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Abstract

The stability of miscible two-fluid flow in a horizontal channel is examined. The flow dynamics

are governed by the continuity and Navier-Stokes equations coupled to a convective-diffusion equa-

tion for the concentration of the more viscous fluid through a concentration-dependent viscosity.

Our analysis of the flow in the linear regime delineates the presence of convective and absolute

instabilities and identifies the vertical gradients of viscosity perturbations as the main destabilizing

influence in agreement with previous work. Our transient numerical simulations demonstrate the

development of complex dynamics in the nonlinear regime, characterized by roll-up phenomena

and intense convective mixing; these become pronounced with increasing flow rate and viscosity

ratio, as well as weak diffusion.
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I. INTRODUCTION

The stability of two-layer flows in planar channels and pipes has received considerable

attention in the literature experimentally, theoretically and numerically. This is due to the

central importance of these flows to numerous engineering applications. In the oil and gas

industry, the transportation of crude oil in pipelines relies on the stability of two-layer flows

when the less viscous fluid is at the wall [1]. In the chemical process industry, the stability

of two-layer flows features in centreline injectors, which are used upstream of static mixers,

employed for mixing liquids [2]. In the food and drink industry, cleaning of plants, involves

the removal of a highly viscous fluid by fast-flowing water pumped through the plant. In

dairy plants, flows involving these displacements are used during plant start-up and rinsing

[3]. Achieving fundamental understanding of these flows in the latter context is important

in order to determine the degree of mixing between the fluids and to minimize the amount

of waste-water utilized.

A large number of investigations have focused on the stability of immiscible fluids (see,

for instance, [1, 4–10] and references therein). Starting with the work of Yih [4] and Hickox

[5], carried out using long-wave theory in planar channels and cylindrical pipes, respectively,

these studies have shown that two-layer flows are destabilized linearly by an ‘interfacial’ mode

at arbitrarily small Reynolds numbers. This is brought about by a discontinuity in the slope

of the base state velocity at the interface [11, 12]. Short-wave asymptotics were also carried

out [13] showing that viscous stratification of two unbounded, immiscible fluids undergoing

Couette flow leads to an unconditional instability in the absence of surface tension; the

physical mechanism of this instability was elucidated by Hinch [14]. At sufficiently large

Reynolds numbers, a short-wave, ‘shear’ mode also becomes unstable [15]. An extensive

review of the work on the linear stability of planar two-fluid Poiseuille flow is provided in [16].

A number of studies have also been carried out on the stability of immiscible core-annular

flows in connection with lubricated oil pipelines and static mixers [1, 8]. These have included

linear stability analyses for horizontal [6, 7, 17–19] and vertical pipes [5, 20], accounting for

viscosity and density contrasts, experiments [21, 22] and numerical simulations in straight

[9, 10, 23] and corruagated pipes [24–27].

The stability of miscible two-layer flows has received comparatively less attention than

that of immiscible systems. Linear stability analyses of three-layer Poiseuille channel flows
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by Ranganathan and Govindarajan [28] and Govindarajan [29] have shown these flows to

be unstable at low Reynolds number and high Schmidt number. Other studies involving

channel flows have demonstrated the destabilising effect of diffusion for continuous but

rapidly varying viscosity stratification [30]. In the case of core-annular miscible flows, some

experimental studies have focused on determining the thickness of the more viscous fluid

left on the pipe walls following its displacement by a less viscous fluid and on measuring

the tip speed of the propagating ‘finger’ of the latter [31–36]. Others works have examined

the development of ‘interfacial’ axisymmetric and “corkscrew” patterns that accompany

these flows [2, 37–40]. More recently, axisymmetric “pearl” and “mushroom” patterns were

observed experimentally in the case of neutrally-buoyant, miscible core-annular flows in

horizontal pipes at high Schmidt number and Reynolds numbers in the range 2-60 [41]. For

fixed viscosity ratios, the transition from “pearls” to “mushrooms” occurred with increasing

Reynolds and/or the core radius. The most recent work on the linear stability of neutrally-

buoyant, core-annular flows was that of Sevlam et al. [42]. These authors show that beyond

a critical viscosity ratio, the flow is unstable even when the less viscous fluid is at the wall, in

contrast to the case of immiscible lubricated pipelining [1] and to miscible channel flows [43],

which are stable in this configuration. This study also shows that axisymmetric (corkscrew)

modes are dominant if the more (less) viscous fluid is in the pipe core, and for large Schmidt

numbers, relatively small Reynolds number and large wavenumbers.

In this paper, we examine the stability of two-layer miscible flows in planar channels,

focusing on the neutrally-buoyant displacement of a highly viscous fluid by a less viscous

one at relatively large Reynolds number. These flows are modelled via solution of the

Navier-Stokes equations coupled to a convective-diffusion equation for the concentration of

the more viscous fluid. A generalized linear stability analysis [44–46] (in which both the

spatial wavenumber and temporal frequency are complex) is carried out, which allows the

demarcation of the boundaries between convectively and absolutely unstable flows in the

space of relevant parameters: the Reynolds and Schmidt numbers, and a viscosity ratio.

This analysis is performed for a three-layer flow wherein the channel walls are coated with a

layer of the more viscous fluid of uniform thickness. To the best of our knowledge, this type

of analysis, which has been performed previously for jets, mixing layers, wakes, boundary

layers etc, has not been carried out for miscible channel flows; such an analysis, however,

was conducted for immiscible two-layer flows to determine the occurrence of defects in the
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co-extrusion of polymers [47].

The nonlinear stability of these flows is also examined via transient numerical simulations

of the fully-nonlinear governing equations; attention is focused on relatively large Reynolds

numbers (in the range 100-1000), which has received little attention for miscible two-layer

flows in the literature. Two distinct cases are considered: one is the three-layer flow; the

other involves channels initially filled completely with the more viscous fluid. The former case

allows comparisons between the predictions of linear theory and the numerical simulations

to be made. The latter is relevant to the modelling of applications in the food and drink and

oil and gas industries, for instance, that involve the complete removal of a highly viscous

‘soil’ or ‘foulant’ (e.g. a toothpaste or an asphaltene deposit) from a channel by a less viscous

fluid (e.g. water or crude oil).

The rest of this paper is organised as follows. Details of the problem formulation are

provided in section II, and the results of the linear stability analysis are presented in section

III. In section IV, we discuss the results of our numerical simulations and provide concluding

remarks in section V.

