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Abstract

We employ semigroup and spectral methods to analyze the linear
stability of positive stationary solutions of a generalized size-structured
Daphnia model. Using the regularity properties of the governing semi-
group, we are able to formulate a general stability condition which permits
an intuitively clear interpretation in a special case of model ingredients.
Moreover, we derive a comprehensive instability criterion that reduces to
an elegant instability condition for the classical Daphnia population model
in terms of the inherent net reproduction rate of Daphnia individuals.
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1. Introduction

In the last three decades nonlinear age and size-structured population mod-
els have attracted a lot of interest both among theoretical biologists and applied
mathematicians. Traditionally, structured population models have been formu-
lated as partial differential equations, starting with the pioneering (first nonlin-
ear) model of Gurtin and MacCamy in [15]. Since then several important phys-
iologically structured population models have been developed and analyzed by
different methods. We mention here the well-known monographs [3, 17, 20, 25]
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and some recent papers [10, 13, 14, 19] for relevant related work on the subject.
Diekmann et al. have been developing a general mathematical framework for
modeling structured populations ([7, 8]). Recently they have rigorously proved
that the qualitative behavior of nonlinear physiologically structured population
models can be studied by means of linearization ([5, 6]). Such a link between the
nonlinear stability and the linearized stability of equilibria, commonly referred
to as the “Principle of Linearized Stability”, has been found previously for cer-
tain semilinear models, most notably models with age structure ([15, 18, 21, 25]).
Tucker and Zimmermann [24] proved the stability part for a quite general class
of size-structured models with unbounded size span, but the instability part was
left open.

Following the lead of [21, 25] we successfully applied linear semigroup meth-
ods to formulate biologically interpretable conditions for the linear stability/in-
stability of equilibria of size-structured population models ([13, 14]). In par-
ticular, in [13] we treated the linear stability of a single species size-structured
model. Our method allowed us to formulate a very general and elegant insta-
bility condition in terms of the net reproduction function (see Theorem 5.4 in
13)).

In the present paper we extend our approach to treat the linearized stability
of a generalized size-structured Daphnia model: a coupled ODE-PDE model
which describes a specific predator-prey interaction. The predator population
consists of waterfleas (Daphnia pulex), while the prey is algea (Chlamydomonas
rheinhardii). The evolution of the predator population is governed by the fol-
lowing partial differential equation

ny(x,t) + (v(z, F)n(z,t)y + p(z, F)n(z,t) =0, x€(0,m], ¢t>0, (1.1)

with the nonlocal boundary condition
n(0,t) = C(F) +/ Bz, F)n(z,t)dz, t>0. (1.2)
0

This boundary condition models the inflow of minimal size individuals into the
population. (For simplicity we assume the minimal size to be zero.) Egs. (1.1)-
(1.2) are accompanied by an initial condition of the form

n(z,0) = no(x). (1.3)

In Eq. (1.1) n(z,t) denotes the density of the waterflea individuals of size z at
time t. We assume a finite maximal size m > 0. As usual, v, u, 8 denote the
growth, mortality and fertility rates of predator individuals, respectively. All of
these vital rates are assumed to be dependent on size x and on the population
size F' of algae. C represents an inflow of zero size Daphnia individuals from an
external source. Several biologically relevant situations arise when an external
inflow of minimal size individuals is taken into account in the formulation of
mathematical models of population dynamics. See e.g.[12] and the references
therein for recent developments on structured PDE models with inflow.
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The dynamics of the algae population F' is determined by the following
ordinary differential equation

dF m
Y :\II(F)—/ I(z,F,N)n(z,t)dz, t>0, (1.4)
0
accompanied by an initial condition
F(0) = Fp. (1.5)

Here U(F') models the autonomous algae dynamics, i.e. ¥ determines the dy-
namics of the algae population in the absence of its consumer. Typically, ¥
assumes the form

U(F) = aF <1 - Ii) ,a >0, (1.6)

§ U(F) = <1 - Iﬁ;) , a>0. (1.7)

The first equation models logistic growth of the algae population with K >
0 denoting the carrying capacity of the environment. The second equation
corresponds to a constant inflow of fresh non-reproducing food with constant
deterioration. The quantity I(z, F, N) denotes the feeding rate of the Daphnia
individuals of size z, which depends on the total population of algae F' and on
the total population N of Daphnia, given by

