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Abstract. The propagation of a reaction front for liquid-to-solid reaction is studied.
The model includes the heat equation, an equation for the concentration of the liquid
reactant, and the equations of liquid motion under the Boussinesq approximation. The
linear stability of the reaction front is studied, and conditions for cellular and oscillatory
instability are determined.

1. Introduction. Experimental observations show that reaction fronts in liquids
can cause convective instability [6], [11], [13]—[16], [32]—[34], [37]—[40]. The instability
was first demonstrated in the work of Chechilo and Enikolopyan on the propagation
of methyl methacrylate polymerization waves [13]—[16]. The physical explanation of
this phenomenon is clear: the exothermic reaction leads to a temperature difference
near the reaction zone, and convection can occur. Polymerization processes provide
interesting examples for the study of the interaction between reaction fronts and thermal
and hydrodynamical effects (see [37]).

The articles [13]—[16] led to a systematic experimental and theoretical investigation
of frontal polymerization (see [17] and the references cited there), which is a polymer-
ization process where the reaction zone is localized in space. Frontal polymerization has
some features in common with condensed-phase combustion; however, the adiabatic heat
release and the propagation velocity of the front are usually less for it. Moreover, the
reaction kinetics and additional physical effects, such as crystallization, melting, boiling,
and convection, in frontal polymerization differ from those in combustion.

The first theoretical investigations of frontal polymerization were concerned with one-
dimensional models describing the heat diffusion and the kinetics of the process (see
[17], [2], [3], [43], [53]—[55]). Later models included effects caused by the change of the
viscosity of the medium [8], [12], [45], [59], [60], [42].

A number of articles have been devoted to the study of the multidimensional modes
of frontal polymerization which appear as a result of an instability of the uniformly
propagating wave. Such propagation modes were first found experimentally [30], [44] and
studied theoretically [19], [27], [28], [51], [52] in combustion, and then for polymerization
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processes [7], [50], [55]. The theoretical analysis of the problem usually involves the
investigation of the thermal instability; however, if the reactants are in a liquid phase,
the hydrodynamical perturbations can also influence the stability of the front.

In this article we study the interaction between reaction and convection. As men-
tioned, chemical reactions can lead to convective instability, while hydrodynamical per-
turbations can cause thermal instability. We perform a linear stability analysis and find
the cellular and oscillatory stability boundaries. We note that this problem is related to
the interaction between solidification and convection (see [41] and the references cited
there). Convection in a porous medium in a chemical reactor was studied in [49]. The
articles [36], [47], [48] are devoted to convection caused by a concentration gradient in a
reacting medium.

We make the following assumptions in the formulation of the problem.
1. The reagents are in a cylindrical tube, whose axis is in the gravitational force. The

tube is long and its radius is large; so we can neglect the influence of the walls.
2. The chemical reaction is a one-step reaction, which is of zero order. The reaction

is then given by an expression of the form

W = k(T)</>(a),

where T is the temperature, a the concentration of the reaction product, and

( 1 if a < 1,
m = n[0 it a = 1.

The temperature dependence of the reaction rate is given by the Arrhenius expression,
/  

k(T) = ko exp R{)T
where E is the activation energy, R0 the gas constant, and fco the pre-exponential factor.
For the asymptotic analysis of the problem we will assume that the activation energy is
large.

We restrict ourselves mostly to the case of ascending front, but will make some remarks
for the descending fronts as well.

3. The liquid is incompressible. The density of the medium depends on the tempera-
ture only, and the change of the density is small.

4. The coefficient of mass diffusion is much less than the coefficient of heat diffusion,
and we can neglect mass diffusion. This assumption is common for frontal polymerization

[17].
5. The reaction product is a solid. We assume that the heat release due to solidification

or crystallization is much less than the heat release due to the reaction, and that can be
neglected entirely.