II. FORMULATION AND PROBLEM STATEMENT

A. Governing equations

We consider the flow of two miscible, Newtonian and incompressible fluids of equal den-

sity and varying viscosity in a horizontal, planar channel. We use a rectangular coordinate

system, (x, y), to model this flow where x and y denote the horizontal and vertical coor-

dinates, respectively. The channel walls, which are rigid and impermeable, are located at

y = 0 and y = H, while its inlet and exit coincide with x = 0 and x = L, respectively. The

flow dynamics are governed by the continuity and Navier-Stokes equations, in addition to

a convective-diffusion equation for the concentration of the more viscous fluid. Solutions of

these equations are subject to no-slip, no-penetration and no-flux conditions at y = (0, H).

We imposed a fully-developed velocity profile with a constant flow rate at the inlet (x = 0),

and Neumann boundary conditions at the outlet (x = L) in the extended domain simula-

tions.
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We render these equations dimensionless by introducing the following scaling:

u = (u, v) = V ũ = V (ũ, ṽ), (x, y) = H(x̃, ỹ), t =
H

V
t̃, p = ρV 2p̃, µ = µ2µ̃, (1)

in which u = (u, v) represents the two-dimensional velocity field where u and v denote the

horizontal and vertical velocity components, and p, ρ, µ and t denote pressure, density,

viscosity and time, respectively; the tildes designate dimensionless quantities. Note that the

concentration, which represents the fraction of the channel occupied by the more viscous

fluid, is already dimensionless. In Eq. (1), V ≡ Q/H represents a characteristic velocity, in

which Q denotes the total flow rate, and the viscosity has been scaled on that of the less

viscous fluid, µ2. The dimensionless governing equations are then given by

∇ · ũ = 0, (2)

∂ũ

∂t̃
+ ũ · ∇ũ = −∇p̃+

1

Re
∇ ·

[

µ̃
(

∇ũ + ∇ũT
)]

, (3)

∂c̃

∂t̃
+ ũ · ∇c̃ =

1

Pe
∇

2c̃, (4)

where c̃ is the concentration, Re ≡ ρV H/µ2 and Pe ≡ V H/D represent a Reynolds number

and a Péclet number, respectively; here, D denotes a constant diffusion coefficient (even

though a concentration-dependent D can have a non-negligible effect on the stability char-

acteristics [48]). Note that we shall use the Schmidt number, Sc ≡ Pe/Re, to characterise

the effect of diffusion on the linear stability characteristics. We shall also take µ̃ to be an

exponential function of c̃: µ̃ = ec̃ ln(m) [42, 49] where m ≡ µ1/µ2 is a viscosity ratio in which

µ1 represents the viscosity of the more viscous fluid. In the present work, we focus on the

stability of the flow with m ≥ 1 corresponding to situations in which the less viscous fluid

is in the channel interior.

B. Fully-developed, three-layer flow: linear stability

Here, we consider the base state whose linear stability characteristics will be analyzed.

This corresponds to a parallel, fully-developed flow in which the two fluids are separated

by a mixed layer of uniform thickness q, with the less viscous fluid located in the region

1/2 − h ≤ y ≤ 1/2 + h, as shown in Fig. 1. The temporal stability analysis of three-layer

flow in channel and pipe has been studied previously in the literature [28, 43, 50–52]. As will
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be discussed in the following section, only half the channel will be considered in which the

base state concentration, C, is characterized by the following steady concentration profile

C = 0, 1/2 ≤ y ≤ h+ 1/2,

C =
6

∑

i=1

aiy
i−1, h+ 1/2 ≤ y ≤ h+ q + 1/2,

C = 1, h+ q + 1/2 ≤ y ≤ 1, (5)

where ai (i = 1, 6) are given by

a1 = −
h3

q5

(

6h2 + 15hq + 10q2
)

,

a2 =
30h2

q5
(h+ q)2,

a3 = −
30h

q5

(

2h2 + 3hq + q2
)

,

a4 =
10

q5

(

6h2 + 6hq + q2
)

,

a5 = −
15

q5
(2h+ q) ,

a6 =
6

q5
. (6)

Thus, the concentration of the less and more viscous fluids are equal to 0 and 1, respectively,

in the channel core and adjacent to the channel walls; the concentration in the top and

bottom mixed layers are described by fifth order polynomials. The constants ai (i = 1, 6)

are obtained by demanding that the concentration and its first two derivatives be continuous

at the edges of the mixed layers. We have also applied symmetric boundary conditions across

the channel centerline. It is worthy of mention that very similar results to those that will

be discussed in section III were obtained via the use of a hyperbolic tangent profile instead

of the polynomial in Eq. (5).

The concentration profile described by Eq. (5) corresponds to an idealized state, achiev-

able for a sufficiently long distance from the inlet and for relatively weak diffusion charac-

terized by large Pe. The quasi-steady base state velocity profile, U(y), is then obtained by

solving the fully-developed version of Eq. (3):

ReP =
d

dy

(

eC ln mdU

dy

)

, (7)

where P is a constant pressure gradient. Solutions of Eq. (7) are obtained subject to no-slip

and no-penetration conditions at the walls, y = (0, 1). The value of P is chosen such that
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the flow rate is constant, Q =
∫ 1

0
Udy = 1; this is then consistent with the scaling introduced

in Eq. (1). The stability of the steady state characterized by U and C and parameterized

by h, q, m and Re will be investigated in section III.

C. Three-layer and displacement flows: direct numerical simulations

In the present work, two configurations will be investigated using direct numerical simu-

lations: one is the three-layer flow described in the previous section and shown schematically

in Fig. 1; the other corresponds to a flow involving the displacement of the more viscous

fluid, which occupies the entire channel initially, by the less viscous one. The imposed

boundary conditions are the following. At the channel inlet, the flow rate is kept constant

with a Poiseuille channel flow velocity profile, obtained via the integration of Eq. (7):

u = ReP

∫ y

0

y

eClnm
dy + c1

∫ y

0

1

eClnm
dy + c2, and v = 0. (8)

Here, the integration constants, c1 and c2, are obtained from the no-slip boundary condition

at the walls. In the case of the three-layer flows, a periodic oscillation of magnitude 10−3

is applied to h at the inlet. The concentration profile, given by Eq. (5), is then obtained

using the instantaneous h at the inlet. For the displacement flows, C = 0 in Eq. (8) in order

to determine u at the channel inlet. At the channel outlet, we impose outflow conditions,

given by ∂u/∂x = 0 and ∂c/∂x = 0, for both flows. No-slip, no-penetration and no-flux

boundary conditions are enforced at the upper and bottom channel walls for both flows; the

latter conditions are expressed by n ·∇c = 0 wherein n is the unit vector normal to the solid

walls.

