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Abstract. We prove that for each positive integer n, the finite com-
mutative language En = c(a1a2 · · · an) possesses a test set of size at
most 5n. Moreover, it is shown that each test set for En has at least
n − 1 elements. The result is then generalized to commutative lan-
guages L containing a word w such that (i) alph(w) = alph(L); and (ii)
each symbol a ∈ alph(L) occurs at least twice in w if it occurs at least
twice in some word of L: each such L possesses a test set of size 11n,
where n = Card(alph(L)). The considerations rest on the analysis of
some basic types of word equations.
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Introduction

In this note we shall study the test sets of some commutative languages. By a
test set for a languageL we mean any subset L′ of L such that if any two morphisms
agree on L′, then they agree also on L. By the famous Ehrenfeucht’s Conjecture,
each language has a finite test set. Since the proof of the conjecture ([2], see
also [16]), the size of test sets for different types of languages has been under active
investigation. The size of the test set with respect to the considered language can
be measured in different ways. We shall measure it by the cardinality of the
language alphabet. The choice is understandable: the structure of a commutative
language is generally not determined by an automaton or a grammar.

The test sets for regular and context-free languages can be effectively deter-
mined and this subject has been studied in several papers. A survey of the results
as well as a comprehensive list of references can be found in [4] and [10]. For
context-sensitive languages, finite test sets can not in general be effectively con-
structed. The articles [1, 7–9, 12] and [14] contain results on restricted types of
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context-sensitive languages. By [5], every language over a two-letter alphabet
has a test set of size at most three. Test set research on commutative languages
was started in [3] and the work was continued in [9] where it is shown that each
commutative language over an alphabet of n symbols possesses a test set of size
O(n2).

Finite sets have an important role as a source of (counter)examples in test set
considerations. Let Σ be an alphabet of n symbols. In [13] it is proved that there
exists a finite (and thus regular) language over Σ whose test set size is at least
Ω(n4). Furthermore, in [9] the existence of a finite commutative language L ⊆ Σ∗

with a test set of size at least Ω(n2) is verified. Our central research subject can
in terms of word equations be expressed as follows. For each positive integer n,
determine a smallest possible set Tn ⊆ Sn such that

xρ(1)xρ(2) · · ·xρ(n) = yρ(1)yρ(2) · · · yρ(n) for each ρ ∈ Tn (∗)

implies

xσ(1)xσ(2) · · ·xσ(n) = yσ(1)yσ(2) · · · yσ(n) for each σ ∈ Sn. (∗∗)

Above Sn is the set of all permutations of 1, 2, . . . , n and x1, x2, . . . , xn, y1,
y2, . . . , yn are words. An equivalent expression of the same task is to find a test
set for the language

En = {aσ(1)aσ(2) · · · aσ(n) | σ ∈ Sn}·

The paper at hand has the following contents. In the first section some basic
results and concepts on formal language theory and combinatorics on words are
given. In Section 2 a simple sufficient condition implying commutation of a se-
quence of words is derived. In the third section the new concepts of permutation,
weak permutation, conjugacy and shuffle property are introduced. Their power
and interrelations are studied up to certain extent. In Section 4 using weak per-
mutation, conjugacy and shuffle we formulate two sufficient conditions that imply
permutation of words. Applying the results obtained in the previous sections, a
linear size test set for the language c(a1a2 · · ·an) is constructed in the fifth section.
In other words, we build a set Tn of size O(n) such that (∗) implies (∗∗). In the
seventh section a linear size test set is found for languages containing a word w,
such that the alphabet of w is equal to the alphabet of L and each symbol a occurs
at least twice in w if it occurs at least twice in some word of L. Such are for exam-
ple so called CLIP-languages, i.e., commutative languages whose Parikh-map is a
linear set. The final section contains some concluding remarks and further topics
of research.



LINEAR SIZE TEST SETS FOR CERTAIN COMMUTATIVE LANGUAGES 455

1. Preliminaries

We assume that the reader is familiar with the basic notations and results of
formal language theory and word combinatorics as presented in [11] and [15].

Let Σ be a (finite) alphabet. As usual, Σ∗ (Σ+, resp.) is the free monoid
(free semigroup, resp.) generated by Σ. The elements of Σ∗ are called words. Let
w ∈ Σ∗. For each a ∈ Σ, |w|a is the number of occurrences of the symbol a in w. The
length of w, denoted by |w| , is the total number of symbols in w: |w| =

∑
a∈Σ |w|a .

Define the powers of w inductively as follows: w0 = ε, wk+1 = wk ·w (k ∈ N). Let
w∗ = {wk | k ∈ N} and w+ = w∗ \ {ε}. Let b1, b2, . . . bm ∈ Σ and w = b1b2 . . . bm.
Denote

c(w) = {bσ(1)bσ(2) . . . bσ(m) | σ ∈ Sm} = {u ∈ Σ∗ | |u|a = |w|a for each a ∈ Σ}·

A factor of w is any word z ∈ Σ∗ such that w = xzy for some x, y ∈ Σ∗.
The word w is primitive if w is nonempty and for each word u and nonnegative

integer n, the equality w = un implies w = u (and n = 1, of course). A basic
result in word combinatorics says that for each nonempty word x there exists a
unique primitive word t, the primitive root of x, such that x ∈ t+. The words u and
w commute if uw = wu. It is again a well-known fact that two nonempty words
commute if and only if they have the same primitive root.

The words u and w are conjugate (words of each other) if there exist x and y
such that u = xy and w = yx. Let R be the relation of Σ∗ defined by: uRw if
u and w are conjugate. Then the relation R is certainly an equivalence, and the
concept of conjugacy can be generalized to more than two words.

Let L ⊆ Σ∗ be a language. The set of all symbols of Σ occurring in words of L
is called alphabet of L, denoted by alph(L). Write alph(w) = alph({w}) and call
it the alphabet of the word w. The commutative closure c(L) of the language L is
the set

c(L) = {x | x ∈ c(w) for some w ∈ L}·
We say that L is commutative if L = c(L). In this paper we will study in particular
the finite commutative language c(a1a2 · · ·an), which we denote by En.

We say that morphisms g and h agree on the word u if g(u) = h(u) holds.
Morphisms agree on a language L if they agree on all u ∈ L. We say that g and h
are length–equivalent on a language L if |g(w)| = |h(w)| for each w ∈ L.

The symbol N indicates, as usually, the set of all natural numbers and N+ =
N \ {0}. For each n ∈ N+, let Σn = {a1, a2, . . . , an} be the alphabet consisting
of n distinct symbols a1, a2, . . . , an. The traditional Parikh-map Ψn from Σ∗n onto
Nn is defined by Ψn(w) = (|w|a1

, |w|a2
, . . . , |w|an). The cardinality of a set X is

denoted by Card(X).
Assume now that n ∈ N+ and L ⊆ Σ∗n. A basis of L is any finite subset F of L

such that:

(i) the set Ψn(F ) consists of exactly Card(F ) linearly independent elements
(over Q, the rational numbers);
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(ii) for each w ∈ L, the vector Ψn(w) is a linear combination (over Q) of some
vectors in Ψn(F ).

