines a crude limit grd L on X0. If DL is the divisor associated to L by (7),

it is straightforward to check that DL and D differ by the divisor of a rational function f
on CX0 whose Xv-parts are all constant and whose Γ-part is the linear interpolation of an
integer-valued function f : V → Z. �
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5.3. Limit linear series for metrized complexes. Let C be a metrized complex of
algebraic curves over κ, Γ the underlying metric graph with model G = (V,E), and {Cv}
the corresponding collection of smooth projective curves over κ.

We define a (crude) limit grd on C to be an equivalence class of pairs (H,D) consisting of a
divisor D of degree d on C and a collection H of (r+ 1)-dimensional subspaces Hv ⊂ κ(Cv),
for v ∈ V (G), such that rC,H(D) = r. Two pairs (H,D) and (H′,D′) are considered
equivalent if there is a rational function f on C such that D′ = D+ div(f) and Hv = H ′v · fv
for all v ∈ V , where fv denotes the Cv-part of f.

Remark 5.8. Since rC,H(D) ≤ rC(D) for all H as above and all D ∈ Div(C), it follows
immediately from Theorem 3.2 that for any limit grd on C we have if d ≥ 2g or r ≥ g, then
r + g ≤ d (Riemann’s inequality), and if D is special then r ≤ d/2 (Clifford’s inequality).
For curves of compact type, these inequalities are established (by a completely different
proof) in [EH].

Theorem 5.9. Let X be a smooth proper curve over K, X a strongly semistable model
for X, and CX the metrized complex associated to X. Let D be a divisor on X and let
Lη = (L(D), Hη), for Hη ⊆ H0(X,L(D)) ⊂ K(X), be a grd on X. For any vertex v ∈ V ,
define Hv as the κ-vector space defined by the reduction to κ(Cv) of all the rational functions
in Hη (c.f. Section 4.4), and let H = {Hv}v∈V . Then the pair (τCX∗ (D),H) defines a limit
grd on CX.

Proof. By Lemma 4.3, all the subspaces Hv have dimension r+1 over κ. By Proposition 5.2,
we only have to show that rCX,H ≥ r. By Theorem A.1, it suffices to show that for any
effective divisor E ∈ Div(CX) of degree r supported on a subset R =

⋃
vRv of CX with

Rv ⊂ Cv(κ) \ Av of size gv + 1, there exists a rational function f on CX such that fv ∈ Hv

for all v ∈ V and div(f) + τCX∗ (D) − E ≥ 0. For any such E , there exists an effective
divisor of degree r on X such that τCX∗ (E) = E . Since Lη is a grd on X, there exists a
rational function f ∈ Hη such that D − E + div(f) ≥ 0. Let f be the corresponding
rational function on CX (as in the paragraph preceding Theorem 4.5). We conclude that
τCX∗ (D−E+div(f)) = τCX∗ (D)−E+τCX∗ (div(f)) = τCX∗ (D)−E+div(f) ≥ 0. Since fv ∈ Hv,
this shows that rCX,H ≥ r as desired. �

For the regularization CX0 of a strongly semistable curve X0 over κ, Theorem 5.9 can be
reformulated as follows. Let φ : X → SpecR be a regular smoothing of X0 over a discrete
valuation ring R and let Lη = (Lη, Hη) be a grd over the generic fiber Xη of φ. Consider an
extension L of Lη to X , and let L0 be the restriction of L to X0. Let D be a divisor on CX0

in the linear equivalence class of π(L0), where π : Pic(X0)→ ⊕v∈V (G) Pic(Xv) is as in Sec-
tion 2. There exists a family H = {Hv}v∈V (G) of (r+1)-dimensional subspaces Hv ⊂ κ(Xv)
such that rCX0,H(D) = r. In addition, Hv can be explicitly constructed as follows. For any
vertex v, choose a rational function fv on CX0 such that the divisor D+div(fG,v) is v-reduced
and let fG,v : V (G) → Z be the Γ-part of fv. Consider the extension L

(∑
v fG,v(u)Xu

)
of Lη to X and let HfG,v

be the closure of Hη in H0
(
X ,L

(∑
v fG,v(u)Xu

) )
. Define

Hv := HfG,v
|Xv and τ∗(Lη) := (D,H). Finally, for any v ∈ V let Dv be the v-reduced

divisor linearly equivalent to D, and define dv := DΓ(v) = deg(Dv
v).

