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Recent experiments by several groups have uncovered a novel fingering instability in the spreading

of surface active material on a thin liquid film. The mechanism responsible for this instability is yet

to be determined. In an effort to understand this phenomenon and isolate a possible mechanism, we

have investigated the linear stability of a coupled set of equations describing the Marangoni

spreading of a surfactant monolayer on a thin liquid support. The unperturbed flows, which exhibit

simple linear behavior in the film thickness and surfactant concentration, are self-similar solutions

of the first kind for spreading in a rectilinear geometry. The solution of the disturbance equations

determines that the rectilinear base flows are linearly stable. An energy analysis reveals why these

base flows can successfully heal perturbations of all wavenumbers. The details of this analysis

suggest, however, a mechanism by which the spreading can be destabilized. We propose how the

inclusion of additional forces acting on the surfactant coated spreading film might give rise to

regions of adverse mobility gradients known to produce fingering instabilities in other fluid flows.

© 1997 American Institute of Physics. @S1070-6631~97!00112-8#

I. INTRODUCTION

The spreading of solutions containing surface active ma-

terial plays a very significant role in daily life and industry

ranging from detergency and aerosol delivery of medicating

drugs to lubrication and ink jet printing. In general, a pure

liquid film spreading on a dry solid will advance fairly

slowly unless driven by external forces like gravity, centrifu-

gation, or surface shear. A surface active film distributed on

a thin liquid support, however, will cause spontaneous and

very rapid spreading when the surface material creates re-

gions of lower surface tension than the supporting liquid.

Controlling the rate and extent of such spreading requires a

thorough understanding of the so-called Marangoni flow.

Typical coating solutions often contain surface active agents

like hydrocarbon solvents, phospholipids, surfactants or

dyes. Not only do these substances significantly lower the

surface tension of the supporting liquid but, depending on

their local concentration, will create gradients in surface ten-

sion along the air-liquid interface.

While conducting experiments on the radial advance of

small water droplets containing various surfactants on the

surface of glass, Marmur and Lelah1 first reported the pres-

ence of dendritic-like patterns during the spreading process.

They assumed that such unusual patterns were formed during

the spreading of a droplet on a dry substrate whenever the

bulk surfactant concentration was above the critical micelle

concentration ~CMC!. Marmur and Lelah speculated that a

primary film of surfactant spread out onto the dry substrate

ahead of the macroscopic drop and that this precursor film

adsorbed onto the glass surface in one of three orientational

modes. These deposition modes were believed to form hy-

drophilic and hydrophobic patches on the substrate which

ultimately gave rise to the intricate wetting patterns ob-

served. By repeating these experiments in a controlled hu-

midity cell to prevent spurious evaporation from the thinnest

parts of the spreading films, Troian et al.2 observed much

more regular fingering patterns as shown in Fig. 1. Such

patterns were obtained by gently depositing a 2 ml droplet of

1 mM AOT @sodium bis-~2-ethylhexyl! sulfosuccinate# on

the surface of a clean water film ranging in thickness from 1

mm to fractions of a micron. Many common laboratory de-

tergents were found to produce a similar instability.1–3 In

each case, the spreading droplet creates a rapidly growing

disk with a thickened front that advances with a speed on the

order of cm/s. Far behind this advancing rim, there develops

a sharp depression in liquid height near the location of the

initial deposition point. Slender fingers appear and grow rap-

idly into this thinned region undergoing spreading, shielding,

and tip-splitting, processes observed in other fluid flow insta-

bilities driven by completely different forces.4 During the

past few years several other experimental groups have since

confirmed the development of this fingering instability dur-

ing the spreading of insoluble and soluble surfactant films on

a thin water support.3,5–7

Troian et al.2 detected the instability for surfactant con-

centrations both above and below the CMC. More impor-

tantly, the fingering patterns never appeared on perfectly dry

substrates. This last observation coupled with the rapid

spreading velocities suggested that the fingering instability

derives from the presence of Marangoni effects. In fact, the

rapid spreading and fingering were shown to depend on the

overall difference in surface tension between the pure and

contaminated water surface and the initial thickness of the

water support, in agreement with flows driven by Marangoni

stresses. Preliminary image analysis studies of the spreading

fronts also uncovered that the contours were fractal curves8

of fractal dimension close to the values obtained in physical

systems governed by Laplacian-type kinetics like diffusion

limited aggregation, viscous fingering, or dendritic growth.

This last feature led the authors to investigate mathematical

similarities to other fluid systems governed by Laplacian

fields9 and provided the first attempt at a stability analysis for

Marangoni driven spreading.
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The original geometry used to model this new Ma-

rangoni instability was a hemispherical cap of fluid of vari-

able volume coated with insoluble surfactant spreading on a

clean thin liquid film consisting of the same fluid.9 In this

model, the drop provides a large reservoir of surfactant de-

livered as a monolayer along the uncontaminated liquid film.

A scaling analysis in rectilinear geometry determines that the

advancing surfactant coated film spreads in time as t1/2. This

rapidly moving front was shown to control the spreading rate

of the hemispherical droplet which also spread as t1/2. At

long times, when Marangoni stresses decay significantly and

the spreading is instead controlled by capillary forces, the

spreading rate was shown to decrease substantially and ap-

proach the dynamics of a capillary driven flow. An

asymptotic analysis revealed that Marangoni stresses create a

long thin region of length, L(t), ahead of the macroscopic

droplet in which a sizeable gradient in surfactant concentra-

tion is established. At the leading front where the spreading

monolayer joins the motionless uncontaminated film, a sharp

front is formed of height almost twice the undisturbed thick-

ness. Capillary terms arising from regions of strong curva-

ture are only significant in two small regions of length l(t)

!L(t) located near the base of the droplet reservoir and at

the steep front. The numerically calculated film thickness

profiles, including capillary effects, indicated significant

thinning near the point of deposition and a corresponding

thickening at the advancing edge. This long Marangoni con-

trolled region appeared to develop a quasi-linear increase in

thickness and a corresponding linear decrease in surfactant

concentration. For long wavelengths l in the range l(t)!l

!L(t), a simplified linear stability analysis concluded

that the flow is unstable to perturbations at the base of the

spreading drop. To leading order in the wavenumber, the

perturbed concentration field was shown to satisfy Laplace’s

equation provided the disturbances in the film thickness were

assumed negligible in comparison to disturbances in the sur-

factant concentration. In this work, we revisit Marangoni

driven flow and provide a more rigorous and complete for-

mulation of the disturbance analysis.