The dimension of L, denoted by dimL, is cardinality of any basis of L.
A set S ⊆ Nn is linear if there exist m ∈ N and vectors v̄, v̄1, v̄2, . . . , v̄m ∈ Nn

such that S = {v̄+k1v̄1 +k2v̄2 + · · ·+kmv̄m | k1, k2, . . . , km ∈ N}. A commutative
language L ⊆ Σ∗n is a CLIP-language if Ψn(L) is a linear set.

For each nonnegative rational number q, let dqe (bqc, resp.) denote the smallest
(the greatest, resp.) integer k such that q ≤ k (k ≤ q, resp.).

A permutation σ ∈ Sn is a bijective mapping {1, 2, . . . , n} → {1, 2, . . . , n} and it
can be simply represented by the queue σ(1)σ(2) · · · σ(n) or, in the case of possible
confusion, by (σ(1), σ(2), . . . , σ(n)).

We have already noticed the natural 1− 1 correspondence between sets of per-
mutations and subsets of En. We say that the set R ⊆ Sn produces the set

R = {aσ(1) · · · aσ(n) | σ ∈ R}·

The construction of a test set S for the language En is equivalent to the construc-
tion of the corresponding set of permutations Tn. Another equivalent characteri-
sation of the sought-after set Tn is that (∗) implies (∗∗) for any pair of morphisms
g, h, such that g(ai) = xi and h(ai) = yi (i = 1, 2, . . . , n). These facts are obvious
but quite important for the future exposition, since they allow us to make use of
both word equation and morphisms agreement notation, as well as to switch, if
convenient, between languages and sets of permutations.

We shall need some results from the rudiments of combinatorics on words. For
the proofs of the first two see for instance [15]. The first is the famous Periodicity
Lemma of Fine and Wilf.

Theorem 1. If two powers um and vn of nonempty words u and v have a common
factor of length at least |u|+ |v| − d, where d is the greatest common divisor of |u|
and |v| , then the primitive roots of u and v are conjugate.

The conjugacy, the second important property between two words (commuta-
tivity is the first) can be characterized as follows.

Theorem 2. Let x and y be nonempty words. The following three conditions are
equivalent:

(i) the words x and y are conjugate;
(ii) the words x and y are of equal length and there exist unique words t1, and

t2, with t2 nonempty, such that t = t1t2 is primitive and x ∈ (t1t2)+ and
y ∈ (t2t1)+;

(iii) there exists a word z such that xz = zy.

Furthermore, if (ii) holds, then for each word w, we have xw = wy if and only if
w ∈ (t1t2)∗t1.
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By the next theorem and its corollary (for the easy proof, see [9]), given distinct
words x1, y1, the structure of any solution α, β of the system of equations

x1α = y1β, αx1 = βy1

is unique.

Theorem 3. Let x1 and y1 be distinct words. The following two conditions are
equivalent:

(i) there exist words x2 and y2 such that

x1x2 = y1y2 x2x1 = y2y1;

(ii) there exist a unique word t1 and a unique nonempty word t2 such that t1t2
is primitive and x1, y1 ∈ (t1t2)∗t1.

Furthermore, if (ii) holds, then for each pair of words x3, y3 we have

x1x3 = y1y3 x3x1 = y3y1

if and only if |x1x3| = |y1y3| and x3, y3 ∈ (t2t1)∗t2 ∪{ε}. Moreover x1x3 ∈ (t1t2)+

and x3x1 ∈ (t2t1)+.

We can write the following usable:

Corollary. Let x1, x2, x3, y1, y2, y3 be words such that |x1| 6= |y1| , |x2| = |x3| and{
x1x2 = y1y2 x1x3 = y1y3

x2x1 = y2y1 x3x1 = y3y1.

Then x2 = x3 and y2 = y3.

2. On commutation of words

Let us generalize the concept of commutation to arbitrary many words. For
each n ∈ N+ we say that the words x1, x2, . . . , xn commute if

x1x2 · · ·xn = xσ(1)xσ(2) · · ·xσ(n) (�)

for each permutation σ ∈ Sn. Certainly, if the words x1, x2, . . . , xn are all nonempty,
they commute if and only if they have the same primitive root.

Let n ∈ N+. For how many permutation σ ∈ Sn the equality (�) has to be valid
to guarantee that the words x1, x2, . . . , xn commute? In the following we shall see
that a number depending logarithmically on n is sufficient (Th. 4), but, in general,
a constant number is not (Th. 5). All logarithms are of course in the base 2.
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For each m ∈ N, n ∈ N+ define the permutation δnm of 1, 2, . . . , n inductively as
follows. Let

δn0 = (1, 2, . . . , n);
δ1
m = (1); and
δn1 = (r + 1, r + 2, . . . , n, 1, 2, . . . , r), where r = dn/2e.

Let now m ∈ N+, n ∈ {2, 3, . . .} and assume that δkj is given for j = 0, 1, 2, . . . ,m
and k = 1, 2, . . . , n− 1. Then (denoting again r = dn/2e), define

δnm+1 = (δrm(1), δrm(2), . . . , δrm(r), r + δn−rm (1), r + δn−rm (2), . . . , r + δn−rm (n− r)).

It should be clear that δnm = (1, 2, . . . , n) for each m > dlogne.
For each n ∈ N+, let ∆n = {δnm | m = 1, 2, . . . , dlogne}.
The definition of δnm is easy to understand when n = 2k for some k. For general

n, some work with integer parts of fractions is inevitable. The reader, who wants
to grasp the main idea of our construction and avoid the exercise of counting with
ceilings and floors, can simply forget them and confine oneself to the case n = 2k.

Example 1. For n = 4, n = 8 and n = 11 we have
∆4 = {(3, 4, 1, 2), (2, 1, 4, 3)}
∆8 = {(5, 6, 7, 8, 1, 2, 3, 4), (3, 4, 1, 2, 7, 8, 5, 6), (2, 1, 4, 3, 6, 5, 8, 7)}, and
∆11 = {(7, 8, 9, 10, 11, 1, 2, 3, 4, 5, 6), (4, 5, 6, 1, 2, 3, 10, 11, 7, 8, 9),

(3, 1, 2, 6, 4, 5, 9, 7, 8, 11, 10), (2, 1, 3, 5, 4, 6, 8, 7, 9, 10, 11)}·

The following result is a slight modification of Theorem 9 in [9].

Theorem 4. Let n ∈ N+ be a number and x1, x2, . . . , xn be words. If

x1x2 · · ·xn = xδ(1)xδ(2) · · ·xδ(n) (1)

for each δ ∈ ∆n, then the words x1, x2, . . . , xn commute.

Proof. By induction on n. The cases n = 1 and n = 2 are not difficult.
Let n ≥ 3 and and assume that the theorem holds for each k ∈ {1, 2, . . . , n−1}.

