
Discrete Comput Geom 2:113-126 (1987)

G ffir-t
t~) 1987, Springer-Vetlag New York

Linear Space Data Structures for Two Types of Range Search*

Bernard Chazel le I and Herber t Ede l sb runner 2

l Department of Computer Science, Princeton University, Princeton, NJ 08544, USA

2 Department of Computer Science, University of Illinois, Urbana, IL 61801, USA

Communicated by David Dobkin

Abstract. This paper investigates the existence of linear space data structures for
range searching. We examine the homothetic range search problem, where a set S of
n points in the plane is to be preprocessed so that for any triangle T with sides
parallel to three fixed directions the points of S that lie in T can be computed
efficiently. We also look at domination searching in three dimensions. In this problem,
S is a set of n points in E 3 and the question is to retrieve all points of S that are
dominated by some query point. We describe linear space data structures for both
problems. The query time is optimal in the first case and nearly optimal in the second.

1. l ~ r o d u ~ n

Let S be a set o f n po in ts in d -d imens iona l Euc l idean space E a and let D be a
domain o f subsets o f E d cal led ranges. Range searching with respect to S and
D refers to the task o f p reprocess ing S so that for any q ~ D, the subset o f points
of S that lie in q can be c o m p u t e d effectively. Typical ly , D is the set o f all ranges
pa t t e rned af ter some fixed shape , e.g., rectangles, disks, t r iangles in E 2, t e t r ahedra
in E 3, etc. In all cases, the unde r s t and ing is that the preprocess ing is a one-shot
ope ra t ion whose cost is amor t ized over many queries. F o r this reason, it is
t rad i t iona l to measure the pe r fo rmance o f a range search a lgor i thm by means o f
S(n), the s torage requi red , and Q(n), the t ime needed for answer ing any query.
Let Sq = S n q deno te the set to be computed . Two impor tan t classes o f range

* This research was conducted while the first author was with Brown University and the second
author was with the Technical University of Graz, Austria. The first author was supported in part
by NSF Grant MCS 83-03925.

114 B. Chazelle and H. Edelsbrunner

searching need be distinguished. In count-mode, range searching involves comput-
ing only the cardinality of Sq, whereas in report-mode, every element of Sq is to
be computed explicitly.

These two modes of operations often widely differ in complexity. One reason
for the discrepancy comes from the opportunity offered in report-mode to amortize
the search cost over the individual points of the output [2], [11], [16]. The
existence of fairly efficient range search algorithms for a variety of problems
motivates the following kind of questions. What problems can be solved within
a given time and /o r space complexity? In particular, what can be done- -and
how efficientlymif only linear storage is available? The main contribution of this
paper is to propose a number of linear space algorithms for range search problems
in E 2 and E 3. Before proceeding any further, let us introduce some terminology.
Homothetic range searching in E 2 has the specifications: S is a set of n points in
E2; D is the set oftriangles with sides parallel to three fixed directions. Domination
search in E 3 refers to: S is a set of n points in E3; D is the set {(-oo, x] x (-oo, y] x
(-oo, z]lx " y, z ~ ~}. We summarize our main results; k denotes the output size.

1. Homothetic range searching in E2: S(n) = O(n) and Q(n) = O (k + l o g n).
2. Domination search in E3: S(n) = O(n) and Q(n) = O((k+ 1) log n).
3. Domination search in E3: S(n) = O(n) and Q(n) = O (k + l o g 2 n).

The preprocessing time for these three solutions is, respectively, O(n log n),
O(n2), and O(n log 2 n). The complexity class of interest in this work is character-
ized by the conditions: S(n) = O(n) and Q(n) = O (k + l o g c n), for some constant
c. The main contribution of our work lies in the fact that neither of the problems
listed above was known to be in this class before. The only (major) range searching
algorithms previously proven in this class are:

1. D is the set of isothetic rectangles adjacent to a fixed line [16], [2] (recall
that a figure is isothetic if it is made of edges parallel to the axes).

2. D is the set of halfplanes [7].
3. D is the set of trapezoids with two right angles adjacent to a fixed line [6]

(note that the last two problems are special cases of this one).
4. D is the set of translates of a fixed convex range [5].

