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Abstract. We give an algorithm for triangulating n-vertex polygonal regions (with 

holes) so that no angle in the final triangulation measures more than ,r /2.  The 

number of triangles in the triangulation is only O(n), improving a previous bound 

of O(n2), and the running time is O(n log 2 n). The basic technique used in the 

algorithm, recursive subdivision by disks, is new and may have wider application in 

mesh generation. We also report on an implementation of our algorithm. 

1. Introduction 

The triangulation of a two-dimensional polygonal region is a fundamental  problem 

arising in computer  graphics, physical simulation, and geographical information 

systems. Most  applications demand not just any triangulation, but  rather one with 

triangles satisfying certain shape and size criteria [8]. In order  to satisfy these 

criteria, one typically allows triangles to use new vertices, called Steiner points, that 

are not vertices of the input polygon. The number of Steiner points should not be 

excessive, however, as this would increase the running time of computations. 
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Department of Energy Research and by the U.S. Department of Energy under Contract DE-AC04- 
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an employee of Computer Sciences Corporation, under NASA Contract NAS 2-12961. 
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Throughout the application areas named above, it is generally true that large 

angles (that is, angles close to ~r) are undesirable. Babu~ka and Aziz [1] justified this 

averslon for one important application by proving convergence of the finite element 

method [28] as triangle sizes diminish, as long as the maximum angle is bounded 

away from 7r. They also gave an example in which convergence fails when angles 

grow arbitrarily fiat. (An elementary example in which large angles spoil conver- 

gence is Schwarz's paradox [23].) 

Any bound smaller than 7r implies convergence in Babu~ka and Aziz's model, but 

a bound of ~r/2 on the largest angle has special importance. First, any stricter 

nonvarying requirement would also bound the smallest angle away from zero; for 

some inputs (such as a long, skinny rectangle) this forces the triangulation to contain 

a number of triangles dependent on the geometry--not just on the combinatorial 

complexity--of the input. Second, a nonobtuse triangulation is necessarily a (con- 

strained) Delaunay triangulation [7]. Third, a nonobtuse triangulation admits a 

perpendicular planar dual, that is, an embedding in which dual edges cross at right 

angles. Such an embedding is convenient for the "finite volume" method [28]. 

Finally, a nonobtuse triangulation has better numerical properties [2], [31]. In 

particular, Vavasis [31] recently proved that, for simulation problems with physical 

characteristics that vary enormously over the domain, a nonobtuse mesh implies 

faster convergence of a certain numerical method. 

These properties have established nonobtuse triangulation as a desirable goal in 

mesh generation. Several heuristic methods have been developed to compute non- 

obtuse triangulations [3], [21]. Baker et al. [2] gave the first provably correct 

algorithm. Their algorithm also bounds the smallest angle away from zero, and 

hence necessarily uses a number of triangles dependent upon input geometry. 

Melissaratos and Souvaine [17] gave another algorithm of this type. 

From the point of view of theoretical computer science, however, it is important 

to determine the inherent complexity of nonobtuse triangulation, apart from no- 

small-angle triangulation. Bern and Eppstein [7] devised a nonobtuse triangulation 

algorithm using O(n 2) triangles, where n is the number of vertices of the input 

domain. This result demonstrates a fundamental complexity separation between 

bounding large angles and bounding small angles. Bern et al. [6] later improved this 
bound to O(n x'85) for convex polygons. 

In this paper we improve these bounds to linear, using an entirely different--and 

more widely applicable:--technique. Aside from sharpening the theory, our new 

algorithm boasts other advantages: it parallelizes, thereby placing nonobtuse triangu- 

lation in the class .d/W; and it does not use axis-parallel grids, so the output has no 

preferred directions. Our algorithm also improves results of Bern et al. [6] on 

no-large-angle triangulation. The superseded results include an algorithm guarantee- 

ing a maximum angle of at most 5~r/6 that uses O(n log n) triangles for simple 

polygons and O(n 3/2) triangles for polygons with holes. 

2. Overview of the Algorithm 

Our algorithm consists of two stages. The first stage (Section 3) packs the domain 

with nonoverlapping disks, tangent to each other and to sides of the domain. The 
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(c) 

(a) Disk packing. (b) Induced small polygons. (c) Final triangulation. 

disk packing is such that each region not covered has at most four sides (either 

straight sides or arcs), as shown in Fig. l(a). The algorithm then adds edges (radii) 

between centers of disks and points of tangency on their boundaries, thereby 

dividing the domain into small polygons as shown in Fig. l(b). 