The contents of the article are as follows. We consider the basic equations in Sec. 2
and reduce the model to a singular perturbation problem in Sees. 3 and 4. The solution
of the problem is considered in the form of a perturbed stationary solution. The problem
for the perturbations is presented in Sec. 5. The dispersion relation is derived from the
solvability condition in Sec. 6. The form of the perturbations is found in Sec. 7. The
stability conditions are discussed in Sec. 8.
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2. Basic equations. Under the assumptions above and the Boussinesq approxima-
tion we have the following system of equations (see [22]):

dT
— + i>VT = kAT + qk(T)<j>(a), (2.1)

dcx
— +vVa = k(T)<j>{a), (2.2)

+ (wV)w = --Vp + vAv + g/3{T - T0)7, (2.3)

div v = 0. (2.4)

Here T is the temperature, a the depth of conversion (or the dimensionless concentration
of the product of the reaction), v = (vx,vy,vz) the velocity of the medium, p the pressure,
k the coefficient of thermal diffusivity, q the adiabatic heat release, p is an average value
of the density, v the coefficient of the kinematic viscosity, g the gravitational acceleration,
(3 the coefficient of thermal expansion, 7 the unit vector in the z-direction (upward),

V d_ d_ d_\ A__^l
dx' dy' dz J ' dx2 dy2 ̂  dz2 '

x, y, z the spatial coordinates, —00 < x,y,z < +00, t the time, T0 the mean value of the
temperature.

The system (2.1)-(2.4) describes the heat diffusion, chemical reaction, and the motion
of an incompressible liquid. The heat released due to the reaction leads to a nonhomo-
geneous distribution of the temperature, and can cause the convective instability.

If we consider a medium at rest, v = 0, the system of two equations (2.1), (2.2)
describes, in particular, condensed phase combustion [31] or some of the frontal poly-
merization processes [17]. In this case the stationary propagation of the reaction front
(see [35], [23], [46], [56]) and its stability (see [1], [4], [5], [19], [20], [21], [25]) have been
studied in detail. In particular, the velocity c of the stationary front propagation and
the temperature distribution can be found by an asymptotic analysis for large Zeldovich
numbers, Z = qE/(RqT£) [35]:

2 _ 2koK RqT2 ( —E
' = Us i- <2-5>
f Xf, if z < 0,

T(z,t) = \ (2.6)
17"; + (Tfe - Ti) exp(-zc/k) if 5 > 0,

f 1 if z < 0,
a=\ (2.7)I 0 if z > 0.
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Here Tj is the initial temperature, Tt = T\z=+00, Tb is the temperature of the burned
mixture, Tb = T{ + q, z = 2 — ct. This solution is written for the case of the front
propagating upward.

We introduce dimensionless spatial variables xc\/n, yc\/n, zc\/k, time tof/n, velocity
c/ci, and pressure p/(c\p). Here Ci = c/\J2. Denoting 0 = (T — Tb)/q and keeping for
convenience the same notation for other variables, we rewrite the system (2.1)-(2.4) in
the form

f)0
— +vV6 = A6+ Zexpid/iZ-1 + 66))(f>(a), (2.8)

(Q/y
— + vVa = Zexp{e/{Z~l + 66))<f>{a), (2.9)

^ + (vV)v = -Vp + PAv + PR{6 + 6*0)7, (2-10)

div v = 0. (2.11)

Here P is the Prandtl number, P = ^/k, R is the Rayleigh number, R — {gPqn2)/(uc3),
8 = R0Tb/E, e0 = (Tb - T0)/q.

3. Approximation of infinitely narrow reaction zone. To study the problem
analytically we reduce it to a singular perturbation problem where the reaction zone is
supposed to be infinitely narrow and the reaction term is neglected outside the reaction
zone. This is a common approach for combustion problems [1], [18], [25], [28], [35], [57],
[58]. We perform a formal asymptotic analysis with e — Z~x = RoT^/(qE) taken as a
small parameter, and obtain a closed interface problem. In this section we do not assume
that the product is solid.

We consider a moving frame of reference in which the reaction zone is flat and un-
movable. Let £(x,y,t) denote the location of the reaction zone in the laboratory frame
of reference. The new independent variable is given by

zi = z - C(x,y,t).

We introduce new functions 9i,a\,Vi,pi:

d(x,y,z,t) = 6i(x,y,zi,t), a(x,y,z,t) = a^(x,y, zi,t),

v(x,y,z,t) = vi(x,y,zi,t), p(x,y,z,t) = pi(x, y, zlt t).