Let r = dn/2e. By the equality (1) we have x1 . . . xrxr+1 . . . xn =
xr+1 . . . xnx1 . . . xr, so the words x1x2 · · ·xr and xr+1xr+2 · · ·xn commute. Also,
by the remaining equalities in (1), we have

x1x2 · · ·xr = xδ(1)xδ(2) . . . xδ(r)

for all permutations δ ∈ ∆r and

xr+1xr+2 . . . xn = xr+ρ(1)xr+ρ(2) · · ·xr+ρ(n−r)

for each ρ ∈ ∆n−r. By the induction hypothesis, the words x1, x2, . . . , xr commute,
as well as the words xr+1, xr+2, . . . , xn. This extends the induction. �
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Theorem 5. For each m ∈ N there exists n ∈ N such that for any m permutations
σ1, σ2, . . . , σm ∈ Sn we can find words x1, x2, . . . , xn which do not commute and
satisfy

x1x2 · · ·xn = xσi(1)xσi(2) · · ·xσi(n) (i = 1, 2, . . . ,m). (2)

Proof. Assume that m is in N and choose n ≥ 32m . Let σ1, σ2, . . . , σm be any per-
mutations of 1, 2, . . . , n. We show that there exist three distinct elements
p, q, r ∈ {1, 2, . . . , n} which in each sequence σj(1), σj(2), . . . σj(n), j = 1, 2, . . . ,m,
form either an increasing or a decreasing (i.e. monotone) subsequence.

It is a well known fact (dating back to [6]) that for each s ∈ N, any sequence
of s2 distinct real numbers contains a subsequence of s numbers which is either
increasing or decreasing. Thus there exist integers i1, i2, . . . , i32m−1 in {1, 2, . . . , n}
which in σ1(1), σ1(2), . . . , σ1(n) appear in a monotone order.

Proceed by induction. Let k ∈ {1, 2, . . . ,m − 1}. Suppose that there exist in-
tegers j1, j2, . . . , j32m−k in {1, 2, . . . , n} such that the these integers form a mono-
tone subsequence in σs(1), σs(2), . . . , σs(n) for each s ∈ {1, 2, . . . , k}. Consider
the permutation σk+1. By the facts above, there exist integers s1, s2, . . . , s32m−k−1

in j1, j2, . . . , j32m−k which in σs(1), σs(2), . . . , σs(n) appear in either increasing or
decreasing order for each s ∈ {1, 2, . . . , k + 1}. This extends the induction.

Let p < q < r ∈ {1, 2, . . . , n} be integers which in the sequence σj(1), σj(2), . . . ,
σj(n) form a monotone subsequence for each j = 1, 2, . . . ,m. Let a and b be
distinct symbols. Choose xp = xr = a, xq = b and xi = ε for each i ∈ {1, 2, . . . , n}\
{p, q, r}. For any j ∈ {1, 2, . . . ,m} the equality (2) looks like aba = aba, but the
words xp, xq, xr do not commute and thus neither do the words x1, x2, . . . , xn.

�

3. Permutation, shuffle and conjugacy

In the rest of the paper g and h will be arbitrary morphisms defined on Σn and
we put

xi = g(ai), yi = h(ai) for i = 1, . . . , n. (†)

We now introduce four conditions on the basis of which our vital test set and word
equation problem can be solved.

Definition. The morphisms g and h satisfy the permutation condition if they
agree on En, i.e. if they agree on

aσ(1)aσ(2) · · · aσ(n)

for each σ ∈ Sn.
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We shall generalize the above definition to subsets of Σn. Let I =
{ai1 , ai2 , . . . , aik | 1 ≤ i1 < i2 < · · · < ik ≤ n}. The morphisms g and h sat-
isfy the permutation condition on the set I if they agree on

aiσ(1)aiσ(2) · · ·aiσ(k)

for each σ ∈ Sk. The permutation condition is very restrictive. The first antici-
pation is that it, in the nontrivial case, implies commutativity. The next theorem
says that exactly this is not the case.

Theorem 6. Let g and h satisfy the permutation condition. Then one of the
following statements holds:

(i) xi = yi for each i ∈ {1, 2, . . . , n};
(ii) there exist p, q ∈ {1, 2, . . . , n}, p < q, such that xp 6= yp, xq 6= yq and

xiyi = ε for each i ∈ {1, 2, . . . , n} \ {p, q}. Then there exist unique word t1
and a unique nonempty word t2 such that t = t1t2 is the primitive root of
x1x2 · · ·xn, xp, yp ∈ (t1t2)∗t1 and xq, yq ∈ (t2t1)∗t2;

(iii) there exist three indices p, q, r ∈ {1, 2, . . . , n} such that xp 6= yp, xq 6= yq and
xryr 6= ε. Then the words x1, x2, . . . , xn, y1, y2, . . . , yn commute, i.e., if t is
the primitive root of x1x2 · · ·xn, we have x1, x2, . . . , xn, y1, y2, . . . , yn ∈ t∗.

Proof. Assume that (i) does not hold. There then exist at least two indices j ∈
{1, 2, . . . , n} such that xj 6= yj. Let p, q ∈ {1, 2, . . . , n}, p < q, be such that
xp 6= yp and xq 6= yq. Two possibilities arise. Either xiyi = ε for each i ∈
{1, 2, . . . , n} \ {p, q} or there exist r ∈ {1, 2, . . . , n} \ {p, q} such that xryr 6= ε.

1. Consider the first possibility. By Theorem 3, the case (ii) holds.

2. Assume that the second possibility holds. Suppose without loss of generality,
that xr 6= ε. Let

zi =

{
xi, for i = 1, 2, . . . , p− 1,
xi+1 for i = p, p+ 1, . . . , n− 1;

ui =

{
yi, for i = 1, 2, . . . , p− 1,
yi+1 for i = p, p+ 1, . . . , n− 1.

Then
xpzσ(1)zσ(2) · · · zσ(n−1) = ypuσ(1)uσ(2) · · ·uσ(n−1)

and
zσ(1)zσ(2) · · · zσ(n−1)xp = uσ(1)uσ(2) · · ·uσ(n−1)yp

for each permutation σ ∈ Sn−1.
Since xp 6= yp, we deduce from the corollary of Theorem 3, that

z1z2 · · · zn−1 = zσ(1)zσ(2) · · · zσ(n−1)

for each σ ∈ Sn−1. This certainly means that the words x1, . . . , xp−1, xp+1, . . . , xn
commute. Similarly it can be shown that the words x1, . . . , xq−1, xq+1, . . . , xn
commute. Since p, q, and r are all distinct and xr 6= ε, we deduce that the words
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x1, x2, . . . , xn commute, which finally implies that x1, x2, . . . , xn, y1, y2, . . . , yn com-
mute. �

Note that under the adopted assignment the permutation condition is equivalent
to (∗∗). Let us recall that we are interested in the smallest possible subsets of Sn
that produce a test set for En. It is shown that there exist a test set of size O(n)
and also that this order of magnitude is the best possible.

Example 2. Consider the language E3. Define morphisms g, h by

g(a1) = a g(a2) = ab g(a3) = bab
h(a1) = aba h(a2) = ab h(a3) = b

and verify that they agree on all elements of E3 except of a1a2a3. By the symmetry
of letters, it shows that no proper subset of E3 is its test set.

Definition. The morphisms g and h satisfy the conjugacy condition if they agree
on each conjugate word of a1a2 . . . an.

The concept “conjugacy condition” refers to the fact that

{aiai+1 . . . ana1a2 . . . ai−1 | i = 1, 2, . . . , n}

is exactly the set of all conjugate words of a1a2 . . . an. Along our conventions g
and h satisfy the conjugacy condition if the equality

xixi+1 · · ·xnx1x2 · · ·xi−1 = yiyi+1 · · · yny1y2 · · · yi−1

holds for each i ∈ {1, 2, . . . , n}.
Denote by CONn the subset of Sn that produces the set of all conjugates of

the word a1a2 · · · an.
Words satisfying the conjugacy condition have some remarkable properties.