The second stage (Section 4) triangulates the small polygons using Steiner points 

located only interior to the polygons or on the domain boundary. Restricting the 

location of Steiner points ensures that triangulated small polygons fit together so 

that neighboring triangles share entire sides. Certain misshapen small polygons 

cause technical difficulties; these are neatly solved by packing in more disks. (One of 

these additional disks is the second from the left along the bottom side of Fig. l(b).) 

Figure l(c) shows the resulting nonobtuse triangulation. 

This algorithm is circle-based, rather than grid-based like the previous polyno- 

mial-size nonobtuse triangulation algorithm [7]. Analogously, the problem of no- 

small-angle triangulation has grid-based [9] and circle-based [24] solutions. In 

retrospect, circle-based algorithms offer a more natural way to bound angles, as well 

as meshes more intrinsic to the input domain. The nonobtuse meshes of this paper 

are related to power diagrams and regular triangulations [11]; more precisely, away 

from the polygon boundary the mesh is the power diagram of the packed disks 

superimposed with its dual, the regular triangulation. In other recent work, Mitchell 

uses the "angle buffering" property of circles to give a triangulation, restricted to 

using only interior Steiner points, with linear size and largest angle nearly as small as 

possible [19]. 

3. Disk Packing 

In this section we describe the first stage of the algorithm. Let P denote the input: a 

region of the plane bounded by a set of disjoint simple polygons with a total of n 
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vertices. An arc polygon is a simple polygon with sides that are arcs of circles. The 

circles may have various radii, including infinity, meaning a straight side. 

Throughout the disk-packing stage, we make use of the generalized Voronoi 

diagram (GVD), which is defined by proximity to both edges and vertices. The 

interior points of polygonal region P are divided into cells according to the nearest 

vertex of P, or the nearest edge (viewing each edge as an open segment). The 

resulting partition consists of a set of bisectors, either line segments or parabolic 

arcs; it is essentially the same as the medial axis [22]. The GVD can be similarly 

defined for arc polygons, or more generally for arbitrary collections of points, 

segments, and circular arcs. The GVD of a collection of n points, segments, and arcs 

can be computed in time O(n log n) using Fortune's sweep-line algorithm [14]. 

The disk-packing stage consists of three smaller steps. First, one or two disks are 

placed at each vertex of  the polygon. Second, holes in the polygon are connected to 

the boundary by adding disks tangent to two holes, or to a hole and the outer 

boundary. Third, disks are added to the as-yet-uncovered regions (called remainder 

regions), recursively reducing their complexity until all have at most four sides. 

Disks at Comers 

The first step preprocesses P so that we need only consider arc polygons with angle 

zero at each vertex. At each convex vertex of P, we add a small disk tangent to both 

edges, as shown in Fig. 2(a). At  each concave vertex of P, we add two disks of equal 

radii, tangent to the edges, and tangent to the angle bisector at the corner, as shown 

in Fig. 2(b). We can handle a point hole by centering a small disk on the hole. We 

choose radii small enough so that disks lie within P, and none overlap (that is, 

intersect at interior points). This step isolates a small three- or four-sided remainder 

region at each corner of P. The large remainder region is an arc polygon of 

2n + r = O(n) sides, where n is the number of vertices of P and r is the number of 

concave corners. 

The first step can be implemented in time O(n log n) using the GVD of P. By 

checking the adjacencies of GVD cells, we can determine the nearest nonincident 

edge for each vertex v of P; one-eighth this distance gives a safe radius for the disks 

next to v. (Our implementation actually uses maximal radii in order to reduce 

output size by a constant factor.) 

(a) 

l~g. 2. 

(b) 

Adding disks at (a) convex and (b) concave comers of polygonal region P. 
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Connecting Holes 

The second step connects polygonal holes to the outer boundary by repeatedly 

adding a disk tangent to two or more connected components of the boundary. In this 

step, previous disks touching a hole boundary are considered to be part of the hole. 

At the end, the large remainder region is bounded by a simply connected arc 

polygon with O(n) sides. Each corner of this arc polygon has angle zero, since each 

results from a tangency. 

The second step can be implemented in time O(n log 2 n). We use a data 

structure that answers queries of the following form: given a query point p, which 

data object (straight edge or arc) will be hit first by an expanding circle tangent to a 

vertical line through p (tangent at p and to the left of the line)? Such a query can be 

answered using Fortune's *-map [14], a sort of warped Voronoi diagram. 

The initial set of data objects consists of the edges of the outer boundary of P, 

along with all disks attached to this outer boundary. The first query point is the 

leftmost point on any hole. The answer determines a disk D entirely contained 

within the polygon, touching both the hole and the outer boundary. Disk D is 

inserted ill'to the query data structure, along with the edges and disks of the hole. 