We rewrite Eqs. (2.8)—(2.11) in the form (the index 1 for the dependent variables is
omitted):

% ~ JT% + = K° + ZeM0/(Z~l + 69))4>(a), (3.1)
ut OZ\ ot

~5t ~ ^7% + v^a = zexp(0/(-z'~1 + ^))^(a)' (3-2)
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% ~ £ It + = -Vp + p^v + Q(8 + Ooh, (3.3)

dvx dvx d( dvy dvy d( dvz = f)
dx dzx dx dy dzx dy dzx 1 ' '

92 d2 d( d2 d(
dx2 ^ dy2 dzf dxdz\ dx dydzi dy

((dC\\ (<K\2\ \
dz\ I \ cte / ^ \dy) ) dzi \ dx2 + dy2 J

~ _ f d_ _ J)_cK d_ _ d dQ d
\ dx dz\ dx' dy dz\ dy' dz\

We are going to use the method of matched asymptotic expansions. We look for the
outer solution of the problem (3.1)-(3.4) in the form of an expansion

9 = 9° + eO1 + ■ • ■ , a = a0 + ec*1 + • • • ,

v = v° + evl + • ■ ■ , p — p° + epl + • • • .

Here (9°,a°,v°) is a dimensionless form of the basic solution given in Sec. 2.
To obtain the jump conditions in the reaction zone we consider the inner problem.

The stretching coordinate is 77 = zi/e, £ = Z~x. We look for the inner solution in the
form of an expansion

9 — s9l + • • • , a = <5° + ea1 H , (3.5)

v — v° + ev1 H , p = p° + ep1 + ■ • • , C = C° + ^C1 H • (3-6)

Substituting these expansions into (3.1)-(3.4), we obtain the first-order inner problem:

('+ (I7) + (%) ) w+cxr":"'/n+m')0(5O) = "■ (3J)

9<° as° +v^_^ = exp((jl/(1 + {9-W)i (3S)
dr/ dt dr)

aC"\2 (d(°\2\ d2v° _
1+( d^J +(w) W~0' (3'9)
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.«JS.S£ + S.a (3.10)
or/ ox or] oy or)

The matching conditions are

' d0°
dz\00 : 9l ~ 91\Zl=+o + a0 —> 0, v° -> f°|j1=+o,

Z\ — + 0 y

r] -> -oo : 01~01\Zl=-O, a0-> 1, -0° u°|2l=-0.

From (3.9) and the boundedness of the solution we conclude that v° does not depend on
77. From this conclusion and the matching conditions it follows that the first element of
the expansion of the velocity for the outer problem, v°, is continuous. We denote

~03C° -o< -os = + V^--V

From (3.10) it follows that the function s does not depend on rj.
We derive next the jump conditions for the temperature from (3.7), (3.8) in the same

way as is usually done for the combustion problems [1], [4], [25], [26], [28]. From (3.8)
it follows that d° is a monotone function and 0 < d° < 1. Since we consider zero-order
reaction, we have </>(a°) = 1. We conclude from (3.7) that 61 is also monotone. Thus,
multiplying (3.7) by and integrating, we obtain

'dO'Y
drj

'de]\2
dr)

r2A 1 I exp(r/(l + 6t))<1t, (3-11)
J — OO

where

Subtracting (3.7) from (3.8) and integrating, we have

d0l
drj

dOl
= "yl"1f?+s)- (3-12)dt

Using the matching conditions and truncating the expansion (see, for example, [25]):

0°«0, «Z0\zi=o, C°«C, v°~v,
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we obtain the jump conditions

dO N 2
dzi

+o

dd N 2
dzi

= 2Z | 1 + ( -^
^ox J \oy
d(\2 (d ( rs lo

/ exp(r / (Z-1 + <5r ))dr,
J —CO

(3.13)

C*2-| +0 dzi -0

d(\2 fd(\2\ (d( ( d( d(
~~il+lfeJ +^J J Ydt*yxdi + Vydy~V>z\ =0 J

(3.14)