Theorem 7. Let g and h be morphisms satisfying conjugacy condition and sup-
pose that x1x2 · · ·xn is nonempty. For each i ∈ {1, 2, . . . , n}, let ti be the primitive
root of xixi+1 · · ·xnx1x2 · · ·xi−1 and di be the word such that either xi = diyi or
yi = dixi. Then t1, t2, . . . , tn are conjugate words of each other and, for each
i ∈ {1, 2, . . . , n}, we have di ∈ t∗i .

Proof. Since x1x2 · · ·xn, x2x3 · · ·xnx1, . . . ,xnx1x2 · · ·xn−1 are conjugate, their
primitive roots t1, t2, . . . , tn are also conjugate, by the basic results in combina-
torics of words. Let i ∈ {1, 2, . . . , n}. If di 6= ε, Theorem 3 implies that both di
and xixi+1 · · ·xnx1x2 · · ·xi−1 are ∈ t+i . The case di = ε is clear. �
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Definition. Let n ≥ 2 be an integer and r = dn/2e. The morphisms g, h satisfy
the shuffle condition if they agree on following n words:

a1 a2 · · · ar−3 ar−2 ar−1 ar ar+1ar+1ar+1 ar+2ar+2ar+2 ar+3ar+3ar+3 ar+4ar+4ar+4 · · ·ananan
a1 a2 · · · ar−3 ar−2 ar−1 ar+1ar+1ar+1 ar ar+2ar+2ar+2 ar+3ar+3ar+3 ar+4ar+4ar+4 · · ·ananan
a1 a2 · · · ar−3 ar−2 ar+1ar+1ar+1 ar−1 ar+2ar+2ar+2 ar ar+3ar+3ar+3 ar+4ar+4ar+4 · · ·ananan
a1 a2 · · · ar−3 ar+1ar+1ar+1 ar−2 ar+2ar+2ar+2 ar−1 ar+3ar+3ar+3 ar ar+4ar+4ar+4 · · ·ananan

...
ar+1ar+1ar+1 ar+2ar+2ar+2 · · ·an−3an−3an−3 a1 an−2an−2an−2 a2 an−1an−1an−1 a3 ananan a4 · · · ar
ar+1ar+1ar+1 ar+2ar+2ar+2 · · ·an−3an−3an−3 an−2an−2an−2 a1 an−1an−1an−1 a2 ananan a3 a4 · · · ar
ar+1ar+1ar+1 ar+2ar+2ar+2 · · ·an−3an−3an−3 an−2an−2an−2 an−1an−1an−1 a1 ananan a2 a3 a4 · · · ar
ar+1ar+1ar+1 ar+2ar+2ar+2 · · ·an−3an−3an−3 an−2an−2an−2 an−1an−1an−1 ananan a1 a2 a3 a4 · · · ar.

(SH)

The bold typeface in the definition above helps to grasp the structure of the set
SH and has no semantic relevance.

We give also a more formal definition of the set SH. For all integers i ∈ Z define
words ci, di by

ci =

{
ai, i = 1, . . . , r
ε, otherwise;

di =

{
ai, i = r + 1, . . . , n
ε, otherwise.

Then

SH =

{∏
i∈Z

cidi+k | k ∈ Z
}

=

{∏
i∈Z

cidi+k | k = 1, . . . , n

}
·

Again, denote by SHUn the set of n permutations that produces the words in SH.
There is not much to say about the structure of morphisms satisfying the shuffle
condition. It certainly does not alone imply the permutation condition. In fact
Example shows that even together the shuffle and the conjugacy conditions are
not as strong as the permutation condition. We are going to introduce one more
tool.

Definition. Let n ≥ 2 be an integer and r = dn/2e. The morphisms g and h
satisfy the weak permutation condition if they agree on words

a1a2 · · · arar+δ(1)ar+δ(2) · · · ar+δ(n−r)
ar+δ(1)ar+δ(2) · · · ar+δ(n−r)a1a2 · · ·ar
ar+1ar+2 · · · anaρ(1)aρ(2) · · ·aρ(r)
aρ(1)aρ(2) · · ·aρ(r)ar+1ar+2 · · ·an

(WP)

for all δ ∈ ∆n−r and ρ ∈ ∆r.

Let WPEn be the subset of Sn producing the words in WP. Certainly WPEn
contains 2dlog re+ 2dlog(n− r)e permutations.
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4. Sufficient conditions for the permutation property

Theorem 8. Let n ≥ 4 be an integer and r = dn/2e. Suppose that morphisms
g and h satisfy both the conjugacy and the weak permutation condition and fur-
thermore |x1x2 · · ·xr| 6= |y1y2 · · · yr| . Then the morphisms satisfy the permutation
condition.

Proof. By the corollary of Theorem 3,

x1x2 · · ·xr = xδ(1)xδ(2) · · ·xδ(r)
y1y2 · · · yr = yδ(1)yδ(2) · · · yδ(r)

for each δ ∈ ∆r, and

xr+1xr+2 · · ·xn = xr+ρ(1)xr+ρ(2) · · ·xr+ρ(n−r)
yr+1yr+2 · · · yn = yr+ρ(1)yr+ρ(2) · · · yr+ρ(n−r)

for each ρ ∈ ∆n−r. Theorem 4 now implies that the words x1, x2, . . . , xr commute
and so do also the words y1, y2, . . . , yr as well as xr+1, xr+2, . . . , xn and the words
yr+1, yr+2, . . . , yn.

We shall now show that the morphisms g and h satisfy the permutation property.
If there are exactly two distinct indices i, j ∈ {1, 2, . . . , n} such that xiyi and

xjyj are nonempty, there is nothing to prove: the total system of equations col-
lapses to xixj = yiyj , xjxi = yjyi.

Assume thus, without loss of generality, that there exist indices p, q ∈
{1, 2, . . . , r}, p < q, and s ∈ {r + 1, r + 2, . . . , n} such that xpyp,xqyq and xsys
are all nonempty and |x1 . . . xr| > |y1 . . . yr|. Let t, u and v be the primitive roots
of x1x2 · · ·xr, y1y2 · · · yr, and x1x2 · · ·xn, respectively. (If y1y2 · · · yr is empty,
put u = v.) Certainly xp, xq are in t∗, yp, yq are in u∗ and, by Theorem 7, the
difference of x1 · · ·xr and y1 · · · yr is a conjugate of v.

Now, if xp = yp (or xq = yq), we have necessarily t = u = v since x1 . . . xr ∈ t+
is a prefix of x1 . . . xn ∈ v+. Then also xr+1xr+2 · · ·xn and yr+1yr+2 · · · yn are in
v∗ and we are through: all the words commute. Assume thus that xp 6= yp and
xq 6= yq. If any of the words xp, xq, yp, yq is empty, we again have, by Theorem 7,
t = u = v. Let thus xp, xq, yp, yq all be nonempty. Then x1x2 · · ·xr is longer than
2|v| and, by the Periodicity Lemma, t = v. Again we see that the words commute.

�

Theorem 9. Assume n ≥ 4 is an integer, r = dn/2e, and the morphisms g and
h satisfy the

(i) conjugacy and shuffle condition;
(ii) permutation condition on {a1, a2, . . . , ar} and on the set {ar+1, ar+2, . . . , an}.