Theorem 5.10. Let X0 be a strongly semistable curve over κ and CX0 the regularization
of X0. For any regular smoothing π : X → SpecR of X0 over a discrete valuation ring R,
τ∗(Lη) as defined above is a limit grd on X0. In addition, for each vertex v ∈ V (G) we have
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Hv ⊆ H0(Xv,L(Dv
v)), so that (L(Dv

v), Hv) defines a grdv on the irreducible component Xv

of X0.

We conclude this section with the following strengthening of Theorem 5.9 which will be
used in §5.5.

Theorem 5.11. Let X be a smooth proper curve over K, X a strongly semistable model
for X, and let CX be the metrized complex associated to X. Let D be a divisor on X and
set D = τCX∗ (D). Let Lη = (L(D), Hη) be a grd on X and let H = {Hv}v∈V be as in
the statement of Theorem 5.9. Let E◦ be an effective divisor of degree e supported on the
smooth locus of the special fiber of X, and define E◦ =

∑
v∈V E

◦
v ∈ Div(CX), where E◦v is the

restriction of E◦ to Cv. Suppose that Hv ⊆ L(Dv−E◦v) for all v. Then the pair (D−E◦,H)
is a limit grd−e on CX.

Proof. In the view of Theorem A.1, the proof is similar to the proof of Theorem 5.9, by
requiring each subset Rv ⊂ Cv(κ) \ Av to be disjoint from the support of E◦v . For any
effective divisor E of degree r supported on R =

⋃
Rv, the proof of Theorem 5.9 shows

that there exists a rational function f such that D − E + div(f) ≥ 0. We claim that in fact
D − E + div(f) − E◦ ≥ 0, which implies that (D − E◦,H) is a limit grd−e on CX as desired.
To see this, let E◦Γ be the Γ-part of E◦ and note that since E◦Γ =

∑
v∈V deg(E◦v)(v) and

div(fΓ) ≥ EΓ −DΓ by hypothesis, it suffices to prove that the Cv-part of div(f) is at least
the Cv-part of E + E◦ −D for all v ∈ V , i.e.,

(9) div(f)v := div(fv) + divv(fΓ) ≥ Ev + E◦v −Dv.

If z ∈ supp(E◦v), then since supp(E◦v) is disjoint from Av ⊃ supp(divv(fΓ)) we have
div(f)v(z) = div(fv)(z), and since supp(E◦v) is disjoint fromRv ⊃ supp(Ev) we have Ev(z) =
0. Thus (9) holds in this case since Hv ⊂ L(Dv − E◦v) implies that div(fv)(z) ≥ E◦v(z) −
Dv(z). On the other hand, if z 6∈ supp(E◦v), then E◦v(z) = 0 and thus (9) holds because by
assumption we have div(f) ≥ E −D and in particular div(f)v(z) ≥ Ev(z)−Dv(z).

Thus (9) is valid for all z ∈ Cv(κ) as desired. �

5.4. Remarks on completion and smoothing. Given a divisor D of degree d and rank
r on C, one may ask if there exists a collection H = {Hi}, with Hi an (r + 1)-dimensional
subspace of κ(Ci) for all i, such that rC,H(D) = r. (Recall that we always have rC,H(D) ≤
rC(D).) If so, we say that D can be completed to a limit grd on C. Moreover, Theorem 5.9
shows that if X is a smooth proper curve over K, (D,Lη) is a grd on X, and CX is the
metrized complex associated to a strongly semistable model X for X, then the associated
pair (τCX∗ (D),H) (which we call the specialization of (D,H)) is a limit grd on CX. We say
that a limit grd (D,H) on a metrized complex C over κ is smoothable if there exists a smooth
proper curve X over K such that C = CX for some strongly semistable model X of X and
(D,H) arises the specialization of a limit grd on X. Note that by [ABBR1, Theorem 3.24],
every val(K∗)-rational metrized complex C over κ is of the form C = CX for some smooth
proper curve X over K and some strongly semistable model X of X, where val(K∗)-rational
means that the edge lengths in G all belong to the value group of K.