Within the lubrication approximation, Marangoni driven

spreading is described by a coupled set of nonlinear partial

differential equations whose solutions provide the spatio-

temporal evolution for the film thickness and surfactant con-

centration. Recent analysis of these equations have deter-

mined that there are several self-similar solutions to the

unperturbed flow depending on geometry and surfactant

feeding rate10,11 for purely Marangoni driven spreading. In

this paper we focus primarily on Marangoni driven spreading

in the simplest geometry allowable, namely the rectilinear

spreading of a finite monolayer of insoluble surfactant

spreading on the surface of a thin liquid film of higher ten-

sion. This geometry affords the fastest spreading rate for a

finite quantity of surfactant. We study the linear stability of

the rectilinear solution whose front advances as t1/3 in time.

The calculations in the present work differ from these earlier

studies in two main ways. First, we ignore capillary forces in

order to derive simple self-similar solutions to the base

flows. Second, we allow for disturbances in both the film

thickness and surfactant concentration. Even within a quasi-

steady state approximation, the analysis is not straightfor-

ward. The coupled disturbance equations contain two regular

singular points associated with the linear self-similar solu-

tions. The troublesome singularity at the origin is identified

by a Frobenius expansion and removed analytically. A

proper mathematical treatment of the associated eigenvalue

equations determines that the rectilinear self-similar solu-

tions are linearly stable to perturbations of all wavenumbers.

Inspection of the linearly stable eigenfunctions reveals a

FIG. 1. The spreading pattern generated by a 2 ml drop of 1 mM aqueous

AOT solution deposited on a thin water film.2 Initial water film thickness:

~a! H'1 mm and ~b! H'0.1 mm.
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rich structure in Fourier space whose stability characteristics

are better revealed by a complete energy analysis. This

analysis demonstrates how the Marangoni contributions cre-

ated by the disturbance flow in the transverse direction are

strong enough to dampen disturbances of all wavenumbers

and to restore the system to its original self-similar form. By

inspecting the various contributions to the rate of energy

production in the system, we suggest what types of eigen-

function solutions could destabilize the flow. In particular,

solutions of the flow for which a local decrease in film thick-

ness is accompanied by a local increase in surfactant concen-

tration could overturn the energy balance provided such con-

tributions were sizeable. We also discuss how the addition of

capillary and surface diffusion terms into the original equa-

tions of motion will modify the spreading profiles to produce

regions of adverse mobility near the point of deposition and

near the advancing front. Regions of adverse mobility gradi-

ents have been invoked in the past to explain the source of

instability in viscous fingering problems, for example. Al-

though the physics driving the Marangoni spreading problem

is significantly different than the physics driving viscous fin-

gering phenomena12 ~i.e., Marangoni spreading is described

by two coupled flow variables and requires no external driv-

ing force! this same general concept may help uncover the

source of the fingering instability in Marangoni flows.

II. FORMULATION OF GENERAL BASE STATE

A. Base state

Consider a thin Newtonian liquid film of initial uniform

thickness H0
*(x*,z*,t*), viscosity m*, and density r* rest-

ing on a flat solid substrate whose surface is located at y*

50. The coordinate x* denotes the horizontal coordinate, y*

the vertical coordinate and z* the transverse coordinate. The

liquid film is partially covered by an insoluble surfactant

monolayer whose surface concentration, G*(x*,z*,t*), var-

ies smoothly from its maximum value, Gm
* , at the origin

x*50, to a value of zero at x*5L0
* , as shown in Fig. 2. The

quantities H0
* and L0

* are used to scale all vertical and hori-

zontal displacements, respectively. Upon deposition, the

monolayer will spread rapidly and spontaneously, driven by

the initial spreading pressure P0
*5s0

*2sm
* , where s0

* de-

notes the surface tension of the clean liquid surface and sm
*

the surface tension of the contaminated liquid13 at the origin

of flow x*50. We designate by e the ratio of the initial film

thickness, H0
* , to the initial extent of surfactant coverage,

L0
* , which small parameter in lubrication theory satisfies e

!1.14 Initial gradients in surface tension of order P0
*/L0

*

generate shear stresses at the interface of order m*U*/H0
* .

The characteristic velocity for the streamwise and transverse

directions is, therefore, U*5eP0
*/m*, while the vertical ve-

locity is scaled by eU*. According to the lubrication ap-

proximation, the pressure is scaled by P*5m*U*L0
*/H0

*2.

Insertion of the Marangoni velocity, U*, into the pressure

scaling yields P*5P0
*/H0

* , in which the force per unit

length, P0
* , has effectively been converted into a force per

unit area P*. The dimensionless surface pressure is defined

as s5(s*2s*m)/P0
* , which describes the ratio of the

driving force at any point on the film surface to the maxi-

mum driving force. Introduction of these scalings into the

equations of incompressibility and momentum conservation

for the liquid support yields the following equations in di-

mensionless form:

ux1vy1wz50, ~1!

052px1uyy1O~eRe ,e2!, ~2!

052py1Bo1O~e2!, ~3!

052pz1wyy1O~eRe ,e2!, ~4!

wherein the axial, vertical and transverse velocity fields are

represented by u , v and w , respectively, and henceforth,

subscripts refer to differentiation by x , y , z and t unless

otherwise stated. With this choice of scales the modified

Bond number is defined as Bo[(r*g*e2L0
*2)/P0

* while the

modified Reynolds number is given by Re

[(r*U*H0
*)/m*5(r*P0

*e2L0
*)/m*2. The parameter Bo

represents the ratio of hydrostatic pressure to the Marangoni

stress while Re represents the ratio of inertial forces to vis-

cous forces, in which U* is set by the velocity governing

Marangoni convection. Since Bo and Re both scale as e2, all

such terms are dropped from consideration in this analysis

correct to O(e).

The boundary conditions used to solve Eqs. ~1!–~4! dic-

tate no penetration and no slip at the solid wall as well as the

balance of shear and normal stresses at the interface. The

dimensionless no slip condition at y50 is

u5v5w50. ~5!