Then they satisfy the permutation condition.
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Proof.

1. If xi = yi for i = 1, 2, . . . , n, we are through.

2. Assume then, without loss of generality, that q is the greatest number i ∈
{1, 2, . . . , r} such that xi 6= yi. By Theorem 7, the words x1x2 · · ·xr and x1x2 · · ·xn
and therefore also xr+1xr+2 · · ·xn are powers of the same primitive word t, say.
By Theorem 6 two cases appear. Either

1◦ all the words x1, x2, . . . , xr ∈ t∗
or

2◦ there exist exactly two distinct indices p and q in {1, 2, . . . , r} such that xpyp
and xqyq are nonempty and xp and xq do not commute.

2.1. Consider first Case 2◦. By the corollary of Theorem 3, there exist nonempty
words t1, t2 and integers r1, r2, s1, s2 ∈ N such that t = t1t2, r1 6= s1, r1 + r2 =
s1 + s2, xp = tr1t1, yp = ts1t1, xq = t2t

r2 , and yq = t2t
s2 .

2.1.1. If xr+1 · · ·xn = ε, we are done.

2.1.2. Let s be the smallest number i ∈ {r+1, r+2, . . . , n} such that xiyi 6= ε. By
Theorem 3 there exist words u1, u2 and integers r3, r4, s3, s4 ∈ N such that u1u2 =
t = t1t2, xs = tr3u1, ys = ts3u1, xs+1xs+2 · · ·xn = u2t

r4 and ys+1ys+2 · · · yn =
u2t

s4 . By the shuffle condition we have the following identity.

tr1t1t
r3u1t2t

r2u2t
r4 = ts1t1t

s3u1t2t
s2u2t

s4 . (3)

Assume without loss of generality that r1 > s1 (and thus s2 > 0). Certainly (3)
implies

(t2t1)r1−s1tr3u1t2t
r2u2t

r4 = ts3u1t2t
s2u2t

s4 . (4)

2.1.2.1. If s3 > 0, then t = t1t2 = t2t1, a contradiction, since t is primitive and
t1, t2 are both nonempty.

2.1.2.2. Suppose that s3 = 0. Then r3 6= 0 and (t2t1)u1 = u1(t2t1), so u1 = ε
since t2t1 is primitive. Now we have u2 = t and (4) yields t1t2 = t2t1, again a
contradiction.

2.2. Consider then the case 1◦. Apply Theorem 6 to the words xr+1, xr+2, . . . , xn
and yr+1, yr+2, . . . , yn.

2.2.1. If xr+1, xr+2, . . . , xn ∈ t∗, the proposition obviously is true: all the words
commute.

2.2.2. The case (ii) of Theorem 6 was studied above (2.1).

2.2.3. Suppose that xj = yj for j = r + 1, r + 2, . . . , n. The shuffle condi-
tion now leads to equalities (x1x2 · · ·xq−1)xr+1xq = (y1y2 · · · yq−1)yr+1yq. Since
x1, x2, . . . , xq−1, xq as well as y1, y2, . . . , yq−1, yq are all in t∗, it is not difficult to
see that the word xr+1 = yr+1 is also in t∗. Similarly, using further shuffle equal-
ities, we prove that xj is in t∗ for all j = r + 1, r + 2, . . . , n. This completes the
proof. �
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5. A linear size test set for the language En

In this section we construct recursively a sequence (Tn)n∈N+ , with Tn ⊆ Sn,
which will determine our test sets. Let us first explain the idea of the recursivity
in our construction.

Let R be a subset of Sn. Put r = dn/2e and for any τ ∈ R define mappings

στ : {1, . . . , r} → {1, . . . , n} by στ (i) = τ(i),

and

ρτ : {1, . . . , n− r} → {1, . . . , n} by ρτ (i) = τ(r + i)− r.

If {τ(i) | i = 1, . . . , r} = {1, . . . , r}, then both στ , ρτ are permutations and we say
that τ is per partes. Put

P LEFT(R) = {στ | τ ∈ R, τ is per partes};
P RIGHT(R) = {ρτ | τ ∈ R, τ is per partes} ·

We say that the set R ⊆ Sn is founded if

(i) P LEFT(R) produces a test set for Er;
(ii) P RIGHT(R) produces a test set for En−r.

Our construction of the sequence (Tn)n∈N+ is based on the following

Theorem 10. Let R be a subset of Sn such that

(i) CON n ∪ SHUn ∪WPEn ⊆ R; and
(ii) R is founded.

Then R (the set R produces) is a test set for En.

Proof. Suppose that the morphisms g and h agree on R. We want to show that g
and h satisfy the permutation condition.

Let r = dn/2e and suppose first that |x1x2 · · ·xr | 6= |y1y2 · · · yr| . By (i), the
morphisms g and h satisfy both the conjugacy and the weak permutation condition
and therefore, by Theorem 8, we are through.

Consider next the case |x1x2 · · ·xr| = |y1y2 · · · yr|. The fact that R is founded
guarantees that the equalities

xσ(1)xσ(2) · · ·xσ(r) = yσ(1)yσ(2) · · · yσ(r)

for each σ ∈ Sr, and

xr+ρ(1)xr+ρ(2) · · ·xr+ρ(n−r) = yr+ρ(1)yr+ρ(2) · · · yr+ρ(n−r)

hold for each ρ ∈ Sn−r. Theorem 9 completes the proof. �
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Now we are prepared to construct the desired test sets. For n = 1, 2, 3 the set
Tn has to be equal to Sn. Consider the case n = 4. We have

CON 4


1 2 3 41 2 3 41 2 3 4
2 3 4 12 3 4 12 3 4 1
3 4 1 23 4 1 23 4 1 2
4 1 2 34 1 2 34 1 2 3

SHU4


(1 2 3 4)(1 2 3 4)(1 2 3 4)
1 3 2 41 3 2 41 3 2 4
3 1 4 23 1 4 23 1 4 2

(3 4 1 2)(3 4 1 2)(3 4 1 2)

WPE4


1 2 4 31 2 4 31 2 4 3
4 3 1 24 3 1 24 3 1 2
3 4 2 13 4 2 13 4 2 1
2 1 3 42 1 3 42 1 3 4.

The underlined elements show that CON 4∪SHU4∪WPE4 is founded and repeated
elements are in brackets. By Theorem 10, the set

T4 = {123412341234, 234123412341, 341234123412, 412341234123, 132413241324, 314231423142, 124312431243, 431243124312, 342134213421, 213421342134}

produces a test set for E4.
Before we give the general construction formula, let us still consider separately

cases n = 5, 6. For n = 5 the definitions yield

CON 5



1 2 3 4 51 2 3 4 51 2 3 4 5
2 3 4 5 12 3 4 5 12 3 4 5 1
3 4 5 1 23 4 5 1 23 4 5 1 2
4 5 1 2 34 5 1 2 34 5 1 2 3
5 1 2 3 45 1 2 3 45 1 2 3 4

SHU5



(1 2 3 4 5)(1 2 3 4 5)(1 2 3 4 5)
1 2 4 3 51 2 4 3 51 2 4 3 5
1 4 2 5 31 4 2 5 31 4 2 5 3
4 1 5 2 34 1 5 2 34 1 5 2 3

(4 5 1 2 3)(4 5 1 2 3)(4 5 1 2 3)

WPE5



1 2 3 5 41 2 3 5 41 2 3 5 4
5 4 1 2 35 4 1 2 35 4 1 2 3
3 1 2 4 53 1 2 4 53 1 2 4 5
2 1 3 4 52 1 3 4 52 1 3 4 5
4 5 3 1 24 5 3 1 24 5 3 1 2
4 5 2 1 34 5 2 1 34 5 2 1 3.

