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Abstract

Linear stability of Einstein metrics and Perelman’s lambda-functional for manifolds

with conical singularities

by

Changliang Wang

In this thesis, we study linear stability of Einstein metrics and develop the theory

of Perelman’s λ-functional on compact manifolds with isolated conical singularities.

The thesis consists of two parts. In the first part, inspired by works in [DWW05],

[GHP03], and [Wan91], by using a Bochner type argument, we prove that complete

Riemannian manifolds with non-zero imaginary Killing spinors are stable, and provide

a stability condition for Riemannian manifolds with non-zero real Killing spinors in

terms of a twisted Dirac operator. Regular Sasaki-Einstein manifolds are essentially

principal circle bundles over Kähler-Einstein manifolds. We prove that if the base

space of a regular Sasaki-Einstein manifold is a product of at least two Kähler-Einstein

manifolds, then the regular Sasaki-Einstein manifold is unstable. More generally, we

show that Einstein metrics on principal torus bundles constructed in [WZ90] are

unstable, if the base spaces are products of at least two Kähler-Einstein manifolds.

In the second part, we prove that the spectrum of −4∆ + R consists of discrete

eigenvalues with finite multiplicities on a compact Riemannian manifold of dimension

n with a single conical singularity, if the scalar curvature of cross section of conical

neighborhood is greater than n− 2. Moreover, we obtain an asymptotic behavior for

eigenfunctions near the singularity. As a consequence of these spectrum properties,

we extend the theory of Perelman’s λ-functional on smooth compact manifolds to

compact manifolds with isolated conical singularities.
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Chapter 1

Introduction

A Riemannian manifold (Mn, g) is Einstein if the Ricci curvature Ricg is constant,

i.e.

Ricg = kg, (1.0.1)

for some constant k, and k is called the Einstein constant of g. Einstein metrics on a

compact manifold Mn of dimension n ≥ 3 appear in the several variation problems as

critical points of some natural Riemannian functionals. For example, Einstein metrics

on a compact manifold are critical point of the normalized total scalar curvature

functional (see (2.2.1) for definition). Then, it is natural and important to study how

the second variation of the normalized total scalar curvature functional behaves at

an Einstein metric. This leads to the stability problem of Einstein metrics.

Einstein operator ∆E = ∇∗∇− 2R̊ acts on symmetric 2-tensors, where (R̊h)ij =

Rikjlhkl for h ∈ C∞(S2(M)). The second variation of the normalized total scalar

curvature functional at an Einstein metric g is given by − 1

2V (M)
n−2
n
〈∆Eh, h〉L2(M),

when restricted in traceless transverse directions, i.e. h ∈ C∞(S2(M)) satisfying

trgh = 0 and δgh = 0, where δgh is the divergence of h. An Einstein manifold is said

1



Introduction Chapter 1

stable if 〈∆Eh, h〉L2(M) ≥ 0 for all traceless transverse symmetric 2-tensors h, unstable

otherwise, and strictly stable if 〈∆Eh, h〉L2(M) ≥ c〈h, h〉L2(M) for some constant c > 0.

If the manifold is non-compact, we only consider compactly supported symmetric

2-tensors h. In Chapter 2, we will present more detailed background materials for

stability of Einstein metrics.

In Chapter 3, we study the stability of a special class of Einstein manifolds,

which are Riemannian (spin) manifolds with non-zero Killing spinors. Complete

Riemannian manifolds with non-zero Killing spinors have been classified in [Bär93],

[Bau89a], [Bau89b], [FK89], and [FK90] (also see [BFGK91]).

Let (Mn, g) be a Riemannian manifold with a non-zero Killing spinor σ with the

Killing constant µ 6= 0, i.e.

∇S
Xσ = µX · σ, (1.0.2)

for any vector field X on Mn, where ∇S denotes the canonical connection on the

spinor bundle induced by the Levi-Civita connection on the tangent bundle TM , and

“ · ” denotes the Clifford multiplication. Then the Riemannian manifold (Mn, g) is

an Einstein manifold with the scalar curvature R = 4n(n − 1)µ2 (see, e.g. [Fri00]).

Because the scalar curvature is real, µ can only be real or purely imaginary. A

non-zero Killing spinor is said to be imaginary (resp. real) if its Killing number is

imaginary (resp. real). We refer to [Fri00] and [LM89] for spin geometry.

If we set µ = 0 in (3.1.1), i.e. ∇S
Xσ = 0 for any vector field X, then σ is called

a parallel spinor. Riemannian manifolds with non-zero parallel spinors are Ricci-flat,

i.e. the Ricci curvature is zero. X. Dai, X. Wang, and G. Wei proved that manifolds

with non-zero parallel spinors are stable in [DWW05] by deriving a Bochner type

formula, and rediscovering a result in [Wan91], also see [GHP03] for the formula.

Moreover, an imaginary Killing spinor is of type I if there exists a vector field X

2



Introduction Chapter 1

such that X · σ =
√
−1σ, and otherwise, σ is of type II. H. Baum proved that n-

dimensional complete Riemannian manifolds with imaginary Killing spniors of type II

with Killing constant
√
−1ν are isometric to the n-dimensional hyperbolic spaceHn

−4ν2

with constant sectional curvature −4ν2. N. Koiso proved that Einstein manifolds with

negative sectional curvature, in particular, hyperbolic spaces, are stable in [Koi79]

(also see [Bes87]). Indeed, by the first inequality in 12.70 in [Bes87], one can see

that 〈∇∗∇h − 2R̊h, h〉L2 ≥ 4(n − 2)ν2〈h, h〉L2 for all compactly supported traceless

transverse 2-tensors h on the hyperbolic space Hn
−4ν2 .

Therefore, we focus on Riemannian manifolds with imaginary Killing spinors of

type I and ones with real Killing spinors. Recently, in [Krö15], K. Kröncke proved that

complete Riemannian manifolds with non-zero imaginary Killing spinors are stable

by using a warped product structure of these manifolds and a result in [DWW05].

We obtain an estimate for Einstein operator on complete Riemannian manifolds with

imaginary Killing spinors of type I by using a Bochner type formula in [DWW05] and

[Wan91], and meanwhile, provide a shorter proof for this stability result.

Theorem 1.0.1 Let (Mn, g) be a complete Riemannian manifold with a non-zero

imaginary Killing spinor of type I with Killing constant µ. We have

∫
M

〈∆Eh, h〉dvolg ≥ −[2(n− 2)− 4]µ2

∫
M

〈h, h〉dvolg. (1.0.3)

for all compactly supported traceless transverse symmetric 2-tensor h.

Corollary 1.0.2 Complete Riemannian manifolds with non-zero imaginary Killing

spinors are strictly stable.

On the other hand, by a similar Bochner type argument, we obtain a stability

condition for Riemannian manifolds with non-zero real Killing spinors.

3
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Theorem 1.0.3 The Riemannian manifold with non-zero real Killing spinor σ with

Killing constant µ is stable if the twisted Dirac operator D satisfies

(D − µ)2 ≥ (n− 1)2µ2,

on {Φ(h) : h ∈ C∞(S2(M)), trh = 0, δh = 0}, where D : C∞(S ⊗ T ∗M) → C∞(S ⊗

T ∗M) with the spinor bundle S, and Φ : C∞(S2(M))→ C∞(S ⊗ T ∗M) is defined as

Φ(h) = hijei · σ ⊗ ej.

Unlike the case of imaginary Killing spinors, we cannot conclude a general stability

result for manifolds with non-zero real Killing spinors. Indeed, standard spheres are

well-known stable manifolds with real Killing spinors. On the other hand, Jensen’s

sphere is an unstable Riemannian manifold with one non-zero real Killing spinor (see,

e.g. [ADP83], [Bär93], [Bes87], [Jen73], and [Spa11] for this interesting example).

Thus, the real Killing spinors case is more interesting for us. Another reason why

Riemnnian manifolds with real Killing spinors, especially whose stability, are inter-

esting and important is that these manifolds play an important role in supergravity

theory. By the classification results of Th. Friedrich and I. Kath, O. Hijazi, and C.

Bär, even dimensional, except 6 dimensional, Riemannian manifolds with real Killing

spinors are standard spheres, which then are strictly stable.

Existence of real Killing spinors on odd dimensional manifolds is closely related

to Sasaki-Einstein structures (see, [Bär93], [FK89], and [FK90]). Regular Sasaki-

Einstein manifolds are essentially total spaces of principal circle bundles over Kähler-

Einstein manifolds (see, e.g. [Bla10]). It is well-known that a product of two Einstein

manifolds with the same Einstein constant is an unstable Einstein manifold with a

typical unstable direction. By relating the Einstein operator on the total space of

a principal circle bundle to the Einstein operator on the base space, we show that

4
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if the base space of a regular Sasaki-Einstein manifold is a product of at least two

Kähler-Einstein manifolds then the lift of the typical unstable direction on the base

is an unstable direction on the regular Sasaki-Einstein manifold. In particular, we

obtain the following instability result.

Theorem 1.0.4 If the base space of a regular Sasaki-Einstein manifold is a product

of at least two Kähler-Einstein manifolds, then the regular Sasaki-Einstein manifold

is unstable.

In Chapter 4, we study instability of Einstein metrics on principal torus bundles.

Besides regular Sasaki-Einstein manifolds, many other interesting Einstein metrics

constructed on the total spaces of principal circle bundles and more generally prin-

cipal torus bundles. For example, in [WZ90], M. Wang and W. Ziller constructed

some Einstein metrics on the total spaces of principal torus bundles over products

of positive curved Kähler-Einstein manifolds. Some of their examples are regular

Sasaki-Einstein. In most of their examples, the base spaces, which are products of

Kähler-Einstein manifolds, however, are not Einstein. As we study the instability

of regular Sasaki-Einstein manifolds, we relate the Einstein operator on the total

spaces of principal torus bundles to the Einstein operator on the base spaces. As a

consequence, we obtain the following instability result for Wang and Ziller’s Einstein

metrics on principal torus bundles.

Theorem 1.0.5 Let π : P → B = M1 × · · · ×Mm be a principal torus bundle, and

g be the Einstein metric on P constructed by M. Wang and W. Ziller in [WZ90]. If

m ≥ 2, then the Einstein manifold (P, g) is unstable.

In Chapter 5, we develop the theory of Perelman’s λ-functional on compact mani-

folds with isolated conical singularities. The recent proof of the Yau-Tian-Donaldson

5
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conjecture has demonstrated that metrics with conical singularities are not only im-

portant in themselves but also providing a powerful tool for studying smooth metrics,

see, [CDS15] and [Tian15]. Riemannian manifolds with conical singularities also ap-

pear as Gromov-Hausdorff limits of smooth manifolds, and as singularities of Ricci

flow. These motivate us to study Einstein manifolds with conical singularities and

Ricci flow on manifolds with conical singularities.

The Perelman’s λ-functional (see (2.5.4) for definition) on a compact manifold

enables us to view Ricci flow as a gradient flow, and Ricci-flat metrics come out as

critical points of the λ-functional. Thus, as the first step toward our goal for studying

Einstein metrics and Ricci flow on manifolds with conical singularities, we have ex-

tended the theory of Perelman’s λ-functional to compact Riemannian manifolds with

isolated conical singularities defined as the following.

Definition 1.0.6 We say (Mn, d, g, p1, · · · , pk) is a compact Riemannian manifold

with isolated conical singularities at p1, · · · , pk, if

• (M,d) is a compact metric space,

• (M0, g|M0) is an n-dimensional smooth Riemannian manifold, and the Rieman-

nian metric g induces the given metric d on M0, where M0 = M \ {p1, · · · , pk},

• for each singularity pi, 1 ≤ i ≤ k, ∃ a neighborhood Upi ⊂ M of pi such that

Upi∩{p1, · · · , pk} = {pi}, (Upi \{pi}, g|Upi\{pi}) is isometric to ((0, εi)×Ni, dr
2 +

r2hr) for some εi > 0 and compact smooth manifold Ni, where r is coordinate

on (0, εi) and hr is a smooth family of Riemannian metrics on Ni satisfying

hr = h0 + o(rαi) as r → 0, where αi > 0 and h0 is a smooth Riemannian metric

on Ni.

Moreover, we say a singularity p is a cone-like singularity, if the metric g on a

6



Introduction Chapter 1

neighborhood of p is isometric to dr2 + r2h0 for some fixed metric h0 on cross section

N .

In the rest of the thesis, we will only work on manifolds with a single conical

singularity because there is no essential difference between one single singularity case

and multiple isolated singularities case.

Because Perelman’s λ-functional λ(g) is essentially the smallest eigenvalue of

−4∆g + Rg, we first study the spectrum of −4∆g + Rg, and we obtain the following

spectrum result.