The tangential and normal stress conditions at y

5H(x ,z ,t), are given by

uy5sx , wy5sz , ~6!

p501O~e2!, ~7!

where the effects of interfacial curvature are neglected since

they only enter to O(e2) with the scalings chosen. The kine-

matic condition at the interface described by vs5dH/dt ,

where vs represents the surface velocity in the vertical direc-

tion, can be expressed in terms of the fluid flux as:

FIG. 2. Schematic diagram of the spreading process.
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H t1~Huavg!x1~Hwavg!z50, ~8!

where uavg and wavg represent the streamwise and transverse

height averaged velocities. Similarly, mass conservation of

the insoluble surfactant is expressed by

G t1~Gus!x1~Gws!z5

1

Pes

@Gxx1Gzz# , ~9!

where G* has been scaled by Gm
* and us and ws represent the

axial and transverse velocities at y5H(x ,z ,t). In Eq. ~9! the

modified surface Peclet number defined by Pes

[(U*L0
*)/D s

*5(P0
*H0

*)/m*D s
* , where D s

* is the diffu-

sion coefficient of the surfactant along the interface, repre-

sents the ratio of surfactant transport by Marangoni convec-

tion to that by surface diffusion. In typical applications, the

mass transport by Marangoni convection far exceeds that by

surface diffusion. For typical experimental values of P0
*

540 dyn/cm, H0
*51023 cm, m51 cp and D s

*.1025

cm2/s, Pes.105. In what follows, we therefore concentrate

on flow induced strictly by the balance of viscous and Ma-

rangoni terms and treat all other mechanisms as sub-

dominant.

The dimensionless axial and transverse velocity fields

are obtained by integrating Eqs. ~2! and ~4! subject to the

boundary conditions in Eqs. ~5!–~7!:

u~x ,y ,z !5sxy , w~x ,y ,z !5szy . ~10!

Substitution of Eq. ~10! into Eqs. ~8! and ~9! in the limit of

infinite surface Peclet number yields the two important evo-

lution equations for H(x ,z ,t) and G(x ,z ,t), namely,

H t1
1
2 ~H2sGGx!x1

1
2 ~H2sGGz!z50, ~11!

G t1~GHsGGx!x1~GHsGGz!z50. ~12!

A constitutive equation of state relating s to G is required to

close this pair of equations. The simplest such relation, valid

in the dilute concentration limit, is given by

s~G !512G . ~13!

This linear equation of state approximates the expanded sur-

factant monolayer as an ideal gas.13 When extending these

calculations to higher surfactant concentrations, a nonlinear

equation of state is required.15

B. Self-similar solutions

Equations ~11! and ~12! describe the Marangoni driven

spreading of an insoluble surfactant monolayer along the sur-

face of a thin liquid film. Substitution of Eq. ~13! into Eqs.

~11! and ~12! yields the evolution equations governing the

base state variables, H0(x ,t) and G0(x ,t), for one-

dimensional rectilinear spreading

H0t2
1
2 ~H0

2G0x!x50, ~14!

G0t2~G0H0G0x!x50. ~15!

In seeking similarity solutions which require global mass

conservation ~so called similarity solutions of the first kind!,
we determine the solutions H0 and G0 subject to the con-

straint

M ~ t !5E
0

R~ t !

G0 dx5M 0tg, ~16!

where R(t) represents the extent of surfactant contamination

in time t . The choice g50 corresponds to a finite amount of

deposited surfactant while g.0 corresponds to a reservoir

which supplies surfactant to the spreading film at a rate of tg.

Scale transformations which allow solutions of self-similar

form are

j5

x

R~ t !
, G0~x ,t !5

g~j !

f ~ t !
, H0~x ,t !5h~j !. ~17!

Self-similarity requires that tg
5R f 21, which reduces Eq.

~16! to

M 05E
0

1

g~j !dj . ~18!

These variable transformations convert Eqs. ~14! and ~15! to

l1jhj1
1
2 ~h2gj!j50, ~19!

l1jgj1l2g1~ghgj!j50, ~20!

where all the explicit time dependence is clustered in the

parameters l15 f RṘ and l25 ḟ R2. Eliminating all the ex-

plicit time dependence produces the scaling functions

R~ t !5Fl1

3

~11g !
G

1/3

t ~11g !/3, ~21!

f ~ t !5Fl1

3

~11g !
G

1/3

t ~122g !/3, ~22!

l25l1F122g

11g G . ~23!

The extent of spreading for a finite amount of surfactant (g
50) reduces to the solution R(t)5(3l1t)1/3 for rectilinear

geometry as previously shown.10,11,16,17 The case g51/2

yields the spreading behavior R(t);t1/2, whose base flow

solutions18 and stability characteristics9 have frequently been

discussed in the literature.

Equations ~19! and ~20!, which describe the film thick-

ness and surface concentration profiles, cannot be integrated

exactly for arbitrary values of l1 and l2 . Simple analytical

solutions exist for the choice g50 which determines that

l25l1 . In this work we focus strictly on the spreading be-

havior for the case g50. This choice reduces Eq. ~20! to the

form

~l1jg1jghgj!j50. ~24!

The solutions to Eqs. ~19! and ~24! for the film thickness and

concentration profiles require one boundary condition for

h(j) and two boundary conditions for g(j). The two condi-

tions for g(j) are derived from consideration of the spread-

ing behavior near j51. For quiescent conditions to be recov-

ered far downstream, the surfactant concentration must

vanish ahead of j51 such that g(j>1)50. Integration of

Eq. ~24! across the boundary j51 yields the jump condition

at the advancing front which determines the second bound-

ary condition on g , namely,
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gj~j512!52

l1

h~j512!
. ~25!

This relation represents the magnitude of the surfactant con-

centration gradient which develops at the front of a film that

has spread to a distance R(t)5(3l1t)1/3. The concentration

gradient at this leading edge requires knowledge of the local

film thickness and the mass of surfactant available for

spreading. Full integration of Eq. ~24! yields hgj52l1j
which, when substituted into Eq. ~19!, gives

h~j !5Aj , ~26!

g~j !52

l1

A
j1B , ~27!

where A5h(j512) and B5l1 /h(j512). The parameter

l1 is determined by substituting Eq. ~27! into Eq. ~18! to

give

l152h~j512!M 0 . ~28!