III. LINEAR STABILITY ANALYSIS

A. Linearization and numerical procedure

We examine the linear stability of the base flow given by Eqs. (5)-(7) using a normal

modes analysis. We decompose the flow variables and the concentration into steady base

state quantities and two-dimensional, linear perturbations:

(ũ, ṽ, p̃, c̃, µ̃)(x̃, ỹ, t̃) = (U(ỹ), 0, P, C(ỹ), µ0(ỹ)) + (û, v̂, p̂, ĉ, µ̂)(y) exp
(

i
[

αx̃− ωt̃
])

, (9)
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where the hat decoration designates the perturbation quantities. In Eq. (9), µ0 = eC ln m

and µ̂ = lnmeC ln mĉ [53] represent the base state and perturbation viscosity, respectively;

α is the disturbance wavenumber and ω its frequency, both of which can be complex. The

amplitude of the velocity disturbances are then re-expressed in terms of a streamfunction:

(û, v̂) = (ψ′,−iαψ) where the prime denotes differentiation with respect to y. Substitu-

tion of Eq. (9) into the governing equations, Eqs. (2)-(4), subtraction of the base state

equations, subsequent linearization and elimination of the pressure perturbation yields the

following coupled ordinary differential eigenvalue equations (following the suppression of the

hat decoration)

iαRe
[(

ψ′′
− α2ψ

)

(U − ω/α) − U′′ψ
]

= µ0

(

ψiv
− 2α2ψ′′ + α4ψ

)

+ 2µ′

0

(

ψ′′′
− α2ψ′

)

+

µ′′

0

(

ψ′′ + α2ψ
)

+ U ′
(

µ′′ + α2µ
)

+ 2U ′′µ′ + U ′′′µ, (10)

iαPe [(U − ω/α) c − ψµ′

0] =
(

c′′ − α2c
)

; (11)

here, ω is the eigenvalue. Eq. (10) is an Orr-Sommerfeld equation, which is coupled to Eq.

(11) through the dependence of the viscosity on the concentration. Equations (10) and (11)

are solved subject to appropriate boundary conditions, which will be discussed below. The

existence of the eigenfunctions (ψ, c)(y;α) is contingent upon α and ω satisfying a dispersion

relation, D(α, ω;m,Re,Pe). In cases, wherein ω is complex (real) and α is real (complex),

the modes are temporal (spatial) and ω = ω(α;m,Re,Pe) (α = α(ω;m,Re,Pe)).

In order to determine whether the flow is stable or unstable, and, in the latter case,

whether absolutely or convectively unstable, we follow an approach, which has been used

previously to analyze the stability of mixing layers, jets and wakes, and in plasma flows

[44, 54–58]. This is outlined in appendix A. To obtain numerical solutions of Eqs. (10) and

(11), only half of the channel is considered, y ∈ [1/2, 1]. This domain is decomposed into

three regions, 1/2 ≤ y ≤ 1/2 + h, 1/2 + h ≤ y ≤ 1/2 + h+ q and 1/2 + h+ q ≤ y ≤ 1, and

the eigenfunctions in each region are then expanded using Chebyshev polynomials through

a spectral method [53, 59, 60]. The decomposition of the domain endows the edges of

the mixed layer with more points than its interior, thereby enhancing the resolution of the

numerical solutions where the base state concentration and its derivatives must be continuous

[53]. This is due to the distribution of Gauss-Lobatto points in the Chebyshev polynomials.
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Solutions are obtained subject to the following boundary conditions at the upper wall

ψ = ψ′ = c = 0 at y = 1, (12)

and either ψ′ = ψ′′′ = c′ = 0 or ψ = ψ′′ = c = 0 at y = 1/2. The latter conditions are

appropriate for ‘sinuous’ and ‘varicose’ modes; periodic conditions are employed in the x-

direction. Our results (not shown) reveal that the sinuous mode is dominant for the range of

parameters considered in the present work. Consequently, all of the results presented below

correspond to sinuous modes exclusively.

B. Results

We begin the presentation of our results by demonstrating their convergence upon refine-

ment of the spatial-mesh. Evidence of this is provided in Fig. 2, in which we plot ωi against

αr for Re = 500, Sc = 10, m = 2, h = 0.3 and q = 0.05; in this case, the linear, temporal

stability of the system is considered. It can be seen that the curves are indistinguishable

for different values of the order of Chebyshev polynomials, N . Thus, N = 121 is used to

generate the rest of the stability results in this paper. Also, inspection of Fig. 2 reveals the

presence of a band of αr for which ωi > 0 and, therefore, of a linear, temporal instability,

with well-defined high- and low-wavenumber ‘cut-off’ modes; the latter mode is associated

with finite wavelength disturbances, rather than αr = 0. We proceed below with a discussion

of convective and absolute instabilities.

As discussed in section IIIA, for a given set of parameters, the value of ω0 corresponds to

a pinch point singularity in the complex α−plane. The process of identifying ω0 is illustrated

in Fig. 3 and the isocontours of ωr and ωi for m = 25 are shown in Figs. 3(a) and (b),

respectively. Similarly, the isocontours of ωr and ωi for m = 40 are given in Figs. 3(c)

and (d), respectively; the rest of the parameters used to generate Fig. 3 are Re = 500,

Sc = 50, h = 0.3 and q = 0.05. It can be seen that the values of ω for m = 25 and m = 40

are 2.966 − 0.076i and 2.112 + 0.045i, respectively, indicating that the flow is convectively

unstable for m = 25 and absolutely unstable for m = 40. The mapping from the complex

ω plane to the complex α plane through the dispersion relation, performed using the Briggs

method [54] outlined above, is shown in Fig. 4. The simultaneous occurrence of a pinch

point in the α−plane and a branch point in ω−plane can seen Fig. 4.
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Adopting a similar procedure to that employed to generate Fig. 4, the boundary in m-

Re space delineating the presence of convective and absolute instabilities is calculated and

shown in Fig. 5. The base flow is absolutely unstable for the parameters above the curves in

Fig. 5. The slope of the curves decreases sharply with increasing Re reaching a minimum,

Rem, before increasing again at relatively high Re. Thus, absolute instabilities appear to

be present in this system over an intermediate range of Re values. For relatively low Re, a

large degree of viscosity stratification is required for absolute instability, whereas increasing

the level of inertial contribution renders the flow more convective for sufficiently large Re.

The effects of Sc and h on the boundary of convective and absolute instability have also

been investigated and are shown in Figs. 5(a) and (b), respectively. It can be seen in Fig.

