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Abstract—Independent component analysis (ICA) has shown
success in blind source separation and channel equalization. Its
applications to remotely sensed images have been investigated in
recent years. Linear spectral mixture analysis (LSMA) has been
widely used for subpixel detection and mixed pixel classification.
It models an image pixel as a linear mixture of materials present in
an image where the material abundance fractions are assumed to
be unknown and nonrandom parameters. This paper considers an
application of ICA to the LSMA, referred to as ICA-based linear
spectral random mixture analysis (LSRMA), which describes an
image pixel as a random source resulting from a random compo-
sition of multiple spectral signatures of distinct materials in the
image. It differs from the LSMA in that the abundance fractions
of the material spectral signatures in the LSRMA are now consid-
ered to be unknown but random independent signal sources. Two
major advantages result from the LSRMA. First, it does not re-
quire prior knowledge of the materials to be used in the linear mix-
ture model, as required for the LSMA. Second, and most impor-
tantly, the LSRMA models the abundance fraction of each material
spectral signature as an independent random signal source so that
the spectral variability of materials can be described by their cor-
responding abundance fractions and captured more effectively in a
stochastic manner. The experimental results demonstrate that the
proposed LSRMA provides an effective unsupervised technique
for target detection and image classification in hyperspectral im-
agery.

Index Terms—Hyperspectral image classification, independent
component analysis (ICA), linear spectral mixture analysis
(LSMA), linear spectral random mixture analysis (LSRMA).

I. INTRODUCTION

O
VER the past years, linear spectral mixture analysis

(LSMA) has been widely used for hyperspectral image

analysis such as detection and classification [1], [2]. It assumes

that an image pixel [i.e., digital number (DN)] is linearly mixed

by materials with relative abundance fractions present in the

image. To be more specific, materials will be referred to as

targets in this paper. Two restrictions are generally applied to
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the LSMA. One is that a complete target knowledge must be

given a priori. In many practical applications, obtaining such

a priori information is usually very difficult if not impossible.

To relax this requirement, several unsupervised methods were

proposed to generate target information directly from the

image data, e.g., unsupervised vector quantization [3], target

generation process [4], and least squares error [5]. A second

restriction is that the abundance fractions of targets present

in an image are generally unknown and need to be estimated.

When they are considered as unknown and nonrandom (i.e.,

deterministic) quantities, they can be estimated by methods

such as least squares estimation. On the other hand, it may be

more realistic to assume that the abundance fractions of targets

in a pixel are random quantities rather than deterministic quan-

tities so that targets can be described by their corresponding

random abundance fractions, which can capture their spectral

variability more effectively in a stochastic manner. In order

to appropriately represent such a random linear mixture, the

abundance fraction of each target must be considered as a

random signal source. For example, if the abundance fraction

is modeled as a random parameter in the range [0,1], it means

that can occur anywhere in [0,1] with a certain probability.

By contrast, if is a nonrandom parameter in [0,1], it implies

that must be a number somewhere in [0,1] with probability

one. In other words, a nonrandom parameter is merely a number

opposed to a random parameter which must be defined in a

probability space.

Independent component analysis (ICA) [6]–[12], which has

shown great success in blind source separation and other ap-

plications, provides a feasible approach to solving the random

abundance mixture problem described above. Its application

to remotely sensed imagery has been recently investigated

in [13]–[17]. The ICA is an unsupervised source separation

process. It is different from principal components analysis

(PCA) [18], [19] in many aspects. The PCA decorrelates

the sample data covariance matrix in such a manner that the

data set can be decomposed into a set of uncorrelated and

orthogonal components where each component is oriented by

an eigenvector. Unlike the PCA, the ICA looks for components

which are statistically independent rather than uncorrelated;

thus, it requires statistics of orders higher than the second order.

The idea of the ICA makes use of a linear model to describe

a mixture of a set of unknown random signal sources, then

demixes them in separate components so as to achieve signal

detection and classification. If we assume that the abundance

fraction of each target in the LSMA is an unknown and

independent random signal source, the source mixing model

0196–2892/02$17.00 © 2002 IEEE
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considered in ICA becomes directly applied to the LSMA, in

which case ICA can be used to solve for random abundance

fractions for the linear mixture model used in the LSMA. Such

an ICA-based LSMA can be viewed as a random version of

the LSMA and will be called linear spectral random mixture

analysis (LSRMA) hereafter in this paper.

In order for the LSRMA to be effective, two major assump-

tions must be made. One is that the source components must

mutually statistically independent. This implies that the spec-

tral signatures of targets present in an image must be distinct.

A second assumption is that, at most, one source component is

allowed to be Gaussian. This is because a sum of Gaussian pro-

cesses is also Gaussian and the ICA cannot separate Gaussian

processes using a linear mixture model.

In remotely sensed imagery, the number of target pixels of in-

terest, such as small man-made targets, anomalies, or rare min-

erals, is generally small compared to the image background.

