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Abstract. This paper investigates the existence of linear space data structures for 
range searching. We examine the homothetic range search problem, where a set S of 
n points in the plane is to be preprocessed so that for any triangle T with sides 
parallel to three fixed directions the points of S that lie in T can be computed 
efficiently. We also look at domination searching in three dimensions. In this problem, 
S is a set of n points in E 3 and the question is to retrieve all points of S that are 
dominated by some query point. We describe linear space data structures for both 
problems. The query time is optimal in the first case and nearly optimal in the second. 

1. l ~ r o d u ~ n  

Let S be a set o f  n po in ts  in d -d imens iona l  Euc l idean  space E a and  let D be a 
domain  o f  subsets  o f  E d cal led  ranges. Range searching with respect  to S and  
D refers to the task o f  p reprocess ing  S so that  for  any  q ~ D, the subset  o f  points  
of  S that  lie in q can be  c o m p u t e d  effectively. Typical ly ,  D is the set o f  all  ranges 
pa t t e rned  af ter  some fixed shape ,  e.g., rectangles,  disks,  t r iangles in E 2, t e t r ahedra  
in E 3, etc. In  all cases,  the  unde r s t and ing  is that  the preprocess ing  is a one-shot  
ope ra t ion  whose  cost  is amor t ized  over  many  queries.  F o r  this reason,  it is 
t rad i t iona l  to  measure  the pe r fo rmance  o f  a range search a lgor i thm by means  o f  
S(n),  the  s torage requi red ,  and  Q(n),  the  t ime needed  for  answer ing  any query.  
Let Sq = S n q deno te  the  set to be  computed .  Two impor tan t  classes o f  range 
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searching need be distinguished. In count-mode, range searching involves comput- 
ing only the cardinality of Sq, whereas in report-mode, every element of Sq is to 
be computed explicitly. 

These two modes of  operations often widely differ in complexity. One reason 
for the discrepancy comes from the opportunity offered in report-mode to amortize 
the search cost over the individual points of  the output [2], [11], [16]. The 
existence of  fairly efficient range search algorithms for a variety of  problems 
motivates the following kind of questions. What problems can be solved within 
a given time and /o r  space complexity? In particular, what can be done- -and  
how efficientlymif only linear storage is available? The main contribution of this 
paper is to propose a number of  linear space algorithms for range search problems 
in E 2 and E 3. Before proceeding any further, let us introduce some terminology. 
Homothetic range searching in E 2 has the specifications: S is a set of  n points in 
E2; D is the set oftriangles with sides parallel to three fixed directions. Domination 
search in E 3 refers to: S is a set of  n points in E3; D is the set {(-oo, x] x (-oo, y] x 
(-oo, z]lx " y, z ~ ~}. We summarize our main results; k denotes the output size. 

1. Homothetic range searching in E2: S(n) = O(n) and Q(n) = O ( k + l o g  n). 
2. Domination search in E3: S(n) = O(n) and Q(n) = O((k+ 1) log n). 
3. Domination search in E3: S(n) = O(n) and Q(n) = O ( k + l o g  2 n). 

The preprocessing time for these three solutions is, respectively, O(n log n), 
O(n2), and O(n log 2 n). The complexity class of  interest in this work is character- 
ized by the conditions: S(n) = O(n) and Q(n) = O ( k + l o g  c n), for some constant 
c. The main contribution of our work lies in the fact that neither of  the problems 
listed above was known to be in this class before. The only (major) range searching 
algorithms previously proven in this class are: 

1. D is the set of isothetic rectangles adjacent to a fixed line [16], [2] (recall 
that a figure is isothetic if it is made of edges parallel to the axes). 

2. D is the set of halfplanes [7]. 
3. D is the set of trapezoids with two right angles adjacent to a fixed line [6] 

(note that the last two problems are special cases of  this one). 
4. D is the set of translates of a fixed convex range [5]. 

In [3] it is shown that in count-mode orthogonal range searching (D = Ix1, x2] x 
[Yl, Y2]) can be clone in linear space and logarithmic time, but in report-mode a 
multiplicative factor of  log" n must be included to either time or space. Another 
complexity class worthy of interest in this context is characterized by the condi- 
tions: Sfn)  = O(n) and Q(n) = O(k+ n~), for some constant o~ < 1. The following 
problems have been shown to belong to this class: (1) S is a set of n points in 
E 2, D is the set of  all triangles [18], [9]; (2) S is a set of  n points in E 3, D is 
the set of  all tetrahedra [19]. See also [8] for more general sets of  problems in 
the complexity class in question. 