Theorem 1.0.7 (Dai,–) Let (Mn, d, g, p) be a compact Riemannian manifold with a

conical singularity at p. If the scalar curvature Rh0 > (n−2) on N , then the operator

−4∆g + Rg with domain C∞0 (M \ {p}) is semibounded, and the the spectrum of its

Friedrichs extension consists of discrete eigenvalues with finite multiplicity λ1 ≤ λ2 ≤

λ3 ≤ · · · , and λk → +∞, as k → +∞.

Theorem 1.0.8 (Dai, –) Let (Mn, g, p) be a compact Riemannian manifold with a

single conical singularity p with Rh0 > (n− 2) and satisfying

ri|∇i+1(hr − h0)| ≤ Ci < +∞,

for some constant Ci, and each 0 ≤ i ≤ n

2
+ 2,

(1.0.4)

near p. Then eigenfunctions of −4∆g +Rg on satisfy

u = o(r−
n−2

2 ), as r → 0. (1.0.5)

Consequently, the first eigenvalue is simple.

Moreover, if the singularity is cone-like, eigenfunctions have asymptotic expansion

7
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at the conical singularity p as

u ∼
+∞∑
j=1

+∞∑
l=0

pj∑
p=0

rsj+l(ln r)puj,l,p, (1.0.6)

where uj,l,p ∈ C∞(Nn−1), pj = 0 or 1, and sj = −n−2
2
±
√
µj−(n−2)

2
, where µj are

eigenvalues of −∆h0 +Rh0 on Nn−1.

Consequently, we can define the λ-functional on a compact Riemannian manifold

with a single conical singularity as the smallest eigenvalue of −4∆g +Rg. Then λ(g)

smoothly depends on g. Let g(t) for t ∈ (−τ, τ) be a smooth family of Riemannian

metrics with a single conical singularity at p satisfying Rh0(t) > (n − 2) and the

asymptotic condition (1.0.4) near p, with g(0) = g and d
dt
|t=0g(t) = h. We obtain the

following first variation formula.

Proposition 1.0.9 (Dai, –)

d

dt
λ(g(t))|t=0 =

∫
M

〈−Ricg −Hessgf, h〉ge−fdvolg. (1.0.7)

From the first variation formula (1.0.7), we can conclude that critical points of

the λ-functional are Ricci-flat metrics with a single conical singularity at p, and the

λ-functional is non-decreasing along Ricci flow with a single conical singularity at

p. The derivations of the first variation formula and this consequence are similar to

that on compact manifolds. The main difference and difficulty is that some boundary

terms appear when we use the Stoke’s theorem on manifolds with conical singularities.

It turns out that the asymptotic behavior of eigenfunctions of −4∆g + Rg obtained

in Theorem 1.0.8 is exactly what we need such that the boundary terms vanish while

approaching to singularity p.

8
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Then, if the initial metric g is a critical point of the λ-functional, i.e. a Ricci-flat

metric with a conical singularity at p, we have the following second variation formula.

Proposition 1.0.10 (Dai, –)

d2

dt2
λ(g(t))|t=0 =

∫
M

〈−1

2
∆g
Lh+ δ∗gδgh+

1

2
Hessg(νh), h〉e−fdvolg, (1.0.8)

where ∆gνh = −δg(δgh).

9



Chapter 2

Background materials

In this chapter, we fix some notations and conventions, present some background

materials for linear stability problems of Einstein metrics, and briefly review previous

works on dynamic stability of Einstein metrics.

2.1 Notation and conventions

In this section, we fix some notations and conventions that we need in this thesis.

Let M be a smooth manifold and E →M be a smooth vector bundle.

C∞(M) = {smooth functions f : M → R}.

C∞(E) denotes the space of smooth sections of a vector bundle E.

Ωk(M) = {differential k-forms on M}.

T kM = ⊗k(T ∗M) is the bundle of k-tensors, and k-tensors are section of T kM .

Sk(M) = �k(T ∗M) is the k times symmetric tensor product of the cotangent bundle

T ∗M .

Let (Mn, g) be a n-dimensional Riemannian manifold with the Levi-Civita con-

nection ∇, which naturally extends to tensors. In general, {e1, · · · , en} denotes a

10
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local orthonormal frame of TM around the point in the problem. The Riemannian

curvature tensor is defined as

R(X, Y, Z,W ) = g(−∇X∇YZ +∇Y∇XZ +∇[X,Y ]Z,W ),

and Rijkl = R(ei, ej, ek, el). The Ricci curvature tensor is (Ricg)ik =
∑n

j=1Rijkj, and

the scalar curvature is Rg =
∑n

i,j=1 Rijij.

Let f ∈ C∞(M) be a smooth function on Mn. The Hessian Hessgf of f is a

symmetric 2-tensor defined as Hessgf(X, Y ) = X(Y (f)) − (∇XY )f, for any pair of

vector fields X and Y on Mn. ∆f = trg(Hessgf) is the negative Laplacian of f .

δg denotes the divergence defined as

δg : C∞(T kM) → C∞(T k−1M)

α 7→ (δgα)(X1, · · · , Xk−1) = −
n∑
i=1

(∇eiα)(ei, X1, · · · , Xk−1).

δ∗g denotes the formal adjoint of the C∞(Sk(M)) restriction of δ with respect to the

natural L2 inner product on tensors induced by the Riemannian metric g.

A Laplacian operator ∇∗∇ acting on tensors is defined by

∇∗∇ : C∞(T kM) → C∞(T kM)

α 7→ (∇∗∇α)(X1, · · · , Xk) = −
n∑
i=1

(∇∇α)(ei, ei, X1, · · · , Xk).

The natural curvature contraction operator R̊ acting on symmetric 2-tensors is

11
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defined by

R̊ : C∞(S2(M)) → C∞(S2(M))

h 7→ (R̊h)ij =
n∑

k,l=1

Rikjlhkl.

Then Einstein operator acting on symmetric 2-tensors is defined as ∆E = ∇∗∇−

2R̊.

We also use ∇g, ∆g, (∇g)∗∇g, R̊g, and ∆g
E to denote the Levi-Civita connection,

Laplacian on functions, Laplacian on tensors, curvature contraction operator on 2-

tensors, and Einstein operator with respect to the Riemannian metric g, respectively,

if it is necessary to emphasize the corresponding metric in order to avoid possible

ambiguity.

2.2 The normalized total scalar curvature

In this section, we recall variational formulae of the normalized total scalar curvature

and discuss a variational characterization of Einstein metrics on a compact manifold.

For more detailed information, we refer to [Bes87], [Krö13], and [Via13].

As we have seen in Introduction, (Mn, g) is Einstein if Ricg = kg for a constant

k. In this definition, we require the proportional factor k to be constant. Actually,

by using the second Bianchi identity, we have

Proposition 2.2.1 (see, e.g. Corollary 4.19 in [Bes87]) Let (Mn, g) be a Riemannian

manifold of dimension n ≥ 3. If there is a function f such that Ricg = fg, then f is

a constant and (Mn, g) is Einstein.

Einstein metrics on a compact manifold Mn of dimension n ≥ 3 naturally appear

in the variational problem as critical points of the normalized total scalar curvature

12
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functional defined on the spaceM of all Riemanian metrics on Mn. The normalized

total scalar curvature for g ∈M is defined as

S̃(g) =
1

V (g)
n−2
n

∫
M

Rgdvolg, (2.2.1)

where dvolg is the volume form of g, V (g) =
∫
M
dvolg, and Rg denotes the scalar

curvature of g. We note that the functional S̃ :M→ R is diffeomorphism invariant

and scale-invariant.

Let g(t) for t ∈ (−τ, τ) be a smooth family of metrics on Mn with g(0) = g

and d
dt
g(t)|t=0 = h ∈ C∞(S2(M)). We have the following first and second variation

formulae of the normalized total scalar curvature functional, see e.g. [Bes87] and

[Via13].

S̃
′
g · h ≡

d

dt
S̃(g(t))|t=0 =

1

V (g)
n−2
n

∫
M

〈−Ricg + (
Rg

2
+

2− n
2n

Rg)g, h〉dvolg, (2.2.2)

where R = 1
V (g)

∫
M
Rgdvolg is the average scaler curvature. We can see that the metric

g is a critical point of S̃, i.e. S̃
′
g · h vanishes for an arbitrary variation direction h if

and only if

Ricg = (
Rg

2
+

2− n
2n

Rg)g. (2.2.3)

By Proposition 2.2.1, then (Mn, g) is Einstein. Therefore, a metric on a compact

manifold of dimension n ≥ 3 is a critical point of the total scalar curvature functional

S̃ if and only if it is an Einstein metric. If g(0) = g is an Einstein metric, then the

second variation formula is given by

S̃
′′
g(h, h) ≡ d2

dt2
S(g(t))|t=0 =

1

V (g)
n−2
n

∫
M

〈Pgh, h〉dvolg, (2.2.4)

13
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where

Pgh =− 1

2
∇∗∇h+ R̊h+ δ∗g(δgh) +

1

2
Hessg(trgh)

+ [−1

2
(∆g(trgh)) +

1

2
δg(δgh)− Rg

2n
(trgh)]g

− (2− n)Rg

2n2
(trgh)g,

(2.2.5)

with (trgh) = 1
V (g)

∫
M

(trgh)dvolg, and (R̊h)ij = Rikjlhkl. Then we define a symmetric

quadratic as

S̃
′′
g(h, h̃) =

1

V (g)
n−2
n

∫
M

〈Pgh, h̃〉dvolg. (2.2.6)

2.3 Stability of Einstein metrics

To understand the complicated stability operator Pg in (2.2.5), we recall a decompo-

sition of symmetric 2-tensors, and we examine the operator Pg on each factor in the

decomposition.

The natural L2 inner product on C∞(S2(M)) is given by

(h, h̃) =

∫
M

〈h, h̃〉gdvolg, (2.3.1)

for h, h̃ ∈ C∞(S2(M)), where 〈h, h̃〉g is the pointwise inner product on tensors induced

by the Riemannian metric g. And let

δ−1
g (0) = {h ∈ C∞(S2(M))| δgh = 0},

tr−1
g (0) = {h ∈ C∞(S2(M))| trg(h) = 0},

Imδ∗g = {δ∗gα| α ∈ Ω1(M)} ⊂ C∞(S2(M)).

14
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Lemma 2.3.1 ([Koi79], Lemma 4.57 in [Bes87]) For any compact Riemannian man-

ifold (Mn, g), we have the orthogonal decomposition

C∞(S2(M)) = (Imδ∗g + C∞(M) · g)⊕ (δ−1
g (0) ∩ tr−1

g (0)). (2.3.2)

Both factors are infinite dimensional.

Further, if (Mn, g) is Einstein, but not the standard sphere, this decomposition

can be refined into

C∞(S2(M)) = Imδ∗g ⊕ C∞(M) · g ⊕ (δ−1
g (0) ∩ tr−1

g (0)). (2.3.3)

Let us consider the second variation formula (2.2.4) restricted on each factor in

the decomposition (2.3.3).

1. h ∈ Imδ∗g , i.e. h = δ∗gα for some α ∈ Ω1(M).

By the definition of δ∗g in Notation and Conventions, we have

h = δ∗gα =
1

2
Lα#g, (2.3.4)

see e.g. Lemma 1.60 in [Bes87] (note that the sign in the lemma was incorrect).

Therefore, h is a variation direction coming from a diffeomorphism action on

metrics. Because the functional S̃ is diffeomorphism invariant, S̃
′′
g(h, h) = 0.

In other words, the second variation of the normalized total scalar curvature

functional at an Einstein metric vanishes restricted on Imδ∗g .

2. h ∈ C∞(M) · g, i.e. h = fg for some f ∈ C∞(M).

15
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By straightforward calculations, we have

Pg(fg) =
2− n

2
(∆gf)g +

2− n
2n

(Rgf)g +
n− 2

2
Hessgf −

2− n
2n

Rgfg, (2.3.5)

where f = 1
V (g)

∫
M
fdvolg. From this, we can easily see that Pg(cg) = 0 if f is

a constant function f ≡ c. Actually, this can be seen from the fact that the

functional S̃ is scale-invariant, and h = cg is a variation direction coming from

a metric rescaling. Therefore, we have

(Pg(fg), fg) = (Pg((f − f)g), (f − f)g). (2.3.6)

So without loose of generality, we can assume f = 0. Then the second variation

in the direction h = fg is given by

S̃
′′
g(fg, fg)

= (P (fg), fg)

=
1

V (g)
n−2
n

(
2− n

2
(∆gf)g +

2− n
2n

(Rgf)g +
n− 2

2
Hessgf, fg)

=
1

V (g)
n−2
n

n− 2

2

∫
M

(−(n− 1)∆gf −Rgf) · fdvolg

≥ 0.

(2.3.7)

The last inequality follows from the Lichnerowicz eigenvalue estimate for ∆g

(see, e.g. Theorem 4.70 in [GHL]). Thus, the second variation of the normalized

total scalar curvature functional at an Einstein metric is non-negative restricted

on conformal variation directions.