Each subsequent query is performed using the leftmost point of all remaining holes. 

Altogether, the queries yield a set of disks connecting all holes and the exterior of 

the polygon. 

For a static set of data objects, the *-map can be built in time O(n log n) [14], 

and standard planar subdivision search techniques [22] yield O(log n) query time. In 

our case the set of data objects is not fixed, since disks and edges are added 

following each query. A trick due to Bentley and Saxe [4] allows dynamic insertions 

to the query structure, with query time O(log 2 n) and amortized insertion time 

O(log z n). The trick is to divide the O(n) data objects among O(log n) *-maps of 

varying sizes. A query searches all data structures in O(log 2 n) time. An insertion 

rebuilds all the data structures corresponding to bits that change. The key idea is to 

divide the n data objects according to the binary representation of n, for example, if 

n = 19, there will be one *-map containing sixteen objects, another containing two, 

and another containing only one object. The next insertion will throw away the two 

smaller * -maps and combine their objects with the newly inserted object in a * -map 

of size four. Because the * -map containing 2 k objects is rebuilt only once in every 2 k 

insertions, the total time required for O(n) insertions is O(n log 2 n). 

The running time of the hole-connecting step determines the overall running 

time of our algorithm. Subsequent to the first appearance of our paper in the ACM 

Symposium on Computational Geometry, Eppstein [13] improved the running time 

of this bottleneck step to O(n log n). Eppstein's method computes a "minimum 

spanning tree" of the connected components of P 's  boundary; in this "tree" the 

boundary itself has weight zero. The method adds all diameter disks of MST edges 

and then shrinks these disks one by one in order to remove overlaps. Eppstein uses 

Sleator and Tarjan's dynamic trees [26] to implement this last step in total time 

O(n log n). 
A suggestion of Goodrich and Tamassia (personal communication) simplifies this 

fast algorithm a bit. Perform the hole-connecting step before step one, and rather 
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than shrinking the MST diameter disks, simply let them overlap. It is not hard to 

prove that the mutual chord of two overlapping MST diameter disks separates their 

centers. Now perform step one, placing small disks at corners, including comers 

formed by overlapping disks; this ensures that all remainder regions with more 

than three sides have zero-degree angles at vertices. These two conditions--center-  

splitting chords and zero-degree angles on four-sided remainder regions-- turn out 

to be sufficient for our triangulation methods. 

Reducing to Three- and Four-Sided Remainder Regions 

After the first two steps, there is one simply connected remainder region A with 

O(n) sides, and O(n) remainder regions in corners with three or four sides. Arc 

polygon A has the property that, at each vertex, the two arcs form a zero-degree 

angle. The final step of the disk-packing stage recursively subdivides A by adding 

disks. The result is a linear number of remainder regions of  three and four sides. 

To subdivide arc polygon A, we add a disk tangent to three of its sides. Such a 

disk divides the region enclosed by the arc polygon into four pieces: the disk itself 

and three smaller regions bounded by arc polygons. We choose a disk tangent to 

three sides of A, not all of  them consecutive, thereby ensuring that each of the three 

smaller arc polygons has at most n - 1 sides. As shown in Fig. 3, a disk tangent to 

three sides of an arc polygon must be centered at a vertex of the GVD. Since A is 

simply connected, the edges of its GVD form a tree, a fact that is useful in bounding 

the running time. 

L e m m a  1. It is possible to reduce all remainder regions to at most four sides, by 

packing O( n ) nonoverlapping disks into arc polygon A. 

Proof. Each vertex of the GVD corresponds to a disk tangent to three sides of A. 

If  A has at least five sides, then there is a vertex v of the GVD that is adjacent to 

two nonleaf vertices of the GVD, and a disk centered at v is tangent to three sides 

of A that are not all consecutive. 

A disk tangent to three edges of an arc polygon is centered at a vertex of the GVD. Fig. 3. 
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Now let d(n) be the maximum number of disks needed to reduce an n-sided arc 

polygon to three- and four-sided remainder regions. We prove d(n )<  n -  4 by 

induction on n. The base cases are d(3) = 0 and d(4) = 0. 

For  the inductive step, notice that adding one disk produces three new arc 

polygons. (We can simply ignore extra tangencies in the degenerate case of four or 

more tangencies.) Suppose the new arc polygons have k, l, m sides, respectively, with 

3 _< k < I _< m. Since we are choosing nonconsecutive sides, m < n. Counting 1 for 

the added disk, we have that d(n) <_ 1 + d(k) + d(l) + d(m). Since the disk divides 

three sides, and is itself divided into three places, we have k + l + m --- n + 6. 