N(t) = /Om n(x,t)dz. (1.8)

Our model (1.1)-(1.5) is a generalization of the “standard” size-structured
Daphnia model, considered in the literature (see e.g. [20, 22]), where the bound-
ary condition (1.2) is replaced by

20, F)n(0.t) = / " Ba, Fyn(a, 1) d, (1.9)

and where the feeding rate [ is independent of the Daphnia population size N.
In contrast we have, for the sake of simplicity, incorporated the growth rate
~(0, F) on the left of Eq. (1.9) in the inflow C and in the fertility 8 on the right
of Eq. (1.2). For previous results on the qualitative behavior of solutions of the
“standard” Daphnia model for special choices of model ingredients v, u, 3, I,
U, we refer to [20, 22]. For developments of other physiologically structured
models of similar type we direct the reader to [23] for further reference.

For the remainder of this work we impose the following conditions on the
model ingredients

p, B € CH[0,m] x (0,00)), B>0, >0, (1.10)
v € C*([0,m] x (0,00)), 7 >0, (1.11)
1€ CH([0,m] x (0,00) x (0,00)), I>0, (1.12)
U, CeC0,00), C>0. (1.13)
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These conditions are sufficiently strong to make our analysis work.

Next we formulate a simple criterion for the existence of a positive station-
ary solution (n., F,) of Egs. (1.1)-(1.5). Throughout we will call a stationary
solution (n., F.) positive if both n, > 0 and F, > 0.

Proposition 1.1 For given model ingredients 3, p, v, I and U, there is a
one-to-one correspondence between all positive stationary solutions (n., F.) of
problem (1.1)-(1.5) and all pairs (N, Fy) of positive numbers that satisfy the
conditions

Ql(F*aN*):lez(F*aN*)a (114)
where
! qer OLF) ™ x x " T T x
QM S [y [ s PTE @ ()
U(F) I(z, F)dx
Q*FN)E — /0 (1.16)
N/ I(z, F,N)II(z, F) dx
0
i * 3w, F) + ply, F)
def - _ Y2 \Y, 1Y,
I(z,F) = e p{ /0 Yo ) dy}. (1.17)

If (N, Fy) is a pair of positive numbers satisfying Eq. (1.14), then the unique
positive stationary solution n, of Eq. (1.1) is given by

N,

Mm@ R). (1.18)
/0 (y, ) dy

ny(z) =
Proof. Any time independent solution n, of (1.1) satisfies

Ny (z) = 1. (0) (z, Fy). (1.19)

By integration we obtain

, (1.20)

where

N*:/O n.(x) de. (1.21)

Substituting (1.19) into Egs. (1.2) and (1.4), we arrive at Eq. (1.14) for (N, Fy).
On the other hand, if (N,, Fy) is a pair of positive numbers solving Eq. (1.14),
then n., defined by (1.18), is readily seen to be a positive stationary solution of
Eq. (1.1), while F, will vacuously solve Eq. (1.4).

]
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The criterion given in the preceding proposition is useful to construct specific
stationary solutions. From now on we will tacitly associate the total Daphnia
population N, to the stationary population density n, via formula (1.21).

2. The linearized semigroup and positivity

In this section we will derive the linearization of the governing equations at
steady state. We will show that solutions of the linearized equations are given
by a strongly continuous semigroup and that the semigroup is positive under
certain conditions on the model ingredients. The general approach taken here
is a significant extension of our previous work in [13, 14].

Given a positive stationary solution (n., Fy), we linearize the system (1.1)-
(1.5) by using expansions like

fn(z, Fi, No) (N — N,) + higher order terms. (2.1)

We write G and w for the “infinitesimal” perturbations of F, and n., respec-
tively. This ansatz yields the linearized system

wi(, 1) + (@, Fo) we (2, 1) + (v (@, F2) + p(x, Fr)) w(z, )+

(o (@, F) 1 (2) + (2, Fo) () + e F) L () G =0, (2.2)
w(0,t) = <CF(F*)+/O Br(x, Fy) n.(x) d:c) G(t)—i—/o B(x, Fy) w(x,t) de,
(2.3)

dG

e (\IJF(F*) - /Om Ip(z, Fy, N.) n(z) dm) G(t)—
/Om (I(x,F*,N*) + /Om In(y, Fu, N) ny(y) dy> w(x,t) dz (2.4)

together with the initial conditions

G0)=Fo— F. ¥ Gy, w(x,0) = ng — ns(0) 2 wy. (2.5)