From this point of view, an interesting structure of an image

scene is the one resulting from a small number of target pixels

in a large area of unknown background. As a consequence, these

target pixels are main causes of outliers of distributions which

can be detected by a higher order of statistics such as skewness

(third moment) to detect asymmetry of the distribution and kur-

tosis (fourth comment) to detect the flatness of the distribution,

as demonstrated in [20]. Therefore, detecting such small target

pixels in an unknown image scene can be reduced to finding

the outliers or deviations from the background distribution, in

which case the background can be considered a homogeneous

region. In addition, due to spectral variability, the background

may be made up of a number of homogenous regions. If these re-

gions contain large number of pixels, the background pixels can

be assumed to be a Gaussian-like distribution while the target

pixels of interest can be viewed as non-Gaussian signal sources

that create ripples in the Gaussian tails. In this case, target pixels

of interest can be separated by the ICA, as we desire. This is be-

cause the ICA can detect target pixels using statistics of order

higher than the statistics of second-order such as variance. Of

course, if there is a set of background pixels that forms a region

failing to satisfy the Gaussian assumption, they will be detected

as non-Gaussian signal sources. This phenomenon is demon-

strated in the Hyperspectral Digital Image Collection Experi-

ment (HYDICE) experiments. Since small targets are generally

susceptible to outliers, they will be more likely to be detected

by the ICA. However, due to no prior knowledge, the detected

small targets may include man-made targets or natural objects

such as trees, grass, rocks, and interferers. The LSRMA does

not guarantee the detected targets will be the targets of our in-

terest. This must be done in conjunction with spectral database

or verified by ground truth.

The ICA proposed in the LSRMA is slightly different from

the commonly used ICA [6]–[16] in two ways. In general, the

separating matrix (also referred to as unmixing matrix) de-

rived from the ICA is assumed to be a square matrix of full

rank. In this case, the number of signal sources, say , must

be equal to data dimensionality, . As demonstrated in our ex-

periments, this assumption may not be valid for hyperspectral

images where the number of signal sources is generally much

smaller than the number of bands, i.e., . Therefore, the

matrix is not of full rank. As a result, the learning rule de-

rived from inverting may become unstable and may not con-

verge. The problem of this type is called under-complete ICA

and has been investigated in [21]. However, this problem can be

resolved by prewhitening the data. Second, our proposed ICA

approach is based on the constraint that the covariance matrix of

unmixed abundance fractions of targets must be an identity ma-

trix. This advantage allows us to design a learning algorithm to

converge to independent components which can separate spec-

trally similar targets. A similar approach was also investigated

in [22]. The experiments show that such a learning algorithm is

very useful and suitable for target extraction with similar spec-

tral signatures.

The remainder of this paper is organized as follows. Section II

describes the concept of the ICA. Section III develops an ICA

approach to hyperspectral image analysis, LSRMA. Section IV

presents experimental results. Section V suggests an automatic

thresholding method for target detection and conducts a quan-

titative study for the LSRMA in comparison with two com-

monly used linear unmixing methods: 1) orthogonal subspace

projection (OSP) in [23] and 2) constrained energy minimiza-

tion (CEM) in [24]. Section VI includes some concluding re-

marks.

II. INDEPENDENT COMPONENT ANALYSIS (ICA)

LSMA is a widely used approach to determination and

quantification of multicomponents in remotely sensed imagery.

Since every pixel is acquired by spectral bands at different

wavelengths, it can be represented by a column vector and

a hyperspectral image is actually an image cube. Suppose

that is the number of spectral bands. Let be an

column pixel vector in a multispectral or hyperspectral image

where the boldface is used for vectors. Let be an

target signature matrix, denoted by where

is an column vector represented by the th target

signature and is the total number of targets in the image. Let

be a abundance column vector

associated with , where denotes the abundance fraction of

the th target signature present in the pixel vector . A classical

approach to solving such a mixed pixel classification problem is

the linear spectral unmixing which assumes that a pixel vector

is linear mixed by the targets with an unknown abundance

vector . In this case, the pixel vector

can be represented by a linear regression model as follows:

(1)

where is noise that can be interpreted as measurement error,

noise, or model error. Here, without confusion, the will

be used to represent either the pixel vector or its spectral

signature (i.e., DNs). A spectral linear unmixing method

estimates the unknown abundance fractions

via an inverse of a linear mixture model described in (1). One

requirement of the LSMA is that the target signature matrix

must be known a priori. Many approaches have been proposed

in the past to obtain directly from the image data in an

unsupervised fashion, such as [3]–[5]. Here, we present a rather

different approach—ICA. It is also based on model (1), but
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does not require the prior knowledge of . Most distinctively,

it assumes that the abundance fractions are

unknown random quantities specified by random signal sources

rather than unknown deterministic quantities, as assumed in

model (1). However, in this case, we need to make the following

three additional assumptions on the random abundance vector

.

1) The target signatures in must be

spectrally distinct.

2) The abundance fractions are mutually

statistically independent random sources.

3) Each of the abundance fractions must

be a zero-mean random source and at most one source is

Gaussian.