First suppose k = 3. Since we are choosing nonconsecutive sides, l >_ 4, so 

d(n) _< 1 + d(3)  + d(l) + d(rn) 

_< 1 + 0 +  ( I - 4 )  + ( m - 4 )  

= ( l  ~ - m ) -  7 = ( n  + 3 ) -  7 = n - 4 .  

When k > 4, we have d(n) < 1 + d(k) + d(l) + d(m). By induction, d(n) < 1 + 

(k - 4) + (l - 4) + (m - 4), which is equal to (k + l + m) - 11 = ( n + 6 ) -  11 = 

n - 5 .  [ ]  

Finally, we show how to implement this last step of the first stage in time 

O(n log n). Any tree contains a vertex, called a centroid, whose removal leaves 

subtrees of size at most one-half  the original size. By choosing a disk centered at a 

centroid of the GVD of A, we split A into arc polygons A I ,  A 2, and Z 3 . We 

imagine splitting A x, A 2, and A 3 in parallel, so that altogether there will be at most 

log 2 n splitting stages, each involving a set of arc polygons of total complexity O(n). 

When a disk D is added to an arc polygon A with m sides, we can recompute the 

GVD of A and split it into the GVDs of A 1 , A 2, and h 3 in time O(m), simply by 

walking from cell to cell in the old GVD. We split each cell into two cells, one for 

the old arc and one for the arc on D, by adding a parabolic segment equidistant 

from D and the old arc. 

4. Triangulating the Pieces 

We now describe the second stage of our algorithm. At  this point, polygonal region 

P has been part i t ioned into disks and remainder regions with three or four sides, 

either straight or circular arcs. Each circular arc of a remainder region R is 

naturally associated with a pie-shaped sector, namely, the convex hull of the arc and 

the center of  the circle containing the arc. We denote the union of R and its 

associated sectors by R +. These augmented remainder regions define a decomposi- 

tion of P into simple polygons with disjoint interiors. In an augmented remainder 

region, we retain vertices at circle tangencies; vertices such as these, at which the 

angles measure 7r, are called subdivision points. 

In this section we show how to triangulate each R + region. All Steiner points will 

lie either on straight sides of R (that is, along P ' s  boundary) or interior to R § Thus 
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Fig. 4. Remainder regions with vertices of P. 

we never place Steiner points on the radii  bounding sectors, and tr iangulated R + 

regions will fit together  at the end. Our  triangulation method is given in three cases: 

remainder  regions with vertices of P,  three-sided remainder  regions, and four-sided 

remainder  regions. The first two cases are easy, but  the last is quite intricate. In all 

cases, triangulating a single R + region takes O(1) time, so al together the running 

time of the second stage is O(n). 

Remainder Regions with Vertices of  P 

Each vertex of P was isolated by one or two disks in the first step of the algorithm. 

The resulting regions R + can be tr iangulated with at most four right triangles, as 

shown in Fig. 4, by adding edges from the disk centers to the points of tangency and 

the vertex of P. 

Three-Sided Remainder Regions 

A three-sided remainder  region R without a vertex of P is bounded by three 

circular arcs that meet  tangentially at the vertices of R. We can consider a straight 

side to be  an arc of  an infinitely large circle. We call a Steiner point  in an augmented 

remainder  region R § safe if it lies ei ther interior to R § or on the boundary of P. 

L e m m a  2. I f  R is a three-sided remainder region, then R + can be triangulated with at 

most six right triangles, adding only safe Steiner points. 

Proof. First  assume that R has a straight side (necessarily at most one), and view R 

so that this straight side forms a horizontal  base. The augmented region R § is a 

t rapezoid with two vertical sides, and a subdivision point  p along its slanted top side. 

We cut perpendicularly from p (that is, tangent to both arcs) across R until we hit 

the base, and there add a safe Steiner point  s. We add edges from s to the centers 

of  the arcs '  circles to divide R + into four right triangles, as shown in Fig. 5(a). 

Now assume all the sides of  R are arcs of finite radius. Notice that R § is a 

triangle with subdivided sides�9 Moreover,  the subdivision points along the sides of 

R § are exactly the tangency points of  the inscribed circle of R § (This follows from 

the fact that  the inscribed circle makes each corner  of R § incident to two edges of 
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(b) 

Three-sided remainder regions: (a) with a straight side, (b) with only finite-radius arcs. 

equal length.) So we add the circle's center c and edges from c to all the vertices 

around R +, dividing R § into six right triangles, as shown in Fig. 5(b). [ ]  

Four-sided Remainder Regions 

A four-sided remainder region R is bounded by four circular arcs, C l , Cz, C 3, and 

C 4 in order around R, that meet tangentially at the vertices of R. A straight side is 

regarded as an arc of infinite radius. Lemma 3 states two interesting properties of 

these regions. 