All the results of  this paper are based on an optimal solution to a paper-stabbing 
problem. Suppose that you have n sheets of  paper attached to one comer of  your 
desk; assume that sheets are different in size and shape but that none of  them is 
completely hidden behind any other. A query comes as a needle which you poke 
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through the first k sheets at an arbitrary point in the desk. The problem is to 
enumerate these sheets in optimal time and space. Our solution to this problem 
can be viewed as a generalization of McCreight 's priority search tree [16]. Since 
the underlying structure is an acyclic directed graph instead of a tree, one might 
call it a priority search dag. 

2. On a Paper-Stabbing Problem 

Let (O, xy) be a Cartesian system of reference for the Euclidean plane. The 
coordinates of  a point p are denoted (Px, Py). We say that a point p dominates a 
point q, a property denoted q < p, if and only if qx-< Px and qy < py. Let S = 
( P l , . . . ,  P,)  be a sequence of  points p~ = (xi, Yi) satisfying the following: 

Appearance Property: for any i,j, the relation pi <p j  implies i <j .  

The appearance property is akin to topological sorting. Informally, it stipulates 
that applying the painter's algorithm to the rectangles Ri = {p ~ E 2 IP < P~}, in the 
order i = n , . . . ,  1, leaves each rectangle at least partly visible (Fig. 1). For any 
point q ~ E 2 and any integer k ( 1 -  k - n ) ,  define Sq, k to be the set of  points in 
{P~, . . . ,  Pk} dominating q. We formulate the paper-stabbing problem as follows: 

Preprocess S so that for any q in E 2 and any integer k (with 1 <- k < - n ) ,  the 
se t  Sq, k can be computed efficiently. 

Before proceeding with the detailed description of  our solution, a word on 
the intuition behind it might be useful. Since only O(n)  space is allowed, there 
is little more we can do than form the planar graph of the visible parts of  rectangles 
Ri (Fig. 1), and preprocess it for efficient point location [15], [13], [10] (i.e., 
retrieval of  the face containing an arbitrary query point). This allows us to find 
the face containing q in logarithmic time. After this preliminary step, we will 
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Fig. 1. The map for (Pl,P2,..-,PT) and query point q. 
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attempt to cross through the subdivision both upward and rightward. Every edge 
in the subdivision corresponds to some point in S, so we might want to stop the 
traversal upon encountering points outside of  the desired range (determined by 
k). This may fail to give all the points of  Sq.k, so additional exploration based 
on some particular face ordering will be needed. We next substantiate this 
intuition. 

2.1. The Map of S, Its Properties, Its Construction 

Without loss of  generality, assume that all points of  S lie in the north-east 
quadrant, and for convenience that all x~ (resp. y~) are pairwise distinct (ties, if 
any, can be broken arbitrarily). We define the map of S, denotes d~(S), to be 
the isothetic planar subdivision obtained as follows (Fig. 1): for each i = 1 . . . .  , n 
in turn, extend a horizontal segment p~h~ and a vertical segment p~vi from p~, 
until hitting either another segment or one of  the axes. More formally, let Pi be 
the point of  S with maximal x-coordinate such that j < i and y~ < yj. I f  Pi exists, 
we have ha = xj, else ht~ =0 ,  where ht~ is the x-coordinate of  point h~. In all 
cases, hiy = y~. Similarly, V~x = x~; let Pl be the point of  S with maximal y-coordinate 
such that I < i and x~ < xt. I f  p~ exists, we have v~y = yl, else v~y = 0. The point p~ 
is called the anchor of  any edge on the segments pih~ or p~v~. 

Lemma 1. Let s be any vertical ( resp. horizontal) line segment that does not pass 
through any point of  S. Consider the bottom-up (resp. left-to-right) sequence of  
edges of ~ (  S) intersected by s and let (P i , , . . . ,  P~,) be the corresponding sequence 
of anchors. We necessarily have it <" • • < it. 