3. h ∈ δ−1
g (0) ∩ tr−1

g (0).

In this case, we call h a traceless transverse symmetric 2-tensor, or simply a

16



Background materials Chapter 2

TT -tensor. The stability operator Pg restricted on TT -tensor will be much

simplified, and given by

Pg(h) = −1

2
∇∗∇h+ R̊h. (2.3.8)

This will be the main operator in the stability problem of Einstein metrics. We

make the following definition.

Definition 2.3.2 (Einstein operator) We call the second order differential op-

erator

∆E = ∇∗∇− 2R̊ : C∞(S2M)→ C∞(S2M) (2.3.9)

the Einstein operator.

Remark 2.3.3 The Einstein operator ∆E is closely related to the Lichnerowicz

Laplacian ∆L. Indeed, on an Einstein manifold (Mn, g) with Einstein constant

k

∆L = ∆E + 2k.

Then the second variation formula of the normalized total scalar curvature

functional S restricted on TT -tensors is given by

S̃
′′
g(h, h) = − 1

2V (g)
n−2
n

∫
M

〈∆Eh, h〉dvolg. (2.3.10)

Because the derivative term ∇∗∇ of the operator ∆E is a non-negative term,∫
M
〈∆Eh, h〉dvolg ≥ 0 for most TT -tensors h. However, in general there still

are some TT -tensors h so that
∫
M
〈∆Eh, h〉dvolg < 0. More precisely, ∆E is

a self-adjoint elliptic operator and the manifold M is compact. Therefore, its
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spectrum consists of eigenvalues λ1 < λ2 < λ3 < · · · with finite multiplicities,

and λi → +∞ as i → +∞. Thus, the second variation of the normalized

total scalar curvature at an Einstein metric is non-positive in most TT -tensor

directions, however, in general may be negative in some TT -tensor directions.

This motivates the following notion of stability of Einstein metrics.

Definition 2.3.4 (Stability of Einstein Manifolds) Let (Mn, g) be a compact Ein-

stein manifold. (Mn, g) is stable if
∫
M
〈∆Eh, h〉dvolg ≥ 0 for all TT -tensors h,

and otherwise, (Mn, g) is unstable. (Mn, g) is strictly stable if
∫
M
〈∆Eh, h〉dvolg >

c
∫
M
〈h, h〉dvolg for some constant c > 0 and all TT -tensors h.

Remark 2.3.5 In Definition 2.3.4, we only defined stable, unstable, and strictly sta-

ble compact Einstein manifolds. Similarly, we can define stable, unstable, and strictly

stable non-compact Einstein manifolds by replacing TT -tensors by compactly sup-

ported TT -tensors in Definition 2.3.4.

Remark 2.3.6 The decomposition (2.3.3) is orthogonal with respect to the quadratic

form S̃
′′
g(h, h̃). Indeed, the first factor is in the null space of S̃

′′
g(h, h̃) because S is

diffeomorphism invariant. Thus, it suffices to check that S̃
′′
g(fg, h) = 0 if trgh = 0

and δgh = 0. By (2.3.5), we have

S̃
′′
g(fg, h) =

1

V (g)
n−2
n

∫
M

〈n− 2

2
Hessgf, h〉dvolg

=
1

V (g)
n−2
n

∫
M

〈n− 2

2
∇f, δh〉dvolg

= 0.
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2.4 Some other variational characteristics of Ein-

stein metrics

In addition to the normalized total scalar curvature functional, Einstein metrics on a

compact manifold Mn are also critical points of some other Riemannian functionals,

for example the total scalar curvature functional S(g) =
∫
M
Rgdvolg restricted toM1,

i.e. S �M1. Moreover, Ricci-flat metrics (Einstein metrics with zero Einstein con-

stant) are critical points of Perelman’s λ-functional λ(g), namely, the first eigenvalue

of −4∆g +Rg acting on C∞(M). Here

M1 = {g ∈M | V (g) = 1},

and note that

TgM1 = {h ∈ C∞(S2M) |
∫
M

〈g, h〉dvolg = 0}, (2.4.1)

see, e.g. the proof of Theorem 4.21 in [Bes87].

Let us briefly discuss the total scalar curvature functional S(g) =
∫
M
Rgdvolg

restricted to M1. There are very detailed calculations for the first and the second

variation formulae of this Riemannian functional in [Bes87].

The first variation formula of the total scalar curvature S is given by

S′g · h =
d

dt
S(g(t))|t=0 =

∫
M

〈Rg

2
g −Ricg, h〉dvolg. (2.4.2)

Thus, g is a critical point of S if and only if Rg
2
g−Ricg = 0. If we take trace for this,

we obtain n−2
2
Rg = 0. So, if the dimension n ≥ 3, then Rg = 0, and further Ricg = 0.

Therefore, a Riemannian metric g is a critical point of S if and only if it is Ricci-
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flat, i.e. Ricg = 0. On the other hand, by (2.4.1) and (2.4.2), g is a critical point

of S �M1 if and only if Rg
2
g − Ricg = cg for some constant c. Then by Proposition

2.2.1, g is Einstein. Thus, a Riemannian metric g is a critical point of S �M1 if and

only if it is Einstein.

The second variation formula of S �M1 at an Einstein metric g is given by

(S �M1)′′g(h, h) =
d2

dt2
(S �M1)(g(t))|t=0

=

∫
M

(〈h,−1

2
∇∗∇h+ δ∗δh+ δ(δh)g

− 1

2
(∆(trg)h)g − Rg

2n
(trgh)g + R̊h〉)dvolg

(2.4.3)

For the derivation see 4.53 in [Bes87].

Analyzing the second variation formula (2.4.3) by using the decomposition (2.3.3),

we can see that the behavior of the second variation formula (2.4.3) is the same as that

of the second variation (2.2.4) of S̃. (S �M1)′′g(h, h) vanishes restricted to Imδ∗, and

is non-negative restricted on C∞(M) ·g, for the same reason as for (2.2.4). Moreover,

(S � M1)′′g(h, h) = −1
2

∫
M
〈h,∆Eh〉dvolg, for TT -tensors h. Therefore, an Einstein

metric is always a saddle point of S � M1, and we can make the same notion of

stability of Einstein metrics by considering S �M1.

Moreover, the stability problem of Einstein metrics was also similarly studied with

respect to the variation formulae of the Perelman’s ν-entropy, which was introduced in

[Per02], for Einstein metrics with positive Ricci curvature, and the variation formulae

of ν+-entropy, which was introduced in [FIN05], for Einstein metrics with negative

Ricci curvature. For example, H-D. Cao and C. He studied stability of Einstein

metrics with respect to ν-entropy on symmetric spaces of compact type in [CH13].

We refer to [CZ12], [CHI04], and [Zhu11] for the variation formulae of the ν-functional

and the ν+-functional and their detailed derivation.
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In the rest of section, we briefly describe a variational characteristic of Ricci-

flat metrics by considering the Perelman’s λ-functional (see (2.5.4) for definition)

introduced by G. Perelman in [Per02]. We refer to [Has12] for detailed calculations

of variation formulae of the λ-functional. In [DWW05], they derive the variation

formulae of the first eigenvalue of the conformal Laplacian −∆g + n−2
4(n−1)

Rg. The

derivation of the variation formulae of Perelman’s λ-functional is very similar. So

we also refer to [DWW05]. The λ-functional plays important roles in studying Ricci

flow, and in next section, we will discuss this more later.

The first variation formula of the λ-functional is given by

λ′g · h =
d

dt
λ(g(t))|t=0 =

∫
M

〈−Ricg −Hessgf, h〉e−fdvolg. (2.4.4)

A Riemannian metric g is a critical point of λ if and only if −Ricg −Hessgf = 0 for

some function f . By using the second Bianchi identity and maximal principle, then

f has to be a constant function and Ricg = 0, see, e.g. Proposition 1.1.1 in [CZ06].

Thus, a Riemannian metric is critical point of λ if and only if it is Ricci-flat.

The second variation formula of the λ-functional at a Ricci-flat metric g is given

by

λ′′g(h, h) =
d2

dt2
λ(g(t))|t=0 =

∫
M

〈−1

2
∆Eh+ δ∗gδgh+

1

2
Hessgνh, h〉e−fdovlg, (2.4.5)

where νh is a solution of ∆gνh = δgδgh, and f is constant obtain from the first

variation formula. Note that on Ricci-flat manifolds, ∆E = ∆L.

In order to understand the formula (2.4.5) better, we still use the decomposition

(2.3.3). The same as two Riemannian functional we discussed before, Imδ∗g is in the

null space of the quadratic form induced by the second variation λ′′g . In particular,
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λ′′g vanishes on Imδ∗g . Then because for u ∈ C∞(M)

δg(δg(ug)) = ∆gu,

and

δ∗g(δg(ug)) = −Hessgu,

when h = ug, we have

−1

2
∆Eh+ δ∗gδgh+

1

2
Hessgνh =

1

2
(∆gu)g − 1

2
Hessgu. (2.4.6)

Thus,

λ′′g(ug, ug) =
n− 1

2

∫
M

(∆gu)ue−fdvolg = −n− 1

2

∫
M

|∇u|2e−fdvolg ≤ 0, (2.4.7)

where f is a constant function. In other words, the second variation λ′′g of the λ-

functional at a Ricci-flat metric g is non-positive on the conformal variation direc-

tions.

Another consequence of (2.4.6) is that the second and the third factors in the

decomposition (2.3.3) are orthogonal with respect to the quadratic form induced by

λ′′g . Indeed, if h ∈ δ−1
g (0) ∩ tr−1

g (0),

λ′′g(ug, h) = −1

2

∫
M

〈Hessgu, h〉e−fdvolg = −1

2

∫
M

〈∇u, δh〉e−fdvolg = 0, (2.4.8)

where f is a constant function. Therefore, the decomposition (2.3.3) is orthogonal

with respect to the quadratic form induced by λ′′g at a Ricci-flat metric g.

When we restrict on TT -tensors, the third factor in the decomposition (2.3.3),

λ′′g(h, h) = −1
2

∫
M
〈∆Eh, h〉e−fdvolg, where f is a constant function. Thus, by using
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the λ-functional, we can make the same notion of stability of Ricci-flat metrics (special

Einstein metrics) as Definition 2.3.4. However, the second variation formulae of the

(normalized) total scalar curvature and that of the λ-functional at a Ricci-flat metric

restricted to conformal variation direction have opposite sign. As we have seen, an

Einstein metric, in particular, a Ricci-flat metric, is always a saddle point of the total

scalar curvature functional and of the normalized total scalar curvature functional

because of (2.3.7). But we could expect a Ricci-flat metric to be local maximum

point of the λ-functional because of (2.4.7).

2.5 Ricci flow and dynamic stability of Einstein

metrics

Besides the stability discussed in the previous sections, which is usually referred as

linear stability, we can also discuss a dynamic stability for Ricci-flat metrics via

Ricci flow because they are stationary points of Ricci flow. By considering certain

normalized Ricci flow whose stationary points are general Einstein metrics, similarly

we can discuss a notion of dynamic stability of Einstein metrics. Dynamic stability

and the relationship between the linear and dynamic stability of Einstein metrics

have been studied in [GIK02], [Has12], [HM14], [Krö15], [Ses06], and [Ye93]. In this

section, we briefly review previous main results in this topic.

Let Mn be a manifold of the dimension n ≥ 2. A family g(t) of Riemannian

metrics on Mn is called Ricci flow if it is a solution of the initial value problem


∂
∂t
g(t) = −2Ricg(t),

g(0) = g0.

(2.5.1)
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R. Hamilton introduced the concept of Ricci flow and proved the short time existence

in [Ham82]. We refer to [CK04] and [Top06] for introductions to Ricci flow. Ricci

flow has been utilized most notably by G. Perelman in his celebrated proof of the

Poincaré Conjecture in [Per02], [Per03a], and [Per03b]. More details of Perelman’s

work can be found in [CZ06], [KL08], and [MT07]. One of Perelman’s breakthrough

contributions is the introduction of certain Riemannian functionals for studying Ricci

flow in [Per02].

Now let us discuss Perelman’s F -functional and λ-functional. Let (M, g) be a

compact Riemannian manifold. The F -functional is defined by

F(g, f) =

∫
M

(Rg + |∇f |2)e−fdVg, (2.5.2)

for f ∈ C∞(M). Ricci flow can be viewed as the gradient flow of the F-functional.

Let u = e−
f
2 , then F -functional becomes

F(g, u) =

∫
M

(4|∇u|2 +Rgu
2)dVg. (2.5.3)

Perelman’s λ-functional is defined by

λ(g) = inf{F(g, u) |
∫
M

u2dVg = 1}. (2.5.4)

Then the λ-functional has the following two properties.