Let X be the product space L'(0,m) x C, where L'(0,m), endowed with the
usual L'-norm || - ||, consists of complex-valued, Lebesgue integrable functions
n (0,m). We define the bounded linear functional A on X by

A (g) _ (CF(F*) +/Om B, Fu) () dm) G+/Om Bz, F)w(z) dz (2.6)
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and introduce the operators

w (- F) wy
A <G) - (/i—HIlF(F*) - /Om Ie(z, Fo, N.) na () dx) o (2.7)
with Dom(A) = {(Z) € Wh(0,m) x C ’ w(0) = A (g) } ,
B (g) __ ((vm(-,F*) + i, F) w) o)

with Dom(B) = X,
w (Var (%, Fi) na (@) + pr (2, Fi) na(2) + yp (2, F) ni(z)) G
C S m m
(G> /0 (I(a:,F*,N*) +/o In(y, Fy, N) ns(y) dy) w(z) dz

(2.9)
with Dom(C) = X,
where k is chosen such that
M, :H+\I/F(F*)—/ Ip(z, Fy, Ny) ng(x) de # 0. (2.10)
0

The space W1(0,m) used above is the well-known Sobolev space of Lebesgue
integrable functions on (0,m) with Lebesgue integrable weak derivative.

Now we can cast the linearized system (2.2)—(2.4) in the form of an abstract
ordinary differential equation on X

% <8> — (A+B+C) (g) (2.11)

together with the initial condition

(50 - ().

We will also need the following functions

o dy Yo (2, F) + p(z, F)
Iz, F :/ —— Oz, F) = . 2.13
0=, Swm O0Y (@, F) (213
The inverse of the function z — I'(z, F') for fixed F' will be denoted by I‘{}{}.

Theorem 2.1 The operator A+ B + C generates a strongly continuous semi-
group T = {T (t) }4>0 of bounded linear operators on X .
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Proof. First we study the operator Ay, defined by

Ao (Z) = (ﬂ(MFC; w“") (2.14)

w

with Dom(Ag) = {<G> e WL(0,m) x C ‘ w(0) = o} ,

It is readily seen that Ay is invertible and generates a strongly continuous semi-
group {7o(t)}+>0 on X, given explicitly by

w (r{;{*} (D(z, ) — t))

(To(t) (Z)) (@) = ( exp (M. t) G

0
exp (M, t) G

) if T(x, Fy) > t,
(2.15)
> otherwise,

Next let X_; be the completion of X in the norm || - |1 def

define the lifted semigroup {7_1(¢)}+>0 on X_1 by

|Ag" - |- Then we

Ti(t) = Ao To(t) Ay (2.16)

The generator A_; of the semigroup {7_1(¢)}:>0 is an extension of Ay. Its
domain Dom(.A_) is X, while its range is contained in X_;. Now we introduce
the operator P € L (X,X_1), given by

5 (Z) def (A(IS, G)" 8) Ay ((1))’ (2.17)

where 1 = 1(-) is the constant function 1 in L'(0,m). Then the operator A is
just the part of the operator A_; + P in X (see [9)), i.e.

A= (.A_1 + P) |X, (2.18)

where
Dom ((A_1 +P)|x)={zeX]| (A1 +P)x e X}. (2.19)

Our objective now is to apply the Desch-Schappacher Perturbation Theorem!,
thus proving that 4 generates a semigroup on X. To this end, we have to show

IWe refer here to the following version of the Desch-Schappacher Perturbation Theorem
(see Corollary III1.3.4 in [9]) which we state verbatim for the reader’s convenience:
Theorem Let Ag be the generator of a strongly continuous semigroup {To(t)} on the Ba-
nach space X and let P € L(X,X_1). Moreover, assume that there ezxists to > 0 and
p € [1,00) such that

/to T i(to—r)P f(r)dr € X
0

for all functions f € LP([0,t0]; X). Then (A_1+ P)|x generates a strongly continuous
semigroup on X.
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that, for given (f,h)T € L([0,m]; X), the integral