It is not difficult to verify that CON 5 ∪ SHU5 ∪WPE5 is not founded. For any
σ ∈ S3 the set T5 has to contain a permutation starting by σ. The underlined
elements show that we have to add for example 132451324513245, 231452314523145, 321453214532145 and we get

T5 = {123451234512345, 234512345123451, 345123451234512, 451234512345123, 512345123451234, 124351243512435, 142531425314253, 415234152341523, 123541235412354,

541235412354123, 312453124531245, 213452134521345, 453124531245312, 452134521345213, 132451324513245, 231452314523145, 321453214532145}·

Similarly for n = 6 we construct

CON 6



1 2 3 4 5 61 2 3 4 5 61 2 3 4 5 6
2 3 4 5 6 12 3 4 5 6 12 3 4 5 6 1
3 4 5 6 1 23 4 5 6 1 23 4 5 6 1 2
4 5 6 1 2 34 5 6 1 2 34 5 6 1 2 3
5 6 1 2 3 45 6 1 2 3 45 6 1 2 3 4
6 1 2 3 4 56 1 2 3 4 56 1 2 3 4 5

SHU6



(1 2 3 4 5 6)(1 2 3 4 5 6)(1 2 3 4 5 6)
1 2 4 3 5 61 2 4 3 5 61 2 4 3 5 6
1 4 2 5 3 61 4 2 5 3 61 4 2 5 3 6
4 1 5 2 6 34 1 5 2 6 34 1 5 2 6 3
4 5 1 6 2 34 5 1 6 2 34 5 1 6 2 3

(4 5 6 1 2 3)(4 5 6 1 2 3)(4 5 6 1 2 3)

WPE6



1 2 3 6 4 51 2 3 6 4 51 2 3 6 4 5
1 2 3 5 4 61 2 3 5 4 61 2 3 5 4 6
6 4 5 1 2 36 4 5 1 2 36 4 5 1 2 3
5 4 6 1 2 35 4 6 1 2 35 4 6 1 2 3
3 1 2 4 5 63 1 2 4 5 63 1 2 4 5 6
2 1 3 4 5 62 1 3 4 5 62 1 3 4 5 6
4 5 6 3 1 24 5 6 3 1 24 5 6 3 1 2
4 5 6 2 1 34 5 6 2 1 34 5 6 2 1 3.
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One can easily see that adding elements 132132132 465465465, 231231231 564564564 and 321321321 654654654, we obtain
a founded set

T6 = {123456123456123456, 234561234561234561, 345612345612345612, 456123456123456123, 561234561234561234, 612345612345612345, 124356124356124356, 142536142536142536,
415263415263415263, 451623451623451623, 123645123645123645,123546123546123546 645123645123645123, 546123546123546123, 312456312456312456, 213456213456213456, 456312456312456312,

456213456213456213, 132465132465132465, 231564231564231564, 321654321654321654} ·

For n ≥ 7 define

Tn = CON n ∪ SHUn ∪WPEn ∪ FUN n

where FUN n is the recursive part of Tn, which guarantees that Tn is founded. The
set FUN n is constructed as follows. Assume that Tk is given for k = 2, 3, . . . , n−1.
Let σ1, σ2, . . . , σp be a sequence of all distinct elements of

Tdn/2e \ P LEFT(CONn ∪ SHUn ∪WPEn),

and similarly, let ρ1, ρ2, . . . , ρq be a sequence of all distinct elements in

Tbn/2c \ P RIGHT(CONn ∪ SHUn ∪WPEn).

Denote m = max{p, q} and put ρk = ρq for all k = q + 1, . . . ,m, σk = σp for all
k = p+ 1, . . . ,m. For each i ∈ {1, 2, . . . ,m} define τi ∈ Sn by

τi(j) =

{
σi(j), for j = 1, 2, . . . , dn/2e
dn/2e+ ρi(j − dn/2e), for j = dn/2e+ 1, . . . , n,

and put FUN n = {τi | i = 1, . . . ,m}.
Theorem 11. For all n ∈ N+, the set Tn produces a test set for En.

Proof. The construction of Tn shows that it satisfies both conditions of
Theorem 10. �

In the following we investigate the size of our test sets. To avoid confusion,
write the permutations temporarily in parentheses.

Let r = dn/2e, s = n − r = bn/2c, r′ = dr/2e and s′ = ds/2e. For n ≥ 7 one
easily sees that

Card(CON n ∪ SHUn) = 2n− 2

Card(WPEn) = 2 · dlogdn/2ee + 2 · dlogbn/2ce. (5)

Note that
(1, 2, . . . r) ∈ CON dn/2e ∩ P LEFT(CON n)

and

(r′, r′ + 1, . . . , r, 1, 2, . . . , r′ − 1) ∈ CON dn/2e ∩ P LEFT(WPEn).
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Similarly
(1, 2, . . . , s) ∈ CON bn/2c ∩ P RIGHT(CONn)

and
(s′, s′ + 1, . . . , s, 1, 2, . . . , s′ − 1) ∈ CON bn/2c ∩ P RIGHT(WPEn).

This implies that

Card(FUN n) ≤ max{Card(Tbn/2c),Card(Tdn/2e)} − 2. (6)

We estimate the size of Tn by a function F : N+ → N+. Let F(1) = 1, F(2) =
2, F(3) = 6, F(4) = 10, F(5) = 17, F(6) = 21, and for n ≥ 7 put

F(n) = 2n− 2 + 2 · dlogdn/2ee+ 2 · dlogbn/2ce + max{F(bn/2c),F(dn/2e)}− 2.

From the construction of test sets for n ≤ 6, and from (5) and (6) we deduce, by
induction on n, that

Card(Tn) ≤ F(n)
and that F is strictly increasing:

F(n) < F(n+ 1)

for all n ∈ N+. The monotony of F implies

max{F(bn/2c),F(dn/2e)} = F(dn/2e).

Let
r(n) = 2 · dlogdn/2ee+ 2 · dlogbn/2ce − 4.

Then we can write
F(n) = 2 · n + r(n) + F(dn/2e)

for n ≥ 7.
Let a > 4 be a real number. As a polynomial of n, the function given by

f(n) =
(a− 4) · n− a

2

grows faster than r(n), so there exist na ∈ N, na ≥ 7, such that for each n ≥ na,
we have f(n) ≥ r(n). This implies that

F(n) ≤ 2 · n+ f(n) + F(dn/2e) =
a · (n− 1)

2
+ F(dn/2e) (7)

for each n ≥ na. Let now ba = F(na). We prove by induction that F(n) ≤ a ·n+ ba
for each n ∈ N+. The assertion certainly holds if n ≤ na. Suppose n > na. Then

F(n) ≤ a · (n− 1)
2

+ F(dn/2e) ≤ a · (n− 1)
2

+ a · dn
2
e+ ba

≤ a · (n− 1)
2

+
a · (n+ 1)

2
+ b = a · n+ ba.
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Also for any real number a′ such that 4 < a′ < a there is an integer ba′ , for which
F(n) ≤ a′n + ba′ for all n ∈ N+. This implies the existence of a number ma ∈ N
such that

F(n) ≤ a · n
for all n ≥ ma. We can summarize:

Theorem 12. For any real number a > 4 there exist integers ba,ma ∈ N such
that

(i) Card(Tn) ≤ a n+ ba for each n ∈ N;
(ii) Card(Tn) ≤ a n for each integer n ≥ ma.