1. λ(g) is the smallest eigenvalue of the operator −4∆g+Rg, by (2.5.4) and (2.5.3).

2. λ-functional is increasing along Ricci flow, because Ricci flow is the gradient

flow of the F -functional and the definition (2.5.4).

We have used the property 1 as a definition of the λ-functional in Section 1.3.
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Ricci-flat metrics are stationary points of Ricci flow. So it is natural to study the

behavior of Ricci flow starting at a metric close to a Ricci-flat metric, when we view

Ricci flow as a dynamic system. This is the dynamic stability of Ricci-flat metrics.

Definition 2.5.1 (Dynamic stability and instability of Ricci-flat metrics) Let (Mn, g)

be a Ricci-flat metric. We say g is dynamically stable if for any neighborhood V of g

in M there exists a smaller neighborhood U ⊂ V such that Ricci flow starting in U

exists and stays for all time t ≥ 0 in V and converges to a Ricci-flat metric in V.

We say g is dynamically unstable if there exists ancient Ricci flow emerging from

g, i.e. a nontrivial Ricci flow g(t) defined on (−∞, g), which converges to a Ricci-flat

metric as t→ −∞.

Remark 2.5.2 Similarly, we can make a notion of dynamic stability for general

Einstein metrics, by replacing “Ricci-flat” by “Einstein”, and replacing “Ricci flow”

by “a normalized Ricci flow” in Definition 2.5.1.

For Ricci-flat metrics, N. Sesum proved that dynamic stability implies linear sta-

bility, and she also showed that a linear stability together with an integrability as-

sumption implies dynamic stability in [Ses06]. Then, R. Haslhofer provided a new

proof for Sesum’s result by proving a  Lojasiewicz-Simon inequality for Perelman’s

λ-functional, and he also proved that if a Ricci-flat metric is not linearly stable, then

it is dynamically unstable in [Has12]. And further, in [HM14], R. Haslhofer and R.

Müller got rid of the integrability assumption in Sesum’s result. Therefore, for Ricci-

flat metrics, two kinds of stability notions, linear stability and dynamic stability, are

equivalent.

For general Einstein metrics, R. Ye proved that strictly linear stability implies

dynamic stability in [Ye93]. Recently, by generalizing R. Haslhofer and R. Müller’s
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work, K. Kröncke proved a dynamic stability result under weaker assumptions, and

he also proved a dynamic instability result in [Krö13] as follows.

Theorem 2.5.3 (K. Kröncke) Let (M, g) be a compact Einstein manifold, other than

a standard sphere, with Einstein constant µ. Suppose that (M, g) is a local maximizer

of the Yamabe functional and if the smallest non-zero eigenvalue λ of the Laplacian

satisfies λ > 2µ. Then (M, g) is dynamically stable.

Suppose that (M, g) is not local maximizer of the Yamabe functional or the smallest

non-zero eigenvalue λ of the Laplacian satisfies λ < 2µ. Then (M, g) is dynamically

unstable.

Remark 2.5.4 The condition, a local maximizer of the Yamabe functional, is in

between strictly linear stability and linear stability. More precisely, strictly linear

stability implies a local maximizer of the Yamabe functional, and which implies linear

stability. Conversely, linear stability together with an integrability assumption implies

a local maximizer of the Yamabe functional.
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Stability of Riemannian manifolds

with Killing spinors

In this chapter, we study stability of Riemannian manifolds with non-zero Killing

spinors, which then are Einstein manifolds. We prove that all complete Riemannian

manifolds with imaginary Killing spinors are strictly stable by using a Bochner type

formula in [DWW05], [GHP03], and [Wan91]. This stability result was also proved by

Klaus Kröncke recently in a different way. A similar argument for real Kiling spinors

gives a stability condition for Riemannian manifold with real Killing spinors in term

of a twisted Dirac operator. Existence of real Killing spinors is closely related to the

Sasaki-Einstein structure. A regular Sasaki-Einstein manifold is essentially the total

space of a certain principal circle bundle over a Kähler-Einstein manifold. We prove

that if the base space is a product of at least two Kähler-Einstein manifolds then the

regular Sasaki-Einstein manifold is unstable.
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3.1 Overview and main results

Let (Mn, g) be a Riemannian manifold with a non-zero Killing spinor σ with the

Killing constant µ, i.e.

∇S
Xσ = µX · σ, (3.1.1)

for any vector field X on Mn, where ∇S denotes the canonical connection on the

spinor bundle induced by the Levi-Civita connection on the tangent bundle TM , and

“ · ” denotes the Clifford multiplication. Then the Riemannian manifold (Mn, g) is an

Einstein manifold with scalar curvature R = 4n(n− 1)µ2 (see, e.g. [Fri00]). Because

the scalar curvature is real, µ can only be real or purely imaginary. A non-trivial

Killing spinor is said to be imaginary (resp. real) if its Killing constant is imaginary

(resp. real). We refer to [Fri00] and [LM89] for spin geometry.

X. Dai, X. Wang, and G. Wei proved that manifolds with non-zero parallel spinors

(which can be viewed as Killing spinors with Kiling constant zero) are stable in

[DWW05] by deriving a Bochner type formula, and rediscovering a result in [Wan91],

also see [GHP03] for the formula. Inspired by their work, we study the stability of

Riemannian manifolds with non-zero Killing spinors, which then are Einstein man-

ifolds. Th. Friedrich initiated the mathematical investigation of Killing spinors in

[Fri80]. And then complete Riemannian manifolds with Killing spinors were classi-

fied in [Bär93], [Bau89a], [Bau89b], [FK89], and [FK90]. We also refer to the book

[BFGK91]. Riemannian manifolds with real and imaginary Killing spinors have sev-

eral very distinct properties. For example, if the Killing constant is real, then M is

compact. On the other hand, if the Killing constant is imaginary, then M is non-

compact (see [CGLS86] and [Bau89b]). So we study these two kinds of manifolds

separately.

The main ingredient in this Bochner type argument is a Bochner type formula in
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[DWW05] and [Wan91]. By combining the Bochner type formula and Baum’s clas-

sification results for complete Riemannian manifolds with imaginary Killing spinors

in [Bau89b], we obtain the following estimate for the Einstein operator on complete

Riemannian manifolds with non-zero imaginary Killing spinors of type I. Recall that

an imaginary Killing spinor σ is of type I, if there exists a vector field X such that

X · ξ =
√
−1ξ, and otherwise we say that it is of type II. Complete Riemannian

manifolds with non-zero imaginary Killing spinors of type II are hyperbolic spaces

(see, [Bau89b]), and therefore they are strictly stable (See, [Bes87] and [Koi79]).

Theorem 3.1.1 Let (Mn, g) be a complete Riemannian manifold with a non-zero

imaginary Killing spinor of type I with Killing constant µ. We have

∫
M

〈∇∗∇h− 2R̊h, h〉dvolg ≥ −[2(n− 2)− 4]µ2

∫
M

〈h, h〉dvolg. (3.1.2)

for all compactly supported traceless transverse symmetric 2-tensor h.

Consequently, we show that complete Riemannian manifolds with non-zero imaginary

Killing spinors are strictly stable.

In the case of real Killing spinors, we have the following estimate.

Theorem 3.1.2 Let (Mn, g) be a Riemannian manifold with non-zero real Killing

spinor with Killing constant µ, then for all traceless transverse h ∈ C∞(S2(M)),

∫
M

〈∆Eh, h〉dvolg =

∫
M

〈DΦ(h), DΦ(h)〉dvolg − 2µ

∫
M

〈DΦ(h),Φ(h)〉dvolg

− n(n− 2)µ2

∫
M

〈h, h〉dvolg.
(3.1.3)

Unlike the case of imaginary Killing spinors, from this estimate we cannot conclude

a general stability result. Actually, we have both stable and unstable examples: stan-

dard spheres are stable Riemannian manifolds with real Killing spinors; the Jensen’s
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sphere is an unstable Riemannian manifold with a real Killing spinor. We obtain

a stability condition for manifolds with non-zero real Killing spinors from Theorem

3.1.2.

Corollary 3.1.3 The Riemannian manifold with non-trivial real Killing spinor with

Killing constant µ is stable if the twisted Dirac operator D satisfies

(D − µ)2 ≥ (n− 1)2µ2,

on {Φ(h) : h ∈ C∞(S2(M)), trh = 0, δh = 0}.

Most Riemannian manifolds with non-zero real Killing spinors are either standard

spheres in even dimensions, or Sasaki-Einstein in odd dimensions. And all regular

Sasaki-Einstein manifolds are the total spaces of principal S1-bundles over Kähler-

Einstein manifolds. Let π : (M2p+1, g) → (B2p, G, J) be a principal S1-bundle with

a connection η, where (M2p+1, g) is regularly Sasaki-Einstein, (B2p, G, J) is Kähler-

Einstein, and π is a Riemannian submersion. Here G is the Kähler metric on B2p,

and J is the almost complex structure on B2p. In the following, h̃ = π∗h, for all

h ∈ C∞(S2(B)).

Proposition 3.1.4

〈(∆g
Eh̃, h̃〉 = (〈∆G

Eh, h〉+ 4〈h, h〉+ 4〈h ◦ J, h〉) ◦ π, (3.1.4)

and therefore,

∫
M

〈∆g
Eh̃, h̃〉dvolg =

∫
B

(〈∆G
Eh, h〉+ 4〈h, h〉+ 4〈h ◦ J, h〉)dvolG. (3.1.5)

where h ◦ J ∈ C∞(S2(B)) with h ◦ J(X, Y ) = h(JX, JY ).

30



Stability of Riemannian manifolds with Killing spinors Chapter 3

Corollary 3.1.5 If there exists a traceless transverse 2-tensor h ∈ C∞(S2(B)) such

that
∫
B

(〈(∇G)∗∇Gh−2R̊gh, h〉dvolG < −8
∫
B
〈h, h〉dvolG, then (M2p+1, g) is unstable.

Corollary 3.1.6 If the base space (B2p, g) is a product of two Kähler-Einstein man-

ifolds, then (M2p+1, g) is unstable.

3.2 Riemannian manifolds with imaginary Killing

spinors

In this section, we review classification results of Riemannian manifolds with Killing

spinors and some properties of Killing spinors. We will mainly focus on complete Rie-

mannian manifolds with imaginary Killing spinors studied in [Bau89a] and [Bau89b],

because Baum’s results about the structure of complete Riemannian manifolds with

imaginary Killing spinors play a very important role in our estimate of the Einstein

operator on these manifolds.

Let us first recall two differences between manifolds with real Killing spinors and

manifolds with imaginary Killing spinors pointed out in [Bau89b] (also see [CGLS86]):

1. Let (Mn, g) be a complete Riamnnian manifold with a Killing spinor σ. If σ is

real with non-zero real Killing constant, then Mn is compact. If σ is imaginary,

then Mn is non-compact.

2. Let f(x) := 〈σ(x), σ(x)〉Sx denote the length function of a non-zero Killing

spnior σ. If σ is real, then f is constant. If σ is imaginary, then f is a non-

constant and nowhere vanishing function.

As pointed out by Klaus Kröncke in [Krö15], the fact that the length function

f of an imaginary Killing spinor is not constant will cause some issues when we
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use the Bochner type argument in [DWW05] to estimate the Einstein operator on a

Riemannian manifold with imaginary Killing spinors. In order to deal with the issues,

we investigate the length function f more carefully, and we recall some properties of

the length function f proved in [Bau89b]. Let (Mn, g) be a complete Riemannian

manifold with an imaginary Kiling spinor σ with Killing constant µ =
√
−1ν.

Lemma 3.2.1 ([Bau89b])

1. The function

qσ(x) := f 2(x)− 1

4ν2
|∇f(x)|2 (3.2.1)

is constant on Mn.

2. Let {e1, · · · , en} be a local orthonormal frame of TM around x. The we have

Re〈ei · σ(x), ej · σ(x)〉 = δijf(x), (3.2.2)

where Re means taking the real part.

3. Let dist denote the distance in Sx with respect to the real scalar product Re〈 , 〉Sx.

Then

qσ = f(x) · dist2(Vσ,
√
−1σ(x)) ≥ 0, (3.2.3)

where Vσ(x) = {X · σ(x)| X ∈ TxM} ⊂ Sx.

As in [Bau89b], a Killing spinor σ is of type I if qσ = 0 and a Killing spinor is of type

II if qσ > 0. By (3.2.3), this is essentially the same as the simple characteristic of

Killing spinors of type I and II mentioned in Introduction. H. Baum has the follow-

ing classification results for complete Riemannian manifold with imaginary Killing

spinors.
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Theorem 3.2.2 ([Bau89b]) Let (Mn, g) be a complete connected Riemannian man-

ifold with an imaginary Killing spinor of type II with the Killing constant
√
−1ν.

Then (Mn, g) is isometric to the hyperbolic space Hn
−4ν2 with the constant sectional

curvature −4ν2.