5(a) that decreasing the relative significance of diffusion through an increase in Sc increases

the range of parameters over which the flow is absolutely unstable. The overall shape of the

boundary curve remains unaltered with Rem shifting towards low Re values. We have found

that increasing Sc has a similar effect to that of decreasing q (not shown), as expected since

decreasing diffusion contributions is reflected by thinner mixed regions.

In Fig. 5(b), it can be seen that decreasing the flow rate ratio of the less viscous fluid by

lowering the value of h also widens the absolutely unstable range in m−Re space and lowers

Rem. The effect of h on the temporal stability of the system has been studied extensively in

previous work [50, 53] that examined the influence of h on the neutral stability curves. This

work found the flow to be unstable at relatively low Re (approximately equal to 30 where

the velocity at the channel centerline and the half-channel width were used as velocity and

length scales, respectively), Sc = 105 and m = 1.05, when the mixed layer overlaps with

the critical layer, where the phase and base flow velocities are equal. In order to explore

whether this mechanism is operative in our case, we have plotted the variation of ωi with

αr for m = 2 and m = 40 in Figs. 6(a) and (b), respectively; these cases were chosen

to represent convectively and absolutely unstable flows. The location of the critical layer

corresponding to different h for m = 2 and m = 10 is also given in table I. It can be seen

that, for m = 2, h has a non-monnotonic influence on the growth rate of the most dangerous

mode, which is maximized for an intermediate value of h, h = 0.25. For this case, the

critical layer lies approximately at the mid-point of the mixed layer. For m = 40, however,

increasing h has a monotonically stabilizing influence, as shown in Fig. 6(b), despite the

fact that the critical layer is located in the mixed layer for h = 0.2 and h = 0.35.

10



In order to gain further insight into the mechanisms underlying the instabilities discussed

in the foregoing, we have carried out an analysis of the ‘energy’ budget [16]; a similar analysis

was also performed recently by Sahu et al. [59] and Sevlam et al. [51] for immiscible non-

Newtonian channel flows and miscible core annular flows, respectively. The ‘energy’ equation

is readily derived by taking the inner product of the vertical and horizontal components of

the momentum conservation equation, Eq. (3), with their respective velocity components.

The resultant equation is then averaged over the wavelength, λ = 2π/αr, and integrated

over the channel height. Use of the Gauss-divergence theorem finally yields

KIN = DIS +REY + A+B + F, (13)

where the various terms appearing in Eq. (13) are given by

KIN ≡
1

λ

d

dt

∫ 1

0

dy

∫ λ

0

dx

[

1

2

(

û2 + v̂2
)

]

, (14)

DIS ≡ −
1

λRe

∫ 1

0

dy

∫ λ

0

µ0dx

[

2

(

∂û

∂x

)2

+

(

∂û

∂y
+
∂v̂

∂x

)2

+ 2

(

∂v̂

∂y

)2
]

, (15)

REY ≡
1

λ

∫ 1

0

dy

∫ λ

0

dx

[

−ûv̂
dU

dy

]

, (16)

A ≡
1

λ

∫ 1

0

dy

∫ λ

0

dx

[

dµ0

dy

∂v̂2

∂y

]

, (17)

B ≡ Bx +By =
1

λRe

∫ 1

0

dy

∫ λ

0

dx

[

v̂
∂µ̂

∂x

dU

dy

]

+
1

λRe

∫ 1

0

dy

∫ λ

0

dx

[

û
∂µ̂

∂y

dU

dy

]

, (18)

F ≡ −
1

λRe

∫ 1

0

dy

∫ λ

0

dx

[

ûµ̂
d2U

dy2

]

. (19)

Here, KIN represents the temporal rate of change of the disturbance kinetic energy: KIN >

0 indicates the presence of instability; REY denotes the ‘Reynolds stress’ term, which

determines the rate of transfer of energy from the base flow to the disturbances, and DIS

corresponds to the viscous dissipation of energy. The term A represents the energy of the

disturbances due to mean viscosity gradients, while the disturbance energies B and F are

due to the gradient of viscosity perturbations and viscosity perturbations, respectively. The

term B can be further decomposed into Bx and By, where Bx and By are the disturbance

energies associated with the gradient of viscosity perturbations in the x and y directions,

respectively.
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In Figs. 7(a) and (b), we present a breakdown of KIN into its constituent components

as a function of Re for m = 30 and Sc = 100, and m = 40 and Sc = 50, respectively; the rest

of the parameter values are h = 0.3 and q = 0.05. The wavenumber chosen to generate the

results in Fig. 7 corresponds to that associated with the maximal temporal growth rate at

each Re considered. Inspection of Fig. 7 reveals that the largest contributor to instability

is By, which is the energy associated with the gradient of viscosity perturbations in the y

direction. Sevlam et al. [51] also reached a similar conclusion for miscible core-annular flows

at high Schmidt numbers. This magnitude of By decreases with increasing Re in contrast

to that of REY , which makes a positive, albeit small, contribution to KIN . The distur-

bance energy associated with mean viscosity gradients and perturbation viscosity gradients

in the x-direction, represented by A and Bx, respectively, is small for all parameter values

considered. Viscous dissipation and disturbance energy associated with viscosity pertur-

bations, represented by DIS and F , respectively, are stabilizing although their magnitude

decreases with Re. In the following section, the stability of the flow is probed in the non-

linear regime and connections with the results presented in this section will be highlighted

wherever possible.

IV. DIRECT NUMERICAL SIMULATIONS

In this section, we present the results of direct numerical simulations of the flow via

solution of Eqs. (2)–(4) over a wide range of parameters.

A. Numerical procedure

In this section, we describe the methodology used to solve Eqs. (2)–(4) in order to

simulate two-fluid miscible channel flow. A staggered grid is used for the finite-volume

discretization of these equations, with the scalar variables, the pressure and concentration,

defined at the center of each cell while the velocity components are defined at the cell faces.

The solutions of the governing equations are coupled in the following manner: we first

update the concentration field by solving Eq. (4) with the velocity field at time steps n

and n − 1; this field is then updated to time-step n + 1 via solution of Eq. (3) in con-

junction with the continuity equation, Eq. (2). For the spatial discretization, the advective

12



term, the second term on the left-hand-side of Eq. (4), is approximated using a weighted

essentially non-oscillatory (WENO) scheme; central difference schemes are used to discretize

the diffusion term on the right-hand-side of Eq. (4). For the temporal discretization, the

Adams-Bashforth and Crank-Nicolson methods are used for the advective and second-order

dissipation terms, respectively, in order to achieve second-order accuracy. The numerical

procedure described here was previously employed by Ding et al. [61] to solve Eqs. (2) and

(3) along with a Cahn-Hilliard equation for the for the position of the interface within the

framework of the “diffuse interface” method. This procedure has been validated by simu-

lating Rayleigh-Taylor instabilities in incompressible two-phase flows with density contrasts

[61] and droplet spreading [62, 63], and was applied to physical problems such as droplet

deformation due to shear flow [64] in the presence of moving contact lines.