4. Formulation of the problem. We recall that the jump conditions (3.13), (3.14)
have been derived in the general case. In this section we consider the case of the solid
product where the velocity is zero behind the reaction zone, v = 0 for z < (. Thus we
have the following formulation of the problem:

2 > C :
f)Q
— + vV0=A0, (4.1)

a = 0, (4.2)

|| | (,;V}r = -Vp + PAu + Q(0 + 0O)7> (4-3)

« < c :

z = C:

div v — 0: (4.4)

I = as' «4-5'

a-lj « = 0; (4-6)

Oko = 6>k+o, (4.7)

2

C-o

dd
dz

d6\2
"'.sj

C-o

C+o

92 -n+i'^V£Vr& («>
C+o dx J \dy J I dt

d(\2 fdO2^ 1 r01+UJ J
(4.9)

Vx = Vy = vz = 0. (4-10)
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The conditions at infinity are

z = — oo : 0 = 0, z. = +oo : 0 = —1, v = 0. (4-11)

The problem (4.1)—(4.11) is coupled in the sense that it describes the thermal insta-
bility of the reaction front and the convective instability at the same time. There are
different limiting cases here. For example, if the coefficient of the thermal expansion, (3, is
zero (i.e., R = 0) then we have, obviously, a pure problem of the reaction in a condensed
medium, since v = 0. Another limiting case is when we remove the thermal instability:
we will see further that for the cellular instability the perturbation of temperature is zero
for z < C- Thus, it can be treated as purely convective instability.

5. Linear stability. The problem (4.1) (4.11) has a travelling wave solution:

0(x,y, z,t) = 9s(z — ut), a(x,y, z,t) = as(z — ut), v = 0,

which coincides with the basic solution given above:

r o z2<o (i z2<o
0s(z2,t) = \ , as(z2,t) = < , (5.1)

[ exp(—uz-2) — 1 z2 > 0 ( 0 B2 >0

z2 = z — ut, u = c. This is a stationary solution of the problem given by Eqs. (4.2), (4.4),
(4.6)—(4.11), and

r)f) f)f)
(£+vVd = A0 + u^-, (5.2)
Ot UZ2

a o

+ (wv)ff = -Vp + PAv + u~ + Q(0 + 0oh (5.3)
ot OZ2

for z2 >
00 38M = Ae + "5S (5-4)

for z2 < £. Here ^ = C — ut-
We study the linear stability of this solution by looking for a solution of the problem

in the form of the perturbed stationary solution:

Q = 0s + 6, ?; — i's I v. p = ps+p- (5.5)

We substitute (5.1) into (4.4), (5.2)-(5.4) and obtain for the first-order terms:
Z2 > ^ :

2 = A 9+ u-^~—vz9's, (5.6)
ut OZ2

n~ C\ ~

~ = -Vp + PAv + u—+ Qd^f, (5.7)
ot az2

div v = 0; (5.8)

z? <Z '■
00 ~ 00
a=A"+«te- (59)



REACTION FRONTS IN LIQUIDS 233

We denote 6 = 9\ for z2 < £ and 0 = 02 for z2 > £•
We linearize now the jump conditions (4.7)-(4.10). Taking into account that

%±O = MO) + ^(±O) + 0(±O),

d0_
dz-2

= 0',(±o) + £C(±°) + —
«±o dz2

€±0

up to the higher-order terms, we obtain

[0] = u£, (5.10)

[d'] = -u2a-z', (5.11)
-u(u2£ + 0.^(0)) = Z0i{ 0). (5.12)

Here

c)Q
[§] = §2(0) - 0,(0), [9'} = 0'2(O) - 0[(O), §1(0) =

22=0

,,=

5 dt

From (4.10) we have

dvx dv^dt[ _ dvy dvy <9£ =
<9x 92 a® ' dy dz dy '

Thus, using (4.4), we can rewrite the boundary conditions (4.10) for the first-order terms
in the form

r)v
vz = 0, ^=0. (5.13)

As usual, the solvability conditions of the system (5.6)-(5.9) will give the dispersion
relation.