Theorem 3.2.3 ([Bau89a][Bau89b]) Let (Mn, g) be a complete connected Rieman-

nian manifold with an imaginary Killing spinor of type I with the Killing constant
√
−1ν. Then (Mn, g) is isometric to a warped product (F n−1×R, e−4νth+dt2), where

(F n−1, h) is a complete Riemannian manifold with a non-zero parallel spinor.

Conversely, let (F n−1, h) be a complete Riemannian manifold with non-zero paral-

lel spinors, then the warped product (Mn, g) := (F n−1×R, e−4νth+ dt2) is a complete

Riemannian manifold with imaginary Killing spinors of type I.

Recall how to construct a Killing spinor of type I on (F n−1×R, e−4νth+dt2) from

a parallel spinor on (F n−1, h). When n−1 is even, the spinor bundle over the warped

product (F n−1×R, e−4νth+dt2) is isometric to the tensor product of the spinor bundle

over (F n−1, h) and the spinor bundle over (R, dt2). When n − 1 is odd, the spinor

bundle over (F n−1 × R, e−4νth + dt2) is isometric to the direct sum of two copies of

the tensor product of the spinor bundle over (F n−1, h) and the spinor bundle over

(R, dt2). The spinor bundle over (R, dt2) is a trivial 1-dimensional complex vector

bundle. We will use the same notation to denote two isometric spinors.

• If n− 1 is even, and parallel spinor on F n−1 is ψ = (ψ+, ψ−), where the decom-

position is the
√
−1 and −

√
−1 eigenspaces decomposition for the action of the

complex volume ωC = (
√
−1)

n
2 e1 · · · en−1 on the spinor bundle on F n−1, then

we can take

σ = e−νtψ+ ⊗ 1 (3.2.4)

as an imaginary Killing spinor of type I on the warped product manifold.
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• If n− 1 is odd, and parallel spinor on F n−1 is ψ, then we can take

σ = e−νt(ψ ⊗ 1, ψ̂ ⊗ 1) (3.2.5)

as a Killing spinor of type I on the warped product manifold, where “ ˆ ” denotes

the isomorphism between two spin representations coming from projections to

the first and the second components of Cl(n−1)⊗C = End(Cn−2
2 )⊕End(Cn−2

2 ).

Because the length of a parallel spinor is constant, we can always normalize the

parallel spinor ψ on F so that for the Killing spinor σ in (3.2.4) and (3.2.5) we have

〈σ, σ〉 = e−2νt.

Thus for the Killing spinor obtained above we have the length function

f = e−2νt (3.2.6)

only depending on the t variable on R factor. We can also see that qσ = 0. Moreover,

we can see that the action of the vector field ∂
∂t

on the Killing spinor σ is given by

(
∂

∂t
) · σ =

√
−1σ. (3.2.7)

3.3 Bochner type formula

In this section, we recall a Bochner type formula coming from Killing spinors in

[DWW05] and [Wan91], and present a proof.
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Let (Mn, g) be a Riemannian spin manifold with spinor bundle S → M . The

curvature of a connection ∇ on a vector bundle E →M is defined as

RXY σ = −∇X∇Y σ +∇Y∇Xσ +∇[X,Y ]σ, (3.3.1)

for a section σ ∈ C∞(E) and vector field X, Y ∈ C∞(TM). Let RS be the curvature

of ∇S on the spinor bundle. Let {e1, · · · , en} be a local orthonormal frame of the

tangent bundle and {e1, · · · , en} be its dual frame. We have

RS
XY σ =

1

4
R(X, Y, ei, ej)eiej · σ, (3.3.2)

for any spinor σ. If there exists a Killing spinor σ with Killing constant µ, the Ricci

curvature tensor satisfies

Rij = 4µ2(n− 1)gij, (3.3.3)

(see, e.g. [Fri00]). As in [DWW05], we define a linear map Φ : S2(M) → S ⊗ T ∗M

as

Φ(h) = hijei · σ ⊗ ej. (3.3.4)

Proposition 3.3.1 ([Wan91]) Let D be the twisted Dirac operator acting on the

twisted spinor bundle S ⊗ T ∗M , and h be a symmetric 2-tensor on M . Then

D∗DΦ(h) =Φ(∆Eh) + n(n− 2)µ2Φ(h) + 2µDΦ(h)

+ 4µ2(trh)ej · σ ⊗ ej − 4µ(δh)j · σ ⊗ ej.
(3.3.5)

Proof: Fix a point x ∈M , choose a local orthonormal frame {e1, · · · , en} around
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x such that ∇ei = 0 at x. Then, at x,

D∗DΦ(h) = ∇ek∇elhijekelei · σ ⊗ ej +∇elhijekelei · ∇S
ek
σ ⊗ ej

+∇ekhijekelei · ∇S
el
σ ⊗ ej + hijekelei · ∇S

ek
∇S
el
σ ⊗ ej

= ∇ek∇elhijekelei · σ ⊗ ej +∇elhij(ekel + elek)ei · ∇S
ek
σ ⊗ ej

+ hijekelei · ∇S
ek
∇S
el
σ ⊗ ej

= ∇ek∇elhijekelei · σ ⊗ ej − 2µ∇ekhijeiek · σ ⊗ ej

+ µ2hijekeleielek · σ ⊗ ej

= −∇ek∇ekhijei · σ ⊗ ej −
1

2
Rekelhijekelei · σ ⊗ ej

− 2µ∇ekhijeiek · σ ⊗ ej + (n− 2)2µ2hijei · σ ⊗ ej

= Φ(∇∗∇h) +
1

2
Rkljphipekelei · σ ⊗ ej +

1

2
Rkliphpjekelei · σ ⊗ ej

− 2µ∇ekhijeiek · σ ⊗ ej + (n− 2)2µ2Φ(h).

(3.3.6)

In the third equality, we use the Clifford relation ekel+elek = −2δkl, and∇S
Xσ = µX ·σ

for any vector field X. In the fourth equality, we use twice the fact

eleiel · φ = (n− 2)ei · φ

for any spinor φ, which can easily be obtained by using the Clifford relation.

By using the Clifford relation, (3.3.2), and (3.3.3), we have

1

2
Rkljphipekelei · σ ⊗ ej = Φ(−2R̊h)− 4µ2Φ(h) + 4µ2trhej · σ ⊗ ej, (3.3.7)

1

2
Rkliphpjekelei · σ ⊗ ej = 4(n− 1)µ2Φ(h), (3.3.8)
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−2µ∇ekhijeiek · σ ⊗ ej = −4µ(δh)jσ ⊗ ej + 2µek · Φ(∇ekh), (3.3.9)

ek · Φ(∇ekh) = DΦ(h)− (n− 2)µΦ(h). (3.3.10)

By plugging (3.3.7), (3.3.8), (3.3.9) and (3.3.10) into (3.3.6), we get (3.3.5).

3.4 Stability of Riemannian manifolds with imag-

inary Killing spinors

In this section, we obtain an estimate for the Einstein operator on complete Rie-

mannian manifolds with imaginary Killing spinors of type I. As a consequence of the

estimate and Baum’s classification results, we prove that all complete Riemannian

manifolds with imaginary Killing spinors are strictly stable.

Let (Mn, g) be a Riemannian manifold with an imaginary Killing spinor σ of type

I with the Killing constant µ =
√
−1ν. We have the following property for the map

Φ defined in (3.3.4).

Lemma 3.4.1 For all h, h̃ ∈ C∞(S2(M)), we have

Re〈Φ(h),Φ(h̃)〉 = 〈h, h̃〉f, (3.4.1)

where f = 〈σ, σ〉 is the length function.
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Proof:

Re〈Φ(h),Φ(h̃)〉 = Re(hijh̃kl〈ei · σ ⊗ ej, ek · σ ⊗ el〉)

= Re(hijh̃kj〈ei · σ, ek · σ〉)

= hijh̃kjRe〈ei · σ, ek · σ〉)

= hijh̃ijf.

In the last step, we use (3.2.2).

Lemma 3.4.2 If σ is a Killing spinor of type I as in (3.2.4) or (3.2.5), then we have

‖( ∂
∂t

) · Φ(h)‖ = ‖Φ(h)‖. (3.4.2)

Proof: Choose a local orthonormal frame of TM as {e1 = ∂
∂r
, e2, · · · , en}. Then

by (3.2.7), we have

(
∂

∂t
) · Φ(h) = (

∂

∂t
) · (h1j(

∂

∂t
) · σ ⊗ ej +

∑
i≥2

hijei · σ ⊗ ej)

=
√
−1h1j(

∂

∂t
) · σ ⊗ ej −

√
−1

∑
i≥2

hijei · σ ⊗ ej.
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Then by (3.2.2), we have

‖( ∂
∂t

) · Φ(h)‖2 = Re〈( ∂
∂t

) · Φ(h), (
∂

∂t
) · Φ(h)〉

= Re〈
√
−1h1j(

∂

∂t
) · σ ⊗ ej −

√
−1

∑
i≥2

hijei · σ ⊗ ej,

√
−1h1l(

∂

∂t
) · σ ⊗ el −

√
−1

∑
k≥2

hklek · σ ⊗ el〉

= hijhijf

= ‖Φ(h)‖2.

Theorem 3.4.3 Let (Mn, g) be a complete Riemannian manifold with an imaginary

Killing spinor σ of type I with Killing constant µ =
√
−1ν. Then we have

∫
M

〈∆Eh, h〉dvolg ≥ [n(n− 2)− 4]ν2

∫
M

〈h, h〉dvolg, (3.4.3)

for all compactly supported traceless transverse h ∈ C∞0 (S2(M)).

Proof: By Proposition 3.3.1, for all traceless transverse symmetric 2-tensor h,

Φ(∆Eh) = D∗DΦ(h)− n(n− 2)µ2Φ(h)− 2µDΦ(h). (3.4.4)

By Theorem 3.2.3, we can take a Killing spinor as in (3.2.4) or (3.2.5) depending on

dimension n of the manifold. Then we know the length function is given by

f = e−2νt. (3.4.5)

By (3.4.4), and Lemma 3.4.1, for any compactly supported traceless transverse h ∈
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C∞0 (S2(M)), we have

∫
M

〈∆Eh, h〉dvolg =

∫
M

Re〈Φ(∆Eh),Φ(h)〉
f

dvolg

=

∫
M

Re〈D∗DΦ(h),Φ(h)〉
f

dvolg

− n(n− 2)µ2

∫
M

〈Φ(h),Φ(h)〉
f

dvolg

+

∫
M

Re〈−2µDΦ(h),Φ(h)〉
f

dvolg

(3.4.6)

By using (3.4.5) and doing an integration by parts, we obtain

∫
M

Re〈D∗DΦ(h),Φ(h)〉
f

dvolg =

∫
M

‖DΦ(h)‖2

f
dvolg

+

∫
M

Re〈DΦ(h), 2ν( ∂
∂t

) · Φ(h)〉
f

dvolg.

By Cauchy inequality, we have

Re〈DΦ(h), 2ν(
∂

∂t
) · Φ(h)〉 ≥ −‖DΦ(h)‖ · ‖2ν(

∂

∂t
) · Φ(h)‖

≥ −
‖DΦ(h)‖2 + 4ν2‖( ∂

∂t
) · Φ(h)‖2

2

= −‖DΦ(h)‖2 + 4ν2‖Φ(h)‖2

2

Thus we have ∫
M

Re〈D∗DΦ(h),Φ(h)〉
f

dvolg ≥
1

2

∫
M

‖DΦ(h)‖2

f
dvolg

− 2ν2

∫
M

〈h, h〉dvolg
(3.4.7)
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Similarly, by Cauchy inequality, we have

∫
M

Re〈−2µDΦ(h),Φ(h)〉
f

dvolg ≥ −
1

2

∫
M

‖DΦ(h)‖2

f
dvolg

− 2ν2

∫
M

〈h, h〉dvolg
(3.4.8)

Plugging (3.4.7) and (3.4.8) into (3.4.6), we complete the proof.

Then Theorem 3.4.3 enables us to prove the following stability result recently

obtained in [Krö15] in a differential way.

Corollary 3.4.4 Complete Riemannian manifolds with non-zero imaginary Killing

spinors are strictly stable.

Proof: By Theorem 3.2.2, complete Riemannian manifolds with Killing spinors

of type II are isometric to hyperbolic spaces, and therefore are strictly stable (see

[Koi79], and the proof of Theorem 12.67 in [Bes87]). Let (Mn, g) be a Riemannian

manifold with Killing spinors of type I. If n ≥ 4, then by Theorem 3.4.3, (Mn, g) is

strictly stable. If n ≤ 3, we know it has negative constant sectional curvature, and

therefore it is also strictly stable.