What remains to be calculated is the film thickness at the

leading edge, h(j512), which is evaluated by requiring that

the total spreading fluid volume remain constant. Marangoni

stresses shear the liquid film and create a linear film profile

according to Eq. ~26!, which when integrated must yield the

initial fluid volume V051. The film thickness is found to

achieve a maximum value of h(j512)52 which is twice

the film height of the initial quiescent film.

The self-similar base flow solutions for the spreading of

a finite amount of surfactant are therefore

h~j !52j and g~j !5~l1/2!~12j !. ~29!

With l151/3, Eq. ~29! reduces to the similarity solutions

first derived by Jensen and Grotberg.10 The dimensionless

surface velocity is proportional to 2hgj5l1j , which de-

scribes the simple shear flow of a Marangoni driven film in

the lubrication approximation. It can be shown that the sur-

face velocity in axisymmetric flow is smaller by a factor of p
than in rectilinear flow due to the fact that the same amount

of surfactant must disperse over an ever increasing area pro-

ducing overall smaller gradients in concentration. We exam-

ine the stability of the spreading solutions in rectilinear ge-

ometry since it affords the largest driving force for spreading

and is therefore expected to be most vulnerable to perturba-

tions.

III. LINEAR STABILITY ANALYSIS

A. Perturbation equations

We have constructed simple analytic forms for the film

thickness and concentration profiles in the limit that the

spreading process has occurred for a sufficiently long time

such that all memory of initial conditions is lost. We now

examine the linear stability of these self-similar profiles. In-

troduction of a two-dimensional perturbation into Eqs. ~11!
and ~12! yields

h̃ t5
1
2 ~H0

2G̃x12H0G0xh̃ !x1
1
2 H0

2G̃zz , ~30!

G̃t5~G0G0xh̃1H0G0xG̃1G0H0G̃x!x1G0H0G̃zz , ~31!

where the quantities decorated with ‘‘tilde’’ represent pertur-

bations from the base state. Since none of the coefficients in

Eqs. ~30! and ~31! depend explicitly on the transverse coor-

dinate z , the perturbation is separable in this coordinate and

can be Fourier decomposed into the form

~ h̃ ,G̃!~x ,z ,t !5~H̃ ,G̃ !~x ,t !e iqz, ~32!

where q represents the disturbance wavenumber. Substitu-

tion of Eq. ~32! into Eqs. ~30! and ~31! yields two coupled

partial differential equations that govern the evolution of an

applied disturbance

H̃ t5

1

2
~H0

2G̃x12H0G0xH̃ !x2

q2

2
H0

2G̃ , ~33!

G̃ t5~G0G0xH̃1H0G0xG̃1G0H0G̃x!x2q2G0H0G̃ . ~34!

We seek once again solutions of self similar form. Since the

applied perturbations will not necessarily evolve on the same

time scale as the base state, we describe the disturbance

functions by the following transformations:

H̃~x ,t !5C~j ,t !, G̃~x ,t !5

F~j ,t !

R~ t !
, ~35!

where the scaling of F(j ,t) by R(t) enforces self-similarity.

Other general scaling forms for G̃(x ,t) will not yield a solv-

able set of equations without some additional external clo-

sure relation. Equations ~33! and ~34! reduce to the form

C t5

Ṙ

R
jCj1

1

2R3 @~h2Fj12hgjC !j2~q2R2!h2F# ,

~36!

F t5

Ṙ

R
~jF !j1

1

R3 @~ggjC1hgjF1hgFj!j

2~q2R2!hgF# , ~37!

where R5t1/3. Without loss of generality, the coefficient of

R in Eq. ~21! has been set to unity by the choice l151/3.

Other choices of l1 can simply be absorbed into the rescal-

ings in Eq. ~41! to yield the same final result.

B. Quasi-steady-state approximation

The quasi-steady state approximation ~QSSA! assumes

that the rate of change of disturbances far exceeds the rate of

change of the base state. Inspection of the self-similar base

state reveals that the rate of change of h(j) and g(j) de-

creases as t24/3 in rectilinear geometry. We can therefore

assume there exists some time, tqs , sufficiently far from t

50, beyond which the base state profiles can be regarded as

stationary in the variable j. Within this approximation, the

temporal evolution which appears in the coefficients of Eqs.

~36! and ~37! through the variable R(t) is effectively frozen

at R(tqs). Since the base state then only depends on j, the

coefficients of the two coupled equations are no longer time-

dependent and the solutions to C and F are separable in

time. As a result, C and F assume the form

~C ,F !~j ,t !5e s̃~q ,tqs!t~c ,f !~j ,tqs!, ~38!
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where s̃ is the quasi-static growth constant that depends

parametrically on q and tqs . Substitution of this expanded

form into Eqs. ~36! and ~37! gives

s̃c5

Ṙ~ tqs!

R~ tqs!
jcj1

1

2R~ tqs!
3

3@~h2fj12hgjc !j2~q2R2!h2f# ~39!

and

s̃f5

Ṙ~ tqs!

R~ tqs!
~jf !j1

1

R~ tqs!
3

3@~ggjc1hgjf1hgfj!j2~q2R2!hgf# . ~40!

We replace the base flow profiles, h and g , by the expres-

sions derived in Eq. ~29! and effect the following three vari-

able changes

s̃R3~ tqs!→s , q2R2~ tqs!→K2,
c

3
→c . ~41!

With these substitutions, Eqs. ~39! and ~40! reduce to

sc5~2j2fj!j2c22K2j2f , ~42!

sf5~j~12j !fj2
1
4 ~12j !c !j2K2j~12j !f . ~43!

Since Eq. ~42! determines an equation for c~j!, it can be

substituted into Eq. ~43! to yield a single third order equation

for f~j!, namely,

1
2 j2~12j !fjjj1j~22

5
2 j2~s11 !~12j !!fjj

1~122j2
1
2 K2j2~12j !2~s11 !~122j !!fj

1~s~s11 !2K2j~12
3
2 j2~s11 !~12j !!!f50.

~44!

The quasi-static growth constant s represents the eigenvalue

of this linear ordinary differential equation. The real part of

the eigenvalue, sr , determines the stability of the system.

We seek the eigenmode corresponding to the root with the

largest real part which signals the fastest growing unstable

mode.