Proof. Because of  symmetry, we restrict ourselves to the "vertical" case. Let sx 
be the x-coordinate of  s. Since s does not contain any point of  S, for each 1 -< i - t, 
we have 

h,,x <- sx < x,,. (1) 

For the sake of  contradiction, assume that for some 1 (1 --- 1 < t) we have i,+t < i~ 
(Fig. 2). From the appearance property of  S and the definition of  p~,, we have 
p~, g p~., and Y~I < Y~,+,, hence x~, > x~,+,. But from the definition of  h~, and it+l < it, 
this leads to h~x---x~,+ I (Fig. 2), which contradicts (1). [] 

i piJ~'l Pi I 

Fig. 2. /t+ l < i I is impossible by construction. 
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Next we show how to set up the map d~ (S). We assume that M(S) is represented 
by any of  the standard structures for planar subdivisions: the DCEL (doubly- 
connected-edge-list representation [17] or the quad.edge structure [12]). Comput- 
ing d~(S) in O(n log n) time is elementary. The construction proceeds incre- 
mentally, by inserting each point Pl, . . . ,  P~ in this order. Let Mi be the subset 
of  maxima in S, = {Pl, .  • •, Pi}, i.e., Mi = {p ~ Si]p ~ q, for all q ~ SA{p}}. We can 
represent M~ in a dynamic search tree, sorted by y-coordinates. Inserting P~+I 
involves searching for Y~+1 in the tree, computing hi+l, traversing .~t(S~) to find 
v~, updating the map, deleting dominated points from the tree, and adding p~+~ 
to it. These operations are standard enough to make further elaboration 
unnecessary. 

As will appear shortly, we need an efficient method for solving the following 
retrieval problem. Let q be a point in E 2 with Ry = {(x, y) ]x = qx and y -> qy} and 
R~ = {(x, y ) ]y  = qy and x > qx}. Let ly(q) (resp. Ix(q)) be the sequence of  intersec- 
tions between Ry (resp. Rx) and the edges of M(S),  sorted by increasing y- 
coordinates (resp. x-coordinates). Preprocess ~/(S) so that for any q ~ E 2, the 
points of  ly(q) and Ix(q) can be computed in O(1) time per report, after O(log n) 
time preliminary work. A data structure, known as a hive-graph, has been described 
in [2] for solving precisely this problem. Roughly speaking, the idea is to refine 
the subdivision to allow efficient traversal in a preassigned direction. With the 
hive-graph, the point in Iy(q) (resp. Ix(q)) are visited and reported in the correct 
order. It will be crucial later on to be able to stop this process at an arbitrary 
point, without paying the price for the remaining points in ly(q) (resp. I~(q)). 
We will not detail the method here, but roughly speaking, it involves building a 
closely knit subdivision over the set of segments and preprocessing it for efficient 
point location. The preprocessing required by the algorithm takes O(n log n) 
time and the space used by the data structure is O(n). 

2.2. Completing the Data Structure 

As we mentioned earlier, being able to cross through ~t(S) along vertical or 
horizontal segments may not be quite sufficient to solve the paper-stabbing 
problem. Consider query point q together with k = 7 in Fig. 1. Points P4, Ps, and 
P6 anchor edges which intersect the vertical and horizontal rays emanating from 
q; this is not true for P7 which, however, is in Sq,7. To overcome this difficulty, 
we use a directed graph G = (V, E),  whose vertices are in one-to-one correspon- 
dence with the points of  S and whose edges express the segment adjacencies in 

~t(S). The graph G is defined as follows: 

V={wl , . . . ,  w,}; E={(wi, wy)]hj~p~v~ or vj~pih~} 

(Fig. 3). We adopt a node-based representation whereby each node w, of  G has 
associated with it a linked list E(wi) of  outgoing edges. E(wi)={w~,,..., wsk~}, 
with i1<" - - < i ~  and (w~, w~),...,(w~, w~J~E. 
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Fig. 3. Directed graph for the map in Fig. 1, 

We complete the description of the data structure by mentioning that each 
edge in M(S)  should have a pointer to its supporting node in G (an edge e is 
said to be supported by wi iff it lies on either p~h~ or p~vi). Of course, for any i 
(1 ~ i -  < n) point Pl should be retrievable in constant time from wi. It is clear that 
G with all its required pointers can be computed in O(n) time once d~(S) is 

• available in DCEL or quad-edge form. We omit the details. Next we list some 
of  the salient properties of  G. 

Lemma 2. G is acyclic and each node has indegree at most two. 

Proof. Whether hi lies on pjvj or vi lies on pjhj, the inequality j < i  holds, 
therefore G is acyclic. Since h~ and v~ lie on unique segments of Jt~(S), the 
indegree is at most two. [] 

Note in passing that G is not necessarily connected (Fig. 3). 