3.5 Stability of Riemannian manifolds with real

Killing spinors

In this section, we give a stability condition for manifolds with real Killing spinors

in terms of a twisted Dirac operator. Because the length function of a real Killing

spinor is constant, an estimate for the Einstein operator can be obtained easier than

the case of imaginary Killing spinors. However, unlike imaginary Killing spinor case,

from the estimate we cannot conclude a general stability result for manifolds with
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real Killing spniors.

Let (Mn, g) be a Riemannian manifold with a real Killing spinor σ with Killing

constant µ. Without loss of generality, we can choose σ to be of unit length.

Lemma 3.5.1 For all h, h̃ ∈ C∞(S2(M)), we have

Re〈Φ(h),Φ(h̃)〉 = 〈h, h̃〉.

Then by Proposition 3.3.1, Lemma 3.5.1, and the fact that µ
∫
M
〈DΦ(h),Φ(h)〉dvolg

is real, we obtain the following estimate for the Einstein operator ∇∗∇− 2R̊.

Theorem 3.5.2 ([GHP03], [Wan91]) If the Killing constant µ is real, then, for all

traceless transverse h ∈ C∞(S2(M)),

∫
M

〈∆Eh, h〉dvolg =

∫
M

〈DΦ(h), DΦ(h)〉dvolg

− 2µ

∫
M

〈DΦ(h),Φ(h)〉dvolg

− n(n− 2)µ2

∫
M

〈h, h〉dvolg.

(3.5.1)

Remark 3.5.3 As mentioned in [Die13] and [Krö15], Theorem 3.5.2 has been used

to obtain a lower bound on the eigenvalues of the Einstein operator in [GHP03]. The

lower bound is −(n− 1)2µ2, as we can also see in the following Corollary 3.5.4.

Corollary 3.5.4 A Riemannian manifold with a non-zero real Killing spinor with

the Killing constant µ is stable if the twisted Dirac operator D satisfies

(D − µ)2 ≥ (n− 1)2µ2,

on {Φ(h) : h ∈ C∞(S2(M)), trh = 0, δh = 0}.
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Proof: By Theorem 3.5.2, for traceless transverse symmetric 2-tensor h, we have

∫
M

〈∆Eh, h〉dvolg =

∫
M

〈(D − µ)2Φ(h),Φ(h)〉dvolg

− (n− 1)2µ2

∫
M

〈h, h〉dvolg.
(3.5.2)

This implies the stability condition.

3.6 Some unstable regular Sasaki-Einstein mani-

folds

In this section, we study instability of regular Sasaki-Einstein manifolds, which are

essentially total spaces of principal circle bundles over Kähler-Einstein manifolds

with positive first Chern classes. A product of two Einstein manifolds (Bn1 , g1) and

(Bn2 , g2) with the same positive Einstein constant is an unstable Einstein manifold.

Indeed, h = g1

n1
− g2

n2
is an unstable traceless transverse direction. We show that if

the base manifold of a regular Sasaki-Einstein manifold is a product of two Kähler-

Einstein manifolds then we obtain an unstable direction on the Sasaki-Einstein man-

ifold by lifting this unstable direction on the base Kähler-Einstein manifold to the

total space.

Let us first recall some basic facts about Sasaki manifolds. For details, we refer to

[Bla10] and [FOW09]. A quick definition of Sasaki manifolds is given as the following,

see, e.g. [FOW09].

Definition 3.6.1 (Definition 1 of Sasaki manifolds) (Mn, g) is said to be a Sasaki

manifold if the cone (R+ ×M,dr2 + r2g) is Kähler, where R+ = (0,+∞), and r is

coordinate on R+.
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Remark 3.6.2 From Definition 3.6.1, we note that a Sasaki manifold has to be of

odd dimension.

There are several equivalent definitions of Sasaki manifolds. The one given in the fol-

lowing looks more complicated and tells us more about structure on Sasaki manifolds

themselves.

Definition 3.6.3 (Definition 2 of Sasaki manifolds) Let (M2p+1, g, φ, η, ξ) be a Rie-

mannian manifold of odd dimension 2p + 1 with a (1, 1)-tensor φ, 1-form η, and a

vector field ξ. It is a Sasaki manifold, if

(1) η ∧ (dη)p 6= 0,

(2) η(ξ) = 1,

(3) φ2 = −id+ η ⊗ ξ,

(4) g(φX, φY ) = g(X, Y )− η(X)η(Y ),

(5) g(X,φY ) = dη(X, Y ),

(6) the almost complex structure on M2p+1 × R defined by

J(X, f
d

dr
) = (φX − fξ, η(X)

d

dr
)

is integrable,

for all vector fields X and Y on M2p+1. The vector ξ is called the Reeb vector field.

And this is a regular Sasaki manifold if the Reeb vector field ξ is a regular vector field.

If, in addition, g is an Einstein metric, then this is a Sasaki-Einstein manifold.
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Remark 3.6.4 As consequences of Definition 3.6.3, we have φξ = 0, η ◦ φ = 0, and

∇Xξ = −φX, in particular, ∇ξξ = 0. Moreover, ξ is a Killing vector field. For

details, see, e.g. [Bla10].

Remark 3.6.5 Let us recall one more definition of Sasaki manifold. (Mn, g) is a

Sasaki manifold if there exists a Killing vector filed ξ of unit length on Mn so that

the Riemann curvature satisfies the condition

RXξY = −g(ξ, Y )X + g(X, Y )ξ, (3.6.1)

for any pair of vector fields X and Y on Mn. Then from (3.6.1), we can easily see

that on a Sasaki-Einstein manifold (Mn, g) of dimension n, Ricg = (n− 1)g.

The relationship between real Killing spinors and the Sasaki-Einstein structures

has been observed by T. Friedrich and I. Kath in [FK89] and [FK90], and then was

further studied by C. Bär in [Bär93]. We briefly summarize their results as the

following.

Theorem 3.6.6 (T. Friedrich and I. Kath, and C. Bär) A complete simply-connected

Sasaki-Einstein manifold of dimension n with Einstein constant n− 1 carries at least

2 linearly independent real Killing spinors with distinct Killing constants equal 1
2

and

−1
2

for n ≡ 3(mod4), and to the same Killing number equals 1
2

for n ≡ 1(mod4),

respectively.

Conversely, a complete Riemannian spin manifold with such spinors in these di-

mensions is Sasaki-Einstein.

Remark 3.6.7 T. Friedrich also proved that a complete 4-dimensional manifold with

a real Killing spinor is isometric to the standard sphere in [Fri81]. And O. Hijazi
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proved the analogous result in dimension 8 in [Hij86]. More generally, C. Bär proved

that all complete manifolds of even dimension n, n 6= 6, with a real Killing spinor are

isometric to standard spheres in [Bär93]. Thus, complete manifolds of even dimension

n, n 6= 6, with a real Killing spinor are strictly stable.

Remark 3.6.8 In the first part of Theorem 3.6.6, we need at least two linearly in-

dependent real Killing spinors in order to have a Sasaki-Einstein structure. Actually,

on a complete Riemannian spin manifold of odd dimension, except 7, existence of

one Killing spinor automatically implies the existence of the second one that we need

in Theorem 3.6.6. The 7-dimensional manifolds with a single linearly independent

Killing spinor have been studied in [Kat90] and in more details in [FK97]. We also

refer to the book [BFGK91]. The Jensen’s sphere is a 7-dimensional complete mani-

fold with a single linearly independent Killing spinor, and it is unstable as mentioned

in Introduction. We refer to [ADP83], [Bär93], [Bes87], [Jen73], and [Spa11] for this

interesting example.

Now let us recall the construction of a typical regular Sasaki manifold in [Bla10].

Let (B2p, G, J) be a Kähler manifold of real dimension 2p, with the Kähler form

Ω = G(·, J ·), where G is a Riemannian metric and J is an almost complex structure.

Then let π : M2p+1 → B2p be a principal S1-bundle with a connection η with the

curvature form dη = 2π∗Ω. Let ξ be a vertical vector field on M2p+1, generated by

S1-action, such that η(ξ) = 1, and X̃ denotes the horizontal lift of X with respect to

the connection η for a vector field X on B2p. We set

φX = J̃π∗X, (3.6.2)

and

g(X, Y ) = G(π∗X, π∗Y ) + η(X)η(Y ), (3.6.3)
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for vector fields X and Y on M2p+1. Then (M2p+1, g, φ, η, ξ) is a regular Sasaki

manifold.

Conversely, any regular Sasaki manifold can be obtained in this way, see, e.g.

Theorem 3.9 and Example 6.7.2 in [Bla10]. Moreover, if (M2p+1, g) is Sasaki-Einstein

with Einstein constant 2p, then (B2p, G, J) is Kähler-Einstein with Einstein constant

2p+ 2.

We fix some notations before carrying on calculations. ∇g and ∇G denote the

Levi-Civita connections on (M2p+1, g) and on (B2p, G), respectively. Rg and Ricg, and

RG and RicG denote Riemann and Ricci curvatures on (M2p+1, g) and on (B2p, G),

respectively. In the rest of this section, we useX, Y, Z,W, · · · to denote vector fields on

B2p, and we use X̃, Ỹ , Z̃, W̃ , · · · to denote their horizontal lift toM2p+1 with respect to

the connection η. And we choose and fix a local orthrnormal frame {X1, X2, · · · , X2p}

of TB. Then {X̃1, X̃2, · · · , X̃2p, ξ} is a local orthonormal frame of TM . We use ∇g
i

to denote ∇g

X̃i
, and ∇G

i to denote ∇G
Xi

.

Lemma 3.6.9 On a regular Sasaki manifold (M2p+1, g, φ, η, ξ) constructed above.

We have

[ξ, X̃] = LξX̃ = 0,

∇g

X̃
Ỹ = ∇̃G

XY − Ω(X, Y )ξ,

∇g
ξX̃ = ∇g

X̃
ξ = −φX̃,

∇g
ξξ = 0.

Proof: The first equation follows from the fact that the horizontal distribu-

tion is S1 invariant and ξ is generated by the S1-action. Then the rest properties

for covariant derivatives follow from properties in Remark 3.6.4, the first equation,

and the fundamental equations of a submersion in [ONe66] (also see [Bes87] for the
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equations).

Let h ∈ C∞(S2(B)), and then h̃ = π∗h ∈ C∞(S2(M)). Then by Lemma 3.6.9

and straightforward calculations, we obtain a relationship between (∇g)∗∇gh̃ and

(∇G)∗∇Gh.

Lemma 3.6.10

(∇g
k∇

g
kh̃)ij = (π∗(∇G

k∇G
k h))ij − 2h̃ij,

(∇g

∇gkX̃k
h̃)ij = (π∗(∇G

∇Gk Xk
h))ij,

(∇g
ξ∇

g
ξ h̃)ij = −2h̃ij + 2h̃(φX̃i, φX̃j),

and therefore,

((∇g)∗∇gh̃)ij = (π∗((∇G)∗∇Gh))ij + 4h̃ij − 2h̃(φX̃i, φX̃j), (3.6.4)

for all 1 ≤ i, j ≤ 2p, where we take summation for the repeated index k through 1 to

2p.

Because π : M2p+1 → B2p is a Riemannian submersion, by the fundamental

equation in [ONe66] and also in Theorem 9.26 in [Bes87], we have the following

relationship between curvature tensors on M2p+1 and ones on B2p.

Lemma 3.6.11

Rg(X̃, Ỹ , Z̃, W̃ ) = (π∗RG)(X, Y, Z,W )

− 2(π∗Ω)(X̃, Ỹ )(π∗Ω)(Z̃, W̃ )

− (π∗Ω)(X̃, Z̃)(π∗Ω)(Ỹ , W̃ )

+ (π∗Ω)(X̃, W̃ )(π∗Ω)(Ỹ , Z̃),

(3.6.5)
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Rg(X̃, ξ, Ỹ , ξ) = g(X̃, Ỹ ), (3.6.6)

and therefore,

Ricg(X̃, Ỹ ) = (π∗RicG)(X̃, Ỹ )− 2g(X̃, Ỹ ). (3.6.7)

From (3.6.7), we can see that if g is Einstein with Einstein constant k then G is

also Einstein with Einstein constant k + 2. Moreover, the above relations between

curvatures directly imply a relation between R̊gh̃ and R̊Gh.

Lemma 3.6.12

(R̊gh̃)ij = (π∗(R̊Gh))ij − 3h̃(φX̃i, φX̃j)

− (π∗Ω)(X̃i, X̃j)

2p∑
k=1

h̃(X̃k, φX̃k),
(3.6.8)

for all 1 ≤ i, j ≤ 2p.