In [3] it is shown that in count-mode orthogonal range searching (D = Ix1, x2] x
[Yl, Y2]) can be clone in linear space and logarithmic time, but in report-mode a
multiplicative factor of log" n must be included to either time or space. Another
complexity class worthy of interest in this context is characterized by the condi-
tions: Sfn) = O(n) and Q(n) = O(k+ n~), for some constant o~ < 1. The following
problems have been shown to belong to this class: (1) S is a set of n points in
E 2, D is the set of all triangles [18], [9]; (2) S is a set of n points in E 3, D is
the set of all tetrahedra [19]. See also [8] for more general sets of problems in
the complexity class in question.

All the results of this paper are based on an optimal solution to a paper-stabbing
problem. Suppose that you have n sheets of paper attached to one comer of your
desk; assume that sheets are different in size and shape but that none of them is
completely hidden behind any other. A query comes as a needle which you poke

Linear Space Data Structures for Two Types of Range Search 115

through the first k sheets at an arbitrary point in the desk. The problem is to
enumerate these sheets in optimal time and space. Our solution to this problem
can be viewed as a generalization of McCreight 's priority search tree [16]. Since
the underlying structure is an acyclic directed graph instead of a tree, one might
call it a priority search dag.

2. On a Paper-Stabbing Problem

Let (O, xy) be a Cartesian system of reference for the Euclidean plane. The
coordinates of a point p are denoted (Px, Py). We say that a point p dominates a
point q, a property denoted q < p, if and only if qx-< Px and qy < py. Let S =
(P l , . . . , P,) be a sequence of points p~ = (xi, Yi) satisfying the following:

Appearance Property: for any i,j, the relation pi <p j implies i <j .

The appearance property is akin to topological sorting. Informally, it stipulates
that applying the painter's algorithm to the rectangles Ri = {p ~ E 2 IP < P~}, in the
order i = n , . . . , 1, leaves each rectangle at least partly visible (Fig. 1). For any
point q ~ E 2 and any integer k (1 - k - n) , define Sq, k to be the set of points in
{P~, . . . , Pk} dominating q. We formulate the paper-stabbing problem as follows:

Preprocess S so that for any q in E 2 and any integer k (with 1 <- k < - n) , the
se t Sq, k can be computed efficiently.

Before proceeding with the detailed description of our solution, a word on
the intuition behind it might be useful. Since only O(n) space is allowed, there
is little more we can do than form the planar graph of the visible parts of rectangles
Ri (Fig. 1), and preprocess it for efficient point location [15], [13], [10] (i.e.,
retrieval of the face containing an arbitrary query point). This allows us to find
the face containing q in logarithmic time. After this preliminary step, we will

I Y

h 5 •

,

h 1 •
h2 i Pl

vl

I

i h:"

½ ~ v4

"= P7

X

Fig. 1. The map for (Pl,P2,..-,PT) and query point q.

116 B. Chazelle and H. Edelsbrunner

attempt to cross through the subdivision both upward and rightward. Every edge
in the subdivision corresponds to some point in S, so we might want to stop the
traversal upon encountering points outside of the desired range (determined by
k). This may fail to give all the points of Sq.k, so additional exploration based
on some particular face ordering will be needed. We next substantiate this
intuition.

2.1. The Map of S, Its Properties, Its Construction

Without loss of generality, assume that all points of S lie in the north-east
quadrant, and for convenience that all x~ (resp. y~) are pairwise distinct (ties, if
any, can be broken arbitrarily). We define the map of S, denotes d~(S), to be
the isothetic planar subdivision obtained as follows (Fig. 1): for each i = 1 , n
in turn, extend a horizontal segment p~h~ and a vertical segment p~vi from p~,
until hitting either another segment or one of the axes. More formally, let Pi be
the point of S with maximal x-coordinate such that j < i and y~ < yj. I f Pi exists,
we have ha = xj, else ht~ =0 , where ht~ is the x-coordinate of point h~. In all
cases, hiy = y~. Similarly, V~x = x~; let Pl be the point of S with maximal y-coordinate
such that I < i and x~ < xt. I f p~ exists, we have v~y = yl, else v~y = 0. The point p~
is called the anchor of any edge on the segments pih~ or p~v~.

Lemma 1. Let s be any vertical (resp. horizontal) line segment that does not pass
through any point of S. Consider the bottom-up (resp. left-to-right) sequence of
edges of ~ (S) intersected by s and let (P i , , . . . , P~,) be the corresponding sequence
of anchors. We necessarily have it <" • • < it.