In this section, we show by example that not every divisor D of degree d and rank r
on a metrized complex C can be completed to a limit grd, and not every limit grd on a
val(K∗)-rational metrized complex C is smoothable.
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Figure 2. A weighted metric graph underlying a metrized complex possess-
ing a degree 2 rank 1 divisor which cannot be completed to a limit g1

2.

Example 5.12 (A degree d rank r divisor which cannot be completed to a limit grd). Consider
the weighted graph Γ depicted in Figure 2 (with arbitrary edge lengths), and let C be a
metrized complex whose underlying weighted metric graph is Γ (so each Cvi has genus 1 and
Cv has genus 0). For any point p in Cv ' P1, consider the degree 2 divisor D = 2(p). We
claim that D has rank 1 on C but cannot be completed to a limit g1

2. The fact that D has
rank 1 is straightforward and left to the reader. Assume for the sake of contradiction that
there exists a limit g1

2 (H,D) on C. Let x1, x2, x3 (resp. y1, y2, y3) be the points of Cv = P1

(resp. Ci := Cvi) corresponding to the three edges of Γ. Fix i ∈ {1, 2, 3}, choose a point
qi 6= yi in Ci and let E = (qi). For any rational function f on C such that D−E+div(f) ≥ 0,
the fact that Ci has genus one implies that divvi(fΓ) ≥ 2(yi), since there is no rational
function on Ci whose divisor is (qi) − (yi). Therefore div(fΓ) = 2(vi) − 2(v). Restricting
f to Cv gives a rational function fi on Cv with div(fi) = 2(xi) − 2(p). Since (H,D) is by
assumption a limit g1

2, we must have f1, f2, f3 ∈ Hv. But a simple calculation shows that
the fi are linearly independent, implying that dimκ(Hv) ≥ 3, a contradiction.

Remark 5.13. Suppose the residue field κ of K has characteristic different from 2. Then
there exists a metrized complex C over κ (with all curves Cv isomorphic to P1) and a
divisor D of degree 2 and rank 1 on C which cannot be completed to a limit g1

2. Indeed, any
hyperelliptic metric graph which cannot be realized as the skeleton of a hyperelliptic curve
over K provides an example of this phenomenon (and one can construct many examples of
such metric graphs, using the characterization of those hyperelliptic metric graphs which
can be lifted to a hyperelliptic curve over K given in [C2] and [ABBR2].) Here is a sketch
of the argument. It is not difficult to show that a limit g1

2 on a metrized complex C gives
rise, in a natural way, to a finite harmonic morphism of degree two (in the terminology
of [ABBR1, Definition 2.19]) from C to a metrized complex of genus zero . By the lifting
result [ABBR1, Theorem 7.7], such a finite harmonic morphism can be lifted to a degree
two map from a smooth proper curve X/K with associated metrized complex C to P1, which
implies that the underlying metric graph of C is the skeleton of a hyperelliptic curve over
K.

Example 5.14 (A limit grd which is not smoothable). This phenomenon occurs already in
the compact type case: the original paper of Eisenbud-Harris on limit linear series [EH]
provides an example (Example 3.2 of loc. cit.) of a limit g2

4 which cannot be smoothed; we
recall their example here.

The metrized complex C in question is associated to a semistable curve X0 with two
components meeting transversely at a point p; one of the components is a hyperelliptic
curve Y of genus at least 4 and the other component Z has genus zero. The point p is a
ramification point of the g1

2 on Y , and without loss of generality we may assume that p
corresponds to the point 0 on P1 ∼= Z. The dual graph G of X0 has two vertices vY and vZ
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connected by a single edge, which may take to be of length one in Γ. Now define a divisor
D on C by setting D = 4(∞) for the point ∞ ∈ P1 ' Z. If we define H = {HY , HZ}, where
HY = H0(Y, 4(p)) and HZ is the span of 1, t2 + t3, t4 (with t a local parameter at 0 on P1),
then by [EH, Example 3.2] and Theorem 5.4 above, the pair (D,H) defines a limit g2

4 on
C. (It is also not hard to show this directly using our definitions.) This limit g2

4 cannot be
smoothed.