Lemma 3. The arcs of R have total measure 2zr. The vertices of R are cocireular. 

Proof. If all arcs have finite radius, then the sum of the measures of the arcs of R 

is identical to the sum of the measures of the angles at the corners of R +. For 

straight sides, we imagine further augmenting R + with "infinite sectors" of angle 

zero. 

Next we show that the vertices are cocircular. Let C 1 and C 3 be finite-radius 

circles containing opposite arcs of R. (Notice that if R has two straight sides, they 

must be opposite.) Assume the two lines that are externally tangent to both C 1 and 

C 3 meet at a point x. There is an inversive transformation [10, pp. 77-95] of the 

projective plane that maps x to infinity and hence the two external tangent lines to 

parallel lines. The transformed circles C~ and C~, corresponding to C 1 and C3, have 

equal size, so the vertices of the transformed remainder region R '  form an isosceles 

trapezoid. Any isosceles trapezoid has cocircular vertices. The inverse of the original 

inversive transformation maps the circle containing the vertices of R '  to a circle 

containing the vertices of R. []  

Now if we are lucky, the region R + can be triangulated with 16 right triangles, as 

in the following lemma. 
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Fig. 6. The good case for four-sided remainder regions. 

Lemma 4. I f  R is a four-sided remainder region, in which each arc measures at most 7r 

and the center o f  the circle through R'  s vertices lies in the convex hull o f  R, then R § can 

be triangulated with 16 right triangles, adding only safe Steiner points. 

Proof. We assume that all arcs of R have finite radius. If R has a straight edge, we 

can apply the triangulation to a region with an infinite sector at tached to the straight 

edge and then simply remove the resulting infinite strips. 

The construction is shown in Fig. 6. Here  we have added the center c of the circle 

through R ' s  vertices in order  to form four kites (quadrilaterals with two adjacent 

pairs of equal-length sides). []  

The triangulation of Fig. 6 can fail in two different ways: 

(1) If  one of  the arcs of R measures more than 7r (a reflex arc), then R § has a 

reflex vertex at which angles will measure more than 7r/2. 

(2) If  center c lies outside the convex hull of R, then it lies on the wrong side of 

one of the chords and will introduce unwanted intersections. 

Each of  these difficulties is handled by adding yet another  disk. 

First assume R has a reflex arc on circle C 3 . Add  another  disk C*, tangent to C 3 

and C 1 , such that the center of  C* lies on the line joining the centers of C 1 and C 3 . 

The  new disk C * - - u n l i k e  any of the disks used up until this p o i n t - - m a y  overlap C 2 

or  C 4 and produce a self-intersecting remainder  region. In Fig. 7, C* overlaps Ca. 

Notice however that  C* cannot over!ap " too  much": the mutual  chord of C* and C 4 

separates  their centers. On the other  hand, the arc polygon formed by C 1 , C 2, C3, 

and C* may still suffer from difficulty (2) above. 

Lemma 3 holds without  modification for self-intersecting remainder  regions. 

Region R § formed as before by adding the associated pie-shaped sectors to R, 

remains a simple polygon with subdivision points on its sides, specifically a triangle 

with three subdivisions on one side and one on each of  the others. The next lemma 

shows how to triangulate R § with a generalization of  the method of Lemma 2. 
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Fig. 7. New circle C* breaks up a reflex remainder region. 

Lemma 5. Let R be a self-intersecting four-sided remainder region resulting from 

breaking up a reflex four-sided remainder region by the addition of C*. Then R § can be 

triangulated with at most 12 right triangles, adding only safe Steiner 9oints. 

Proof. Again we may assume that all arcs of R have finite radius, as a solution to 

this case implies a triangulation for the case of straight sides. 

Consider one of the arcs S next to C*. We claim that the lines tangent to S at its 

endpoints and the mutual  chord of C* and its opposite arc all meet at a single point 

p interior to R, as shown in Fig. 8(a). This claims allows the triangulation shown in 

Fig. 8(b). 