2.3. The Query Algorithm 

We are now ready to describe the algorithm for computing Sqj = {p~ E S[ q <p~ 
and i_< l}, given a query (q, l). For convenience, we assume that qx # x ~ , . . . ,  x~ 
and qy ~ y ~ , . . . ,  yn. Recall that I~(q) (resp. Iy(q)) is the ordered sequence of  
intersections between M(S) and the upward (resp. rightward) ray from q. Let p 
be any point of  an edge e of  d~(S); we designate by a(p) the anchor of e. Let 

and 

.Ix ={wi ~ V l i <  l and Pi = a(p) for some p in Ix(q)} 

Jy={w~e V[i<-! and pi=t~(p) for some p in Iy(q)}. 

As a preliminary step, we compute Jx and Jy. This can be done optimally by 
using the hive-graph structure mentioned in Section 2.1. This is possible because, 
by virtue of  Lemma 1, the order of reports corresponds to increasing indices, 
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i.e., the anchors of points in Ix(q) (resp. I t (q) )  form an increasing sequence of 
indices. As a result, each sequence of reports may stop as soon as an anchor pj 
( j  > !) is discovered. After this operation, which necessitates O(log n + [J~ u Jyl) 
time, we are ready to explore the graph G. 

Initially, S¢.t = 0 and we define J = J~ w Jr" If  J = I~, terminate. Otherwise, mark 
every node in J. Then, as long as there are marked nodes in G, pick any of  them, 
wi, and perform the following steps. 

Step 1. Sq.t <-- Sq,~ u {p,}. Unmark w~. 

Step 2. Let E(w~) = {w~,,. . . ,  w~,} be the set of nodes emanating from w~ and 
let i,, be the largest index less than l, i.e. im = m a x { i l i a { i t  . . . . .  i,} a n d j  < - l}. If 
im is well defined, mark nodes w ~ , . . . ,  w~,~. 

Theorem 3. Let S be a sequence o f  n points in the north-east quadrant which 
satisfies the appearance property. There is a data structure that takes O(n  log n) 
time for  construction and O(n)  space, such that for  any query (q, l) the points in 
Sq, t can be reported in O(IS¢,tl+log n) time. This is optimal. 

Proof We successively establish the correctness of  the method described above 
(part 1 below) and then analyze its performance (part 2 below). 

Part 1. Given the organization of each set of outgoing edges in sorted lists, 
it suffices to show that for each Pi E Sq, t\(Jx u Jy) there exists in G a (directed) 
path wjl . . . .  , w~, with j~ = i, wj, ~ J~ u Jy, PJl , " . , PJ, c Sq, v We prove this fact by 
induction on the ascending sequence of indices in Sq,~. The basis case being 
obvious, let Pi ~ Sq.l\(J~ u Jy). Since pi is not in J~, v~ lies on pjhj for some j 
(1 -<j-< n), so G has an edge from w i to w~. Also, V~y > qy implies that q < pj, and 
since clearlyj  < i, we have pj ~ Sq, t. By induction hypothesis there exists a directed 
path from some wj, to w~. This concludes the argument. 

Part 2. The computation of J~ and Jy takes O(log n + IJx w Jyl) time, as already 
observed. The remainder of the algorithm has a complexity proportional to the 
number of  edges of G traversed. Let us call a good node, a node w~ such that 
p~ ~ Sq, t, and a bad node, any other. Let H be the subgraph of G induced by the 
good nodes. From Lemma 1, it follows that for each good node w~ at most two 
bad nodes need to be visited. The running time of the algorithm is therefore 
proportional to the number of edges in H. This number is proportional to the 
number of vertices in H, since each vertex has indegree at most two (Lemma 2). 

[] 

3. Homothetic Range Searching 

The homothetic range search problem refers to the case where the query domain 
D is the set of  all polygons obtained by submitting a fixed simple m-gon to an 
arbitrary translation and an arbitrary scaling transformation. More precisely, let 
P be the simple m-gon. A query is specified by a pair (q, c), with q e E 2 and c 
a positive real number; the homothet of  P is the polygon Pq.c = {P ~ E21 there is 
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a point v ~ P such that Px = qx + cvx and py = qy + cvr}. The input to the problem, 
denoted S as usual, is a set of  n points in E 2 and the set to be computed is 
S~ = S n Pq.c. In the following, the number of sides of  the query polygon, m, is 
taken to be a constant. We state our main result. 