Remark 5.15. Using Mnev universality theorem, Dustin Cartwright has recently proved that
the question of smoothing g2

d can be very dependent on the characteristic of the field [Car14].

5.5. Application to bounding the number of rational points on curves. In this
section, we explain how limit linear series on metrized complexes of curves can be used to
illuminate the proof of a recent theorem due to E. Katz and D. Zureick-Brown [KZB] and
put it into a broader context.

Let K be a number field and suppose X is a smooth, proper, geometrically integral curve
over K of genus g ≥ 2. Let J be the Jacobian of X, which is an abelian variety of dimension
g defined over K. If the Mordell-Weil rank r of J(K) is less than g, Coleman [Co] adapted
an old method of Chabauty to prove that if p > 2g is a prime which is unramified in K and
p is a prime of good reduction for X lying over p, then #X(K) ≤ #X̄(Fp)+2g−2. Here X̄
denotes the special fiber of a smooth proper model for X over the completion Op of OK at p
and Fp = OK/p. Stoll [St] improved this bound by replacing 2g− 2 with 2r. Lorenzini and
Tucker [LT] (see also [MP]) proved the same bound as Coleman without assuming that X
has good reduction at p; in their bound, X̄(Fp) is replaced by X̄sm(Fp) where X is a proper
regular model for X over Op and X̄sm is the smooth locus of the special fiber of X. Katz
and Zureick-Brown combine the improvements of Stoll and Lorenzini-Tucker by proving:

Theorem 5.16. Let K be a number field and suppose X is a smooth, proper, geometrically
integral curve over K of genus g ≥ 2. Suppose the Mordell-Weil rank r of J(K) is less than
g, and that p > 2g is a prime which is unramified in K. Let p be a prime of OK lying over
p and let X be a proper regular model for X over Op. Then

#X(K) ≤ #X̄sm(Fp) + 2r.

In order to explain the main new idea in the paper of Katz and Zureick-Brown, we first
quickly recall the basic arguments used by Coleman, Stoll, and Lorenzini-Tucker. (See [MP]
for a highly readable and more detailed overview.) Assume first that we are in the setting
of Coleman’s paper, so that r < g, p > 2g is a prime which is unramified in K, and X
has good reduction at the prime p lying over p. Fix a rational point P ∈ X(K) (if there
is no such point, we are already done!). Coleman associates to each regular differential ω

on X over Kp (the p-adic completion of K) a “definite p-adic integral”
∫ Q
P ω ∈ Kp. If Vchab

denotes the vector space of all ω such that
∫ Q
P ω = 0 for all Q ∈ X(K), Coleman shows

that dimVchab ≥ g − r > 0. Locally, p-adic integrals are obtained by formally integrating a
power series expansion for ω with respect to a local parameter. Using this observation and
an elementary Newton polygon argument, Coleman proves that

#X(K) ≤
∑

Q̃∈X̄(Fp)

(
1 + n

Q̃

)
,

where n
Q̃

is the minimum over all nonzero ω in Vchab of ord
Q̃
ω̃; here ω̃ denotes the reduction

of a suitable rescaling cω of ω to X̄, where the scaling factor is chosen so that cω is regular
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and non-vanishing along the special fiber X̄. If we choose any nonzero ω ∈ Vchab, then the
fact that the canonical divisor class on X̄ has degree 2g − 2 gives∑

Q̃∈X̄(Fp)

n
Q̃
≤

∑
Q̃∈X̄(Fp)

ord
Q̃
ω̃ ≤ 2g − 2,

which yields Coleman’s bound.

Stoll observed that one could do better than this by adapting the differential ω to the

point Q̃ rather than using the same differential ω on all residue classes. Define the Chabauty
divisor

Dchab =
∑

Q̃∈X̄(Fp)

n
Q̃

(Q̃).

Then Dchab and KX̄ − Dchab are both equivalent to effective divisors, so by Clifford’s in-
equality (applied to the smooth proper curve X̄) we have r(Dchab) := h0(Dchab) − 1 ≤
1
2deg(Dchab). On the other hand, by the semicontinuity of h0 under specialization we have

h0(Dchab) ≥ dimVchab ≥ g − r. Combining these inequalities gives∑
Q̃∈X̄(Fp)

n
Q̃
≤ 2r

which leads to Stoll’s refinement of Coleman’s bound.