6. Dispersion relation. We consider perturbations of the form

8t = 0i(z2)exp(ujt + i(k,x + k2y)), i — 1,2, (6.1)
v = v2(z2) exp(iot + i(kix + k2y)), z2>£, (6.2)

£ = £\ exp(cot + i(k\x + k2y)). (6-3)

Here £1 is the amplitude, w the frequency, k\ and k2 the wave numbers.
Prom (5.5)-(5.8) we obtain

[9] — £1 u, (6.4)

[d'] = -£i (u> + u2), (6.5)

—u(u2£\ + 02) = Z0\(O), (6.6)
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and
0" + u0[ - (w + k2)0i = 0, (6.7)

k2 — k2 + k2 ■ Thus

4 u> 4 k2u
9i=clef*lZ2, fii = -(-l + d), d=\j 1 + ^- +

We derive the dispersion relation as the solvability condition of (6.4)-(6.6). If Ci = 0,
then from (6.5), (6.6) we conclude that cj = 0. This case is considered below as a
particular case of the general dispersion relation. We assume now that c\ ^ 0. Then

(6.8)i(0) VMO)
9[(0) 8'2(0) _co + u2 (02(O) \
0i(O) ^i(o) u V«i(0) )' K''

If 02(0) = 0, then from (6.8)
7 - _L 2l~d
Zj — —CO ~b 11 —~—.

It is easy to verify that this equation does not have a solution for lu = i<p, <fi 7^ 0. This
means that, for the oscillatory stability boundary, 0-2(0) / 0. In this case we have from

(6.8), (6.9)
d-1\ „ d-1—a + Z\ H  —J — Z\ H — (- u>\Zi, (6.10)

where u>\ = lo/u2 , Z\ = Z/w2,

U 02(0)

We note that the dispersion relation (6.10) is derived from the matching condition
only, and in this sense it has a general form. Later in this section we consider gen-
eral properties of the dispersion relation. For a concrete problem a can be found as
a function of parameters from the equations for perturbations. We find this function
a = cr(R, P,k,u,uj) in the next section, and then obtain the stability conditions.

We consider some particular cases of the general dispersion relation (6.10).
1. If w = 0 then from (6.10) we obtain the equality

a(R, P, k, u, 0) = — 1, (6-12)

which gives the cellular stability boundary.
We note that in this case c\ = 0. Indeed, otherwise we obtain from (6.5), (6.6) the

equality
u2z = Y(i-d),

which cannot take place since Z > 0, d > 1. Thus the perturbation of the temper-
ature behind the reaction front is zero, and the temperature is equal to the burning
temperature.
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2. If the Rayleigh number is zero (Q = 0) then the perturbation of the velocity is zero
for Z2 > £. In this case we have the combustion problem and

02=c2e't"», /i2 = -|(l + d)-

Thus
» = -"• (6-13)

The dispersion relation (6.10) coincides in this case with that for the condensed phase
combustion [1]:

2Zi(2Wl + 1 - d) = 2u>i(l +d) + (1 - d)2.

3. We consider now a small perturbation of a in the form

f7 = ~ y(P + «7)- (6-14)

Here £2 is a small parameter, p and q are constants. After some calculations we find the
critical value of the Zeldovich number:

v v , a«(2ao ~ao -8a0 + 5)___ , a0(al + 2a0-5) _ , ,_2,
Z=Z°+ 3(^TF 1X2 + 4(a„-l)4 <6.15>

where Zq is a critical value of the Zeldovich number for e2 = 0,

(Iq 4- 3ao — 2Z0 =   , (6.16)
a0 - 1

ao = 1 + y/l + 4 k'2/u2.
Since the coefficients p and q in (6.15) are positive (a0 > 2), we can conclude, in

particular, that increase of the absolute value of the real and of the imaginary part of a
makes the front more stable.

7. Form of the perturbations. We exclude the pressure p and the components vx
and vy of the velocity from the system (5.2)-(5.4). To do this we use the transformation
rot rot ahd take the projection of the obtained system on the z-axis.