T h e o r e m  4. Let  S be a set o f  n points in E 2. In O(n  log n) preprocessing, it is 
possible to construct an O(  n ) space data structure so that homothetic range searching 
with respect to S can be done in O(k+ log  n) query time, where k is the output size. 
The method is optimal. 

Proof. By triangulating the query polygon if necessary, one can always assume 
that P is a triangle. We set up a coordinate system such that two sides of  P are 
parallel to the coordinate axes, and if P is translated so as to have its two sides 
collinear with the coordinate axes, then P is contained in the north-east quadrant 
(note that this system will not be orthogonal in general), We easily ensure that 
each point in S lies in the north-east quadrant. Let ax + by + 1 = 0 be an equation 
of  the line passing through the third side of  the triangle P. In O(n  log n) time, 
sort the points of S according to their projections on a line perpendicular to this 
line. Let S = (Pl . . . .  , p , )  be the resulting sequence; if p~ = (x ,  y~) we have axl + 
byl < .  • • <- ax ,  + by,. It is easy to see that S has the appearance property of the 
previous section, so it is possible to prepare the grounds for the paper-stabbing 
problem. Let A B C  be the query triangle, with A B  (resp. A C )  parallel to the x 
(resp. y) axis (Fig. 4). Let H be the halfplane delimited by the line passing 
through B C  and containing ABC,  and let k =  IS c~ HI; note that k is easily 
computed in O(log n) time. S n A B C  is exactly the output of  the paper-stabbing 
problem on query input (A, k). We leave the claim of  optimality as an exercise. 

[] 

/ J z ~  c 

Fig. 4. Range query with triangle ABC 
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4. The Dominat ion Search Problem in E a 

We endow E 3 with a Cartesian system of coordinates (O, xyz). The notion of 
domination introduced in Section 2 generalizes easily to higher dimensions: a 
point q ~ E 3 dominates a point p e E 3, denoted p < q iff Px <- qx, Py < qy, and 
p~ -< q~. Let S = { P l , . - . ,  Pn} be a set of n points in E 3. Domination searching can 
be phrased as follows: preprocess S so that for any query q e E 3 the set Sq = 
{PIP ~ S and p <  q} can be computed effectively. Let S(n) and Q(n) denote, 
respectively, the space and query time required by an algorithm for domination 
searching in E 3, and let k denote the output size. The best solution known so 
far achieves S(n)  = O(n log n), Q(n) = O ( k + l o g  n) [11]. We will next describe 
two linear space data structures for this problem, one achieving Q ( n ) =  
O((k+ 1) log n) and the other Q(n)=  O ( k + l o g  2 n). 

Let p~ = (x ,  y~, z~). For convenience, we again assume that none of the three 
sets of  coordinates has duplicates. The notion of  minima is crucial to our approach. 
A point p~ is called a minimum of S if it does not dominate any other point in 
S. This definition carries over directly to E 2, so we may refer to minima in E 2 
without further explanation. Assume for the time being that each point of S is 
a minimum. We put ourselves in the conditions of  Theorem 3 by: 

1. Defining a new relation > as follows: p > q iff q < p. 
2. Relabelling the points of S so that z l < ' " < z n ,  and defining S * =  

((xl,  y l ) , . . . ,  (x~, yn)) as a sequence of  points in the plane. 

Since each p~ is a minimum, it is immediate to see that the sequence S* satisfies 
the appearance property with respect to > (Section 2). Given a query q, we 
reduce the domination problem in E 3 to a paper-stabbing problem in which > 
has been substituted for < .  A query q = (qx, qy, q~) is transformed in O(log n) 
time into a query (qx, qy, k) for the paper-stabbing problem, with k =  
I{p, ~ sI z, <- q~}l. w e  conclude with a result which will be the cornerstone of our 
ensuing developments. 

Lemma 5. Let S be a set of  n points in E 3, all of  which are minima. In O( n log n) 
preprocessing, it is possible to construct an O(n) space data structure so that 
domination searching with respect to S can be done in O ( k + l o g  n) query time, 
where k is the output size. The method is optimal. 