Proposition 3.6.13

〈(∇g)∗∇gh̃− 2R̊gh̃, h̃〉 = (〈(∇G)∗∇Gh− 2R̊gh, h〉

+ 4〈h, h〉+ 4〈h ◦ J, h〉) ◦ π.
(3.6.9)

Therefore,

∫
M

〈(∇g)∗∇gh̃− 2R̊gh̃, h̃〉dvolg =

∫
B

(〈(∇G)∗∇Gh− 2R̊Gh, h〉

+ 4〈h, h〉+ 4〈h ◦ J, h〉)dvolG.
(3.6.10)
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Proof: By Lemma 3.6.10 and Lemma 3.6.12, we directly have

〈(∇g)∗∇gh̃− 2R̊gh̃, h̃〉

= (〈(∇G)∗∇Gh− 2R̊gh, h〉+ 4〈h, h〉

+ 4〈h(J ·, J ·), h〉+ 2(trG(h(J ·, ·)))2) ◦ π.

(3.6.11)

Then if suffices to show that trG(h(J ·, ·) = 0. Because (B2p, G, J) is Kähler, in

particular complex, we can choose a local orthonormal frame of TB in the form of

{X1, · · · , Xp, JX1, · · · , JXp}.

Then

trG(h(J ·, ·)) =

p∑
i=1

h(JXi, Xi) +

p∑
j=1

h(J2Xj, JXj) = 0,

by using J2 = −id and the symmetry of h.

We choose a local orthonormal frame

{X1, · · · , Xp, JX1, · · · , JXp}

of TB as in the proof of Proposition 3.6.13, and set

h(Xi, Xj) = hij,

h(Xi, JXj) = hij̄,

h(JXi, Xj) = hīj,

h(JXi, JXj) = hīj̄,

for all 1 ≤ i, j ≤ p.
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Then we have

〈h, h〉 =

p∑
i,j=1

(hijhij + hij̄hij̄ + hījhīj + hīj̄hīj̄), (3.6.12)

〈h ◦ J, h〉 =

p∑
i,j=1

2(hijhīj̄ − hījhij̄) ≤ 〈h, h〉. (3.6.13)

For any h ∈ C∞(S2(B)), by doing directly calculations, we have that trgh̃ = trGh,

(δgh̃)(X̃) = (δGh)(X), and (δgh̃)(ξ) = −trG(h(J ·, ·)) = 0. Consequently, if h is

traceless and transverse, then so is h̃.

Corollary 3.6.14 If there exists a traceless transverse 2-tensor h ∈ C∞(S2(B)) such

that
∫
B
〈(∇G)∗∇Gh− 2R̊gh, h〉dvolG ≤ −8

∫
B
〈h, h〉dvolG, then (M2p+1, g) is unstable.

Proof: Proposition 3.6.13 and the inequality (3.6.13) directly imply the conclu-

sion.

Corollary 3.6.15 If the base space (B2p, G) of a regular Sasaki-Einstein manifold

(M2p+1, g) is the Riemannian product of Kähler-Einstein manifolds (B2p1

1 , G1) and

(B2p2

2 , G2), where p1 + p2 = p, then (M2p+1, g) is unstable.

Proof: Set h = G1

2p1
− G2

2p2
. h is a traceless transverse symmetric 2-tensor and is

an unstable direction of (B2p, G) = (B2p1

1 , G1)× (B2p2

2 , G2). Let us recall

Ricg = (2p1 + 2p2)g, (3.6.14)

RicG = (2p1 + 2p2 + 2)G. (3.6.15)
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Then we have

〈(∇G)∗∇Gh− 2R̊Gh, h〉 = −2
RG1

4p2
1

− 2
RG2

4p2
2

= −2(p1 + p2 + 1)(
1

p1

+
1

p2

).

(3.6.16)

Moreover,

〈h, h〉 = 〈h ◦ J, h〉 =
1

2p1

+
1

2p2

. (3.6.17)

Thus, by Proposition 3.6.13, we have

〈(∇g)∗∇gh̃− 2R̊gh̃, h̃〉 = −2(p1 + p2 − 1)(
1

p1

+
1

p2

) < 0, (3.6.18)

if both p1 ≥ 1 and p2 ≥ 1.
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Chapter 4

Instability of Einstein metrics on

principal torus bundles

In this chapter, we generalize the instability result for regular Sasaki-Einstein metrics

in Chapter 3 to Einstein metrics on principal torus bundles. In particular, we prove

that the most of Einstein metrics on principal torus bundles constructed by M. Wang

and W. Ziller in [WZ90] are unstable.

4.1 Overview and main results

In addition to regular Sasaki-Einstein manifolds, S. Kobayashi proved the existence of

an Einstein metric on the unit circle bundle of the canonical line bundle over a Kähler-

Einstein manifold with positive first Chern class in [Kob63]. Then, more generally,

M. Wang and W. Ziller constructed Einstein metrics on principle torus bundles over

Riemannian products of Kähler-Einstein manifolds with positive first Chern classes

in [WZ90].
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Theorem 4.1.1 (M. Wang and W. Ziller) Let (Mi, gi), i = 1, · · · ,m, be Kähler-

Einstein manifolds with the first Chern classes c1(Mi) > 0, and π : P → B =

M1 × · · · ×Mm be a principal circle bundle whose Euler class is e(P ) =
∑
biπ
∗
i αi,

where bi ∈ Z, πi : B → Mi is the projection onto the ith factor, and αi ∈ H2(Mi,Z)

is indivisible. Then if e(P ) 6= 0, P carries an Einstein metric with positive scalar

curvature uniquely characterized up to homothety by the requirements that π is a

Riemannian submersion with totally geodesic fibers and that the metric on B is of the

form x1π
∗
1g1 + · · ·+ xmπ

∗
mgm for some choice of x1, · · · , xm.

Theorem 4.1.2 (M. Wang and W. Ziller) Let (Mi, gi), 1 ≤ i ≤ m, be Kähler

manifolds with c1(Mi) > 0, and π : P → B = M1 × · × Mm be the principal T r

bundles, r ≤ m, with characteristic classes βi =
∑m

j=1 bijπ
∗
jαj, i = 1, · · · , r, where

bij ∈ Z and αi ∈ H2(Mi,Z) is indivisible. Then if the matrix (bij)r×m has maximal

rank, there exists an Einstein metric on P with positive scalar curvature such that π

is a Riemannian submersion with totally geodesic flat fibers and such that the metric

on the base B is a product of the Kähler-Einstein metrics.

Let π : P → B be a principal G-bundle with a principal connection θ where G is

a connected Lie group acting on P on the right. Let ǧ be a Riemannian metric on B,

and let ĝ be a left-invariant metric on G. Define a metric g on P as

g(X, Y ) = ǧ(π∗X, π∗Y ) + ĝ(θ(X), θ(Y )), (4.1.1)

for any pair of vector fields X and Y on P . Then π : (P, g)→ (B, ǧ) is a Riemannian

submersion with totally geodesic fibers isometric to (G, ĝ).

Recall some notations and facts about Riemannian submersions in [Bes87]. H and

V denote the horizontal and vertical distributions, respectively. A vector field E on P
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is projectable if there exists a vector field Ě on B such that π∗(E) = Ě, and then we

say that E and Ě are π-related. A vector filed E on P is basic if it is projectable and

horizontal. In general, X, Y, Z will denote horizontal vector fileds on P and U, V,W

vertical vector fields. In [ONe66], B. O’Neil defined the tensor T and the tensor A for

Riemannian submersions. The fibers of the principal bundles that we are discussing

about are totally geodesic. Thus, the O’Neil’s tensor T vanishes on them. Let ω be

the curvature form of the principal connection θ. The O’Neil’s tensor A is related to

ω by

θ(AXY ) = −1

2
ω(X, Y ). (4.1.2)

Proposition 4.1.3 Take G to be S1 in the above construction of principal bundle,

and choose ĝ such that the length of S1 is 2π. Let θ be a principal connection with

curvature form dθ = π∗η, where η is a closed 2-form on B. Then we have

〈(∇g)∗∇gh− 2R̊gh, h〉 = 〈(∇ǧ)∗∇ǧȟ− 2˚̌Rǧȟ, ȟ〉 ◦ π

+ (ηkiηklȟljȟij + ηikηjlȟklȟij) ◦ π,
(4.1.3)

for all symmetric 2-tensors ȟ ∈ C∞(S2(B)), where h = π∗ȟ, hij = h(Xi, Xj), ηki =

η(X̌k, X̌i), and ȟij = ȟ(X̌i, X̌j), with {X̌i} a local orthonormal frame of TB, and Xi

the basic vector fields π-related to X̌i.

Corollary 4.1.4 The Einstein metrics constructed in Theorem 4.1.1 are unstable if

m ≥ 2.

More generally, take G to be a torus T r, which splits into T r = S1 × · · · × S1.

Let {e1, · · · , er} be a basis of the Lie algebra of T r coming from this decomposition

of T r. Let π : P → B be a principal T r-bundle with a principal connection θ

with the curvature form dθ = π∗η with η =
∑r

α=1 ηαeα. We use Uα to denote the
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vertical vector fields generated by eα through T r-action on P , for each 1 ≤ α ≤ r.

Let ĝαβ = ĝ(Uα, Uβ). The we have the following relationship between the Einstein

operators on the total space and the one on the base space.

Proposition 4.1.5

〈(∇g)∗∇gh− 2R̊gh, h〉 = 〈(∇ǧ)∗∇ǧȟ− 2˚̌Rǧȟ, ȟ〉 ◦ π

+ [ĝαβ(ηα)ki(ηβ)klȟljȟij

+ ĝαβ(ηα)ik(ηβ)jlȟklȟij] ◦ π,

(4.1.4)

for all symmetric 2-tensors ȟ ∈ C∞(S2(B)), where h = π∗ȟ, hij = h(Xi, Xj), (ηα)ki =

(ηα)(X̌k, X̌i), and ȟij = ȟ(X̌i, X̌j), with {X̌i} a local orthonormal frame of TB, and

Xi basic vector fields π-related to X̌i.

Corollary 4.1.6 The Einstein metrics constructed in Theorem 4.1.2 are unstable if

m ≥ 2.

4.2 Einstein operator on principal circle bundles

In this section, we prove Proposition 4.1.3.

Let π : P n+1 → Bn be a principal circle bundle with a principal connection θ with

the curvature form ω = dθ = π∗η, where η is a closed 2-form on B. As in (4.1.1), let

ǧ be a Riemannian metric on B, and then set g = π∗ǧ + θ⊗ θ. Then π : (P n+1, g)→

(Bn, ǧ) is a Riemannian submersion with totally geodesic fibers. Let U be a vertical

vector field generated by S1-action on P n+1 with θ(U) = 1. For any pair of horizontal

vector fields X and Y on P , by (4.1.2), we have AXY = −1
2
ω(X, Y )U . And further,

if X and Y are basic, then AXY = −1
2
η(X̌, Y̌ )U . Throughout the rest of this section,
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we choose and fix a local orthonormal frame {X1, · · · , Xn, U} of TP around the point

in the problem, where X1, · · · , Xn are basic

Lemma 4.2.1 Let X and Y be basic vector fields. We have

[U,X] = LUX = 0,

∇g
XY = ∇ǧ

X̌
Y̌ − 1

2
η(X̌, Y̌ )U,

∇g
UX = ∇g

XU =
1

2
η(X̌, X̌i)Xi,

∇g
UU = 0.

In the second equality, actually ∇ǧ

X̌
Y̌ is a vector field on the base B. But here, we

use it to denote its horizontal lift to P .

Proof: The first equation follows from facts that X is horizontal, U is generated

by S1-action, and the horizontal distribution is S1-invariant. Then the rest of equa-

tions follow from O’Neil’s fundamental equations for Riemannian submersions, and

facts that tensor T vanishes and AXY = −1
2
η(X̌, Y̌ )U .

Let ȟ ∈ C∞(S2(Bn)) be a symmetric 2-tensor on Bn, and then h = π∗ȟ be a

symmetric 2-tensor on P n+1.

Lemma 4.2.2

((∇g)∗∇gh)ij = (∇ǧ)∗∇ǧȟ)ij ◦ π

+
n∑

k,l=1

(
1

2
ηkiηklhlj +

1

2
ηkjηklhli −

1

2
ηikηjlhkl) ◦ π,

(4.2.1)

where, i and j run through 1 to n.
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Proof: By definition, we have

((∇g)∗∇gh)ij

= −(∇g
k∇

g
kh)(Xi, Xj) + (∇g

∇gkXk
h)(Xi, Xj)− (∇g

U∇
g
Uh)(Xi, Xj),

(4.2.2)

where, and throughout this proof, ∇g
k means ∇g

Xk
, ∇ǧ

k means ∇ǧ

X̌k
, and take sum for

repeated indices k, l through 1 to n. Now we compute each of these three terms.