Thus we can rewrite (5.2), (5.3) in the form

= (7-D

r\ a

—Avz - u-—Avz = PAAvz + QAlO, (7.2)
ot OZ2

where
d2 d2

1 dx2 dy2
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Substituting (6.1), (6.2) into (7.1), (7.2), we obtain

cj(v" - k2v) - u(v'" - k2v') = P{v"" - 2k2v" + k4v) - Qk26, (7.3)

lo6 - vff + v6's = 0" - k20 (7.4)

(the index 2 is omitted). Introducing the operators

LlV = Pv"" + uv'" - (2Pk2 + w)v" - uk2v' + k2(Pk2 + u)v,

L20 = 0" + vff - (k2 + w)0,

we can rewrite (7.3), (7.4) in the form

Lxv = Qk29, L26» = -ue~UZ2v.

Remember that we consider perturbations decaying at infinity, i>(oo) = 0, 9(oo) = 0.
The general solution of (7.5) has the form

v(z2) = blw1(z2) + b2w2(z2) + b3w3(z2),

0(z2) = b1s1(z2) + b2s2{z2) + b3s3(z2).

Here b\,b2,b3 are arbitrary constants,

OO OC

Wj - y^aije°ijZ2, s,: = ^2clJeaijZ2, i = 1,2,3, (7.6)
j=i j=i

, , , w / „ w
CTll = "2~VT+ +^' a2l=~k> fJ31 = ~ZP"V4P2+ +P'

k is supposed, for certainty, to be positive,

— i ^ — 1? 2,3, J — 2,3,...,
Cii = 1, C21 = C31 = 0, a2\ = 031 = 1,

_  Qk2cxj  . _
aij (<J2j - k2)(Pa\- +ucrij - (Pk2 +w))' 3

—udij
Ci ,j+i 2 1 / / 0 1 V' ^ 1 > 2,3, j 1,2,3,...,<?lj +1 + WCTtj + 1 - (/c2 + id)

_ Qk Ci,j +1 •   99 '   1 O Q

a'J + 1 K?,j+1 _ fc2)(Pf7t2J+l +ucrij+i - [Pk2+u)Y 1 '3
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We assume here that

(alj - k2)(Pafj + uaij - (Pk2 + w)) ^ 0

for i = 1, j = 1,2,3,... and i = 2,3, j = 2,3,...,

afj + uatj - {k2 +lo) ^ 0,

for i = 1,2,3, j = 2,3,....
It is easy to verify that the series (7.6) converge, and the solutions (wi,Si), i — 1,2,3,

are linearly independent if the numbers er,; are different. The last condition means, in
particular, that P ^ 1 and ? / oo.

We show now that the functions (Wi,Si) satisfy (7.5). Indeed, we denote

n n

w? i=Y,ave<TijZ2> sr = X>jeffij22, *=1,2,3. (7.7)
j=i j=i

Substituting these partial sums into (7.5), we have

Liwln) = Qk2s\n\ L2s(-n) = -ue~UZ2(w\n^ - aineaiJlZ'1).

Passing to the limit as n —> oo, we obtain that (7.6) satisfies (7.5).
We determine now the function a(R, P,k,uj) (see (6.11)). From the boundary condi-

tions for the velocity
3 3

y^bjWjjO) = 0, ^biwK 0) = 0.
i=1

Thus

where

i 5H(o) + |4(Q) + 4(Q)
ufesi(°) + f^2(°) + s3(0)°=7.:: ', z ',,,^

_ w3(0)w'2{0) - w'3(0)w2{0)

63 W!(0)W^(0) - ^(0)^2(0)'

62 _ ^3(0)^1(0) - ^3(0)^1(0)
63 ^1(0)^3(0) - ^(0)^2(0)'

8. Stability conditions. Though we have an explicit formula for the function a,
the dispersion relation (6.10) cannot be studied analytically in the general case. In this
section we present the results of its numerical analysis and consider analytically the case
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of small Rayleigh numbers. We obtain from (7.8):

1 + d 4 P2R
2 u3 (i + d)(l+d + k)2{l + d+ P(l + d))(l-d- P(l+d))a= o ■ ,w, . ■ ■ . T . i-./t .  7 +°(^).