" f(@t)
/0 Talm—0P (1)) dt =

A /O (—A(f(t()), h(t)" 8) T (m—1) (18)) ” (2.20)

belongs to X. This condition is equivalent to

/Om (—A(f(t()), h(t)" 8) S— (1(().)) dt € Dom(Ay).  (2.21)

Since

[ (—A (o) )" 0) — (1(().)) ae om
(t))T> . (2.23)

o

T

| 3
=
e

/-I\

=

-

=

>

condition (2.21) holds true. Hence A is a semigroup generator. Finally we note
that B + C is a bounded perturbation of A on X. Therefore the claim of the
theorem follows.

[

Typical linear stability studies of stationary solutions proceed as follows:
First one shows that the spectrum of the underlying differential operator (=
semigroup generator) is contained in the left half-plane of the complex plane
and bounded away from the imaginary axis. Then one tries to conclude that
this result implies asymptotic stability. However, this second step is applicable
only if the so-called spectrally determined growth condition holds true (see [9]).
Specifically, in our situation one has to show that the spectral bound s(A+B+C)
of the semigroup generator A + B + C, defined by

s(A+B+C)=sup{ReA|Ae€o(A+B+(C)}, (2.24)
and the growth bound w(T") of the semigroup T' = {7 (¢)}, defined by

w(T) = lim W, (2.25)
t—o0

are equal. Moreover, it would be desirable to guarantee that linear stability is
governed by a leading real eigenvalue. Our next results will prove that both
the spectral condition and the spectrally determined growth condition are sat-
isfied under certain assumptions on the model ingredients. The elementary
size-structured case and the size-structured case of juvenile-adult interaction
was analyzed in a similar fashion (see [13, 14]).

Lemma 2.2 The spectrum of the semigroup generator A+ B + C consists of
1solated eigenvalues of finite multiplicity.
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Proof. Since A has a bounded resolvent mapping X into W11(0,m) x C and
since WH1(0,m) x C is compactly embedded in X, the claim follows from Riesz-
Schauder Theory.

[

Next we turn to the positivity properties of the semigroup. To this end, we
note that the real part of the Banach space X is a vector lattice if (w,G)7 is
defined as positive whenever w > 0 in L'(0,m) and G > 0 in R. Moreover, we
define the absolute value of (w,G)” € X to be (Jwl|,|G)T. Hence it is readily
seen that X is a Banach lattice and the notions of positive operator, positive
semigroup and positive linear functional are well-defined.

Theorem 2.3 Suppose that

Or(F.) <0, (2.26)

Cr(F) + /Om B (2, B () d > 0, (2.27)

I(-,F.,N,) + /m In(z, Fe, Ny) ny(z) dz < 0. (2.28)
0

Then the semigroup T = {7 (t)}1>0, generated by the operator A+ B+ C, is
positive.

Note that, for a positive stationary solution (n., F), condition (2.26) is equiv-
alent with

Proof of Theorem 2.3. We consider the solution of the initial value problem

% (g) —(A+B) (g) : (8%8;) = (Z,‘;) € Dom(A). (2.30)

Then the function u, defined by

u(z,t) = w(zx,t) exp {/; O(y, Fy) dy} , (2.31)

is the solution of the problem

ug(x,t) +v(z, Fi) ug(z,t) =0, (2.32)
u(-,t)

w0, t)=A [ A, (2.33)

u(x,0) = wo(x), (2.34)

where A, is defined by

A.(z) = exp {/0 ®(y,F*)dy} . (2.35)
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Consequently, problem (2.30) can be cast in the form

% (g> = Au (Z) ’ (Z((%))) = (Zg) € Dom(Ay), (2.36)

where Aj; is the modified semigroup generator, defined by
A = m 2.37
M (G> <\IJF(F*) —/ Ir(z, F\, N n.(z) dx) G (2:37)
0

u

with Dom(Ay) = {<G> e W1 (0,m) x C \ u(0) = A, (g) } :

where
u

A, (g) = A AG* . (2.38)

There is a constant Cy > 0 such that, for (f,h)? € X, the resolvent equation

Qa)-() e

L AT@F) ) <U> +/ AT F)-T@r)) W) 9 40

w(x e « [ Y, .