C. Solution procedure

Equation ~44! requires a numerical solution but the pro-

cedure is complicated by the existence of two regular singu-

lar points at the end points of the domain of integration,

namely, j50 and j51. To investigate the behavior of Eq.

~44! in the vicinity of these points, we employ an expansion

suggested by the method of Frobenius

f~j !5~j2j j!
a j(

i50

`

a i~j2j j!
i, j51,2, ~45!

where j150 and j251. Solution of the indicial equation

corresponding to the term i50 yields the solutions to the

prefactor exponent a150,0,2s11 and a250,1,3. We focus

on the value s152s11,0 which produces an unbounded

solution f~j! as j→0. This singular behavior near the origin

must be factored out from Eq. ~44! before seeking numerical

solutions. The eigenfunction f~j! is therefore redefined to be

f~j !5j2s11Y ~j !, ~46!

to eliminate any numerical instabilities. Re-expressing Eq.

~44! in terms of the well behaved function Y (j) gives

Y jjj52

b~j !Y jj1c~j !Y j1d~j !Y

a~j !
, ~47!

where

a~j !5j2~12j !,

b~j !5j@526j14s~12j !# ,

c~j !54~s11 !2
22j~s11 !~2s13 !2K2j2~12j !,

and

d~j !52s~s11 !2K2j~122j !.

Equation ~47! is solved subject to the condition that Y (j) be

regular at the boundaries. This condition allows a Taylor

series expansion of the form

Y ~j !5(
i50

`

b i~j2j j!
i, j51,2, ~48!

which when substituted into Eq. ~47! and evaluated at the

boundary points j50,1 yields the boundary conditions

Y j~0 !52

s

2~s11 !
Y ~0 !, ~49!

Y jj~0 !5

K2
2s~s13 !

~2s13 !2 Y ~0 !, ~50!

Y jj~1 !522~s11 !Y j~1 !1@2s~s11 !1K2#Y ~1 !.
~51!

Since Eq. ~47! is linear in Y (j), the solutions are only

known to within a multiplicative constant. For convenience,

the solutions are normalized by the choice Y (0)51.

D. Analytical solution for K50 and s50

Equation ~47! admits an analytical solution for the case

K→0 and s50. In this infinite wavelength limit, the third

order differential equation reduces to the simplified form

Fj~12j !fj
~0 !

2

~12j !

2
~j2fe

~0 !!jG
j

50, ~52!

where the superscript ~0! denotes the solution for the neu-

trally stable state. A single integration yields the equation

j2(12j)fjj
(0)

5c1 where c1 is a constant. Two further inte-

grations yield a solution of the form

f ~0 !
5c31c2j1c1~12j !lnS 12j

j
D , ~53!
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where c2 and c3 are two more constants of integration to be

determined from boundary conditions. In this same limit, Eq.

~42! can be used to derive the corresponding solution for the

perturbed film thickness, c (0):

c ~0 !
5~2j2fj

~0 !!j54c2j12c1S 2j ln
j

12j
2

j

12j
D .

~54!

Applying the constraint that both functions c (0) and f (0) be

regular at the endpoints j50 and j51 necessitates the

choice c150. Furthermore, since all singular behavior has

been extracted from f~j! through Eq. ~46! such that

f (0)(j)5jY (j), it follows that f (0)(0)50 since Y (j) is a

regular and well behaved function in j. According to Eq.

~53! then, c350 and the analytical solutions are simply of

the form f (0)(j)5c2j and c (0)(j)54c2j . Because the gov-

erning equations are linear, the solutions are only known to

within an overall constant which for convenience is chosen

to be c251 such that

f ~0 !
5j , ~55!

c ~0 !
54j . ~56!

These analytical solutions provide a numerical check on the

shooting technique used to solve Y (j).

IV. RESULTS AND DISCUSSION

A. Numerical solutions

The third order differential equation for Y (j) shown in

Eq. ~47! has been converted into an eigenvalue problem

which was solved with a standard shooting technique. The

numerical solutions were constructed by shooting away from

j50 and j51 and applying the three boundary conditions

some small distance Dj away from each endpoint. One must

shoot away from these two endpoints since the denominator

in Eq. ~47! vanishes at j50 and 1. The solutions for Y (j)

are insensitive to the choice of Dj for Dj;O(1024) or

smaller. Simultaneously shooting away from both endpoints

with the requirement that Y , Y j and Y jj be continuous at the

midpoint j50.5 yields the condition about which the values

of s are iterated to find the appropriate eigenvalue. Different

matching points in the interval yielded the same solutions. A

fourth order Runge-Kutta algorithm was used as the initial

value solver and the step size was adjusted to ensure the

continuity requirements at j50.5. Solutions to Y (j) and s
were substituted into Eq. ~46! and Eq. ~42! to reconstruct the

full eigenfunctions f~j! and c~j!.
In Fig. 3~a! is shown the dispersion curve, s(K2), gen-

erated from the shooting method. This curve was constructed

by solving Eq. ~47! for different values of wavenumber K2

varied in small increments of the order of DK2
50.002. The

eigenfunction solutions varied smoothly as the wavenumber

was increased indicating no sudden crossings from one

branch of s to another. In an effort to uncover any positive

roots or any negative roots lying above the solution shown,

the initial guesses for s were systematically varied in mag-

nitude. For instance, in searching for the roots lying close to

the point K50, we tried initial guesses for s ranging from 0

to 2 in increments of 1024. In all cases, the solution always

~i! converged to the root shown in Fig. 3~a!, ~ii! converged to

an additional branch that exhibits a maximum value of s5

21.327 at K50 and continues decreasing, or ~iii! never con-

verged. This second branch is of little interest from a stabil-

ity standpoint and was not studied further. We were unable

to find convergent solutions for initial guesses s.2 irre-

gardless of the wavenumber. The solution plotted in Fig. 3~a!
therefore appears to belong to a single continuous branch.