(8.1)
where

d = \J \ + k2 + 4 i0\, d = \J 1 + k2P2 . r 2k iO
+ 4u>i P, k — —, u>\ — .

To find the cellular stability boundary we put w — 0. We see from (8.1) that for R
positive, which correspond to ascending fronts, a increases in comparison with the case
R = 0, and the equation a = — 1, which determines the stability boundary, can have a
solution for k > 0. For R negative, which correspond to descending fronts, a decreases.

Figure 1 shows a as a function of k for different values of the Rayleigh number, found

Fig. 1. a as a function of wavenumber for different R. P — 0.99,
u= s/2, 1. R = 50, 2. R = 30, 3. R = 18, 4. R = 0, 5. R = -40, 6.
R = -60.



REACTION FRONTS IN LIQUIDS 239

Fig. 2. Critical values of the Rayleigh number as a function of
wavenumber for different values of the Prandtl number, u = \/2, 1.
P = 0.1, 2. P = 0.5, 3. P = 2, 4. P = 30.

from (7.8). We see that for R positive and sufficiently large, a becomes more than —1,
i.e., the instability occurs. For a negative it does not take place.

If we put a = —1 in equation (8.1) we find the critical value of the Rayleigh number:

Rc = j^(l+d)(l + d+~k)2[l+d + P(l + d)}[-l + d + P(l+d)]. (8.2)

This approximate formula shows that Rc is an increasing function of wavenumber with
its minimal value at k = 0. We cannot expect that (8.2) gives a good approximation of
the critical value of the Rayleigh number for all values of the parameters. However, it
reflects qualitatively its dependence on the parameters. Figure 2 shows the critical value
of the Rayleigh number as a function of wavenumber for different values of the Prandtl
number, found numerically as a solution of (6.12), (7.8). In Fig. 3 (see p. 240) this
dependence is shown for different values of the front velocity. We conclude that increase
of the front velocity makes the front more stable, while increase of the Prandtl number
destabilizes it.
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0.2 0.4 0.6 0.

Fig. 3. Critical values of the Rayleigh number as a function of
wavenumber for different values of the front velocity. P = 0.99, 1.
u = 1.0, 2. u = 1.25, 3. u = V2, 4. u = 1.75, 5. u = 2, 6. u = 2.5.

The comparison of Rc found from (8.2) and (6.12), (7.8) is given in Fig. 4. We see
that (8.2) gives a good approximation for small wavenumbers. We have from it in the
limit as k —> 0:

«, = (8.3)

To find an oscillatory stability boundary we put u)\ — ifa. For small R from (8.1) we
obtain (6.14) with

2 P2R k2Si k2S2
£2 — . n ) P — cO , ' 1S'l + S2' H Sl + Sl

where

s = t1t3-t2t4, s2 = -(t1t4 + t2t3),
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Fig. 4. Comparison of Rc found from (8.2) (1.) and (6.12), (7.8)
(2.).

T\ — (1 + ®)((1 + a, + A;)2 — 62) — 2fe2(l + a + k),

To = &(2(1 + fl)(l + a + fc) + (l+a + k)~ — b2),

T3 = l-(a + P + aP)2 + (b + bP)2,

T4 = -2 (a+ P + aP){b + bP),

a + ib = d, a + ib = d.

The constants p and q for a — ao and P = 1, taken as an example, are found to be
positive; so the hydrodynamical perturbations make the front more stable for R small
and positive, and more unstable for R small and negative. Negative R correspond to
descending fronts.

If R is not small the dispersion relation can be analyzed numerically. Figure 5 (see p.
242) shows the critical values of the Zeldovich number as a function of wavenumber for
different values of the Rayleigh number. Here a is taken in the form (7.8).
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Fig. 5. Critical values of the Zeldovich number as a function of
wavenumber for different values of the Rayleigh number. P = 0.5,
u = V2, 1. R = 150, 2. R = 100, 3. R = 60, 4. R = 40, 5. R = 0, 6.
R = -20, 7. R= -60.