Except for these three assumptions, no prior knowledge is as-

sumed about the model (1).

From a viewpoint of remotely sensed imagery, the first

assumption simply says that there are distinct types of targets

in a scene and each column vector in represents the spectral

signature of one target in the scene. The second assumption

implies that the abundance compositions of distinct target

signatures in a pixel are random quantities, one independent

of another. The third assumption suggests that the ICA can

separate targets of interest from the Gaussian-like background

distributions. It classifies different targets by detecting them in

separate independent components. Since we are only interested

in detecting non-Gaussian signal sources, which are generally

described by statistics of order higher than the variance, a

prewhitening process can make random abundance fractions

zero-mean and unit-variance, in which case the

first- and second-order of statistics will not play a role in target

detection. It should be noted that if a background distribution is

not Gaussian distributed, it will be detected and classified into

a separate independent component. This may occur when some

part of the image background is made up of only a small group

of pixels.

III. ICA-BASED LSRMA

In order to implement the ICA using model (1), the mixing

matrix used in the blind source separation is replaced with the

target signature matrix and the unknown signal sources to be

separated with the target random abundance fractions, denoted

by . With this interpretation, the ICA finds a

separating matrix and applies it to an image pixel to unmix

the . More specifically, the ICA solves an inverse

problem of model (1) for a separating matrix via the

following equation:

(2)

where is the estimate of abun-

dance fractional vector based on . Since

changing order of components in does not affect their sta-

tistical independence, the estimate of the th abundance fraction

may appear as any component of . Furthermore,

because multiplying random variables by nonzero scalar factors

does not affect the statistical independence, it is also impos-

sible to determine the true amounts of the abundance fractions

from model (1) without additional assumptions.

Unless we are interested in quantification, the order and the true

abundance fractions are generally not crucial in target detection

and classification. In this case, we can normalize each abun-

dance source to unit variance so that the covariance matrix of

the abundance sources becomes the identity matrix. This can be

simply done by a sphering (whitening) process.

A. Relative Entropy-Based Measure for ICA

In order to use the ICA, a criterion is required to measure

the statistical independence among the estimated abun-

dance fractions . According to information

theory [25], relative entropy or Kullback–Leibler infor-

mation distance function is an appropriate measure. Let

be the joint probability

density function (pdf) of the estimated random abundance vector

obtained from (2), and be the marginal pdf of the

th abundance fraction for given by (2). Since

in model (1) are assumed to be independent,

. If we assume that is a source vector

and is the estimate of _ from the observation vector , then

the entropy of relative to (or relative entropy between

relative to ), denoted by , is defined in

[25] by

(3)

where is the entropy of the estimated abundance vector

. Consequently, minimization of (3) over through in

(2) implies that the smaller the is, the less the

discrepancybetween twopdfs and is; thus, themore

likely to be independent the is. Because the pdf of is gener-

ally unknown and needs to be estimated, the

in(3)mustbereplacedbyitsestimate .

Substituting this estimate into (3) results in

(4)

where is the expectation with respect to and

is the entropy of the th estimated source .

Unfortunately, even in this case, finding the pdf of is also

difficult in practice. In order to mitigate this dilemma, Comon

introduced an alternative criterion in [7] that approximates
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Fig. 1. (a) LCVF subscene of size 200 � 200 extracted from Fig. 1(b). (b)
AVIRS LCVF scene of size 512 � 614.

in (4). Instead of minimizing

, Comon suggested to maximize

the higher order statistics of the data, called contrast function of

, denoted by which is defined in [7] by

(5)

where is the third-order standardized cumulant of the th

for representing the skewness and is the

fourth standardized cumulant of the th for rep-

resenting the kurtosis. If the skewness of is sufficiently large,

(5) can be further approximated by . On the other

hand, if the kurtosis of is sufficiently large, a good approx-

imation of (5) is . In either case, (5) is reduced to a

much simpler criterion.

B. Learning Algorithm to Find

Since the second-order statistics can be removed by decorre-

lation, the data vectors are first prewhitened prior to separa-

tion. In this case, data are completely characterized by statistics

with orders higher than 2. Therefore, for simplicity we assume

that the data vectors have been prewhitened. In order to derive a

learning algorithm, we impose a constraint that the covariance

matrix of the estimated abundance vector in (2) must be an

identity matrix. To further simplify notations, we denote

by with . The learning algorithm to be developed

must solve the following constrained optimization problem:

maximize over for

subject to (6)

where is the identity matrix. For such constrained prob-

lems, we use exterior penalty methods discussed in [26] to elim-

inate some or all of the constraints. The idea is to add to the ob-

jective function specified by (6) so-called penalty function terms

which assign a higher cost to infeasible points. In our case, the

penalty function terms imposed on the constraints in (6) are de-

fined by

if

if
(7)

where and
if

if

Fig. 2. Detection and classification results produced by the LSRMA with p =
4 using skewness: (a) cinders; (b) vegetation; (c) center of the playa; and (d)
noise.