Proof. Because of symmetry, we restrict ourselves to the "vertical" case. Let sx
be the x-coordinate of s. Since s does not contain any point of S, for each 1 -< i - t,
we have

h,,x <- sx < x,,. (1)

For the sake of contradiction, assume that for some 1 (1 --- 1 < t) we have i,+t < i~
(Fig. 2). From the appearance property of S and the definition of p~,, we have
p~, g p~., and Y~I < Y~,+,, hence x~, > x~,+,. But from the definition of h~, and it+l < it,
this leads to h~x---x~,+ I (Fig. 2), which contradicts (1). []

i piJ~'l Pi I

Fig. 2. /t+ l < i I is impossible by construction.

Linear Space Data Structures for Two Types of Range Search 117

Next we show how to set up the map d~ (S). We assume that M(S) is represented
by any of the standard structures for planar subdivisions: the DCEL (doubly-
connected-edge-list representation [17] or the quad.edge structure [12]). Comput-
ing d~(S) in O(n log n) time is elementary. The construction proceeds incre-
mentally, by inserting each point Pl, . . . , P~ in this order. Let Mi be the subset
of maxima in S, = {Pl, . • •, Pi}, i.e., Mi = {p ~ Si]p ~ q, for all q ~ SA{p}}. We can
represent M~ in a dynamic search tree, sorted by y-coordinates. Inserting P~+I
involves searching for Y~+1 in the tree, computing hi+l, traversing .~t(S~) to find
v~, updating the map, deleting dominated points from the tree, and adding p~+~
to it. These operations are standard enough to make further elaboration
unnecessary.

As will appear shortly, we need an efficient method for solving the following
retrieval problem. Let q be a point in E 2 with Ry = {(x, y)]x = qx and y -> qy} and
R~ = {(x, y)]y = qy and x > qx}. Let ly(q) (resp. Ix(q)) be the sequence of intersec-
tions between Ry (resp. Rx) and the edges of M(S), sorted by increasing y-
coordinates (resp. x-coordinates). Preprocess ~/(S) so that for any q ~ E 2, the
points of ly(q) and Ix(q) can be computed in O(1) time per report, after O(log n)
time preliminary work. A data structure, known as a hive-graph, has been described
in [2] for solving precisely this problem. Roughly speaking, the idea is to refine
the subdivision to allow efficient traversal in a preassigned direction. With the
hive-graph, the point in Iy(q) (resp. Ix(q)) are visited and reported in the correct
order. It will be crucial later on to be able to stop this process at an arbitrary
point, without paying the price for the remaining points in ly(q) (resp. I~(q)).
We will not detail the method here, but roughly speaking, it involves building a
closely knit subdivision over the set of segments and preprocessing it for efficient
point location. The preprocessing required by the algorithm takes O(n log n)
time and the space used by the data structure is O(n).

2.2. Completing the Data Structure

As we mentioned earlier, being able to cross through ~t(S) along vertical or
horizontal segments may not be quite sufficient to solve the paper-stabbing
problem. Consider query point q together with k = 7 in Fig. 1. Points P4, Ps, and
P6 anchor edges which intersect the vertical and horizontal rays emanating from
q; this is not true for P7 which, however, is in Sq,7. To overcome this difficulty,
we use a directed graph G = (V, E), whose vertices are in one-to-one correspon-
dence with the points of S and whose edges express the segment adjacencies in

~t(S). The graph G is defined as follows:

V={wl , . . . , w,}; E={(wi, wy)]hj~p~v~ or vj~pih~}

(Fig. 3). We adopt a node-based representation whereby each node w, of G has
associated with it a linked list E(wi) of outgoing edges. E(wi)={w~,,..., wsk~},
with i1<" - - < i ~ and (w~, w~),...,(w~, w~J~E.

118 B. Chazelle and H. Edelsbrunner

©

©

Fig. 3. Directed graph for the map in Fig. 1,

We complete the description of the data structure by mentioning that each
edge in M(S) should have a pointer to its supporting node in G (an edge e is
said to be supported by wi iff it lies on either p~h~ or p~vi). Of course, for any i
(1 ~ i - < n) point Pl should be retrievable in constant time from wi. It is clear that
G with all its required pointers can be computed in O(n) time once d~(S) is

• available in DCEL or quad-edge form. We omit the details. Next we list some
of the salient properties of G.