The predictions of our numerical procedure are validated against those obtained from a

linear (temporal) stability analysis for the case shown in Fig. 2. The comparison between

the numerical solutions of Eqs. (2)–(4) and the linear theory predictions for αr = 4, cor-

responding to the most dangerous linear mode, are depicted in Fig. 8. Here, the latter

are represented by the maximal vertical velocity component, vmax, which is equivalent to

v̂ei(αrx−ωt); the former are obtained over a spatial domain of length 2π/αr by starting from

the eigenfunctions corresponding to αr = 4 as an initial condition with amplitude equal to

1× 10−3. Periodic boundary conditions are imposed in the x-direction. The numerical sim-

ulation in Fig. 8 is carried out for 256 points in each direction. We have checked this result

for different sets of grid points and found convergence for grid points greater than or equal

to 161 in both the x and y directions. Inspection of Fig. 8(a) reveals excellent agreement for

sufficiently early times prior to the onset of nonlinearities. Figures 8(b) and (c) also show

a comparison in terms of contour plots of vmax obtained from the linear stability analysis

and the full numerical simulations, for the same parameter values as those used to generate

Fig. 8(a) at t = 1 and t = 6 respectively. Excellent agreement is found in the comparison of

the contour plots of vmax at early times, but at later times, the contours of vmax diverge due

to the onset of nonlinearities. These results inspire confidence in the predictions of the nu-

merical procedure used to solve Eqs. (2)–(4); similar agreement was also obtained in terms

of the concentration (not shown). We have also carried out mesh refinement tests for the

extended domain case, as will be discussed in the next section, and the results below were

obtained using 81 and 1001 grid points in the x and y-directions, respectively, for channels
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of aspect ratio up to 1 : 40.

B. Three-layer flow

Here, we discuss the results of our numerical simulation of the three-layer flow configu-

ration, shown schematically in Fig. 1; the objective of this work is to establish a connection

between the results shown in Figs. 3–5 and those obtained in the nonlinear regime. In Figs.

9(a,c) and 10, and Figs. 9(b,d) and 12, we show numerical solutions for m = 2 and m = 30,

respectively, and the rest of the parameter values are Re = 500, Sc = 100 and h = 0.3;

q is set to 0.05 initially. As suggested by Fig. 5(a), one would expect the flow associated

with these parameters to exhibit convective and absolute instabilities, respectively. Periodic

oscillations of h with amplitude equal to 10−3 are applied at the inlet; this is referred to

below as inlet ‘forcing’. The oscillation frequency corresponds to that at the branch point

singularity obtained by following the procedure outlined in section III A (cf. Fig. 4); these

frequencies are equal to 4.03 and 2.556 for m = 2 and m = 30, respectively.

Figures 9(a) and (b) show the contours of c = 0.5 at different times form = 2 andm = 30,

respectively, at t = 4, 12, 20. It is clearly seen that, whereas for m = 2 the amplitude of

the disturbances near the inlet remains small and grows downstream, as expected from a

flow dominated by a convective instability, the m = 30 case is characterized by disturbance

growth near the inlet region; this reflects the presence of an absolute instability, in agreement

with the predictions shown in Fig. 5(a). In Figs. 9(c) and (d), we show enlarged views of the

c = 0.5 contour near the inlet region, which provide estimates for the disturbance wavelength

in that region for m = 2 and m = 30, respectively. It is seen that the value of these estimates

are 1.4 and 0.56, respectively, which are approximately equal to the wavelength of the most

dangerous temporal mode for m = 2 and that at the saddle point corresponding to the

pinch point singularity for m = 30 (see Figs. 9(e) and (f)). Thus, the periodic forcing at

the inlet drives the flow with temporal linear dynamics and ‘saddle point dynamics’ in the

convectively and absolutely unstable cases, respectively.

Concentration contours are shown in Figs. 10 and 12 for m = 2 and m = 30 with

the rest of the parameters remaining unchanged from Fig. 9. In Fig. 10, it is seen that

the disturbances, which originate near the inlet grow in amplitude as they are convected

downstream. These then lead to ‘roll-up’ phenomena that bring about the formation of
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large vortical structures, shown in Fig. 11, which depicts contours of the vorticity, and the

entrainment of the more viscous fluid, fluid ‘1’, near the wall into the channel core. The

large vortices are, in turn, also convected downstream leaving behind a three-layer structure

characterized by a relatively smooth inlet region, small-amplitude vortices half-way along

the channel, followed by a seemingly stable region near the channel outlet; in this region,

mixing of the two fluids occurs by diffusive processes. The analogous results associated with

m = 30, shown in Fig. 12, exhibit somewhat similar dynamics to those depicted in Fig.

10. The ‘roll-up’ phenomena for m = 30 gives rise to vortical patterns that persist to later

times than for m = 2, as expected from a case dominated by an absolute instability. It

should be noted that the thickness of the mixed layer increases downstream from the inlet

due to diffusion, which leads to spatially-varying h and q values; this naturally complicates

comparisons with the predictions presented in Fig. 5 based on constant h and q.

It is instructive to compare the flow dynamics in the presence and absence of inlet forcing.

The effect of forcing is shown in Fig. 13, which depicts concentration contours for m = 2 and

m = 30 in panels (a) and (c), and (b) and (d), respectively; the rest of the parameters remain

unaltered from Figs. 10-12. Inspection of Fig. 13 reveals that, in the m = 2 case, which,

based on Fig. 5 is convectively unstable, the absence of inlet forcing leads to a relatively

stable flow devoid of vortical patterns. In contrast, the dynamics in the m = 30 case appear

to be very weakly-dependent on the presence of forcing, as might be expected from an

absolutely unstable situation. The remainder of the results discussed in this subsection were

generated with inlet forcing.