Why is the claim true? For  each of the three d isks- -C*,  the opposite disk, and 

the one with arc S - - w e  define a power function. The power function of a circle with 

center (xc~ yc) and radius r is P(x, y ) =  ( x -  xc )2+  ( y -  yc) 2 -  r 2. The power 

functions of  two tangent circles are equal along their mutual tangent line; the power 

functions of  two overlapping circles are equal along a line containing their mutual 

chord. The point p of the claim is the point at which all three power functions are 

equal. []  

We now consider the second difficulty. Call a (possibly self-intersecting) four-sided 

remainder region R centered if the convex hull of R contains the center of the circle 

through R 's  vertices, and uncentered otherwise. 

(a) 

Fig. 8. 

(b) 

\ 

(a) Mutual tangents and the mutual chord meet at a point. (b) Triangulation. 
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c, 

C2 S ..-" 

~ . . . . . . . .  q 

Fig. 9. The trajectories of centers Ct and c r as C o sweeps. 

Let  R be an uncentered four-sided remainder  region, with no boundary arc 

measuring more than 7r. Without  loss of generality, assume that C 1 contains the arc 

of R with the longest chord and that the line through the centers of C1 and C 3 is 

vertical, as in Fig. 9. Let  t12 denote the point  of tangency of C 1 and C : ,  and similarly 

define t23, t34, and t41. 

Lemma 6. A disk C* tangent to C 1 and C 3 exists that breaks R into two centered, 

possibly self-intersecting, four-sided remainder regions. Such a C* can be computed in 

time O(1). 

Proof. Let C o be any disk tangent to both C 1 and C 3. Let to1 and to3 be, 

respectively, the points of tangency of  C o and C~ and of Co and C 3. Let S t 

(= Sl(Co)) be the circular arc, whose existence is guaranteed by Lemma 3, with 

endpoints t12 and t23 that  passes through to3 and t01. Similarly define S r. Let cz and 

c r be the centers of the circles containing S t and St,  respectively. 

Imagine sweeping C o through a continuum of positions, while keeping it tangent 

to C 1 and Ca. Consider a generic position of C 0, as shown in Fig. 9. The center c r of 

arc S, lies "outs ide" the chord t34t41 of  S r (that is, on the side away from t01 and 

t03) exactly when S~ has measure less than ~r. Similarly, c t lies outside the chord 

t12t23 of S t exactly when S t has measure less than ~r. 

We assert that these two bad conditions cannot occur at the same time. It suffices 

to show that  the sum of  the measures of  S t and S r is at least 27r. Z_t23to3t34 

measures at least ~r/2, because the arc of  R on C 3 measures at most zr. /__t12to3t41 

measures more  than 7r/2, because the center  of the circle through the vertices of R 

lies below t~2t41. Hence the remaining angles at t03 , the two subtended by the 

endpoints of  Sj and S~, sum to less than rr, which implies that the arc measures of 

S t and S~ sum to at least 27r. 

We start  the sweep with the center of C O on the line through the centers of C 1 

and C a. A t  this point, cj and c r lie on a horizontal line through the center  of C 0, 

hence exterior to C 1 and C 3. However, c t may lie outside chord tl2t23 or  Cr may lie 

outside chord t34t41. By the argument above, at most  one of these bad conditions 

occurs. If nei ther  occurs, then C* = C O satisfies the conditions of  the lemma, and we 

are done. However,  if one of the bad conditions does occur, then we sweep C O in the 
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direction that could cure the condition. If c r lies outside t34t41 , then we sweep C O to 

the left in Fig. 9; the other case is symmetrical. 

During the leftward sweep, c r moves toward C 1 along the perpendicular bisector 

of t34t41 and c t moves toward C 2 along the perpendicular bisector of tlEt23 , as 

shown in Fig. 9. These bisectors never intersect Ca, so c~ and c r can never lie on the 

wrong sides of their chords tE3t03 and toat34 on C 3. The chord of S t on C o is shorter 

than t12t23 throughout  the sweep, so c t can never lie on the wrong side of toll03. 

(Figure 9 may be a little misleading here; for illustrative purposes, it shows the 

leftward sweep with C o further to the right than its actual starting point.) 

By the arc-measure argument above, cr must hit t34t41 and become good before 

c t crosses outside t12t23 and becomes bad. Thus, we can set C* equal to the C O that 

places c r on t34t41 ; at this position/_t41tolt34 is right. []  

We apply Lemma 6 to each nonreflex, uncentered four-sided remainder region R. 

If C* is centered on the line through the centers of C a and C 3, then R reduces to 

two nonreflex, centered, four-sided remainder regions, that can be triangulated using 

Lemmas 4 and 5. If this initial choice of C* does not work (but for some reason it 

seems to always work!), then C* creates a new reflex remainder region. The 

following lemma finesses this difficulty (shall we say circularity?) by triangulating 

both new augmented regions at once. 