Lemma 2. G is acyclic and each node has indegree at most two.

Proof. Whether hi lies on pjvj or vi lies on pjhj, the inequality j < i holds,
therefore G is acyclic. Since h~ and v~ lie on unique segments of Jt~(S), the
indegree is at most two. []

Note in passing that G is not necessarily connected (Fig. 3).

2.3. The Query Algorithm

We are now ready to describe the algorithm for computing Sqj = {p~ E S[q <p~
and i_< l}, given a query (q, l). For convenience, we assume that qx # x ~ , . . . , x~
and qy ~ y ~ , . . . , yn. Recall that I~(q) (resp. Iy(q)) is the ordered sequence of
intersections between M(S) and the upward (resp. rightward) ray from q. Let p
be any point of an edge e of d~(S); we designate by a(p) the anchor of e. Let

and

.Ix ={wi ~ V l i < l and Pi = a(p) for some p in Ix(q)}

Jy={w~e V[i<-! and pi=t~(p) for some p in Iy(q)}.

As a preliminary step, we compute Jx and Jy. This can be done optimally by
using the hive-graph structure mentioned in Section 2.1. This is possible because,
by virtue of Lemma 1, the order of reports corresponds to increasing indices,

Linear Space Data Structures for Two Types of Range Search 119

i.e., the anchors of points in Ix(q) (resp. I t (q)) form an increasing sequence of
indices. As a result, each sequence of reports may stop as soon as an anchor pj
(j > !) is discovered. After this operation, which necessitates O(log n + [J~ u Jyl)
time, we are ready to explore the graph G.

Initially, S¢.t = 0 and we define J = J~ w Jr" If J = I~, terminate. Otherwise, mark
every node in J. Then, as long as there are marked nodes in G, pick any of them,
wi, and perform the following steps.

Step 1. Sq.t <-- Sq,~ u {p,}. Unmark w~.

Step 2. Let E(w~) = {w~,,. . . , w~,} be the set of nodes emanating from w~ and
let i,, be the largest index less than l, i.e. im = m a x { i l i a { i t i,} a n d j < - l}. If
im is well defined, mark nodes w ~ , . . . , w~,~.

Theorem 3. Let S be a sequence o f n points in the north-east quadrant which
satisfies the appearance property. There is a data structure that takes O(n log n)
time for construction and O(n) space, such that for any query (q, l) the points in
Sq, t can be reported in O(IS¢,tl+log n) time. This is optimal.

Proof We successively establish the correctness of the method described above
(part 1 below) and then analyze its performance (part 2 below).

Part 1. Given the organization of each set of outgoing edges in sorted lists,
it suffices to show that for each Pi E Sq, t\(Jx u Jy) there exists in G a (directed)
path wjl , w~, with j~ = i, wj, ~ J~ u Jy, PJl , " . , PJ, c Sq, v We prove this fact by
induction on the ascending sequence of indices in Sq,~. The basis case being
obvious, let Pi ~ Sq.l\(J~ u Jy). Since pi is not in J~, v~ lies on pjhj for some j
(1 -<j-< n), so G has an edge from w i to w~. Also, V~y > qy implies that q < pj, and
since clearlyj < i, we have pj ~ Sq, t. By induction hypothesis there exists a directed
path from some wj, to w~. This concludes the argument.

Part 2. The computation of J~ and Jy takes O(log n + IJx w Jyl) time, as already
observed. The remainder of the algorithm has a complexity proportional to the
number of edges of G traversed. Let us call a good node, a node w~ such that
p~ ~ Sq, t, and a bad node, any other. Let H be the subgraph of G induced by the
good nodes. From Lemma 1, it follows that for each good node w~ at most two
bad nodes need to be visited. The running time of the algorithm is therefore
proportional to the number of edges in H. This number is proportional to the
number of vertices in H, since each vertex has indegree at most two (Lemma 2).