Lorenzini and Tucker observed that one can generalize Coleman’s bound to the case of
bad reduction as follows. Let X be a proper regular model for X over Op and note that
points of X(K) specialize to X̄sm(Fp). One obtains by a similar argument the bound

(10) #X(K) ≤
∑

Q̃∈X̄sm(Fp)

(
1 + n

Q̃

)
,

where n
Q̃

is the minimum over all nonzero ω in Vchab of ord
Q̃
ω̃; here ω̃ denotes the reduction

of (a suitable rescaling of) ω to the unique irreducible component of the special fiber of X

containing Q̃ and dimVchab ≥ g − r > 0 as before. Choosing a nonzero ω ∈ Vchab as in
Coleman’s bound, the fact that the relative dualizing sheaf for X has degree 2g − 2 gives
the Lorenzini-Tucker bound.

In order to combine the bounds of Stoll and Lorenzini-Tucker, we see that it is natural
to form the Chabauty divisor

Dchab =
∑

Q̃∈X̄sm(Fp)

n
Q̃

(Q̃)

and try to prove, using some version of semicontinuity of h0 and Clifford’s inequality, that
its degree is at most 2r. This is the main technical innovation of Katz and Zureick-Brown,
so we state it as a theorem:

Theorem 5.17 (Katz–Zureick-Brown). The degree of Dchab is at most 2r.

Combining Theorem 5.17 with (10) yields Theorem 5.16. As noted by Katz and Zureick-
Brown, if one makes a base change from Kp to an extension field K ′ over which there is a
regular semistable model X′ for X dominating the base change of X, then the corresponding
Chabauty divisors satisfy D′chab ≥ Dchab. (Here D′chab is defined relative to the K ′-vector
space V ′chab = Vchab ⊗K K ′; one does not want to look at the Mordell-Weil group of J over
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extensions of K.) In order to prove Theorem 5.17, we may therefore assume that X is a
regular semistable model for X (and also that the residue field of K ′ is algebraically closed).

Let d = deg(Dchab). We now explain how to prove that d ≤ 2r when X is a semistable
regular model using limit linear series on metrized complexes of curves. Our proof is different
from (and arguably streamlined than) the one given in [KZB].

Proof of Theorem 5.17. Let s = dimK′ V
′

chab−1 ≥ g−r−1 ≥ 0. We can identify V ′chab with
an (s+ 1)-dimensional space W of rational functions on X in the usual way by identifying
H0(X,Ω1

X) with L(KX) = {f : div(f) + KX ≥ 0} for a canonical divisor KX on X.
The divisor Dchab on X̄sm defines in a natural way a divisor D =

∑
vDv of degree d on

the metrized complex CX associated to X, where Dv is the restriction of Dchab to Cv.
We promote the divisor KCX − D to a limit linear series L = (KCX − D, {Hv}) on CX
by defining Hv to be the reduction of W to Cv for each v ∈ V (G). By the definition of

Dchab, each element of Hv vanishes to order at least n
Q̃

at each point Q̃ in supp(Dv). By

Corollary 1.5 and Theorem 5.11, L is a limit gs2g−2−d on CX. In particular, we must have

rCX(KCX −D) ≥ g− r− 1. On the other hand, Clifford’s inequality for metrized complexes
(Theorem 3.4) implies that rCX(KCX − D) ≤ 1

2(2g − 2 − d). Combining these inequalities
gives d ≤ 2r as desired. �

Appendix A. Rank-determining sets for metrized complexes

We retain the terminology from Section 2. Let C be a metrized complex of algebraic
curves, Γ the underlying metric graph, G = (V,E) a model of Γ and {Cv}v∈V the collection
of smooth projective curves over κ corresponding to C. In this section, we generalize some
basic results concerning rank-determining sets [L, HKN] from metric graphs to metrized
complexes by following and providing complements to the arguments of [A] (to which we
refer for a more detailed exposition).

Let R be a set of geometric points of C (i.e., a subset of
⋃
v∈V Cv(κ)). The set R is

called rank-determining if for any divisor D on C, rC(D) coincides with rRC (D), defined as
the largest integer k such that D − E is linearly equivalent to an effective divisor for all
degree k effective divisors E on C with support in R. In other words, R is rank-determining
if in the definition of rank given in Section 2, one can restrict to effective divisors E with
support in R.