Let a = 5. It is not difficult to verify that in such a case f(n) ≥ r(n) for all n ≥ 37
and by (7)

F(n) ≤ 5 · (n− 1)
2

+ F(dn/2e)

for n ≥ 37. A direct computation yields following list:

F(1) = 1 F(2) = 2 F(3) = 6 F(4) = 10 F(5) = 17
F(6) = 21 F(7) = 28 F(8) = 30 F(9) = 41 F(10) = 45
F(11) = 51 F(12) = 53 F(13) = 62 F(14) = 64 F(15) = 68
F(16) = 70 F(17) = 85 F(18) = 89 F(19) = 95 F(20) = 97
F(21) = 105 F(22) = 107 F(23) = 111 F(24) = 113 F(25) = 124
F(26) = 126 F(27) = 130 F(28) = 132 F(29) = 138 F(30) = 140
F(31) = 144 F(32) = 146 F(33) = 165 F(34) = 169 F(35) = 175
F(36) = 177 F(37) = 185 F(38) = 187 F(39) = 191 F(40) = 193

so that F(n) ≤ 5n, when n = 1, 2, . . . , 36. For n ≥ 37 proceed by induction to
obtain

F(n) ≤ 5 · (n− 1)
2

+ F(dn/2e) ≤ 5 · (n− 1)
2

+ 5 · (n+ 1)
2

= 5n.

Observe that for n = 37, as well as for other underlined values, the estimate is
sharp: F(n) = 5n. We can now answer a question stated in [9].

Theorem 13. For each n ∈ N+, the language En = c(a1a2 · · · an) possesses a test
set (produced by Tn) with the size at most 5 · n.

The following result gives a lower bound for the size of a test set:

Theorem 14. Each test set for the language En = c(a1a2 · · · an) contains at least
n− 1 elements.

Proof. The assertion is certainly true for n = 1, 2, 3. Assume that n > 3. Let S =
{w1, w2, · · · , wn−2} be any subset of En with cardinality n− 2. Suppose, without
loss of generality, that a1 is the last letter of w1. We construct two (nonerasing)
morphisms that agree on S, but not on En.
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For each i ∈ {1, 2, . . . , n− 2}, let

Mi = {k | wi = xakya1z for some words x, y, z ∈ Σ∗n}·

ThusMi is the set of all numbers k ∈ {2, 3, . . . , n} such that ak precedes the symbol
a1 in the word wi. By assumption, M1 = {2, . . . , n}. For each i ∈ {1, 2, . . . , n− 2}
and each j ∈ {2, 3, . . . , n}, let

rij =

{
1, if j ∈Mi

0, otherwise.

Let
v̄j = (r1j , r2j , . . . , rn−2,j)

for each j ∈ {2, 3, . . . , n}. The vectors v̄2, v̄3, . . . , v̄n, having only n − 2 coordi-
nates, are linearly dependent over Q, the rationals. There thus exist integers
d2, d3, . . . , dn, not all zero, such that

d2v̄2 + d3v̄3 + · · ·+ dnv̄n = 0̄

with 0̄ the zero vector. Since each rij ∈ {0, 1}, the equality∑
j∈Mi

dj = 0

holds for each i ∈ {1, 2, . . . , n− 2}. For each j ∈ {2, 3, . . . , n}, we state
kj = dj + 1, lj = 1 if dj > 0
kj = lj = 1 if dj = 0
kj = 1, lj = −dj + 1 if dj < 0.

Then k2, k2, . . . , kn, l2, l3, . . . , ln are all strictly positive integers and∑
j∈Mi

(kj − lj) = 0

for each i ∈ {1, 2, . . . , n− 2}. In particular, i = 1 implies that

k2 + k3 + · · ·+ kn = l2 + l3 + · · ·+ ln.

Let a, b be distinct symbols and g and h nonerasing morphisms: Σ∗n → {a, b}∗
defined by{

g(a1) = b

g(aj) = akj for j = 2, 3, . . . , n;

{
h(a1) = b

h(aj) = blj , for j = 2, 3, . . . , n.
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Let i ∈ {1, 2, . . . , n− 2}. We have

g(wi) = ar1bar2 , h(wi) = as1bas2

where
r1 =

∑
j∈Mi

kj =
∑
j∈Mi

lj = s1

and, since k2 + k3 + · · ·+ kn = l2 + l3 + · · ·+ ln, also

r2 =
∑
j /∈Mi

kj =
∑
j /∈Mi

lj = s2.

Thus g(wi) = h(wi). On the other hand,

g(aia1 · · · ai−1ai+1 · · · an) 6= h(aia1 · · · ai−1ai+1 · · · an)

as soon as di 6= 0. This completes the proof. �

6. General commutative languages

We first contemplate the correlation between two concepts: “basis” and “test
set” of a language.

Lemma 15. Let P be any subset of L ⊆ Σ∗n. Length-equivalence on P guarantees
length–equivalence on L if and only if the set P contains a basis of L.

The sufficiency of the condition is evident. That it is necessary is not difficult
to verify either. For the proof we refer to [3] (see also [HaKo2]). The fact implies
that each test set for L contains a basis of L.

If the basis of Ψ(L) contains the maximal possible number n of vectors, then,
by simple length consideration, any two morphisms, which agree lengthwise on the
basis, agree at the same time lengthwise on every letter. Consequently, any basis
of L is also a test set. In general this certainly is not true: the set {a1a2} is one
basis of E2 = c(a1a2) (the other possibility is {a2a1}), but the only test set for
the language E2 is E2 itself.

In this section we show:

Theorem 16. Let L ⊆ Σ∗n be a language and w ∈ L a word such that alph(w) =
alph(L) and, for each i, symbol ai occurs at least twice in w if it occurs at least
twice in some word of L. Then c(L) possesses a test set of the size at most 11 · n.

Proof. The proof is given by the construction of the test set. Let

Ψn(w) = (d1, d2, . . . , dn),
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with d1, d2, . . . , dn ∈ N. For each i ∈ {1, 2, . . . , n} we state

ri = ddi/2e, and rn+i = di − ri.

Let
v = ar11 ar22 · · · arnn a

rn+1
n+1 a

rn+2
n+2 · · · ar2n2n ∈ Σ∗2n

and define a projection π : Σ∗2n → Σ∗n by

π(ai) = π(an+i) = ai for i = 1, 2, . . . , n.

Note that
π(c(v)) = c(w).

Let B be a basis of L. Our test set will consist of the set B and of projection of
some permutations of the word v. Namely, we claim that

TL = π
({
a
rσ(1)

σ(1) a
rσ(2)

σ(2) · · · a
rσ(2n)

σ(2n) | σ ∈ T2n

})
∪ B

is a test set for L. Obviously

Card(TL) ≤ Card(T2n) + Card(B) ≤ 11 · n.