Fig. 3. Detection and classification results produced by the LSRMA with p =
4 using kurtosis: (a) anomaly; (b) vegetation; (c) bottom of the playa; and (d)
noise.

Now, using the penalty function terms specified by (6) and

(7), we can define a penalty function by

(8)

where are called penalty parameters or penalty multi-

pliers (typically all ). Thus, maximizing the constrained
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Fig. 4. Detection and classification results produced by the LSRMA p = 5 using skewness: (a) cinders; (b) vegetation; (c) center of the playa; and (d)–(e) noise.

problem described by (6) is equivalent to maximizing the fol-

lowing cost function:

(9)

which subtracts the penalty function given by (8) from the ob-

jective function in (6). In order to find the separating matrix

where is the th matrix element in ,

we calculate gradient of the cost function by differenti-

ating and with respect to , respectively

(10)

(11)
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Fig. 5. Detection and classification results produced by the LSRMA with p = 5 using kurtosis: (a) anomaly; (b) vegetation; (c) cinders; and (d) shade.

Equations (10) and (11) can be expressed in terms of matrix

forms as follows:

(12)

(13)

where and

is the diagonal matrix with the th diag-

onal element given by . From (12) and (13), a learning

algorithm to generate the separating matrix can be designed

by

(14)

where and are learning parameters for (12) and (13), respec-

tively. It is found empirically that controls the convergence

speed and should be less than 1 while controls the constraint

and should be greater than . In this paper, the and are set

to and for all the experiments conducted in Sec-

tion IV. In order for the proposed learning algorithm to converge,

a stopping rule is used to terminate the algorithm. It measures

the normalized difference between two consecutive and

resulting from (6), denoted by which is de-

fined by

(15)

If is less than a prescribed threshold, the algorithm

stops; otherwise, it continues. In all the experiments conducted

in Section IV, the threshold was set to 10 .

IV. EXPERIMENTS

In this section, two sets of real hyperspectral image data, air-

borne visible/infrared imaging spectrometer (AVIRIS), and HY-

DICE were used for experiments to evaluate the performance of

the LSRMA. In addition, two criteria, skewness [ in (6)]

and kurtosis [ in (6)] were also used for performance

analysis.

A. AVIRIS Data

The data to be used were obtained from an AVIRIS scene

of pixels shown in Fig. 1(a) and extracted from the

lunar crater volcanic field (LCVF) in Northern Nye County, NV,

shown in Fig. 1(b) which has been studied extensively [23] and

provides a good case for comparative analysis. It was acquired

by 224 spectral channels ranging from 0.4 m to 2.5 m with

10-nm spectral resolution and 20-m spatial resolution. After

water bands and low signal-to-noise ratio (SNR) bands are re-

moved, only 158 bands remain (i.e., ).

According to the ground truth in [23], there were five targets

of interest: cinders, rhyolite, playa (dry lake), vegetation, and

shade. Therefore, at least five components, , are needed
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Fig. 6. Detection and classification results produced by the LSRMA p = 9 using skewness: (a) cinders; (b) vegetation; (c) center of playa; (d) rhyolite; (e) playa;
(f) shade; and (g)–(h) noise.

to classify and separate these five targets. If we assume that no

prior knowledge is available about the image scene, the number

of targets in an image scene must be estimated from the data.

As shown in [5], there was a single two-pixel anomaly located at

the top edge of the lake shown inside a circle marked in Fig. 1(a).

This anomaly cannot be seen or detected visually from the scene

and was not identified by the ground truth. It was extracted by

an unsupervised constraint subpixel detection method [5] and

also detected by an anomaly detector, RX algorithm in [27] and

[28]. In order for the LSRMA to detect this anomaly in addition

to the five targets of interest, the must be greater than five,

so that the five targets (cinders, rhyolite, playa dry lake, vege-

tation, and shade) and the anomaly can be detected and classi-

fied in separate components. In [16], Tu proposed a noise ad-

justed transformed Gershgorin disk (NATGD) to estimate the

for the same identical image scene in Fig. 1(a), which was four.

Unfortunately, this number was underestimated. With ,

the shade and the anomaly were not detected in [16]. However,

here we use the number produced by a Neyman–Pearson de-

tector-based eigen-thresholding method described in [28] and

[29], which was estimated to be eight. Therefore, in this case,

with one extra component included to accommodate the

noise. It should be noted that P is only an estimate. It

does not imply that there were exactly eight targets present in

the image scene. In order to demonstrate the impact of different

values of on the performance, we conducted experiments with

estimated by NATGD, estimated by a method de-

veloped by Harsanyi et al.in [28]–[30], and . The learning

parameters and used in (14) for the following experiments

were empirically set to and .