(=) G 0 v(y, F) (2.40)
h

" P (\PF(F*) - /Om (2, Fo, N.) 0o () da:) e

has the implicit solution

for A > (. Hence for such A\ we obtain

SATGENY T ' f(y)
)G () e )
(G G 0 vy, Fu)

(2.42)
By condition (2.27), A (or equivalently A.) is a positive linear functional. Hence
both w and G, given by Egs. (2.40), (2.41), are nonnegative if A is sufficiently
large and f and h are nonnegative. Thus we conclude that the resolvent operator
of Ay (or equivalently of A + B) is positive. Finally, since the operator C is
positive by conditions (2.26) and (2.28), the claim follows.

]

A minor variant of Derndinger’s Theorem and the theory of positive semi-
groups gives us the following result (see [4, 9]).

Corollary 2.4 Assume that conditions (2.26)—(2.28) are satisfied. Then the
following holds true:



Stability and positivity of a size-structured Daphnia model 11

e The growth bound w(T') of the semigroup is equal to the spectral bound
s(A+ B+ C) of its generator.

o If A+ B+ C has nonempty spectrum, the spectral bound s(A+ B+ C) is
an eigenvalue of the generator A+ B+ C.

Other related regularity properties (eventual compactness, eventual differentia-
bility) have been discussed in [13, 16] for one-dimensional transport equations
in population dynamics and fluid mechanics.

3. Stability

In this section we use the positivity conditions deduced in the previous
section to formulate conditions for the linear stability of positive equilibria of
Egs. (1.1)-(1.5). We use the approach established in [13, 14] for the case of other
(single-species) size-structured population models. As done in [10, 11, 13, 14]
we will be able to relate our stability condition to a biologically interpretable
and intuitively clear condition at least in a special case of model ingredients.
To formulate our stability result, we introduce the following function

R(F):Amﬂ(x,F)H(x,F)dx:

" 7(0, F) “ oy, F)
B(x, F exp < — dy ¢ dz. 3.1
f; R o A F) (31
The function R can be interpreted as the inherent net reproduction rate of
Daphnia individuals in analogy with the age-structured case: Since the original
fertility function is divided by (0, F') in the boundary condition (1.2), the

quantity R(F') is the expected number of newborns of an individual during its
lifetime.

Theorem 3.1 Given a positive stationary solution (n., Fy), suppose that the
positivity conditions (2.26)—(2.28) are satisfied. Then the stationary solution is
linearly asymptotically stable if

(1 - R(F)) (/Om Ip(z, Fy, N) n(2)de — \I/F(F*)> S
/Om (z, F.) (I(x,F*,N*)-i-/Om In(y, Fu, No) 1 () dy) . (3.2)

(n*<o> a-rr) [ " 0r(y, F.) dy — Cr(E.) - n.(0) RF<F*>) dr.

We break the proof of this theorem up in several parts.

Lemma 3.2 The spectrum of the semigroup generator A+ B+ C consists of all
A € C such that
K(\) =0, (3.3)
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where the function K is defined on C by

K\ % (1—/Omﬁ(x,F*)¢>(/\,x,F*)dx> «
()\—\I/F(F*)+/0mIF(:c,F*,N*)n*(:E)dx—
1. (0) /Om (I(m,F*7N*) —|—/Om In(y, Fy, Nio)nu(y) dy) (N, z, Fy)x
[ e AT R Ol ) dyds ) + (3.4
/Om (I(a:,F*,N*) + /Om In(y, Fi, Ni) ni(y) dy) (N, x, Fy) dx x
(OF(F@ - " B, B na (o) da—
0 [" st r) e R [ en (D F) OrF )dydx)

and "
d(\, 2, F) & exp{)\I‘(x,F)/ Oy, F) dy}. (3.5)
0
Proof. Since the semigroup generator has compact resolvent, its spectrum

consists of all values A € C for which the following linear problem admits a
non-trivial solution (W, g) # (0,0)

A+ e (@, Fy) + plx, F)) W(z) +y(z, F) W (2 )+
(Yar (2, F2) na(2) + pp (2, Fo) na(2) + 6 (2, F) i (2)) g = 0, (3.6)