B. Characteristics of the dispersion curve and
associated eigenfunctions

The absence of any positive roots to the coupled linear

system of equations indicates that within the quasi-steady

state approximation, the self-similar base flow profiles,

h(j)52j and g(j)5l1(12j)/2, are linearly stable to in-

finitesimal perturbations. It is difficult to understand this re-

sult on purely physical grounds especially since the model-

ling includes no explicit stabilizing mechanisms like

capillarity or surface diffusion. The source of the stabilizing

mechanism can only be traced to the transverse Marangoni

FIG. 3. ~a! Dispersion relation s(K2). ~b! Neutrally stable eigenfunctions

(s50) c and f for K2
50.
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convection established by local disturbances. To understand

more fully exactly how the transverse Marangoni contribu-

tions can counteract disturbances of any wavelength, we in-

vestigate the shape of the eigenfunctions c and f for differ-

ent regimes in K space. The dispersion curve shown in Fig.

3~a! divides itself naturally into three regions labeled I, II,

and III, each reflecting a somewhat different character in c
and f. Region I spans the range 0<K2

&3.2, region II the

range 3.2&K2
&10, and region III the range K2

*10.

We focus first on the eigenfunction solutions for infinitely

long wavelength disturbances, K50, plotted in Fig. 3~b!.
The shooting technique correctly reproduces the analytical

solutions derived in Eqs. ~55! and ~56! for s50. These neu-

trally stable solutions increase linearly throughout the do-

main of integration 0<j<1, with perturbations in the di-

mensionless film thickness achieving a four fold increase

over perturbations in the dimensionless surfactant concentra-

tion. This result sheds light on the long wavelength approxi-

mation used in a previous stability calculation9 in which the

amplitude of the disturbance film thickness was assumed to

be much smaller than the amplitude of the disturbance con-

centration. These earlier studies predicted linearly unstable

flow. Although the base flow profiles being studied are dif-

ferent @i.e., R(t);t1/3 versus R(t);t1/2#, it now appears that

allowing both the surfactant concentration and the film thick-

ness to undergo disturbances self-consistently produces over-

all stable flow. Spreading behavior governed by R(t);t1/2

cannot be treated analytically as simply as the R(t);t1/3

case. At present there is no direct comparison one can make

between these two stability calculations.

It is interesting to note that in other thin film spreading

problems, like the coating of a dry substrate by a liquid film

subject to gravitational forces,9 centrifugal forces19 or sur-

face shear stresses,20 the linearized form of the equation of

motion for the film thickness is translationally invariant in

the streamwise direction. This symmetry dictates that the

eigenfunction solution for s50 be directly proportional to

the first derivative of the base flow profile. In contrast, the

linearized equations of motion for Marangoni driven flow

contain explicit dependence on the streamwise coordinate j,

as evident in Eqs. ~42! and ~43!. The eigenfunction solutions

are therefore not neatly related to hj and gj . Had this ex-

plicit dependence on j not been present, the associated

eigenfunctions would be flat throughout the interval of inte-

gration unlike the actual monotonically increasing ramps

plotted in Fig. 3~b!.
For finite wavenumbers, the individual shape of the

eigenfunctions c and f and their relation to each other

changes significantly in each of the three regions. In Fig. 4 is

shown the eigenfunctions for wavenumbers ranging from 0

<K2<4.0. In order to magnify certain features near K50,

the function c is only plotted in the range 0<j<0.5. The

solutions change character upon traversing the value K2

'3.2. With increasing wavenumber, the functions c and f
increase in absolute magnitude for small j and develop

strong curvature near the boundary points j50 and j51, in

contrast to the linear profiles for K2
50. Near a value of

K2'3.2 the function c changes sign near the origin and

becomes increasingly negative while f becomes increasingly

FIG. 4. Eigenfunctions c and f near K2
53.

FIG. 5. Behavior of Y j(j) near K2
510.
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positive. The value K2'3.2 signals a transition in behavior

which derives from the Frobenius expansion f
;j2s11Y (j), wherein f diverges for values s,21/2, or

equivalently for wavevectors K2
*3.2. This singular behav-

ior at the origin creates corresponding singular behavior in c
as shown in Fig. 4.

Another change in the behavior of the eigenfunctions

occurs upon traversing region II into region III as predicted

by the boundary condition in Eq. ~49! which suffers a pole at

s521. Since the normalization condition was chosen to be

Y (0)51, Eq. ~49! requires that Y j and therefore f~j! di-

verge at the origin when s521, which occurs for K2

'9.8. In Fig. 5 we show how Y j(j) changes character for

various choices of wavenumber lying on either side of this

transition point. As K2 increases through this special point,

the function Y j(j) must suddenly change sign from positive

to negative values. This change in sign causes a significant

change in the behavior of c and f as demonstrated in Fig. 6.

For example, whereas c achieves negative values close to the

origin for K2
59.6 but is positive everywhere else in the

domain, the function switches sign and becomes everywhere

negative after passing through the transition point.

To visualize the overall effect of an infinitesimal distur-

bance on the flow properties of a film driven by Marangoni

forces in each of the regions specified above, we plot in Fig.

7 the complete linearized solution to the film thickness which

is a superposition of the base state and the disturbance eigen-

function extended in the z direction. Each figure demon-

strates the typical behavior of the film thickness for some

choice of wavevector within each of the three regimes delin-

eated in Fig. 3~a!. Note that the solutions in Figs. 7~a! and ~b!
maintain registry in the streamwise direction wherein points

of maximum depression at the origin become points of high-

est elevation at j51 and vice versa, whereas the solution in

Fig. 7~c! does not. Although the transient disturbances as-

sume the shape of slender fingers or rivulets throughout the

domain of spreading, the flows in regions I, II, and III are all

linearly stable and decay away exponentially in time. In re-

gions II and III, the magnitude of the perturbations near the

origin is significantly larger than the magnitude of the per-

FIG. 6. Eigenfunctions c and f near K2
510.

FIG. 7. Surface plots of the total film thickness: ~a! region I (K2
51), ~b!

region II (K2
55) and ~c! region III (K2

515).
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turbations near the endpoint j51, which is more clearly seen

from Figs. 6 and 8.

There exists an interesting complementary relationship

between c and f in regions II and III which could possibly

have yielded unstable flow according to the following rea-

soning. Observe in Fig. 8 that near the origin, where the film

thickness suffers appreciable thinning, the liquid mobility

will decrease substantially thereby retarding convection of

fluid and surfactant in this region. Surfactant accumulates

here to create a region of particularly low surface tension as

demonstrated by the form of f~j!. Transverse Marangoni

stresses will further pull on this film causing it to thin even

further. This mechanism should create strong corrugations in

film thickness and create ‘‘fingered’’ patterns in the trans-

verse direction. Unfortunately, this complementary behavior

between c and f only exists in a very small region near the

origin and is apparently not significant enough to destabilize

the flow. In the next section, we present results of an energy

analysis to quantify the relative magnitude of stabilizing and

destabilizing contributions to the overall flow behavior.