To prove this assertion, let g and h be morphisms defined on Σ∗n that agree on TL.
Define another morphism α : Σ∗2n → Σ∗n by

α(ai) = π(ai)ri for i = 1, 2, . . . , 2n

and morphisms
g1 = g ◦ α, h1 = h ◦ α

with the domain Σ∗2n. Since g, h agree on TL, the morphisms g1, h1 agree on

T2n = {aσ(1) aσ(2) · · · aσ(2n) | σ ∈ T2n}·

From Theorem 11 we deduce that g1 and h1 agree on E2n, as T2n is a test set
for E2n.

Theorem 6 gives three possibilities to g1, h1.

1. If g1(ai) = h1(ai) for each i = 1, 2, . . . , 2n, then also g(ai) = h(ai) for each
i = 1, 2, . . . , n, and there remains nothing to prove.

2. If g1(aj)h1(aj) 6= ε for at least three indices, then, by Theorem 6, there exist
a primitive word t such that g1(ai), h1(ai) ∈ t∗ for each i = 1, 2, . . . , 2n. Then
g(ai), h(ai) ∈ t∗ for j = 1, 2, . . . , n, and we are through, since g, h are length-
equivalent on L, due to B ⊆ TL.
3. Assume finally that there are indices p, q ∈ {1, 2, . . . , 2n}, p < q such that
g1(ap) 6= h1(ap), g1(aq) 6= h1(aq) and g1(ai)h1(ai) = ε for each i ∈ {1, 2, . . . , 2n} \
{p, q}.
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3.1. If q = n+ p, then π(ap) = π(aq) = ap. For arbitrary u ∈ E2n we have

g(ap)dp = g1(u) = h1(u) = h(ap)dp

and g(ap) = h(ap), a contradiction with g1(ap) 6= h1(ap).

3.2. Therefore q 6= n + p and p, q ≤ n. By definition of v, the letters ap and aq
occur both exactly once in w and thus they have at most one occurrence in any
word from L. Consequently α(ap) = ap, α(aq) = aq and

g(u) = g1(u) = h1(u) = h(u)

for all u ∈ L. �
Assume in the following that each CLIP-language c(w0w

∗
1w
∗
2 · · ·w∗m) is effec-

tively given (for instance, either through the vectors of its Parikh-map, or by
giving the sequence of words w0, w1, w2, . . . wn). Next corollary is the solution of
a problem left open in [9]:

Corollary. Each CLIP-language over an alphabet of n symbols possesses a test
set of size at most 11 n. The test set can be effectively constructed.

Proof. Let L be a CLIP-language with alph(L) = Σn, n ∈ N+. Thus L =
w0w

∗
1w
∗
2 · · ·w∗m where m ∈ N and w0, w1, . . . , wm are in Σ∗n. Now it suffices to

choose w = w0w
2
1w

2
2 · · ·w2

m and use Theorem 16. The effectiveness is guaranteed
by the construction of the test set for En and by the fact that a subset of

{w0, w0w1, w0w2, . . . , w0wm}

is the basis of c(L). �
Given, for a language L′, (i) a word w, which is enough “representative” for the

alphabet of L′; and (ii) a basis B of L′, our result yields a straightforward although
rough method to construct a test set for the commutative language c(L′). The test
set is in fact a subset of c(w) augmented by a basis of L′. As we have seen, the
method can be applied to any CLIP-language L = c(w0w

∗
1w
∗
2 · · ·w∗m). If, moreover,

each symbol of alph(L) appears in also w1w2 · · ·wm, we can construct a test set of
size at most the dimension dimL of L. However, the small cardinality of the test
set is recouped by the length of one of its elements.

Theorem 17. Let L = c(w0w
∗
1w
∗
2 · · ·w∗m) be a CLIP-language such that alph(L) =

alph(w1w2 · · ·wm). Then L possesses an effectively constructible test set of size
dimL.

Proof. Assume, without loss of generality, that alph(L) = Σn. By the corollary
of Theorem 16, the language L1 = c(w∗1w

∗
2 · · ·w∗m) has a finite (effectively con-

structible) test set T1 = {u1, u2, . . . , ur} such that r ≤ 11n. Let u = u1u2 · · ·ur
and

U = {w0, w0u,w0w1, w0w2, . . . w0wm}·
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It should be clear that U is a subset of L and that from U we can effectively form
a basis T of L such that w0u ∈ T . We now verify that T is a test set for L. Let g
and h be morphisms that agree on T. Since T is a basis of L, the morphisms g, h
are length-equivalent on L. This means that g and h agree on {w0, u1, u2, . . . , ur}
and thereby also on T1. Since T1 is a test set of L1, we deduce that the morphisms
agree on L1. Let x ∈ L1 be such that |x|ai ≥ 2 for each i ∈ {1, 2, , . . . , n}. The
morphisms g and h agree on c(x). A slight modification of Theorem 6 (not all
letters in x are distinct) gives two possibilities: either

(i) g(ai) = f(ai) for i = 1, 2, . . . , n; or
(ii) there exists a primitive word t such that g(ai), f(ai) ∈ t∗ for i = 1, 2, . . . , n.

Because of the length-equivalence on L, the morphisms g and h agree on L. �

7. Conclusions and topics of further research

Hopefully the above considerations have given some information not only about
test sets for finite commutative languages but also of the impact of conjugacy-
and shuffle-like qualifications to word equations. In general, the assumption that
a language is commutative (or bounded) is very restrictive; most of the languages
are of neither type. One way to carry on the research is to study test sets for
language families generated by some well-known set of commutative languages.
Let R the set of all regular languages and c(R) = {c(R) | R ∈ R}. Furthermore,
denote by C(c(R)) the smallest trio generated by the family c(R). We end the
discussion to the following:

Research Problem. Does there exist an effectively constructible finite test set
for languages in the family C(c(R))?

It should be remembered that a trio is a family of languages closed under union,
ε-free morphism image and intersection with regular sets. The intuition says that
the answer to the problem is affirmative. The construction of the test set is
probably difficult.

Acknowledgements. The authors want to thank the anonymous referees for helpful com-
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[4] Ch. Choffrut and J. Karhumäki, Combinatorics on words, in Handbook of Formal Lan-
guages, Vol. I, edited by G. Rosenberg and A. Salomaa. Springer-Verlag, Berlin (1997)
329-438.
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[13] J. Karhumäki and W. Plandowski, On the size of independent systems of equations in
semigroups. Theoret. Comput. Sci. 168 (1996) 105-119.

[14] J. Kortelainen, On the system of word equations x0ui1x1ui2x2 · · ·uimxm =

y0vi1y1vi2y2 · · · vinyn (i = 1, 2, . . . ) in a free monoid. J. Autom. Lang. Comb. 3 (1998) 43-57.
[15] M. Lothaire, Combinatorics on Words. Addison-Wesley, Reading Massachusetts (1983).
[16] A. Salomaa, The Ehrenfeucht conjecture: A proof for language theorists. Bull. EATCS 27

(1985) 71-82.

Communicated by J. Berstel.
Received April, 2001. Accepted December, 2001.

to access this journal online:
www.edpsciences.org