Example 1 : Fig. 2 shows the results generated by

the LSRMA using skewness as a criterion. From the ground

truth in [23], only the cinders, vegetation, and center of playa

were classified in Fig. 2(a) and (c) and the fourth component
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Fig. 7. Detection and classification results produced by the LSRMA with p = 9 using kurtosis: (a) anomaly; (b) vegetation; (c) cinders; (d) center of playa; (e)
the edge of playa; (f) bottom of playa; and (g)–(h) noise.

showed very little information in the image. It missed the de-

tection of the rhyolite, shade, and part of playa. Fig. 3(a)–(d)

shows the results produced by the LSRMA using kurtosis where

only vegetation and the bottom part of playa were classified in

Fig. 3(b) and (c). Once again, the fourth component did not de-

tect any meaningful targets. It also missed the detection of the

cinders, rhyolite, shade, and a large portion of playa. Interest-

ingly, Fig. 3(a) detected the anomaly observed in [5]. This ex-

periment demonstrated that skewness and kurtosis performed

very differently, but the kurtosis seemed more effective to de-

tect small targets. However, more experiments are required to

substantiate our conclusion.

Example 2 : In this example, we conducted an ex-

periment similar to Example 1 with . Figs. 4 and 5 were

results obtained for skewness and kurtosis, respectively. Com-

paring Fig. 4 to Fig. 2, there was not much changed in results for

skewness except that the fifth component showed nothing but

noise. However, when the kurtosis was used, there was a drastic

change between Figs. 3 and 5. Both detected the anomaly in

their first components shown in Figs. 3(a) and 5(a). However,

the cinders and shade which were extracted in Fig. 5(c)–(d),

respectively, were missed in Fig. 3. Unfortunately, it still also

missed the detection of the rhyolite and the playa.

Example 3 : A similar experiment was also con-

ducted for the case of . Figs. 6 and 7 show the results

produced by the LSRMA using skewness and kurtosis, respec-

tively, where the skewness and kurtosis demonstrated different

strengths in target extraction. The cinders, the vegetation, the

playa, the rhyolite, and the shade were detected by skewness

in the first six components shown by Fig. 6(a)–(f). Interest-

ingly, the playa was detected in two separate components in

Fig. 6(c) and (e) and the anomaly was detected along with the

shade in Fig. 6(f). By contrast, kurtosis extracted the anomaly,

vegetation, and cinders in the first three components shown by

Fig. 7(a)–(c), while the playa was extracted in the next three

separate components in Fig. 7(d)–(f). Unfortunately, the rhy-
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olite and the shade which were extracted in Fig. 6(c) and (f)

by skewness were not detected by the kurtosis. Since the playa

covers a very large area of the image scene, i.e., dry lake on the

crater, we may expect that its spectral variability could be rela-

tively large. Therefore, the playa was classified in three separate

components with the center detected in Figs. 6(c) and 7(d), the

edge detected in Fig. 7(e), and the bottom detected in Figs. 6(e)

and 7(f). This phenomenon was also observed in [5] and [31].

Such subtle spectral variations were overlooked in [23] because

the playa signature was obtained by averaging most part of the

dry lake area using visual inspection. Using this averaged spec-

tral signature as the prior knowledge, the entire playa was ex-

tracted, and the single two-pixel anomaly was averaged out and

could not be detected. A similar problem was also found in [16]

where the lake was detected as an entity, and the shade and

anomaly were not detected. This resulted from the fact that the

estimated was too small and the learning rule was derived by

the orthogonality of , not . These experiments demon-

strate that skewness may be a good criterion for classification

of large areas while the kurtosis may be effective in extracting

small targets or insignificant targets.

One comment is noteworthy. In general, the number of inde-

pendent components should be equal to the number of spectral

dimensionality, which is . However, after the ex-

ceeds a certain number, there is very little change in the projec-

tion vectors of the components that are beyond this number. In

this case, we did not include these components. Therefore, in

order to determine how many components should be generated,

the Euclidean distance difference between the projection vectors

of two consecutive components is compared. If it is less than

a prescribed value—in our case, it was set to 10 —then the

LSRMA stops generating new components. That is why there

were various numbers of components generated for different

values of . However it should be noted that different values

of will generate different numbers of components.

To conclude the AVIRIS experiments, variable values of

were also evaluated by skewness and kurtosis. The results for

and were not as good as those obtained by

. For the results of and , we

refer the reader to [17]. In order to find which number is appro-

priate for , we ran additional experiments for .

There was little change in the first few components and the per-

formance of both criteria was not significantly improved except

that more components were used to detect different portions of

image scene. In this case, may be a good estimate.

B. HYDICE Data

The HYDICE data used in the following experiments were di-

rectly extracted from the HYDICE image scene of size

shown in Fig. 8(a). The image data were acquired by the air-

borne HYDICE sensor in August 1995 from a flight altitude

of 10 000 ft with the ground sampling distance approximately

1.5 m. It has 210 spectral channels ranging from 0.4 m to 2.5

m with spectral resolution 10 nm. The low signal/high noise

bands: bands 1–3 and bands 202–210; and water vapor absorp-

tion bands: bands 101–112 and bands 137–153, were removed.

Therefore, a total of 169 bands were used for the experiments.