[]

3. Homothetic Range Searching

The homothetic range search problem refers to the case where the query domain
D is the set of all polygons obtained by submitting a fixed simple m-gon to an
arbitrary translation and an arbitrary scaling transformation. More precisely, let
P be the simple m-gon. A query is specified by a pair (q, c), with q e E 2 and c
a positive real number; the homothet of P is the polygon Pq.c = {P ~ E21 there is

120 B. Chazelle and H, Edelsbrunner

a point v ~ P such that Px = qx + cvx and py = qy + cvr}. The input to the problem,
denoted S as usual, is a set of n points in E 2 and the set to be computed is
S~ = S n Pq.c. In the following, the number of sides of the query polygon, m, is
taken to be a constant. We state our main result.

T h e o r e m 4. Let S be a set o f n points in E 2. In O(n log n) preprocessing, it is
possible to construct an O(n) space data structure so that homothetic range searching
with respect to S can be done in O(k+ log n) query time, where k is the output size.
The method is optimal.

Proof. By triangulating the query polygon if necessary, one can always assume
that P is a triangle. We set up a coordinate system such that two sides of P are
parallel to the coordinate axes, and if P is translated so as to have its two sides
collinear with the coordinate axes, then P is contained in the north-east quadrant
(note that this system will not be orthogonal in general), We easily ensure that
each point in S lies in the north-east quadrant. Let ax + by + 1 = 0 be an equation
of the line passing through the third side of the triangle P. In O(n log n) time,
sort the points of S according to their projections on a line perpendicular to this
line. Let S = (Pl , p ,) be the resulting sequence; if p~ = (x , y~) we have axl +
byl < . • • <- ax , + by,. It is easy to see that S has the appearance property of the
previous section, so it is possible to prepare the grounds for the paper-stabbing
problem. Let A B C be the query triangle, with A B (resp. A C) parallel to the x
(resp. y) axis (Fig. 4). Let H be the halfplane delimited by the line passing
through B C and containing ABC, and let k = IS c~ HI; note that k is easily
computed in O(log n) time. S n A B C is exactly the output of the paper-stabbing
problem on query input (A, k). We leave the claim of optimality as an exercise.

[]

/ J z ~ c

Fig. 4. Range query with triangle ABC

Linear Space Data Structures for Two Types of Range Search 121

4. The Dominat ion Search Problem in E a

We endow E 3 with a Cartesian system of coordinates (O, xyz). The notion of
domination introduced in Section 2 generalizes easily to higher dimensions: a
point q ~ E 3 dominates a point p e E 3, denoted p < q iff Px <- qx, Py < qy, and
p~ -< q~. Let S = { P l , . - . , Pn} be a set of n points in E 3. Domination searching can
be phrased as follows: preprocess S so that for any query q e E 3 the set Sq =
{PIP ~ S and p < q} can be computed effectively. Let S(n) and Q(n) denote,
respectively, the space and query time required by an algorithm for domination
searching in E 3, and let k denote the output size. The best solution known so
far achieves S(n) = O(n log n), Q(n) = O (k + l o g n) [11]. We will next describe
two linear space data structures for this problem, one achieving Q (n) =
O((k+ 1) log n) and the other Q(n)= O (k + l o g 2 n).

Let p~ = (x , y~, z~). For convenience, we again assume that none of the three
sets of coordinates has duplicates. The notion of minima is crucial to our approach.
A point p~ is called a minimum of S if it does not dominate any other point in
S. This definition carries over directly to E 2, so we may refer to minima in E 2
without further explanation. Assume for the time being that each point of S is
a minimum. We put ourselves in the conditions of Theorem 3 by:

1. Defining a new relation > as follows: p > q iff q < p.
2. Relabelling the points of S so that z l < ' " < z n , and defining S * =

((xl, y l) , . . . , (x~, yn)) as a sequence of points in the plane.

Since each p~ is a minimum, it is immediate to see that the sequence S* satisfies
the appearance property with respect to > (Section 2). Given a query q, we
reduce the domination problem in E 3 to a paper-stabbing problem in which >
has been substituted for < . A query q = (qx, qy, q~) is transformed in O(log n)
time into a query (qx, qy, k) for the paper-stabbing problem, with k =
I{p, ~ sI z, <- q~}l. w e conclude with a result which will be the cornerstone of our
ensuing developments.

Lemma 5. Let S be a set of n points in E 3, all of which are minima. In O(n log n)
preprocessing, it is possible to construct an O(n) space data structure so that
domination searching with respect to S can be done in O (k + l o g n) query time,
where k is the output size. The method is optimal.