W(0) = ( / B (2, F) na(x dx)g+/ Bz (2)dz, (3.7)
(/\ \I/F(F*)Jr/ Ip(x, Fuy No)nu(x )d:z:)
0
/ (I(x,F*,N*H— / In(y, B, N.) 1 (y) dy) W (z)dz = 0. (3.8)
0 0
The solution of Eq. (3.6) is readily found to be

W(z) = ®(A . F.) (W(O)—n*w)g / “exp (A\D(y, F.)) O (y, F >dy)
(3.9)
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Now we substitute the solution W into Eqs. (3.7), (3.8) to obtain the equations
<1 7/ B(z, Fy) @(A,x,F*)dx) W(0)—
0

(CF(F*) + /O " e, F) () da— (3.10)

7. (0) /Omg(x,F*yb(A,x,F*) /O'exp(xr(y,F*)) @F(y,F*)dydx) g=0

and

/Om (I(x,F*,N*) + /om In(y, Fy, No)ni(y) dy) ®(\, z, F,)de W(0)+
<)‘\IIF(F*)JF/OmIF(CE,F*,N*)n*(m) dz— (3.11)

1. (0) /Om <I(a:,F*,N*) +/m In(y, Fiy Nio)na(y) dy) DA, x, Fy)x

0
/ exp (AT(y, Fy)) @F(y,F*)dydx> g=0.
0

These two equations form a linear system in the unknowns W(0) and ¢g. Hence
for a nonzero solution (W(0), g) (and consequently for a nonzero solution (W, g)),
it is necessary and sufficient that the corresponding determinant vanish. This
determinant is, however, just the function K, defined in (3.4).

[

Lemma 3.3 Suppose that the positivity conditions (2.26)—(2.28) and condition
(3.2) are satisfied. Then the function K, defined by (3.4), is (strictly) positive
for A > 0.

Proof. Let

i) =1- /Om B(z, F.) ®(\, z, Fy) dx, (3.12)
£ = A — Up(F) +/m Io(z, Fo, No) () dar—
0
w0) [ (1 rN [T E N ) < G13)
@(A,x,F*)/O exp (AI'(y, Fy)) ©p(y, Fy) dy dz,
f3(\) = /Om (I(x,F*,N*) + /Om In(y, Fi, Ni) n(y) dy) S\, x, F,)dx x
(CF(F*) + /m Br(x, Fi) ny(x) do— (3.14)
0

n.(0) /0 " B R @\ x, F) /0 "exp (AL(y. F.) ®F<y,F*>dydx>
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Then one readily finds

fi(A) > 0and f{(A) >0 for A>0, fi(\)>0 forA>0, (3.15)
(0 >0 for A >0, (3.16)
f3(A\) <0and fi(\) >0 for A > 0. (3.17)

To obtain these results, we take into account that R(F,) < 1 and make use of
the positivity conditions and the monotonicity of the function I'. Consequently,

the function
KW £
fi(N) fi(N)

is non-decreasing on (0,00). Since we also have K(0) > 0 by condition (3.2)
and f1(A) > 0 for all A > 0, we deduce K(A) > 0 for all A > 0.

A

= (M) + (3.18)

]

Proof of Theorem 3.1. The positivity of the semigroup implies that the spec-
trum of the semigroup generator is either empty or contains a dominant real
eigenvalue (Corollary 2.4). By Lemmata 3.2, 3.3, the dominant eigenvalue, if
any, must be negative. In either case, the spectral bound of the semigroup gen-
erator and hence the growth bound of the semigroup are contained in [—o0, 0).
This proves the claim.

[

Example 3.4 Consider the special choice of the feeding rate I, given by

I(x,F,N):LAI;), F,N>0, >0 (3.19)

and assume C(F,) > 0. In this case we readily obtain

0

and

Q(F.N) = @*(F) = 2F)

o (3.21)

Thus our criterion (3.2) for the linear stability of the stationary solution (n., F)
reduces to

Up(F,) — Ip(F,) <0, (3.22)
which is readily seen to be equivalent to

Q3 (F.) = (?)F () <0, (3.23)
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if I(F,) # 0. Condition (3.23) is intuitively clear since Q* can be interpreted
as the net growth rate of the algae population. In case of (3.19), the algae

dynamics is driven solely by ¥ and I and is thus independent of the Daphnia
population.