The influence of Sc and Re on the dynamics of the three-layer configuration was also

investigated. In Fig. 14, we show the effect of decreasing the value of Sc from 100 to 50,

thereby rendering the flow more diffusive, while keeping the rest of the parameters unaltered

from Fig. 12. According to the results shown in Fig. 5(a), one would expect the flow in

this case to exhibit convective instabilities. This is indeed reflected by the spatio-temporal

evolution of the concentration contours shown in Fig. 14, which reveals the development of

‘roll-up’ patterns that are convected rapidly downstream. As can also be seen in Fig. 14,

vortical patterns develop again at relatively late times following a relatively quiescent period

between t = 30–45. We have ensured that this intermittent behaviour is not a spurious

numerical artefact associated, for instance, with an insufficient domain length: increasing

the channel length by 50% yielded identical results to those shown in Fig. 14. Variation of
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Re also has a profound effect on the flow characteristics. Comparison of Figs. 15 and 16

in which Re = 100 and Re = 1000, respectively, demonstrates that a tenfold increase in Re

gives rise to significant destabilization of the flow. This is characterized by the relatively

rapid development of large vortices over a substantial proportion of the channel, leading to

significant entrainment of the more viscous fluid ‘1’ into the channel core, as is also shown

in Fig. 16. This, in turn, leads to the development of two distinct regions: one spanning the

spatial interval between the inlet and the channel mid-point, characterized by a thin layer

of fluid ‘1’ adjacent to the walls of almost uniform thickness; the other region extends from

the mid-point to the channel exit having a considerable thinner, wavy viscous layer. The

results generated for the displacement flows are presented next.

C. Displacement flow

In this section, we describe the results obtained for the case wherein a fluid initially

occupying the channel completely is displaced by a less viscous one. In Fig. 18, we show

the spatio-temporal evolution of the concentration contours for Re = 500, Sc = 20 and

m = 10; the channel aspect ratio is 1:40. As can be seen from this figure, a ‘finger’ of

fluid ‘2’ penetrates the more viscous fluid ‘1’ at early times. As the finger length increases,

instabilities develop rendering the ‘interface’ between the two fluids wavy, leading to the

formation of vortical patterns that destroy the integrity of the finger; this is accompanied

by intense, convective mixing of the two fluids. The region from the channel inlet to its mid-

point resembles that associated with the three-layer flow structure discussed in section IVB

above as the penetrating finger of fluid ‘2’ leaves behind a thin layer of the more viscous fluid

adjacent to the wall. Downstream of the channel mid-point, the three-layer flow comprises

a very thin, viscous wall layer and a slender, wavy finger of the less viscous fluid, separated

by thick mixed regions.

In Fig. 19(a), we plot the temporal evolution of a dimensionless measure of the mass of

fluid ‘1’ left in the channel, M0.95/M0; here, M0.95 and M0 represent, respectively, the mass

of fluid with c ≥ 0.95 and that of fluid ‘1’ occupying the channel initially. In Fig. 19(b), we

show the variation with time of the spatial location of the leading front separating the two

fluids, xtip. Inspection of Fig. 19(a) reveals that the mass fraction of the displaced, more

viscous fluid decreases from unity, essentially linearly at relatively early times (viz. the line
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of constant slope in this panel), following the penetration of the less viscous, largely stable

finger, as shown in the top two panels of Fig. 18. The rate of decrease of the mass fraction,

corresponding to the displacement rate of the more viscous fluid, is accelerated following the

onset and development of the instabilities discussed above, shown in the third and fourth

panels of Fig. 18, which act to mix the fluids efficiently; this occurs between t ≈ 10 − 25.

Following this period of time, the displacement rate decreases since the flow, at this relatively

late stage of the dynamics, is dominated by diffusion that acts to mix the fluids on longer

time scales. Thus, Fig. 19(a) indicates the existence of three flow regimes: unperturbed

penetration of the less viscous into the more viscous one at relatively early times; followed by

an instability-dominated regime with convective mixing and acceleration of the displacement

rate at intermediate times; this, in turn, is followed by a diffusion-dominated regime and

deceleration of the displacement rate at late times. Despite the complex dynamics shown

in Fig. 18(a) giving rise to displacement rates observed in Fig. 19(a), the slope of xtip

with time remains remarkably linear, indicating that the leading front propagates with an

approximately constant speed, utip. Inspection of Fig. 19 also reveals that convergence of

the results has indeed been achieved upon mesh refinement. The results discussed in the

rest of this paper were generated using 41 × 701 grid points.

We have also carried out a parametric study to investigate the effect of varying Re, Sc

and m on the displacement characteristics. In Figs. 20-22, it is seen that increasing the

value of Re from 100, to 500 and then 1000, respectively, leads to the rapid development of

instabilities that lead to complex dynamics and intricate flow patterns. These are punctuated

by more pronounced ‘roll-up’ phenomena and intense mixing that lead to an increase in the

rates of displacement and a decrease in the duration of the diffusive mixing period, as shown

in Figs. 28(a) and (b). In contrast, at the relatively low value of Re = 100, the penetrating

finger of the less viscous fluid propagates in an apparently stable manner, and fluid mixing

is dominated by diffusive processes on the time scales shown in Fig. 20. The rest of the

parameter values in Figs. 20-22 are Sc = 100 and m = 30, which, according to the results

presented in Fig. 5, may suggest that the flow should exhibit absolute and convective

instabilities for Re = 500, and Re = 100 and Re = 1000, respectively. However, it should be

noted that one can only estimate the thickness of the more viscous wall layer left behind by

the penetrating, less viscous finger that leads to the formation of the three-layer structure

whose linear stability was investigated in section III. Such a structure is indeed established
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locally near the inlet region in Figs. 20-22, but the value of h in this case varies, albeit

weakly, with x, and q also increases due to diffusion, thereby complicating any connections

that may be established with the results of section III.

The effect of decreasing Sc is to promote diffusive mixing, manifested by the rapid smear-

ing of the initially sharp boundaries between fluids ‘1’ and ‘2’ and the absence of instabilities,

as shown in Fig. 23 for Sc = 1, Re = 500 and m = 25. The displacement rate also appears

to be approximately constant for the large majority of the flow, as depicted in Fig. 28(c).

Increasing Sc to 10 and then 100 in Figs. 24 and 25, respectively, allows the magnitude of

the vertical gradients in the viscosity perturbations to be maintained for longer times since

diffusive effects are weaker at these larger Sc values. As was shown in section III B via an en-

ergy analysis, these gradients provide the largest positive contribution to the rate of change

of the disturbance kinetic energy and are therefore highly destabilizing. As shown in Figs.

24 and 25, larger Sc flows are dominated by instabilities, complex dynamics and convective

mixing, which, interestingly, appear to prolong the displacement of the more viscous fluid

from the channel (see Fig. 28(c)), although the displacement rates saturate at sufficiently

large Sc. Inspection of Fig. 28(d) also shows that the speed of propagation of the leading

front, utip, is essentially insensitive to variations in Sc.