4.1. A Simple Linear-Space Solution

From now on, S is taken to be an arbitrary set of n points in E 3. Recall that Sq,
the set to be computed, consists of the points o f S dominated by the query point
q. In preprocessing, we compute the sequence of layers of S, denoted
(~ , .Yp). These layers are subsets of S obtained by removing the minima of
S, computing the new set o f minima, removing it, and so forth. Let -Y(S) denote
the set of minima of S. The following algorithm provides a formal definition of
layers, as well as a method for computing them:

122 B. Chazelle and H. Edeisbrunner

i~-0
while S # 0

begin
i ~ - i + l
.,% ,- ~e(s)
S ~ S \ ~ i

end
p~-i

Kung et al. [14] have shown how to compute the minima of a set of n points
in E 3 in O(n log n) time. This leads to an O(n 2 log n) time, O(n) space algorithm
for computing the layers of S. This can be improved by resorting to a simpler,
but more space-consuming, technique. Set up a directed graph over the points
of S by placing an edge from p~ to pj iff p~ < pj. Removing all the sources of the
graph gives .LPl and iterating on this process gives ~2 ~p in O(n 2) time and
space. We omit the details.

Lemma 6. For any i (1 - i <p) , Sq ca -~+1 ~ 0 implies Sq ca ~ # O.

Proof. Each point p in -LPi+~ dominates at least one point in ~ . []

From Lemma 6, a possible line of attack follows trivially. We apply the result
of Lemma 5 to ~ , :L~2 , . . . in turn, until we fail to report any point in Sq, at
which stage the algorithm terminates. This leads to:

Theorem 7. Let S be a set of n points in E 3. In O(n 2) time and space, it is possible
to construct an O(n) space data structure so that domination searching with respect
to S can be done in O ((k + l) log n) query time, where k is the output size.

4.2. A More Efficient Algorithm

We next show how a recursive strategy allows us to take the running time of the
previous solution down to O(k+ log 2 n). To be rigorous, this transformation
constitutes an improvement only for values of k = [l(log n). Before proceeding
with the description of the algorithm, we need to make a short digression. Let V
be a set of n points in E 2, with each point being a minimum. Let Vq = {v ~ V[v < q}
be defined for any point q ~ E 2. Domination search in two dimensions calls for
computing Vq efficiently, given any query point q. Of course, this problem can
be solved optimally by application of Lemma 5. A much simpler solution is based
on the following remark. Let V= { e l , . . . , v,} be given by increasing x-coordin-
ates. The points of Vq always form a contiguous chain (possibly empty) of the
form {vi, vi+l , v~}. Computing Vq can be done in optimal O (j - i + l o g n)
time by searching for qx in V (regarded for this purpose as a dictionary of
x-coordinates).

Linear Space Data Structures for Two Types of Range Search 123

Observation 8. Let S be a set of n points in E 2, all of which are minima. In
O(n log n) preprocessing, it is possible to construct an O(n) space data structure
so that domination searching can be done in O (k + l o g n) query time, where k
is the output size. Answering a query essentially involves searching for an item
in a dictionary.

This last remark about the reduction of domination search in E 2 to a simple
dictionary look-up is of great importance, as will be apparent below. Let us go
back to our original problem, i.e., domination search in E 3.

The data structure, denoted D(S), is a binary tree defined recursively as
follows:

1. I f S = I~ then D(S) is the empty tree.
2. Otherwise, let S* be the projection of S onto the yz-plane. We define P as

the set of minima of S*, i.e., P = { p ~ S * l q ~ p for all q~S*\{p}} , and
M = {p = (p~, py, Pz) ~ S[(px, py) e P} (clearly, M is a set of minima in E3).
It is then possible to build the data structures of Lemma 5 and Observation
8 for M and P, respectively, which we denote H(S) and E(S). Both data
structures are assigned to the root r of D(S). Define V = S \ M and let
(Pi , pi~) be the sequence of points in V sorted by increasing x-coordin-
ates. Let 1 = [m/2] , 1/1 = {p~,, . . . , p~,}, and V2 = {p~,+,, • . . , p J : D(VI) (resp.
D(V2)) is assigned the left (resp. right) subtree of r. Since each point of S
is represented only twice in D(S), the storage required for the entire data
structure is clearly O(n). The data structures E(S) and H(S) will be referred
to later on as the easy and hard structures, respectively. We are now ready
to describe the query algorithm.