C. The energy method

Within our simplified model only Marangoni stresses

generated by the presence of surfactant drive the spontaneous

spreading process. For the unperturbed 1-D flow, these

stresses convect fluid and surfactant downstream rapidly and

efficiently. The application of an arbitrary 2-D disturbance

creates additional stresses with subsequent transport of fluid

and surfactant in the transverse direction. According to the

linear stability analysis, this transverse flow successfully

dampens disturbances of all wavenumbers. By decomposing

the flow into its constituent contributions we can better ap-

preciate the relative scale of streamwise versus transverse

mass flux for disturbances of self-similar form.

The mechanical energy generated by an applied pertur-

bation can equivalently be expressed as an inner product of

the disturbance film thickness or the disturbance concentra-

tion according to

E5

1

2
E

0

1

C2 dj5

1

2
^C ,C& , or ~57!

E5

1

2
E

0

1

F2 dj5

1

2
^F ,F&. ~58!

Recasting Eqs. ~36! and ~37! in compact operator form gives

C t5L̃1@C ,F# ~59!

and

F t5L̃2@C ,F# , ~60!

where the linear operators L̃1 and L̃2 represent all the terms

on the right hand side of Eqs. ~36! and ~37!. The subscript t

denotes differentiation with respect to the explicit time de-

pendence. The rate of energy production, dE/dt5^C ,Ċ&
5^F ,Ḟ&, is calculated by taking the inner product of Eq.

~59! with C or the inner product of Eq. ~60! with F to give

dE

dt
5s̃^C ,C&5^C ,L̃1@C ,F#&, ~61!

or

dE

dt
5s̃^F ,F&5^F ,L̃2@C ,F#&. ~62!

The normalized dimensionless rate of energy production, Ė

5(dE/dt)/E , is therefore calculated to be

Ė

2
5s5

^c ,L1@c ,f#&

^c ,c&
, ~63!

or

Ė

2
5s5

^f ,L2@c ,f#&

^f ,f&
. ~64!

The terms ^c ,L1@c ,f#& and ^f ,L2@c ,f#& , where L1 and

L2 are the right hand sides of Eqs. ~42! and ~43!, comprise

four separate terms shown in Table I. The first two terms

represent Marangoni convection of liquid in the streamwise

and transverse directions, while the last two terms corre-

spond to Marangoni convection of surfactant in the stream-

FIG. 8. Illustration of the complementary relation between c and f for

K2
55.

TABLE I. Physical mechanisms associated with each term in the energy

method.

Terms Expression Physical mechanism

1 *0
1@c(2j2fj)j2c2#dj Marangoni convection of

fluid layer in the j direction.

2 22K2*0
1@j2cf#dj Marangoni convection of

fluid layer in the z direction.

3 *0
1@f~j~12j!fj2

1
4 ~12j!c!j#dj Marangoni convection of

surfactant monolayer

in the j direction.

4 2K2*0
1@j(12j)f2#dj Marangoni convection of

surfactant monolayer

in the z direction.
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wise and transverse directions. These terms arise from the

coupling of the 1-D spatially inhomogeneous base flows with

the applied 2-D disturbance.

Results of energy analysis. The normalized dimension-

less rate of energy production for each of the four terms is

plotted in Fig. 9, along with their summation, which must

exactly equal the value 2s for each wavevector selected. The

vertical dotted lines indicate the transition points discussed

earlier for which s520.5 or 21. Positive integral quantities

destabilize the flow while negative integral quantities pro-

vide a stabilizing influence. The quantity I i represents the

energy integral associated with term i in Table I. Inspection

of these different terms automatically reveals which contri-

butions would have to be amplified or minimized signifi-

cantly to produce positive roots in the dispersion curve

s(K2).

I1 exhibits two maxima and I2 two minima precisely at

the location of the transition points and reflect the change in

behavior in c and f which occurs upon traversal of these

points. These changes do not affect the behavior of I3 and I4

as strongly, although there occurs a slightly larger increase in

the amplitude of these terms near the second transition point

as compared to the first. This overall behavior is expected

since the amplitude of the eigenfunctions corresponding to

the film thickness, which affects terms I1 and I2 , is typically

much larger than the amplitude of the eigenfunctions associ-

ated with the surfactant concentration, which affects terms I3

and I4 . What is clearly noticeable in the figure is that the

majority of the energy contributions are weighted toward the

negative end of the energy spectrum. Terms I2 and I4 , which

reflect Marangoni convection of fluid and surfactant in the

transverse direction, are negative for all wavevectors and

large enough to offset any destabilizing effects in the stream-

wise direction.

Further inspection of terms I1 and I2 associated with the

liquid flux reveals that that the eigenfunction pairs for which

cf,0, cfj.0 and cfjj.0 maximize the destabilizing

term I1 and minimize the stabilizing term I2 . The eigenfunc-

tion solutions for K2
*3.2 or equivalently for s,20.5

nicely satisfy these inequalities but only in a very limited

range about the origin j50. Outside this range the inequali-

ties are not satisfied and the contributions to the flow are

overall stabilizing. For unstable flow this Marangoni driven

system must generate eigenfunction pairs with the comple-

mentary nature indicated by the three inequalities in which

case it can tilt the energy balance towards the positive values

of the energy spectrum. As summarized in the last section, a

local decrease in film thickness accompanied by a local in-

crease in surfactant concentration will provide the proper

scenario for producing a lateral fingering instability.

What direction might one pursue in order to model a

system of equations that can produce and exploit this

complementarity between c and f? We have shown that the

unfavorable results of the stability analysis are directly

caused by the linear behavior of the self-similar solutions in

Eq. ~29! for which an increase in film thickness is accompa-

nied by a decrease in surfactant concentration. All distur-

bances eventually die away due to the increasing liquid mo-

bility provided by the linearly increasing ramp in film

thickness from 0<j<1. In order to localize disturbances

behind the moving front, the film thickness must somewhere

suffer a decrease in thickness which will further be aggra-

vated by a consequent increase in surfactant concentration.