Lemma 7. Let  R be a nonreflex, uncentered, four-sided remainder region. Then R + 

can be triangulated into at most 28 right triangles, adding only safe Steiner points. 

Proof. Again we may assume that R has only finite-radius arcs, as this case implies 

a solution for the case of straight sides. We start by adding the "centering" disk C* 

guaranteed by Lemma 6, If C* is centered on the line through the centers of C1 and 

C 3 , we triangulate R § as mentioned above using Lemmas 4 and 5, giving at most 28 

right triangles (in seven kites) as shown in Fig. 10(a). Otherwise, C* places c~ on 

C 4,s chord or c t on C 2,s chord. (Here we are using the notation of the proof of 

(a) 

........... ;.. ii. 

(b) 

/ / "  

/ 

J 

Fig. 10. Triangulations of uncentered four-sided regions, (a) when C* lies in the center-center 

line, and (b) when c r lies on t34t41. 
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Lemma 6.) Assume that Cr, the center of arc St, lies on C 4's chord; the other case is 

symmetrical. 

The triangulation adds the following Steiner points: c t and cr, the points t01 and 

t03 where C* is tangent to C 1 and C3, and the midpoint m of segment to~t03. See 

Fig. 10(b). 

The triangulation adds the following line segments: all chords around S l and S r ; 

segments from c t to m, to the points on St, and to the centers of C 1 , C z, and C 3 ; 

and segments from Cr to m, to the points on St, and to the centers of C3, C4, and 

C 1. Two more segments connect the center of C 1 with to1 and the center of C 3 

with t ,  3. 

The resulting triangles form seven kites, but one of the ki tes-- the one with 

diagonal running from Cr to the center of Ca- -has  degenerated to two triangles. All 

triangles are right. Notice that C* is treated somewhat differently than the other 

circles, since we do not use its center. Nevertheless, the four triangles around m 

form a kite, because t01t03 is the mutual chord of C*, $2, and S 4 . []  

We have now completed the proof of our main theorem, linear-size nonobtuse 

triangulation. 

Theorem 1. Any n-vertex po!ygonal region can be triangulated with O( n ) right triangles 

in time O( n log.n) for simple polygons and O( n log 2 n) for polygons with holes. [] 

5. Implementation 

We implemented our algorithm with the Matlab environment [16]. The implementa- 

tion differs somewhat from the algorithm described in the text. We use several 

heuristics for disk placement in order to reduce the number of triangles. Also we do 

not bother to compute GVDs. Rather we use a simple O(hn) method to connect h 

holes to the boundary, and we choose arbitrary disks touching three nonconsecutive 

sides, rather than disks centered at GVD centroids. To keep the user entertained 

during the worst-case O(n 2) running time, we display color-coded disks and triangles 

as they are added. Finally, although Section 4 describes a construction using only 

right triangles, the implementation produces some acute triangles, an example being 

the large downward-pointing triangles in Fig. l(c). 

Experiments with a variety of polygonal regions shgw that an n-vertex input 

typically produces about 22n triangles, as in Fig. 1l. A simple polygon with n - 3 

reflex corners can produce as many as 25n triangles; the maximum for polygons with 

holes appears to be about 33n. Since a floating-point representation entails round- 

off, some of  the right angles present in the nonobtuse triangulation become slightly 

obtuse. The worst test case had an angle of  about 7r/2 + 10 -11 radians (Matlab 

retains 16 digits), so the implementation is fairly robust, which is somewhat surpris- 

ing given that our implementation often places very small disks next to very large 

ones. (Relevant here is a paper by Smith [27] on the precision necessary to represent 

planar graphs by tangent disks.) 
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Fig. 11. This 40-vertex polygonal region produced 902 nonobtuse triangles. 

6. Parallelizing the Algorithm 

We now sketch the first ~ /~  algorithm for nonobtuse triangulation. We give a 

straightforward though rather inefficient algorithm, with parallel time O(log 3 n) and 

processor requirement O(n2). Both time and processors should be improvable. One 

bottleneck subproblem is the computation of the GVD of circular arcs; see [15] for 

the GVD of line segments. 

Theorem 2. An n-vertex polygonal region P (with holes) can be triangulated with O( n ) 

right triangles in O(log 3 n) time on O(n 2) E R E W  PRAM proce,~sors. 