Figure 6 shows qualitatively the stability boundaries on the (R, Z)-plane. The oscil-
latory instability boundary is independent of R for k = 0 and practically independent
for k > 2. The stability region is below the curve that determines the boundary. The
cellular instability boundary is always independent of Z. The stability region is to the
left of the stability boundary.
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-100 -50 0 50 100 150 200

Fig. 6. Stability regions on the (R, Z)-plane for different values of
the wavenumber. (la) (u> = 0, k = 0) (lb) (uj = i<f>, k = 0) (2a)
(w = 0,k = 0.5) (2b) (w = i<j>,k = 0.5) (3a) (w = 0,fc = 0.7) (3b)
(u> = i(j>, k = 0.7) (4a) (uj = 0, k = 2) (4b) (uj = i<t>, k = 2)

9. Discussion. We have studied the linear stability of exothermic reaction fronts
with original reactants considered as a homogeneous incompressible liquid and a solid
product. Basic parameters that determine the front stability are the Rayleigh number
and the Zeldovich number. Both cellular instability and oscillatory instability can occur.

The cellular instability boundary corresponds to the case when the eigenvalue with
the maximal real part intersects the imaginary axis through zero. The cellular instability
occurs for positive and sufficiently large values of the Rayleigh number. The condition
of cellular instability is independent of the Zeldovich number. It is interesting to note
that there is no perturbation of temperature behind the reaction zone in this case. The
temperature is constant and equal to the burning temperature. So this case can be
considered as a pure convective instability. Increase of the front velocity makes it more
stable. For negative values of the Rayleigh number there is no instability.

We now give a physical interpretation of the results concerning cellular instability. For
the ascending fronts, which correspond to positive values of the Rayleigh number, the
exothermic chemical reaction can cause convective instability because of the temperature
gradient in front of the reaction zone. It is similar to some extent to the classical Rayleigh-
Benard problem of convection in a layer of a liquid heated from below. If the liquid is
heated from above then, as is well known, cellular instability does not occur. This is the
same in the problem under consideration for the descending fronts (negative R).
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The influence of the front velocity on the stability condition also has a clear physical
explanation. In the moving coordinate frame where the reaction zone is immovable, there
is a flow of the liquid towards the front. The convective instability leads to the liquid
motion in the direction opposite to the direction of the flow. So the greater the flow
velocity the more it is possible that the perturbations decay.

The oscillatory instability boundary corresponds to the case when a pair of complex
conjugate eigenvalues with nonzero imaginary parts intersects the imaginary axis. Sim-
ilar to condensed phase combustion the instability takes place for large values of the
Zeldovich number. The stability conditions also depend here on the direction of the
front propagation.

The front propagating upward appears to be more stable with respect to multidimen-
sional perturbations (k 7^ 0) than in the pure combustion problem without hydrody-
namics. The physical explanation for this can be as follows. For the condensed phase
combustion the instability of the front leads to the appearance of high-temperature heads
which move in front of the reaction zone. If the reactants are in a liquid phase then ap-
pearance of a high-temperature head causes the liquid motion, which in its turn decreases
the temperature of the head, and the perturbation can decay.

For a front propagating downward the influence of liquid motion is opposite. Convec-
tion of the liquid decreases the heat loss from a high-temperature head to the unreacted
reactants caused by heat diffusion. The heat is conserved near the reaction front, and
the perturbation of the temperature has better conditions to increase.

The last of our remarks concerns the method of the analysis. It is a well-known method
based on the approximation of an infinitely narrow reaction zone. This means that we
neglect the reaction term outside the reaction zone and replace it by the jump conditions
in the reaction zone. The dispersion relation is derived as a result of linearization of the
jump conditions. The connection of the dispersion relation with the external problem
exists due to the dimensionless temperature gradient a = 6'/(u6) that appears in the
former and should be found from the latter. However, some of the conclusions can be
made without its explicit form. In particular, as was mentioned above, the cellular
instability condition is independent of the Zeldovich number and is given by the equality
a = — 1. The conclusion that there is no perturbation of temperature behind the reaction
zone is also general for this kind of jump conditions. One more general conclusion is that
increase of the absolute values of the real and imaginary parts of a, i.e., the temperature
gradient, makes the reaction front more stable, while decrease of them destabilizes the
front.
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