The following theorem is a common generalization of (a) Luo’s theorem [L] (see also [HKN])
that V is a rank-determining set for any loopless model G = (V,E) of a metric graph Γ and
(b) the classical fact (also reproved in [L]) that for any smooth projective curve C of genus
g over κ, every subset of C(κ) of size g + 1 is rank-determining.

Theorem A.1. Let C be a metrized complex of algebraic curves, and suppose that the given
model G of Γ is loopless. Let Rv ⊂ Cv(κ) be a subset of size gv + 1 and let R = ∪v∈VRv.
Then R is a rank-determining subset of C.

Let D be a divisor on C. For any point P ∈ Γ, let DP be the quasi-unique P -reduced
divisor on C linearly equivalent to D, and denote by DP

Γ (resp. DP
v ) the Γ-part (resp.

Cv-part) of DP .

Lemma A.2. A divisor D on C has rank at least one if and only if

(1) For any point P of Γ, DP
Γ (P ) ≥ 1, and
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(2) For any vertex v ∈ V (G), the divisor Dv
v has rank at least one on Cv.

Proof. The condition rC(D) ≥ 1 is equivalent to requiring that rC(D − E) ≥ 0 for every
effective divisor E of degree 1 on C. For P ∈ Γ \ V , the divisor D − (P ) has non-negative
rank if and only if DP

Γ (P ) ≥ 1 (by Lemma 3.11). Similarly, for v ∈ V and x ∈ Cv(κ),
the divisor D − (x) has non-negative rank in C if and only if Dv

Γ(v) ≥ 1 and Dv
v − (x) has

non-negative rank on Cv (by Lemma 3.11). These are clearly equivalent to (1) and (2). �

Lemma A.3. A subset R ⊆
⋃
v∈V Cv(κ) which has non-empty intersection with each Cv(κ)

is rank-determining if and only if for every divisor D of non-negative rank on C, the following
two assertions are equivalent:

(i) rC(D) ≥ 1.
(ii) For any vertex u ∈ V , and for any point z ∈ R ∩ Cu(κ), Du

u − (z) has non-negative
rank on Cu.

Proof. In view of Lemma A.2, for a rank-determining set the two conditions (i) and (ii)
are equivalent. Suppose now that (i) and (ii) are equivalent for any divisor D on C. By
induction on r, we prove that rC(D) ≥ r if and only if for every effective divisor E of degree
r with support in R, rC(D − E) ≥ 0. This will prove that R is rank-determining.

The case r = 1 follows by the hypothesis and Lemma A.2. Supposing now that the
statement holds for some integer r ≥ 1, we prove that it also holds for r + 1.

Let D be a divisor with the property that rC(D − E) ≥ 0 for every effective divisor E of
degree r+1 with support in R. Fix an effective divisor E of degree r with support in R. By
the base case r = 1, the divisor D−E has rank at least 1 on C because rC(D−E − (x)) ≥ 0
for any x ∈ R. Thus rC(D − (x)− E) ≥ 0 for any point of |C|. This holds for any effective
divisor E of degree r with support in R, and so from the inductive hypothesis we infer that
D − (x) has rank at least r on C. Since this holds for any x ∈ |C|, we conclude that D has
rank at least r + 1. �

Let D be a divisor of degree d and non-negative rank on C, and let DΓ and Dv be the Γ
and Cv-parts of D, respectively. Define

|DΓ| := {E ≥ 0 | E ∈ Div(Γ) and E ∼ DΓ}.

Note that |DΓ| is a non-empty subset of the symmetric product Γ(d) of d copies of Γ.

Consider the reduced divisor map RedC
D : Γ → Γ(d) which sends a point P ∈ Γ to DP

Γ ,
the Γ-part of the P -reduced divisor DP . The following theorem extends [A, Theorem 3] to
divisors on metrized complexes.

Theorem A.4. For any divisor D of degree d and non-negative rank on C, the reduced
divisor map RedC

D : Γ→ Γ(d) is continuous.