Step 1. Using D(S) as a search tree, locate the leaf corresponding to pi such
that x~ <- q~ < xi+ 1 . Let I)1, . . . , '/')h be the corresponding search path; Vl is the root
and Vh is the leaf that stores p~ (Fig. 5).

Step 2. Query the hard structure at each vi (1 - i - h) .

Step 3. Let W be the sequence of left children of (vl , vh-l) that are not
nodes of the search path (this sequence is obtained by tracing the search path
and recording the left child of each node witnessing a right turn- -see square
nodes in Fig. 5). Mark every node of W.

Step 4. While D(S) has marked nodes, pick any, unmark it, and query its easy
structure. I f this leads to any report, mark its children (if any).

The correctness of the algorithm is based on a number of observations, simple
enough to have their proofs omitted.

1. All the points in Sq are stored in v l , . . . , vh and in the subtrees rooted at
the nodes of W.

2. With respect to the subset of S associated with any node that is either in
W or is a descendant of a node in W, the problem to be solved is equivalent
to domination search in a set of minima in E z.

124 B. Chazelle and H. Edelsbrunner

Fig. 5. Set V = (vl, Vz VT) and nodes in W.

v~

3. If the easy structure at v fails to report any point, no point stored in any
descendant of v lies in Sg.

Let Dq be the subtrees of D(S) visited during the computation and let k = [Sql
be the output size. The algorithm takes O(log 2 n + k log n) time, since (1) every
node visited that is neither a leaf of Dq nor of the form vj contributes at least
one distinct entry to Sq; (2) each node visited requires O(log n) search time; (3)
the number of nodes vj is O(log n). This disappointing performance can be
improved by exploiting the last remark of Observation 8. For the sake of clarity,
a little background is necessary.

The notion of fractional cascading, developed in [6], is concerned with the
problem of batching repeated binary searches. Let G be a connected graph whose
maximum degree is bounded by a constant. With each node w ~ G is associated
a dictionary D(w) (i.e., an array of sorted numbers). Let m be the total size of
all the dictionaries. Fractional cascading is a method for preprocessing G so that
contiguous searches can be carded out in constant time. More precisely, if x has
to be searched in D(wl) , D(w,), where for each i, w~ is adjacent to some wj
(j < i), this preprocessing allows us to do so in O(log m) time for D(wO and
then O(1) time for each of the others, D(w2) , D(w,). The interesting feature
of fractional cascading is that its application increases the original size of the
data structure by at most a constant factor. We also mention that the preprocessing
can be done in linear time. The relevance of fractional cascading to the problem
at hand is immediate. Since the easy structures are handled via a simple dictionary
search, fractional cascading will allow us to handle all of them in O(k) time
after O(log n) preliminary work. Incidentally, note that the graph spanned by
the nodes in W and their visited descendants is not connected, but these nodes

Linear Space Data Structures for Two Types of Range Search 125

together with {vl , vh} do form a connected subgraph, Consequently, the
fractional cascading scheme will have to visit the easy structures in V as well,
in order to ensure the connectivity condition. This is not a problem, however,
since there are only O(log n) such nodes, hence O(log n) spurious visits, at unit
cost each. The preprocessing takes O(n log 2 n) time, since each node requires
O(p logp) steps, where p is the number of points stored in the subtree of the
node. We conclude:

Theorem 9. Let S be a set of n points in E 3. In O(n log 2 n) preprocessing, it is
possible to construct an O(n) space data structure so that domination searching
with respect to S can be done in O(k + log 2 n) query time, where k is the output size.

It is possible to generalize Theorems 7 to 9 to higher dimensions. Every increase
of one in dimension will result in the introduction of a factor of log n in both
space and search time. The technique involves a canonical decomposition of the
query into O(log n) queries of lesser dimensionality. The technique is due to
Bentley [1]. It is standard and has been applied before on such numerous
occasions that we will dispense with any further explanation.

Theorem 10. Let S be a set of n points in E a (d > 2) . In O (n l o g d - l n)
(resp. O(n2)) preprocessing, it is possible to construct an O(n log a-3 n) space
data structure so that domination searching with respect to S can be done in
O(k + log d-1 n) (resp. O(log a-2 n + k log n)) query time, where k is the output size.