There is another fluid mechanical problem, namely Saffman-

Taylor flow,12 for which regions of adverse mobility gradient

produce unstable fingering configurations. As an example of

this flow, consider the case of a gas penetrating into a vis-

cous liquid sandwiched between two plates of constant

separation. The average fluid velocity is uST52(b2/

12m)dP/dx , where b is the plate spacing, m the liquid vis-

cosity, and dP/dx the local pressure gradient. Since the gas-

eous phase experiences a decrease in mobility when penetrat-

ing into the more viscous medium, it can easily be shown

that the front separating the two regions of differing mobility

becomes linearly unstable and propagates fingers into the

viscous liquid. For the case of a viscous liquid penetrating a

gas, the front is stable. We have shown that the average

velocity of a thin film sheared by Marangoni stresses is uM

52(h/2m)dG/dx wherein the quantity h/2m can be re-

garded as the mobility factor. Although in our system the

viscosity is constant throughout, a local decrease in the film

thickness h can effectively lower the local film mobility.

Appealing to this concept of adverse mobility, we describe

what other forces can be included in the spreading problem

to produce exactly such regions of reduced mobility.

The inclusion of capillarity and surface diffusion into the

equations of motion obviates the possibility of finding simple

analytic self-similar solutions for the unperturbed flow, a fact

which eventually complicates the linear stability analysis.

Nonetheless, the method of lines21 can be used to solve the

equations of motion numerically in the presence of these

additional forces, as first discussed by Gaver and Grotberg.22

Not only do these forces help smooth numerical instabilities

associated with the sharp fronts created by Marangoni

stresses alone, but they also change the character of the so-

lutions from simple ramp-like behavior over a finite domain

to a more complex, spatially inhomogeneous structure of

semi-infinite extent. It may seem that the addition of these

FIG. 9. Variation of Ė /2 with K2. Vertical dotted lines reflect solutions s

520.5 and s521.
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two forces will only further stabilize the flow. We propose,

however, that the change in character of the form of the

solutions produces regions of adverse mobility known to de-

stabilize the flow in the Saffman-Taylor problem.12 We have

plotted in Fig. 10 the self-similar solution for the dimension-

less film thickness from Eq. ~29! along with a numerical

solution for the film thickness profile with the inclusion of

capillarity and surface diffusion. As expected, this numerical

profile more closely resembles experimental observations but

more importantly, it suffers two regions of adverse mobility

gradients, namely the region near the point of surfactant

deposition at the left and the region where the sharp advanc-

ing front joins the thinner undisturbed clean film at the right.

We are presently investigating the linear stability of these

numerically generated profiles to uncover if either is vulner-

able to finger formation in the transverse direction.

V. CONCLUSION

We have investigated within the lubrication approxima-

tion the base flow profiles and linear stability for the recti-

linear spreading of an insoluble surfactant along a thin liquid

film of higher surface tension. In the limit in which the spon-

taneous spreading is only controlled by Marangoni stresses,

the unperturbed profiles for the film thickness and surfactant

concentration can be computed analytically. The profiles

chosen for study are self-similar solutions of the first kind

corresponding to global surfactant mass conservation. In this

frame of reference, since the film thickness is a linearly in-

creasing function while the surface concentration is a linearly

decreasing one, the velocity field describes a simple shear

flow. This flow leads to severe thinning of the fluid layer

near the surfactant deposition point and a rapidly advancing

rim at the leading front, of thickness twice the undisturbed

height. This general shape in film thickness bears close re-

semblance to experimental observations.2

The linear stability of the disturbance equations is calcu-

lated within the quasi-steady state approximation ~QSSA!,
which assumes that the rate of change of the base state is

much slower than the rate of change of any disturbance. This

approximation leads to a coupled eigenvalue problem whose

largest real root is identified as the quasi-static growth rate

for the most unstable mode. Results obtained from the QSSA

analysis determine that the coupled system of equations is

linearly stable to 2-D disturbances of all wavenumbers. 3-D

visualizations of the complete linearized solution indicate

finger like protrusions throughout the spreading domain;

however they decay away exponentially in time to restore the

film thickness to its original ramp-like profile. The fact that

the calculations in rectilinear geometry, which provides the

largest impetus for Marangoni driven spreading, yield lin-

early stable flow strongly suggests that an additional charac-

teristic of the flow must be included in future analyses.

An energy decomposition reveals how Marangoni con-

vection in the transverse direction successfully stabilizes the

system against infinitesimal 2-D perturbations. The terms re-

sponsible for destabilizing the flow are most dominant in the

range K2
*3.2 but only occur within a narrow range about

the origin j50. We have identified that eigenfunctions sat-

isfying the inequalities cf,0, cfj.0 and cfjj.0 over a

much larger range in j can potentially destabilize the overall

flow. We describe a way to enhance the complementary na-

ture of the eigenfunctions reflected in these inequalities by

introducing into the equations of motion the additional sub-

dominant forces of capillarity and surface diffusion. The in-

clusion of these terms changes the shape of the base flow

profiles significantly to create two regions where the film

thickness thins substantially thereby reducing the flow mo-

bility. In analogy with the Saffman-Taylor problem,12 the

creation of adverse mobility gradients can possibly destabi-

lize the flow.

There exist other avenues of inquiry regarding the sta-

bility of a Marangoni driven spreading film. For example,

since the velocity profile for a thin film driven strictly by

Marangoni stresses ~no capillarity or surface diffusion effec-

tive! is an example of a thin film under simple shear, the flow

dynamics may turn out to be linearly stable, as shown by

Romanov23 and others for planar Couette flow. One should

then simulate the fully 3-D flows and numerically investigate

the flow behavior to finite amplitude disturbances, as pres-

ently underway. Also, since the operators L1 and L2 are

non self-adjoint, we are simultaneously conducting a tran-

sient growth analysis24 to determine if certain modes grow

sufficiently in the early stages of spreading to activate a large

non-linear response. We hope that our present linear stability

analysis of the self similar solutions provides a provoking

starting point into the stability considerations of Marangoni

driven spreading.
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FIG. 10. Film thickness profiles for ~i! linear self similar solution governed

by Eq. ~29! and ~ii! numerical solution including capillarity and surface

diffusion for the case of Ca51024, Pes55.103 and dimensionless time t

531.
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