Proof. This is based on an explicit description of the reduced divisor map RedC
D in a small

neighborhood around any point of Γ, similar to the description provided in [A, Theorem 3]
in the context of metric graphs. We merely give the description by providing appropriate
modifications to [A, Theorem 3], referring to loc. cit. for more details.

Let P be a point of Γ and let ~µ be a (unit) tangent direction in Γ emanating from P .
For ε > 0 sufficiently small, we denote by P + ε~µ the point of Γ at distance ε from P in
the direction of ~µ. We will describe the restriction of RedC

D to the segment [P, P + ε~µ] for
sufficiently small ε > 0. One of the two following cases can happen:
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(1) For all sufficiently small ε > 0, the P -reduced divisor DP is also (P + ε~µ)-reduced.

In this case, the map RedC
D is constant (and so obviously continuous) on a small segment

[P, P + ε0~µ] with ε0 > 0.

(2) There exists a cut S in Γ which is saturated with respect to DP such that P ∈ ∂S
and P + ε~µ 6∈ S for all sufficiently small ε > 0.

We note that there is a maximum saturated cut S (i.e., containing any other saturated
cut) with the property described in (2) (see the proof of [A, Theorem 3] for details). In
the following S denotes the maximum saturated cut with property (2). In this case, there
exists an ε0 > 0 such that for any 0 < ε < ε0, the reduced divisor DP+ε~µ has the following
description (the proof mimics that of [A, Theorem 3] and is omitted).

Let µ, ~µ1, . . . , ~µs be all the different tangent vectors in Γ (based at the boundary points
P, x1, . . . , xs ∈ ∂S, respectively) which are outgoing from S. (It might be the case that
xi = xj for two different indices i and j). Let γ0 > 0 be small enough so that for any point
x ∈ ∂S and any tangent vector ~ν to Γ at x which is outgoing from S, the entire segment
(x, x+ γ0~ν ] lies outside S and does not contain any point of the support of DΓ.

For any 0 < γ < γ0 and any positive integer α, we will define below a rational function

f
(γ,α)
Γ on Γ. Appropriate choices of γ = γ(ε) and α will then give the (P + ε~µ)-reduced

divisor DP+ε~µ = DP + div(fγ,α), for any ε < ε0 := γ0

α , where fγ,α is the rational function on
C given by fγ,αΓ on Γ and fv = 1 on each Cv.

For 0 < γ < γ0 and integer α ≥ 1, define f
(γ,α)
Γ as follows:

• f (γ,α)
Γ takes value zero at any point of S;

• On any outgoing interval [xi, xi + γ~µi] from S, f
(γ,α)
Γ is linear of slope −1;

• The restriction of f
(γ,α)
Γ to the interval [P, P + ( γα)~µ ] is linear of slope −α;

• f (γ,α)
Γ takes value −γ at any other point of Γ.

Note that the values of f
(γ,α)
Γ at the points (xi + γ~µi) and P + ( γα)~µ are all equal to −γ,

so f
(γ,α)
Γ is well-defined.

It remains to determine the values of α and γ. Once the value of α is determined, γ will
be defined as αε so that the point P + ( γα)~µ coincides with the point P + ε~µ. We consider
the following two cases, depending on whether or not P is a vertex of G:

• If P ∈ Γ \ V , then α = DP
Γ (P ) − outdegS(P ) + 1. (Note that since S is saturated

with respect to DP
Γ , we have DP

Γ (P ) ≥ outdegS(P ) and thus α ≥ 1.)
• If P = v for a vertex v ∈ V (G), let e0, e1, . . . , el be the outgoing edges at v

with respect to S, and consider the points xe0v , x
e1
v , . . . , x

el
v in Cv(κ) indexed by

these edges. Suppose in addition that e0 is the edge which corresponds to the
tangent direction ~µ. Since S is a saturated cut with respect to Dv

Γ, the divisor

Dv − divv(∂S) = Dv −
∑l

i=0(xeiv ) has non-negative rank in Cv. Define α to be the

largest integer n ≥ 1 such that Dv − n(xe0v )−
∑l

i=1(xeiv ) has non-negative rank.