Finally, we examine the effect of varying m on the displacement dynamics. As shown in

Fig. 26, generated with m = 2, Re = 500 and Sc = 100, the penetrating finger of fluid ‘1’,

which occupies a large fraction of the channel width at early times, develops a sharp ‘nose’

at later times (see the fourth panel of Fig. 26 corresponding to t = 20). Instabilities set

in at relatively late times due to the relative weakness of the viscosity stratification in this

case. This is in contrast to the flow characterized by m = 40 case shown in Fig. 27, which

is accompanied by the development of ‘roll-up’ and vigorous convective mixing of the fluids;

this also leads to the acceleration of the displacement of the more viscous fluid from the

channel, as shown in Figs. 28(e) and (f).

V. CONCLUDING REMARKS

We have investigated the stability of miscible two-fluid flow in a horizontal channel using

linear stability theory and direct numerical simulations. The equations governing this flow

are the continuity and Navier-Stokes equations in which the viscosity is a function of the
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concentration of the more viscous fluid; the dynamics of this concentration are governed by

a convective-diffusion equation. This system of equations is parameterized by a Reynolds

number, Re, a Schmidt number, Sc and a viscosity ratio, m.

In order to determine the linear stability characteristics of the flow, we have derived

an Orr-Sommerfeld equation for the disturbance streamfunction coupled to a linearized

convective-diffusion equation for the disturbance concentration. These are ordinary differ-

ential eigenvalue equations wherein the complex growth rate is the eigenvalue; the wavenum-

ber in this equation is taken to be complex. A Briggs-type analysis was then carried out to

delineate the boundaries between linear convective and absolute instability in m−Re space

as a parametric function of Sc. This was performed for a three-layer structure comprising

layers of the more viscous fluid adjacent to the wall and the less viscous fluid in the chan-

nel core; the fluids are separated by a mixed layer. This analysis showed that increasing

Sc widens the range of parameters over which the flow is absolutely unstable. An energy

analysis also revealed that the vertical gradients in the viscosity perturbations are primarily

responsible for instability in this flow, followed by the Reynolds stress terms, which are also

destabilizing. Our transient numerical simulations allowed us to probe the flow stability in

the nonlinear regime and revealed the development of ‘roll-up’ phenomena, cellular patterns

and convective mixing for sufficiently large Re, Sc and m values.

Acknowledgments

The authors acknowledge fruitful discussions with Dr. P. D. M. Spelt. They also thank

the EPSRC for their support through grant numbers EP/E046029/1 and EP/D503051 and

the DTI through grant number TP//ZEE/6/1/21191.

APPENDIX A: METHOD FOR DETECTING ABSOLUTE AND CONVECTIVE

INSTABILITIES

The approach employed to distinguish between absolute and convective instabilities in-

volves the association of a differential operator for the perturbations (ψ and c in the present

case) in physical space with the dispersion relation in complex (ω, α) space and the subse-

quent introduction of a Green’s function, G(x, y, t), that represents the impulse response of
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the flow. The latter can be expressed as a double Fourier integral in the complex ω and α

planes along contours, Cω and Cα respectively, which are chosen in order to satisfy causality

considerations. Variation of ω along Cω is associated with spatial branches in the complex

α plane, α+ and α−, located in the upper and lower half planes, respectively. The contour

Cα lies between α+ and α− in order to satisfy causality requirements.

In order to determine the stability characteristics, the behaviour of the G(x, y, t) at long

times is determined along different ‘rays’ corresponding to constant values of x/t. This

is done by first using the method of steepest descent [65], which involves determining the

saddle point of the exponent of G, α∗. The saddle point condition is

∂ω

∂α
(α∗) =

x

t
, (A1)

which is real and corresponds to the group velocity. The contour Cα, originally coinciding

with the αr axis, is then deformed into the path of steepest descent through α∗, so that the

behaviour of G(x, y, t) is dominated by the contribution of the region nearest α∗:

G(x, y, t) ∼
ei[π/4+α∗x−ω(α∗)t]

∂D
∂ω

[α∗, ω(α∗)]
[

2π ∂2ω
∂α2

]1/2
. (A2)

As can be seen from Eq. (A2), the temporal growth rate measured by an observer moving

along a ray x/t is ω∗,i−(x/t)α∗. To determine whether the flow is linearly stable or unstable,

one first finds the maximum temporal growth rate, ωi,max = ωi(αmax) where αmax is real

and satisfies ∂ωi/∂α(αmax) = 0. The flow is then said to be

• linearly stable if ωi,max < 0 and

• linearly unstable if ωi,max > 0.

In order to determine whether the flow is convectively or absolutely unstable, one first de-

termines the so-called “absolute frequency”, ω0 = ω(α0), where α0, the “absolute wavenum-

ber”, may be complex and satisfies

∂ω

∂α
(α0) = 0; (A3)

this corresponds to the ray x/t = 0 or zero group velocity. The “absolute growth rate”, ω0,i,

measures disturbance growth or decay along the x/t = 0 ray, i.e. in a stationary reference

frame. The flow is then said to be [54, 55]
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• convectively unstable if ω0,i < 0 and

• absolutely unstable if ω0,i > 0.

Physically, if a localized disturbance generated by an impulse spreads both upstream and

downstream from its source, the flow is absolutely unstable; if, on the other hand, the

disturbance amplitude grows downstream of the source, the flow is convectively unstable.

The x/t = 0 condition given by Eq. (A3) coincides with the contour Cω coming into

contact with the locus of any temporal branches in the complex ω plane at ω0; if this event

is accompanied by Cω being in the upper (lower) half planes then the flow is absolutely

(convectively) unstable. The zero group velocity condition also coincides with the pinching

of the contour Cα [54] when the branches α+ and α−, initially located in the upper and

lower half planes, respectively, come into contact at α0. Evidence for the presence of such

singularities in both the complex α and ω planes will be presented below.
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TABLE I: Variation of the critical layer location with h for Re = 500 and Sc = 50. Two different

values of m are considered, m = 2 and m = 40, and the width of the mixed layer is q = 0.05.

h Location of critical layer (m = 2) Location of critical layer (m = 40)

0.2 0.201 0.205

0.25 0.270 0.238

0.3 0.295 0.298

0.35 0.343 0.353

26



fluid 1

fluid 2

mixed fluidq

h

y

x

FIG. 1: Schematic of the ‘three-layer’ base state flow whose linear stability is analysed. Here, layers

of fluids ‘1’ and ‘2’, corresponding to the more and less viscous fluids, respectively, are separated

by mixed regions of thickness, q. The interfaces between these regions and the region occupied by

the less viscous fluid are located at y = 1/2 ± h, respectively.
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FIG. 2: The effect of increasing the order of Chebyshev polynomials, N , on the variation of the

growth rate, ωi, with αr. The parameters are Re = 500, Sc = 10, h = 0.3, q = 0.05 and m = 2.
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FIG. 3: Isocontours of ωr and ωi in the complex wavenumber plane for m = 25 and m = 40

are shown in (a) and (b), and (c) and (d), respectively. The value of ω at the saddle point is