4.1. A Simple Linear-Space Solution 

From now on, S is taken to be an arbitrary set of  n points in E 3. Recall that Sq, 
the set to be computed, consists of  the points o f  S dominated by the query point 
q. In preprocessing, we compute the sequence of  layers of  S, denoted 
( ~  . . . .  , .Yp). These layers are subsets of S obtained by removing the minima of 
S, computing the new set o f  minima, removing it, and so forth. Let -Y(S) denote 
the set of  minima of S. The following algorithm provides a formal definition of 
layers, as well as a method for computing them: 
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i~-0 
while S # 0 

begin 
i ~ - i + l  
.,% ,- ~e( s )  
S ~ S \ ~ i  

end 
p~-i  

Kung et al. [14] have shown how to compute the minima of a set of n points 
in E 3 in O(n log n) time. This leads to an O(n 2 log n) time, O(n) space algorithm 
for computing the layers of S. This can be improved by resorting to a simpler, 
but more space-consuming, technique. Set up a directed graph over the points 
of S by placing an edge from p~ to pj iff p~ < pj. Removing all the sources of the 
graph gives .LPl and iterating on this process gives ~2 . . . . .  ~p in O(n 2) time and 
space. We omit the details. 

Lemma 6. For any i (1 - i <p) ,  Sq ca -~+1 ~ 0 implies Sq ca ~ # O. 

Proof. Each point p in -LPi+~ dominates at least one point in ~ .  [] 

From Lemma 6, a possible line of  attack follows trivially. We apply the result 
of Lemma 5 to ~ , :L~2 , . . .  in turn, until we fail to report any point in Sq, at 
which stage the algorithm terminates. This leads to: 

Theorem 7. Let S be a set of  n points in E 3. In O( n 2) time and space, it is possible 
to construct an O( n ) space data structure so that domination searching with respect 
to S can be done in O ( ( k + l )  log n) query time, where k is the output size. 

4.2. A More Efficient Algorithm 

We next show how a recursive strategy allows us to take the running time of the 
previous solution down to O(k+ log  2 n). To be rigorous, this transformation 
constitutes an improvement only for values of  k = [l(log n). Before proceeding 
with the description of  the algorithm, we need to make a short digression. Let V 
be a set of n points in E 2, with each point being a minimum. Let Vq = {v ~ V[v < q} 
be defined for any point q ~ E 2. Domination search in two dimensions calls for 
computing Vq efficiently, given any query point q. Of course, this problem can 
be solved optimally by application of Lemma 5. A much simpler solution is based 
on the following remark. Let V= { e l , . . . ,  v,} be given by increasing x-coordin- 
ates. The points of Vq always form a contiguous chain (possibly empty) of  the 
form {vi, vi+l . . . .  , v~}. Computing Vq can be done in optimal O ( j - i + l o g n )  
time by searching for qx in V (regarded for this purpose as a dictionary of 
x-coordinates). 
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Observation 8. Let S be a set of n points in E 2, all of  which are minima. In 
O(n log n) preprocessing, it is possible to construct an O(n) space data structure 
so that domination searching can be done in O ( k + l o g  n) query time, where k 
is the output size. Answering a query essentially involves searching for an item 
in a dictionary. 

This last remark about the reduction of domination search in E 2 to a simple 
dictionary look-up is of  great importance, as will be apparent below. Let us go 
back to our original problem, i.e., domination search in E 3. 

The data structure, denoted D(S),  is a binary tree defined recursively as 
follows: 

1. I f  S = I~ then D(S) is the empty tree. 
2. Otherwise, let S* be the projection of S onto the yz-plane. We define P as 

the set of  minima of  S*, i.e., P = { p ~ S * l q ~ p  for all q~S*\{p}} ,  and 
M = {p = (p~, py, Pz) ~ S[ (px, py) e P} (clearly, M is a set of  minima in E3). 
It is then possible to build the data structures of  Lemma 5 and Observation 
8 for M and P, respectively, which we denote H(S)  and E(S).  Both data 
structures are assigned to the root r of D(S).  Define V =  S \ M  and let 
(Pi . . . . .  , pi~) be the sequence of points in V sorted by increasing x-coordin- 
ates. Let 1 = [m/2] ,  1/1 = {p~,, . . . ,  p~,}, and V2 = {p~,+,, • . . ,  p J :  D(VI)  (resp. 
D(V2)) is assigned the left (resp. right) subtree of  r. Since each point of  S 
is represented only twice in D(S),  the storage required for the entire data 
structure is clearly O(n). The data structures E(S)  and H(S)  will be referred 
to later on as the easy and hard structures, respectively. We are now ready 
to describe the query algorithm. 