Remark 3.5 If Iy = 0, the positivity criterion for the linear semigroup is
violated (except in the trivial case I = 0). Consequently stability need not be
governed by a leading real eigenvalue. This observation is in accordance with
previous results on the classical Daphnia model in [22] where it was shown that
stationary solutions lose stability via a Hopf bifurcation.

4. Instability

In this section we give an instability criterion for positive stationary solutions
of Egs. (1.1)-(1.5). We illustrate the result for the classical Daphnia population
model considered in [20, 22].

Theorem 4.1 The stationary solution (n., Fy) of Egs. (1.1)-(1.5) is linearly
unstable if

(1= R(Fy)) (/Om Ip(x, Fy, Ny) ny(z)dz — \IIF(F*)> <
/OmH(x,F*) (I(a:,F*,N*)+/OmIN(y,F*,N*)n*(y)dy> « (4.1)
(n*(O) (1— R(F.)) /0 Or(y, F.) dy — C(F.) —n.(0) RF(F*)> da.

Proof. The function K, defined in Eq. (3.4), satisfies

lim K(\) = o0, (4.2)
A—00
where the limit is taken in R. To see this, note that all the terms involving ®
decay to zero. By assumption, we have, however, K(0) < 0. Hence K has a
positive zero, i.e. the semigroup generator has a positive eigenvalue.

]
Example 4.2 We consider the standard Daphnia model, where
C=0, Iy=0, I>0. (4.3)
In this case the instability criterion (4.1) assumes the form
Rp(Fy) <0. (4.4)

It is intuitively clear that Rp(F.) < O implies instability: If an increase of
the algae population decreases its consumer population (Daphnia), then the
consumption of algae decreases and hence the algae population grows.
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In the simple single-species size-structured case discussed in [13] the equiv-
alent instability condition for the corresponding inherent net reproduction rate
R(P) was shown to be Rp(P,) > 0 where P, denotes a positive equilibrium
total population size of the size-structured species. In contrast the condition
Rp(P,) < 0 was a necessary condition for stability.

Remark 4.3 We point out that the positive inflow C has a stabilizing effect
as observed previously (see [12, 14]). If

I(z, Fy,N,) +/ In(z, Fy, Non.(x)dz <0, (4.5)
0

then the instability criterion (4.1) holds true in case C' = 0 if Rp(Fy) > 0. If,
however, C' > 0, the stability condition (3.2) of Theorem 3.1 (and the positivity
conditions) may be satisfied for some stationary solutions, even if Rp(Fy) > 0.

5. Conclusion

In the present paper we have analyzed a nonlinear size-structured predator-
prey model which generalizes the standard Daphnia model studied previously
in the literature (see [20, 22, 23]). Specifically, we introduced a food dependent
inflow term C' in the boundary condition of the governing equations and a
general feeding rate I describing the consumption rate of prey individuals. We
refer the reader to [1, 2, 12, 19] where size-structured models with similar inflow
terms were discussed. Our motivation for introducing a food dependent inflow
was to demonstrate its stabilizing effect as observed previously for simpler size-
structured models of similar type (see [12, 14]).

Using semigroup and spectral methods we studied the linearized dynamical
behavior of initially small perturbations of steady state via roots of the asso-
ciated characteristic equation. Our positivity result for the semigroup under
certain conditions for the vital rates allowed us to stay within the framework of
real calculus when addressing stability of stationary solutions. We point out that
comprehensive linear stability results, even in the special case of the standard
Daphnia population model, have so far not appeared in the literature. In addi-
tion, as observed previously in [10, 11, 12, 13, 14], we succeeded in formulating
stability /instability conditions in terms of a net reproduction rate associated
to the model. To this end, we introduced the relative net reproduction rate
of predator individuals R(F’). For the standard Daphnia model this approach
gave us a remarkably simple stability criterion. We anticipate that our analysis
can be extended to more general situations, including multispecies competition
models and problems with infinite size span.

Using sun-star calculus for Volterra functional equations, Diekmann et al. [5,
6] have recently proved both the stability and instability part of the princi-
ple of linearized stability for general classes of quasilinear size-structured mod-
els. These important results emphasize and corroborate our objective to for-
mulate straightforward and biologically interpretable conditions for the stabil-
ity /instability of equilibria of physiologically structured population models. It
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is left for future work to establish the principle of linearized stability for the
model treated in this work.
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