2.966 − 0.076i and 2.110 + 0.045i for m = 25 and m = 40, respectively. The rest of the parameter

values are Re = 500, Sc = 50, h = 0.3 and q = 0.05.
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FIG. 4: Contour deformation procedure following the Briggs method [54] with m = 40 showing the

coalescence of two spatial branches initially present in the upper and lower halves of the complex

α plane. Panels (a), (c) and (e) show the effect of contour deformation in the complex ω plane,

while (b), (d) and (f) show the analogous effect in the complex α plane. The rest of the parameters

are the same as in Fig. 3. The inset in panel (e) shows details of the branch point in the complex

ω−plane.
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FIG. 5: Stability diagram showing the regions of convective and absolute instability in m − Re

space. (a) Effect of Sc with h = 0.3; (b) effect of h with Sc = 50. In both panels, q = 0.05.
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FIG. 6: The effect of h on the dispersion curves, ωi vs. αr, for m = 2 and m = 40, shown in (a)

and (b), respectively. The rest of the parameters are Re = 500, Sc = 50 and q = 0.05.
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FIG. 7: Variations of the different contributions to the rate of change of the disturbance kinetic

energy with Re with Sc = 100 and m = 30, and Sc = 50 and m = 40, shown in (a) and (b),

respectively. The rest of the parameter values are h = 0.3 and q = 0.05.
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FIG. 8: (a) Comparison of the temporal evolution of the vertical velocity perturbation from the

linear stability analysis with that obtained from the numerical simulation with 256 points in the

x and y directions for αr = 4. The direct numerical simulation result with 361 points in the x

and y directions is virtually indistinguishable from the one shown in this figure. Comparison of

the contour of the vertical velocity perturbation from the linear stability analysis (dashed line)

with that from numerical simulations (solid line) at t = 1, (b), and t = 6, (c). The rest of the

parameters are Re = 500, Sc = 10, m = 2, h = 0.3 and q = 0.05.
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FIG. 9: Spatio-temporal evolution of the contours of c = 0.5 for m = 2, (a), and m = 30, (b);

solutions are shown at t = 4 (dotted lines), t = 12 (dash-dotted line) and t = 20 (solid line). For

clarity of presentation, the dash-dotted and solid lines in panels (a) and (b) are displaced by 0.01

and 0.03, respectively, from their original position in the vertical axis. The rest of the parameter

values are Re = 500, Sc = 100, h = 0.3 and q = 0.05. Enlarged views of the c = 0.5 contour near

the channel inlet for m = 2 and m = 30, shown in (c) and (d), respectively. (e) and (f) show the

dispersion curve for m = 2 and the contour of ωi in the complex α−plane. The estimates of the

disturbance wavelength shown panels (c) and (d) correspond approximately to those of the most

dangerous temporal mode and the mode associated with the pinch point singularity at the saddle

point in panels (e) and (f), respectively.
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FIG. 10: Spatio-temporal evolution of the concentration contours for m = 2, Re = 500, Sc = 100,

h = 0.3, and q = 0.05.
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FIG. 11: Spatio-temporal evolution of the vorticity contours. The parameter values remain un-

changed from Fig. 10
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FIG. 12: Spatio-temporal evolution of the concentration contours for m = 30. The rest of the

parameter values remain unchanged from Fig. 10.
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(a) (b)

(c) (d)

FIG. 13: Concentration contours obtained in the presence and absence of inlet forcing shown in (a)

and (b), and (c) and (d), respectively at t = 28. The results depicted in (a) and (c) were generated

with m = 2, while those in (b) and (d) were obtained with m = 30. The rest of the parameter

values remain unchanged from Fig. 10.
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FIG. 14: Spatio-temporal evolution of the concentration contours for Sc = 50. The rest of the

parameter values remain unchanged from Fig. 12.
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FIG. 15: Spatio-temporal evolution of the concentration contours for Re = 100. The rest of the

parameter values remain unchanged from Fig. 12.
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FIG. 16: Spatio-temporal evolution of the concentration contours for Re = 1000. The rest of the

parameter values remain unchanged from Fig. 12.

42



FIG. 17: Spatio-temporal evolution of the vorticity contours for the same parameter values as in

Fig. 16.
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FIG. 18: Spatio-temporal evolution of the concentration contours for Re = 500, Sc = 20 and

m = 10.
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FIG. 19: Mass fraction of the displaced fluid M0.95/M0, (a), and temporal evolution of the position

of the leading front separating the two fluids, xtip, (b), obtained using different mesh densities for

the same parameters as in Fig. 18. The dashed line of constant slope has been included in (a)

to demonstrate the constant displacement rate in the flow regime dominated by the unperturbed

penetration of a finger of the less viscous fluid into the more viscous one.
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FIG. 20: Spatio-temporal evolution of the concentration contours for Re = 100, Sc = 100 and

m = 30.

46



FIG. 21: Spatio-temporal evolution of the concentration contours for Re = 500. The rest of the

parameter values remain unchanged from Fig. 20.
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FIG. 22: Spatio-temporal evolution of the concentration contours for Re = 1000. The rest of the

parameter values remain unchanged from Fig. 20.
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FIG. 23: Spatio-temporal evolution of the concentration contours for Sc = 1, Re = 500 and m = 25.
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FIG. 24: Spatio-temporal evolution of the concentration contours for Sc = 10. The rest of the

parameter values remain unchanged from Fig. 23.
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FIG. 25: Spatio-temporal evolution of the concentration contours for Sc = 100. The rest of the

parameter values remain unchanged from Fig. 23.
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FIG. 26: Spatio-temporal evolution of the concentration contours for m = 2, Re = 500 and

Sc = 100.
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FIG. 27: Spatio-temporal evolution of the concentration contours for m = 40. The rest of the

parameter values remain unchanged from Fig. 26.
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FIG. 28: Effect of Re, Sc and m on the mass fraction of the displaced fluid ‘1’ and the temporal

evolution of the position of the leading front separating the two fluids, xtip shown in (a),(c), (e),

and (b), (d), (f), respectively. The rest of the parameter values are Sc = 100 and m = 30 in (a)

and (b); Re = 500 and m = 25 in (c) and (d); and Re = 500 and Sc = 100 in (e) and (f).
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