Now for any 0 ≤ ε < ε0 = γ0

α , the divisor DP+ε~µ is (P + ε~µ)-reduced. (The argument is
similar to [A, Proof of Theorem 3].) It follows immediately that the reduced divisor map is
continuous on the interval [P, P + ε0~µ), and the result follows. �

We are now ready to give the proof of Theorem A.1.
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Proof of Theorem A.1. By Lemma A.3, it is enough to check the equivalence of the following
two properties for any divisor D on C:

(i) rC(D) ≥ 1.
(ii) For any u ∈ V and any point z ∈ Ru = R ∩ Cu(κ), the divisor Du

u − (z) has
non-negative rank on Cu.

It is clear that (i) implies (ii). So we only need to prove that (ii) implies (i). In addition,
by Lemma A.2, Property (i) is equivalent to:

(1) for any point P of Γ, DP
Γ (P ) ≥ 1; and

(2) for any vertex v ∈ V (G), the divisor Dv
v has rank at least one on Cv.

So it suffices to prove that (ii) ⇒ (1) and (2). Since cardinality of Rv is gv + 1, Rv is
rank-determining in Cv. Therefore, (ii) implies (2). We now show that (2) implies (1). Let

Γ0 be the set of all P ∈ Γ such that DP
Γ (P ) ≥ 1. By the continuity of the map RedC

D, Γ0 is a
closed subset of Γ. In addition, since Dv

v has rank at least one on Cv and Dv
Γ(v) = deg(Dv

v)
for every vertex v ∈ C, we have V ⊂ Γ0. This shows that Γ \ Γ0 is a disjoint union of
open segments contained in edges of G. Suppose for the sake of contradiction that Γ0 ( Γ,
and let I = (P,Q) be a non-empty segment contained in the edge {u, v} of G such that
I ∩ Γ0 = ∅.

Claim: RedC
D is constant on the closed interval [P,Q].

To see this, note that for any point Z ∈ [P,Q] and any tangent direction ~µ for which
Z + ε~ν ∈ [P,Q] for all sufficiently small ε > 0, we are always in case (1) in the description

of RedC
D. Otherwise, there would be an integer α > 0 such that DZ+ε~µ = DZ + div(f(εα,α))

for all sufficiently small ε > 0. In particular, this would imply (by the definition of f (η,a))

that DZ+ε~µ
Γ (Z + ε~µ) = α ≥ 1, which implies that Z + ε~ν ∈ Γ0, a contradiction. This proves

the claim.

A case analysis (depending on whether P and Q are vertices or not) shows that for a
point Z ∈ (P,Q), the cut S = Γ \ (P,Q) is saturated for DP = DQ. Since DZ = DP = DQ,
and S does not contain Z, this contradicts the assumption that DZ is Z-reduced. �

Theorem A.1 has the following direct corollaries.

Corollary A.5. Let G be a subgroup of R which contains all the edge lengths in G. For
any divisor D ∈ Div(C)G, we have

rC,G(D) = rC(D).

Proof. Fix a rank-determining set R ⊂ ∪v∈V Cv(κ) as in Theorem A.1. Since R is rank-
determining and any effective divisor E with support in R obviously belongs to Div(C)G , to
prove the equality of rC,G(D) and rC(D) it will be enough to show that the two statements
rC,G(D) ≥ 0 and rC(D) ≥ 0 are equivalent. Obviously, the former implies the latter, so we
only need to show that if rC(D) ≥ 0 then rC,G(D) ≥ 0. Let v be a vertex of G and Dv
the v-reduced divisor linearly equivalent to D. By Lemma 3.11, rC(D) ≥ 0 is equivalent to
rCv(Dv

v) ≥ 0. Now let D be an element of Div(C)G with rCv(Dv
v) ≥ 0. Since v ∈ V and G

contains all the edge-lengths in G, it is easy to see that D and Dv differ by the divisor of a
rational function f with support in Div(C)G . In other words, D ∼ Dv in Div(C)G . Since Dv
is linearly equivalent to an effective divisor in Div(C)G (with constant rational function on
Γ), we conclude that rC,G(D) ≥ 0. �
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Corollary A.6. Let CX0 be the regularization of a strongly semistable curve X0 over κ. Let
L be a line bundle on X0 corresponding to a divisor D ∈ Div(C). Then rc(L) = rCX0(D).

Proof. This follows from the previous corollary with G = Z. �
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