There are 15 panels located on a grass field and arranged in a

(c)

Fig. 8. (a) A 15-panel HYDICE scene; (b) ground truth map of Fig. 8(a); and
(c) five panel signatures obtained by averaging B pixels in the 15 panels.

matrix where there is a forest on the left edge of the scene

and a road on the right edge of the scene. A ground truth map of

this 15-panel scene is shown in Fig. 8(b) and provides the pre-

cise spatial locations of these 15 panels. Black pixels are panel

center pixels, considered to be pure pixels, and the pixels in the

white masks are panel boundary pixels mixed with background

pixels, considered to be mixed pixels. Each element in this ma-

trix is a square panel and is denoted by with row indexed

by and column indexed by . For each

row , the three panels , , and were made from the

same material but have three different sizes. For each column ,

the five panels , , , , and have the same size but

were made from five different materials. The sizes of the panels

in the first, second, and third columns are 3 m 3 m, 2 m 2

m, and 1 m 1 m, respectively. The 1.5-m spatial resolution of

the image scene suggests that, except for , , , and ,

which are two-pixel panels, all of the remaining panels are only

one pixel in size. Five spectral signatures were obtained from

the center pixels of the 15 panels in Fig. 8(b) to represent five

different panel signatures. They were denoted by , , ,

, and where is the th panel signature obtained by av-

eraging the black panel center pixels in row and their spectra

are shown in Fig. 8(c).

Example 4 (Computer Simulations): In this experiment,

we simulated a scene with size of , which is similar to

Fig. 8(a). It consists of 25 single-pixel panels simulated by ,

, , , and in Fig. 8(c). These 25 pixels are arranged

in five rows with five pixels in each row, and were generated to

simulate the 15-panel HYDICE scene in Fig. 8(a). The 25 pixels

were simulated by the panel signature , shown in Fig. 8(c),
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Fig. 9. (a) Abundance fractions map assigned to the 25 simulated pixels. (b) Background scene simulated by tree and grass signatures uniformly.

Fig. 10. Detection and classification results produced by the LSRMA with SNR = 5 dB using skewness: (a) panels in row 5; (b) panels in row 4; (c) panels in
rows 2 and 3; and (d) panels in row 1.

with the assigned abundance fraction map shown in Fig. 9(a).

The pixels in the same column have the same abundance fraction

contributed by five different panel signatures , , , , and

. The pixels in the same row contain the same panel signature

with abundance fractions assigned by 1.0, 0.8, 0.6, 0.4, and 0.2,

respectively, i.e., . In this case,

the mixing matrix is formed by . In

addition, a background scene shown in Fig. 9(b) was also added

to these 25 simulated pixels. It was simulated by two background

signatures, tree and grass uniformly with their abundance frac-

tions being positive and summed to one. In addition, a zero-mean

Gaussian noise with different variances is added to achieve dif-

ferent levels of SNR. In the following simulations, six scenarios

were simulated to achieve different SNR, with dB,

dB, dB, dB, dB, and dB were conducted to evaluate

the performance of the LSRMA for skewness and kurtosis. In

the skewness case, the ICA converged to five components for

dB, dB, dB, dB, and dB, and all 25 panel

pixels were detected and accurately classified into their own

classes in these five components. For the case of dB,

the LSRMA converged to only four components and the panel

pixels in rows 2 and 3 were detected but forced to be classified

into one class. This is because the spectra of and are very

similar, as demonstrated in [32, Table IV]. For comparison, only

results for dB and dB are shown in Figs. 10 and 11,

respectively, where the amounts of detected abundance fractions

are also plotted for reference. Unlike the case of skewness,

the LSRMA using kurtosis produced a very large number of

components for dB, dB, dB, dB, dB, and

dB, but all 25 panel pixels were detected and accurately classified

into their own classes in the first five components. Since the

results for all the cases were similar except for different amounts

of abundance fractions detected by different SNRs, only results

for the case of dB is shown in Fig. 12. It is worth noting

that there were also interferers and background signatures with

relatively small abundance fractions detected in the components

beyond the first five components. Furthermore, as the SNR

was increased, the number of converged components was also

increased, but the amount of detected abundance fractions are

more accurate and close to the true abundance fractions. This
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Fig. 11. Detection and classification results produced by the LSRMA with SNR = 10 dB using skewness: (a) panels in row 5; (b) panels in row 4; (c) panels in
row 3; (d) panels in row 1; and (e) panels in row 2.

implies that more interferers background signatures were also

detected, each of which was classified into a separate and indi-

vidual component. These computer simulations demonstrated

that kurtosis is very effective but also sensitive to target detection.

In addition, the performance of both criteria is also proportional

to the strength of SNR.

Example 5 (Real HYDICE Scene): In this example, we con-

ducted experiments based on the real scene in Fig. 8(a) where

the number of mixing targets was estimated to be

by the Neyman–Pearson eigen-thresholding method

proposed in [28] and [29]. Figs. 13 and 14 show the results gen-

erated by the LSRMA using skewness and kurtosis, respectively.

As we can see from these figures, the LSRMA was able to de-

tect all 15 panels in the second through sixth components in both

cases where the panels in the third column were barely visible.