5. Conclusions

The main contribution of this paper is the presentation of linear space data
structures for two instances of range searching. In the case of three-dimensional
domination, the query times achieved remain short of optimal. Can these be
improved without sacrificing storage? Can the structures described in this paper
be etticiently dynamized? Can they be made to perform better on the average?

Two of the techniques used in this work (paper-stabbing and recursive three-
dimensional domination) follow an approach which might be compared with the
retrieve-and-explore strategy of McCreight's priority search tree [16]. The idea is
to set up a directed graph (dag and binary tree) and traverse it from each of a
number of specified source-nodes, with the understanding that a nonsource node
is visited only if its predecessor has been and that visit contributed at least one
item to the output. This technique, based on some connectivity property of the
encoding of each output set, seems fairly fundamental to retrieval problems (see
also the solution for fixed radius circular range searching [5]). This raises the
general question of studying how each output set can be encoded in a graph
structure for a given range search problem: as demonstrated in [4] this seems a
promising line of attack for proving lower bounds, especially in the pointer
machine model.

126 B. Chazelle and H. Edelsbrunner

References

1. J. L. Bentley, Multidimensional divide and conquer, Comm. A C M 23 (1980), 214-229.
2. B. Chazelle, Filtering search: a new approach to query-answering, SlAM J. Comput. 15 (1986),

703-724.
3. B. Chazelle, A Functional Approach to Data Structures and Its Use in Multidimensional Searching,

Technical Report No. CS-85-16, Brown University, 1985. Preliminary version in Proceedings of
the 26th Annual IEEE Symposium on Foundations of Computer Science, 165-174, 1985.

4. B. Chazelle, Lower bounds on the complexity of multidimensional searching, Proceedings of the
27th Annual IEEE Symposium on Foundations of Computer Science, 87-96, 1986.

5. B. Chazeile and H. Edelsbrunner, Optimal solutions for a class of point retrieval problems, J.
Symbolic Comput. 1 (1985), 47-56.

6. B. Chazelle and L. J. Guibas, Fractional cascading: I. A data structuring technique, Algorithmica
1 (1986), 133-162.

7. B. Chazelle, L. J. Guibas, and D. T. Lee, The power of geometric duality, Proceedings of the 24th
Annual IEEE Symposium on Foundations of Computer Science, 217-225, 1983. Also in BIT 25
(1985), 76-90.

8. D. P. Dobkin and H. Edelsbrunner, Space searching for interesting objects, Proceedings of the
25th Annual IEEE Symposium on Foundations of Computer Science, 387-392, 1984.

9. H. Edelsbrunner and E. Welzl, Halfplanar range search in linear space and O(n °'695) query time,
Inform. Process. Lett., to appear.

10. H. Edelsbrunner, L. J. Guibas, and J. Stolfi, Optimal point location in a monotone subdivision,
SIAMJ. Comput. 15 (1986), 317-340.

11. H. N. Gabow, J. L. Bentley, and R. E. Tarjan, Scaling and related techniques for geometry
problems, Proceedings of the 16th Annual A C M Symposium on Theory of Computation, 135-143,
1984.

12. L. J. Guibas and J. Stolfi, Primitives for the manipulation of general subdivisions and the
computation of Voronoi diagrams, ACM Trans. Graphics 4 (1985), 74-123.

13. D. G. Kirkpatrick, Optimal search in planar subdivisions, SIAM J. Comput. 12 (1983), 28-35.
14. H. T. Kung, F. Luccio, and F. P. Preparata, On finding the maxima of a set of vectors, J. Assoc.

Comput. Much. 22 (1975), 46,9-476.
15. R. J. Lipton and R. E. Tarjan, Applications of a planar separator theorem, SIAM Z Comput. 9

(1980), 615-627.
16. E. M. McCreight, Priority search trees, SIAM. Z Comput. 14 (1985), 257-276.
17. D. E. Muller and F. P. Preparata, Finding the intersection of two convex polyhedra, Theoret.

Comput. Sc/. 7 (1978), 217-236.
18. D. E. Willard, Polygon retrieval, SIAMZ Comput. 11 (1982), 149-165.
19. F.F. Yao, A 3-space partition and its applications, Proceedings of the 15th Annual A C M Symposium

on Theory of Computing, 258-263, 1983.

Received April, 1986, and in revised form November 25, 1986.