Proof. Using O(n 2) processors--one for each vertex-edge pair--and time O(log n), 

we can compute the nearest nonincident edge for each vertex and hence choose 

appropriate radii for disks to pack into corners. The second step, connecting holes, is 

trickier. We first compute a minimum spanning tree (MST) of P's holes; by this we 

mean the shortest set of line segments S, each segment with both endpoints on the 

boundary of P, such that the union of S and the exterior of P is a connected subset 

of the plane. Using O(n 2) processors and time O(log n), we compute for each vertex 

the nearest edge lying on a different connected component of P's boundary. We use 

this information to compute distances between connected components, and add to S 

the shortest component-joining line segment incident to each component. This 

reduces the number of components by at least a factor of two, so O(log n) such 

merging steps suffices to complete the computation of set S. 

Now it is not hard to show that no point of the plane is covered by more than 

O(1) diameter disks of segments in S. Hence there is a pairwise-disjoint set of 
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diameter disks of cardinality a constant fraction of IS1 [30]. It is not hard to find 

these disks in parallel time O(log n) using separators. We repeat the process of 

computing the MST (of the new connected components, holes plus disks) and finding 

a large independent set of diameter disks. After O(log n) cycles--for total time of 

O(log 3 n ) - -we  have reduced to a simply connected arc polygon. 

The third step of the disk-packing stage uses the GVD in order to find centroid 

disks. Using O(n 2) processors and time O(log 2 n), we can compute the GVD of a 

set of n circular arcs as follows. We compute the equal-distance curve (bisector) for 

each pair of arcs. Then, for each arc a, we compute the piecewise-polynomial 

boundary of a's cell recursively by dividing the set of bisectors into equal halves and 

then merging the boundaries for each half. Two piecewise-polynomial boundaries of 

O(n) pieces can be merged in time O(log n) on n processors. Once, the GVD has 

been computed, a centroid can be found in time O(log n) by alternately removing 

leaves and merging degree-two paths. 

Recall that the algorithm requires a "decomposition tree" of centroid disks of 

height O(log n), so by simply recomputing the GVD after each centroid, we obtain 

an overall time for the third disk-packing step of O(log 3 n). Finally, the triangulation 

stage consists entirely of local operations, so it is trivially parallelized. [] 

7. Conclusions 

We have presented a new algorithm for nonobtuse triangulation of polygons with 

holes. The number of triangles produced is linear in the number of vertices of the 

input, a significant improvement over previous methods. This is of course asymptoti- 

cally optimal, resolving the question of the theoretical complexity of nonobtuse 

triangulation of polygons. 

Warren Smith (personal communication) has pointed out two other nice features 

of our disk-packing approach. First, the approach can be generalized in a natural 

way to the sphere, giving linear-size nonobtuse triangulations of spherical polygons. 

Second, dynamic programming can be used in the recursive subdivision step of stage 

one in order to optimize the disk packing (over all such recursive disk packings). 

A natural optimization is to minimize the final number of triangles. 

One direction for further work is extending the algorithm to inputs more general 

than polygons with holes; these inputs occur in modeling domains made of more 

than one material. Currently, there is an algorithm for refining a triangulated simple 

polygon into a nonobtuse triangulation with O(n 4) triangles, and also an [~(n 2) 
lower bound [7]. There is still no algorithm for polynomial-size nonobtuse triangula- 

tion of planar straight-line graphs; a solution to this problem would give another 

solution to "conforming Delaunay triangulation" [12]. There are, however, algo- 

rithms that triangulate a planar straight-line graph with angles bounded away from 

7r. Mitchell [18] showed how to achieve maximum angle at most 7~'/8, using at most 

O(n 2 log n) triangles, and Tan [29] recently improved this result to 1Dr/15 and 

O(n2), matching a lower bound on the number of triangles. 

Another direction is exploring whether our ideas can be used for related mesh- 

generation problems. For instance, disk packing may yield a simpler algorithm for 
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the  p r o b l e m  of  no-smal l -ang le ,  n o n o b t u s e  t r i angu la t ion  [2], [17]. P e r h a p s  we can use  

ou r  m e t h o d s  to p r o d u c e  n o n o b t u s e  m e s h e s  wi th  skinny t r iangles  a l igned with the  

bounda ry .  (See [20] for  a l igned no- l a rge -ang le  meshes . )  O r  p e r h a p s  our  m e t h o d s  can  

b e  al l ied wi th  a heur i s t i c  m e t h o d  cal led " b u b b l e  sys tems"  [25]. 

Finally,  h ighe r  d i m e n s i o n s  are  still a mystery.  Do  t h r e e - d i m e n s i o n a l  p o l y h e d r a  

a d m i t  po lynomia l -s ize  t r i angu la t ions  w i t hou t  o b t u s e  d ihed ra l  angles?  A l g o r i t h m s  for  

po in t  sets  are k n o w n  [5], [9]. 
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