This is because these panels are of size 1 m 1 m, while the

spatial resolution is 1.5 m 1.5 m. In this case, the detection

of the panels of 1 m 1 m is actually subpixel detection. Inter-

estingly, a strong interferer located in the left upper corner in

the forest of Fig. 8(a) was detected by both skewness and kur-

tosis in their first component. By visual inspection of the scene

in Fig. 8(a), there is no way to identify this interferer. The de-

tection of the unidentified interferer in Fig. 8 and the anoma-

lous target in Fig. 1(a) demonstrates that the LSRMA can be

used as an anomaly detector to detect unknown targets. How-

ever, it was unable to discriminate panels in row 2 from those

in row 3. This also was witnessed in Fig. 10(a) by the computer

simulation using the skewness with dB. In order to

make a comparison, we also conducted a similar experiment for

. The results for skewness and kurtosis are shown

in Figs. 15 and 16, respectively, where the interferer and all 15

panels were detected and classified into six separate compo-

nents. Like previous experiments, both skewness and kurtosis

have the same difficulty with discriminating panels in row 2

from those in row 3. It should be noted that only 6 and 13 compo-

nents were produced by the skewness and the kurtosis, respec-

tively. This implies that is greater than the number of targets

(six in this example), and the number of the components will be

eventually reduced no matter how large the value of is.

According to our experiments running from 5 to 40, it

turned out that when , the LSRMA using skewness

and kurtosis became stable in the sense that all 15 panels

and the interferer were detected in the first six independent

components. The remaining components beyond six contain

mostly noise and background signatures such as grass, forest,

tree, road, etc. In this case, our estimate produced by

the proposed eigen-thresholding method in [28] and [29] was

reasonably close to 18.

V. AUTOMATIC THRESHOLDING METHOD

In view of the fact that the images generated by LSRMA are

generally grayscale, the detection is usually carried out by vi-

sual inspection. The interpretation of detection and classifica-
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Fig. 12. Detection and classification results produced by the LSRMA with SNR = 5 dB using kurtosis: (a) panels in row 5; (b) panels in row 4; (c) panels in
row 3; (d) panels in row 1; (e) panels in row 2; and (f)–(h) noise or interferers.

tion results can be subjective and vary with human judgment.

In order to avoid such human intervention and to make an ob-

jective assessment, we develop a computer-automated thresh-

olding method in this section. The suggested threshold criterion

was proposed in [33], and can be used to automatically extract

the anomalous target pixels and segment them from the back-

ground.

Let be the abundance fraction of an image pixel

resulting from LSRMA, which will represent gray level value of

. It should be noted that is generally a real number

and does not necessarily lie in the range [0,1]. For a given gray

level value , we define a rejection region, denoted by

, by a set made up of all the image pixels in

the LSRMA-generated image whose gray level values less than

the . We then use the histogram of the LSRMA-generated image

to define the rejection probability as

(16)

A threshold value can be used to segment targets out from the

background by a prescribed confidence coefficient such that

(17)

More precisely, assume that the confidence coefficient is set to

with . If , will be detected as a

target pixel and a background pixel, otherwise. It should be noted

that the confidence coefficient can be adjusted and is determined

by target size. For small targets such as panels in Fig. 8(a), a panel

size of 3 m 3 m with pixel resolution 1.5 m would have at most

four pixels. Therefore, the ratio of a panel with four pixels to the

entire image size with 64 64 pixels is no more than

0.001. In this case, a reasonable estimate of the confidence coef-

ficient would be approximately . Ta-

bles I and II tally the number of panel B pixels detected in Figs. 13

and 14 with and , respectively. When

, both skewness and kurtosis can achieve 0% false

alarm rate, they also missed detection of six B pixels. On the other
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Fig. 13. Detection and classification results produced by the LSRMA with p = 21 using skewness: (a) interferer; (b) panels in row 1; (c) panels in row 4; (d)
panels in row 5; (e) panels in row 3; (f) panels in row 2; and (g)–(r) noise or interferers.

hand, when was decreased to 0.997, both skewness and kurtosis

detected all the 19 B pixels of the 15 panels at the expense of de-

tecting nine and seven false alarm pixels, respectively. Fig. 17(a)

and (b) shows the binary images resulting from thresholding the

images in Figs. 13(b)–(f) and 14(b)–(f) using as the

confidence coefficient in (17). As we can see from these images,

the five B pixels of panels in the third column (i.e., , , ,

, and in Fig. 8(b), one for each row) were effectively de-

tected in Fig. 17(a) and (b) by both skewness and kurtosis with

. It should be noted that these five B panel pixels ,

, , , and cannot be seen from visual inspection of

Fig. 8(a) because their size is merely of 1 m 1 m and smaller

thanthe1.5mpixelresolution.Thisexamplefurtherdemonstrates

abilityoftheLSRMAinsubpixeldetection.Moreimportantly, the

experiments also suggest that the three assumptions made for the

LSRMA in the introductionseem tobe reasonable and acceptable

in our applications.