Step 1. Using D(S)  as a search tree, locate the leaf corresponding to pi such 
that x~ <- q~ < xi+ 1 . Let I)1, . . . , '/')h be the corresponding search path; Vl is the root 
and Vh is the leaf that stores p~ (Fig. 5). 

Step 2. Query the hard structure at each vi ( 1 - i - h ) .  

Step 3. Let W be the sequence of left children of (vl . . . .  , vh-l) that are not 
nodes of  the search path (this sequence is obtained by tracing the search path 
and recording the left child of  each node witnessing a right turn- -see  square 
nodes in Fig. 5). Mark every node of W. 

Step 4. While D(S)  has marked nodes, pick any, unmark it, and query its easy 
structure. I f  this leads to any report, mark its children (if any). 

The correctness of  the algorithm is based on a number of  observations, simple 
enough to have their proofs omitted. 

1. All the points in Sq are stored in v l , . . . ,  vh and in the subtrees rooted at 
the nodes of  W. 

2. With respect to the subset of  S associated with any node that is either in 
W or is a descendant of  a node in W, the problem to be solved is equivalent 
to domination search in a set of minima in E z. 
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Fig. 5. Set V = (vl, Vz . . . . .  VT) and nodes in W. 

v~ 

3. If  the easy structure at v fails to report any point, no point stored in any 
descendant of  v lies in Sg. 

Let Dq be the subtrees of D(S) visited during the computation and let k = [Sql 
be the output size. The algorithm takes O(log 2 n + k log n) time, since (1) every 
node visited that is neither a leaf of Dq nor of the form vj contributes at least 
one distinct entry to Sq; (2) each node visited requires O(log n) search time; (3) 
the number of  nodes vj is O(log n). This disappointing performance can be 
improved by exploiting the last remark of  Observation 8. For the sake of  clarity, 
a little background is necessary. 

The notion of  fractional cascading, developed in [6], is concerned with the 
problem of  batching repeated binary searches. Let G be a connected graph whose 
maximum degree is bounded by a constant. With each node w ~ G is associated 
a dictionary D(w) (i.e., an array of sorted numbers). Let m be the total size of 
all the dictionaries. Fractional cascading is a method for preprocessing G so that 
contiguous searches can be carded out in constant time. More precisely, if x has 
to be searched in D(wl) . . . .  , D(w,), where for each i, w~ is adjacent to some wj 
( j <  i), this preprocessing allows us to do so in O(log m) time for D(wO and 
then O(1) time for each of the others, D(w2) . . . .  , D(w,). The interesting feature 
of  fractional cascading is that its application increases the original size of the 
data structure by at most a constant factor. We also mention that the preprocessing 
can be done in linear time. The relevance of  fractional cascading to the problem 
at hand is immediate. Since the easy structures are handled via a simple dictionary 
search, fractional cascading will allow us to handle all of  them in O(k) time 
after O(log n) preliminary work. Incidentally, note that the graph spanned by 
the nodes in W and their visited descendants is not connected, but these nodes 
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together with {vl . . . .  , vh} do form a connected subgraph, Consequently, the 
fractional cascading scheme will have to visit the easy structures in V as well, 
in order to ensure the connectivity condition. This is not a problem, however, 
since there are only O(log n) such nodes, hence O(log n) spurious visits, at unit 
cost each. The preprocessing takes O(n log 2 n) time, since each node requires 
O(p logp)  steps, where p is the number of points stored in the subtree of the 
node. We conclude: 

Theorem 9. Let S be a set of  n points in E 3. In O(n log 2 n) preprocessing, it is 
possible to construct an O( n) space data structure so that domination searching 
with respect to S can be done in O( k + log 2 n) query time, where k is the output size. 

It is possible to generalize Theorems 7 to 9 to higher dimensions. Every increase 
of one in dimension will result in the introduction of  a factor of  log n in both 
space and search time. The technique involves a canonical decomposition of the 
query into O(log n) queries of lesser dimensionality. The technique is due to 
Bentley [1]. It is standard and has been applied before on such numerous 
occasions that we will dispense with any further explanation. 

Theorem 10. Let S be a set of  n points in E a ( d > 2 ) .  In O ( n l o g d - l n )  
(resp. O(n2)) preprocessing, it is possible to construct an O(n log a-3 n) space 
data structure so that domination searching with respect to S can be done in 
O( k + log d-1 n) ( resp. O(log a-2 n + k log n)) query time, where k is the output size. 