In order to evaluate the performance of LSRMA, two linear

unmixing methods, OSP, in [23] and CEM in [24] were used

for comparative analysis. Such selections were made based on

two reasons. One is that both OSP and CEM have shown suc-

cess in target detection and classification and have been used in

hyperspectral image analysis. Another is from a target knowl-

edge viewpoint. The OSP requires complete target knowledge,

whereas the CEM only needs the knowledge of the desired target

of interest. Compared to the OSP and the CEM, the LSRMA
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Fig. 14. Detection and classification results produced by the LSRMA with p = 21 using kurosis: (a) interferer; (b) panels in row 1; (c) panels in row 5; (d) panels
in row 4; (e) panels in row 3; (f) panels in row 2; and (g)–(i) noise or interferers.

Fig. 15. Detection and classification results produced by the LSRMA with p = 169 using skewness: (a) interferer; (b) panels in row 1; (c) panels in row 4; (d)
panels in row 5; (e) panels in row 3; and (f) panels in row 2.

does not require any prior target knowledge except , which is

the number of targets assumed to be present in the image scene.

However, if can be estimated reliably, in fact, the LSRMA

does not need any information at all.

Tables III and IV tally the results produced by the

OSP and the CEM using the same confidence coefficients

and where the OSP used the five

panel signatures in Fig. 8(c) as its complete target knowledge

while the CEM only used as its desired target signature to

detect panels in row . Interestingly, if we compare Table IV

to Tables I and II, the LSRMA performed as well as the CEM

and their results were nearly the same, even if the LSRMA did
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Fig. 16. Detection and classification results produced by the LSRMA with p = 169 using kurosis: (a) interferer; (b) panels in row 1; (c) panels in row 5; (d)
panels in row 4; (e) panels in row 3; (f) panels in row 2; and (g)–(l) noise or interferers.

TABLE I
TALLY OF NUMBER OF PANEL B PIXELS

DETECTED IN FIG. 13(B)–(F) WITH  = 0:997; 0:998; AND 0:999

not assume any target knowledge. On the other hand, Table III

shows that the OSP performed very poorly. This is because the

target knowledge used in the OSP did not well represent the

image scene. It was made up of only the five panel signatures

and did not include background signatures

such as the large grass field, the forest on the left edge and the

road on the right edge of the scene.

TABLE II
TALLY OF NUMBER OF PANEL B PIXELS DETECTED IN FIG. 14(B)–(F) WITH

 = 0:997; 0:998; AND 0:999

VI. CONCLUSION

This paper presented an ICA-based LSRMA approach to

hyperspectral target detection and classification. It is different

from the commonly used ICA approach in that the learning

algorithm is derived from the orthogonality constraint imposed

on the abundance vector rather than the separating matrix

. In addition, the separating matrix is not necessarily
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(a)

(b)

Fig. 17. (a) Image in Fig. 13(b)–(f) thresholded by the values of � that were
determined by  = 0:997 via (17). (b) Image in Fig. 14(b)–(f) thresholded by
the values of � that were determined by  = 0:997 via (17).

a square matrix of full rank nor is the mixing matrix

orthogonal. These advantages are very useful in hyperspectral

image classification. Since hyperspectral sensors are capable

of uncovering targets with subtle differences, their spectral

TABLE III
TALLY OF NUMBER OF PANEL B PIXELS PRODUCED BY THE OSP WITH

 = 0:997; 0:998; AND 0:999

TABLE IV
TALLY OF NUMBER OF PANEL B PIXELS PRODUCED BY THE CEM WITH

 = 0:997; 0:998; AND 0:999

signatures are generally similar to some degree and not orthog-

onal. The new designed learning algorithm is able to converge

to nonorthogonal independent components. The proposed

LSRMA offers several advantages over existing LSMA-based

techniques which require complete knowledge for used in

the linear model. It has been shown in [34] that LSMA-based

techniques were sensitive to target knowledge and noise.

The proposed LSRMA does not have this sensitivity problem

since there is no target knowledge required for the used

in LSRMA. Second, the LSMA-based techniques generally

use the least squares error as an optimal criterion which is the

second-order statistics. However, the criteria such as relative

entropy, skewness and kurtosis used in LSRMA go beyond

the second-order statistics and have been shown effective

in target detection in [20] and [35]. Third, assuming that

abundance fractions as random signal sources seems more

appropriate to nonstationary environments. Furthermore, in

order to obtain an objective assessment without appealing for

human interpretation, an automatic thresholding method is

also introduced in this paper. In particular, a quantitative study

is also conducted in this paper for comparative analysis with

two commonly used methods, OSP which requires complete

target knowledge and CEM which only needs partial target

knowledge. As shown in experiments, the LSRMA performed

as well as CEM and significantly better than OSP. Interestingly,

as also demonstrated by experiments, skewness and kurtosis

used in the LSRMA have different strengths in classification.

Because the skewness measures asymmetry of a distribution, it

generally can detect changes in large areas. On the other hand,

the kurtosis measures the flatness of a distribution, thus it can

detect small targets.
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