5. Conclusions 

The main contribution of this paper is the presentation of  linear space data 
structures for two instances of  range searching. In the case of three-dimensional 
domination, the query times achieved remain short of optimal. Can these be 
improved without sacrificing storage? Can the structures described in this paper 
be etticiently dynamized? Can they be made to perform better on the average? 

Two of  the techniques used in this work (paper-stabbing and recursive three- 
dimensional domination) follow an approach which might be compared with the 
retrieve-and-explore strategy of  McCreight's priority search tree [ 16]. The idea is 
to set up a directed graph (dag and binary tree) and traverse it from each of a 
number of  specified source-nodes, with the understanding that a nonsource node 
is visited only if its predecessor has been and that visit contributed at least one 
item to the output. This technique, based on some connectivity property of the 
encoding of  each output set, seems fairly fundamental to retrieval problems (see 
also the solution for fixed radius circular range searching [5]). This raises the 
general question of studying how each output set can be encoded in a graph 
structure for a given range search problem: as demonstrated in [4] this seems a 
promising line of attack for proving lower bounds, especially in the pointer 
machine model. 



126 B. Chazelle and H. Edelsbrunner 

References 

1. J. L. Bentley, Multidimensional divide and conquer, Comm. A C M  23 (1980), 214-229. 
2. B. Chazelle, Filtering search: a new approach to query-answering, SlAM J. Comput. 15 (1986), 

703-724. 
3. B. Chazelle, A Functional Approach to Data Structures and Its Use in Multidimensional Searching, 

Technical Report No. CS-85-16, Brown University, 1985. Preliminary version in Proceedings of 
the 26th Annual IEEE Symposium on Foundations of Computer Science, 165-174, 1985. 

4. B. Chazelle, Lower bounds on the complexity of multidimensional searching, Proceedings of the 
27th Annual IEEE Symposium on Foundations of Computer Science, 87-96, 1986. 

5. B. Chazeile and H. Edelsbrunner, Optimal solutions for a class of point retrieval problems, J. 
Symbolic Comput. 1 (1985), 47-56. 

6. B. Chazelle and L. J. Guibas, Fractional cascading: I. A data structuring technique, Algorithmica 
1 (1986), 133-162. 

7. B. Chazelle, L. J. Guibas, and D. T. Lee, The power of geometric duality, Proceedings of the 24th 
Annual IEEE Symposium on Foundations of Computer Science, 217-225, 1983. Also in BIT 25 
(1985), 76-90. 

8. D. P. Dobkin and H. Edelsbrunner, Space searching for interesting objects, Proceedings of the 
25th Annual IEEE Symposium on Foundations of Computer Science, 387-392, 1984. 

9. H. Edelsbrunner and E. Welzl, Halfplanar range search in linear space and O(n °'695) query time, 
Inform. Process. Lett., to appear. 

10. H. Edelsbrunner, L. J. Guibas, and J. Stolfi, Optimal point location in a monotone subdivision, 
SIAMJ. Comput. 15 (1986), 317-340. 

11. H. N. Gabow, J. L. Bentley, and R. E. Tarjan, Scaling and related techniques for geometry 
problems, Proceedings of the 16th Annual A C M  Symposium on Theory of Computation, 135-143, 
1984. 

12. L. J. Guibas and J. Stolfi, Primitives for the manipulation of general subdivisions and the 
computation of Voronoi diagrams, ACM Trans. Graphics 4 (1985), 74-123. 

13. D. G. Kirkpatrick, Optimal search in planar subdivisions, SIAM J. Comput. 12 (1983), 28-35. 
14. H. T. Kung, F. Luccio, and F. P. Preparata, On finding the maxima of a set of vectors, J. Assoc. 

Comput. Much. 22 (1975), 46,9-476. 
15. R. J. Lipton and R. E. Tarjan, Applications of a planar separator theorem, SIAM Z Comput. 9 

(1980), 615-627. 
16. E. M. McCreight, Priority search trees, SIAM. Z Comput. 14 (1985), 257-276. 
17. D. E. Muller and F. P. Preparata, Finding the intersection of two convex polyhedra, Theoret. 

Comput. Sc/. 7 (1978), 217-236. 
18. D. E. Willard, Polygon retrieval, SIAMZ Comput. 11 (1982), 149-165. 
19. F.F. Yao, A 3-space partition and its applications, Proceedings of the 15th Annual A C M  Symposium 

on Theory of Computing, 258-263, 1983. 

Received April, 1986, and in revised form November 25, 1986. 