(∇g
k∇

g
kh)(Xi, Xj) = XkXk(h(Xi, Xj))−Xk(h(∇g

kXi, Xj))−Xk(h(Xi,∇g
kXj))

−Xk(h(∇g
kXi, Xj)) + h(∇g

k∇
g
kXi, Xj) + h(∇g

kXi,∇g
kXj)

−Xk(h(Xi,∇g
kXj)) + h(∇g

kXi,∇g
kXj) + h(Xi,∇g

k∇
g
kXj)

= [X̌kX̌k(ȟ(X̌i, X̌j))− X̌k(ȟ(∇ǧ
kX̌i, X̌j))− X̌k(ȟ(X̌i,∇ǧ

kX̌j))

− X̌k(ȟ(∇ǧ
kX̌i, X̌j)) + ȟ(∇ǧ

k∇
ǧ
kX̌i, X̌j)

− 1

4
ηkiηklȟlj + ȟ(∇ǧ

kX̌i,∇ǧ
kX̌j)

− X̌k(ȟ(X̌i,∇ǧ
kX̌j)) + ȟ(∇ǧ

kX̌i,∇ǧ
kX̌j)

+ ȟ(X̌i,∇ǧ
k∇

ǧ
kX̌j)−

1

4
ηkjηklȟil] ◦ π

= [(∇ǧ
k∇

ǧ
kȟ)ij −

1

4
ηkiηklȟlj −

1

4
ηkjηklȟil] ◦ π.

(4.2.3)

In the second equality, we use π∗(∇g
k∇∗kXi) = ∇ǧ

k∇
ǧ
kX̌i − 1

4
ηkiηklXl.

Then, because ∇g
kXk = ∇ǧ

kX̌k − 1
2
ηkkU = ∇ǧ

kX̌k, we have

(∇g
∇gkXk

h)(Xi, Xj) = (∇ǧ

∇ǧkXk
h)ij ◦ π. (4.2.4)
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For the third term, we have

(∇g
U∇

g
Uh)ij = UU(hij)− 2U(h(∇g

UXi, Xj))− 2U(h(Xi,∇g
UXj))

+ h(∇g
U∇

g
UXi, Xj) + 2h(∇g

UXi,∇g
UXj) + h(Xi,∇g

U∇
g
UXj)

= [
1

4
ηikηklhlj +

1

2
ηikηjlhkl +

1

4
ηjkηklηil] ◦ π.

(4.2.5)

Here, we used facts that hij, h(∇g
UXi, Xj), and h(Xi,∇g

UXj) are constant along fibers,

since h is the pull-back of a 2-tensor on the base. We also used π∗(∇g
U∇

g
UXi) =

1
4
ηikηklX̌l.

Plugging (4.2.3), (4.2.4), and (4.2.5) into (4.2.2), we complete the proof of the

lemma.

By using the fundamental equations for Riemannian curvature tensor for Rieman-

nian submersions (see, Theorem in [ONe66], or equation (9.28f) in [Bes87]) and that

AXY = −1
2
η(X̌, Y̌ )U for basic vector fields X and Y , we have the following relation

between Riemannian curvature tensor on the total space and that on the base.

Lemma 4.2.3

Rijkl = Řijkl ◦ π + (−1

2
ηijηkl +

1

4
ηjkηil −

1

4
ηikηjl) ◦ π, (4.2.6)

and therefore,

(R̊h)ij = (˚̌Rȟ)ij ◦ π + (−1

2

n∑
k,l=1

ηikηjlȟkl +
1

4

n∑
k,l=1

ηkjηilȟkl) ◦ π, (4.2.7)

where i, j, k, and l run through 1 to n.
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Proof of Proposition 4.1.3: By using Lemma 4.2.2 and Lemma 4.2.3, we have

〈(∇g)∗∇gh− 2R̊gh, h〉 =
n∑

i,j=1

((∇g)∗∇gh− 2R̊gh)ijhij

= (
n∑

i,j=1

((∇ǧ)∗∇ǧȟ− 2˚̌Rǧȟ)ijȟij) ◦ π

+
n∑

i,j,k,l=1

[
1

2
ηkiηklȟljȟij +

1

2
ηkjηklȟliȟij

− 1

2
ηikηjlȟklȟij +

1

2
ηikηjlȟklȟij −

1

2
ηkjηilȟklȟij] ◦ π

= 〈(∇ǧ)∗∇ǧȟ− 2˚̌Rǧȟ, ȟ〉 ◦ π

+
n∑

i,j,k,l=1

(ηkiηklȟljȟij + ηikηjlȟklȟij) ◦ π.

In the last step, we use facts that ηij is anti-symmetric and ȟij is symmetric about

indices i and j.

4.3 Instability of Einstein metrics on principal cir-

cle bundles

In this section, we prove Corollary 4.1.4.

A necessary and sufficient condition for g defined in (4.1.1) to be Einstein is given

in [Bes87] and [WZ90]. We recall the condition for torus bundles given in [WZ90].

As mentioned in [WZ90], any left-invariant metric on a torus is bi-invariant and flat,

so Ricĝ = 0, and the curvature ω = dθ = π∗η on a principal torus bundle is the

pull-back of a closed 2-form η on B. Then, (P, g) is Einstein with Einstein constant

k iff

η is a harmonic form on (B, ĝ), (4.3.1)
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1

4

∑
i,j

ĝ(η(X̌i, X̌j), U)ĝ(η(X̌i, X̌j), V ) = kĝ(U, V ), (4.3.2)

Ricǧ(X̌, Y̌ )− 1

2

∑
i

ĝ(η(X̌, X̌i), η(Y̌ , X̌i)) = kǧ(X̌, Y̌ ), (4.3.3)

for any pair of vector fields X̌ and Y̌ on B, where {X̌i} is a local orthonormal frame

of TB.

We recall the construction of Einstein metrics on principal circle bundles over

products of Kähler-Einstein manifolds in [WZ90]. Let (Mi, gi), i = 1, · · · ,m, be

Kähler-Einstein manifolds with first Chern classes c1(Mi) > 0 and real dimension

ni. Write c1(Mi) = qiαi, where αi ∈ H2(Mi,Z) is indivisible and qi ∈ Z. Normalize

gi such that [ωi] = 2παi, equivalently, Ricgi = qigi, where ωi is the Kähler form of

gi. Let π : P → B = M1 × · · · ×Mm be a principal S1-bundle whose Euler class is

e(p) =
∑
biπ
∗
i αi, where bi ∈ Z, and πi : B → Mi denotes the projection onto the

ith factor. Choose a Riemannian metric on B as ǧ = x1π
∗
1g1 + · · ·+ xmπ

∗
mgm, where

x1, · · · , xm are constants to be determined. Let η =
∑
biπ
∗
i ωi, and θ be a principal

connection on P such that dθ = π∗η. And choose the left-invariant metric on S1 such

that the length of S1 is 2π. Then Einstein conditions (4.3.2) and (4.3.3) become

∑
ni
b2
i

x2
i

= 4k, (4.3.4)

qj
xj
− 1

2
(
bj
xj

)2 = k, j = 1, · · · ,m. (4.3.5)

M. Wang and W. Ziller proved the existence of an unique solution of the system of

equations (4.3.4) and (4.3.5) about xj, provided e(P ) 6= 0, and therefore, obtained
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the existence of Einstein metrics on the circle bundle P .

Proof of Corollary 4.1.4: On M. Wang and W. Ziller’s Einstein manifolds con-

structed above, η =
∑m

i=1 biπ
∗
i ωi. Assume m ≥ 2. Let ȟ =

x1π∗1g1

n1
− x2π∗2g2

n2
be a

symmetric 2-tensor on Bn, where n =
∑m

i ni is the real dimension of the base prod-

uct manifold. ȟ is traceless and transverse, i.e. δǧȟ = 0 and trǧȟ = 0. These imply

that δgh = 0 and trgh = 0, i.e. h = π∗ȟ is a traceless transverse 2-tensor on P .

〈(∇ǧ)∗∇ǧȟ− 2R̊ǧȟ, ȟ〉

= −2
n∑

i,j,k,l=1

Řijkl(
x1π

∗
1g1

n1

− x2π
∗
2g2

n2

)ik(
x1π

∗
1g1

n1

− x2π
∗
2g2

n2

)jl

= −2(
Rx1g1

n2
1

+
Rx2g2

n2
2

)

= −2(
q1

x1n1

+
q2

x2n2

)

= −2k(
1

n1

+
1

n2

)− (
b2

1

n1x2
1

+
b2

2

n2x2
2

).

In the last step, we use the equation (4.3.5).

n∑
i,j,k,l=1

ηkiηklȟljȟij

=
n∑

i,j,k,l=1

(
m∑
s=1

bsπ
∗
sωs)ki(

m∑
t=1

btπ
∗
tωt)kl(

x1π
∗
1g1

n1

− x2π
∗
2g2

n2

)lj(
x1π

∗
1g1

n1

− x2π
∗
2g2

n2

)ij

=
b2

1

n2
1

‖ω1‖2
x1g1

+
b2

2

n2
2

‖ω2‖2
x2g2

=
b2

1

2n1x2
1

+
b2

2

2n2x2
2

,

and similarly,
n∑

i,j,k,l=1

ηikηjlȟklȟij =
b2

1

2n1x2
1

+
b2

2

2n2x2
2

.
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Combining these equations and Proposition 4.1.3, we obtain

〈∇∗∇h− 2R̊h, h〉 = −2k(
1

n1

+
1

n2

) = −2n1n2(n1 + n2)

n2
1 + n2

2

〈h, h〉.

This implies that if m ≥ 2, then M. Wang and W. Ziller’s Einstein metrics on circle

bundles are unstable.

4.4 Einstein operator on torus bundles

In this section, we prove Proposition 4.1.5.

Lemma 4.4.1 Let X and Y be basic vector fields. We have

[Uα, X] = LUαX = 0,

∇g
XY = ∇ǧ

X̌
Y̌ − 1

2
ηα(X̌, Y̌ )Uα,

∇g
Uα
X = ∇g

XUα =
1

2
ĝαβηβ(X̌, X̌i)Xi,

∇g
Uα
Uβ = 0,

where α and β run through 1 to r, and take sum for repeated indices.

Proof: This first equation follows from facts that the horizontal vector field X

is T r−invariant and Uα is generated by eα through T r-action. The second and third

equations follow from the O’Neil’s fundamental equations for Riemannian submer-

sions and facts that AXY = −1
2
ηα(X̌, Y̌ )Uα, and tensor T vanishes on T r-bundles

that we are considering. Let us check the fourth equality. Because the tensor T van-

ishes, ∇g
Uα
Uβ is vertical. Actually, ∇g

Uα
Uβ = ∇ĝ

Uα
Uβ, when we restrict on each fiber.

Then because any left-invariant metric on a torus is bi-invariant, i.e. ĝ is bi-invariant,
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and by the well-known formula for the connection of a bi-variant metric on a Lie

group (see, e.g. Corollary 3.19 in [CE]), we have ∇g
Uα
Uβ = ∇ĝ

Uα
Uβ = 1

2
[Uα, Uβ] = 0.

In the last equality, we use the fact that a torus is an Abelian group.

Lemma 4.4.2

((∇g)∗∇gh)ij = ((∇ǧ)∗∇ǧȟ)ij +
1

4
ĝαβ(ηα)ki(ηβ)klȟlj +

1

4
ĝαβ(ηα)kj(ηβ)klȟli

− 1

4
ĝαβ(ηα)ik(ηβ)klȟlj −

1

4
ĝαβ(ηα)ik(ηβ)jlȟkl

− 1

4
ĝαβ(ηα)ik(ηβ)jlȟkl −

1

4
ĝαβ(ηα)jk(ηβ)klȟli.

(4.4.1)

Lemma 4.4.3

Rikjl = Řikjl −
1

2
ĝαβ(ηα)ik(ηβ)jl +

1

4
ĝαβ(ηα)kj(ηβ)il −

1

4
ĝαβ(ηα)ij(ηβ)kl (4.4.2)

Proofs of these two lemmas are very similar to the proofs of lemmas in Section 4.2.

So we omit their proofs. Then these two lemmas directly imply Proposition 4.1.5.

4.5 Instability of Einstein metrics on principal

torus bundles

In this section, we prove Corollary 4.1.6.

We recall Wang and Ziller’s construction of Einstein metrics on principal T r bun-

dles over a product of Kähler-Einstein manifolds. Consider a principal T r bundle

π : P → B. Choose and fix a decomposition T r = S1 × · · · × S1. Let βα ∈ H2(B,Z),

α = 1, · · · , r be the Euler classes of the circle bundles P/T r−1 → B where T r−1 ⊂ T r

is the subtorus with ith S1 factor deleted. Then the T r-bundle is classified by char-

acteristic classes βα.
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Let (Mns , gs), s = 1, · · · ,m, be Käher-Einstein manifolds with positive first Chern

classes c1(Ms) = qsαs, where αs ∈ H2(Ms,Z) is indivisible and qs ∈ Z. Normalize

gs such that [ωs] = 2παs, i.e. Ricgs = qsgs, where ωs is the Kähler form of gs. Let

π : P n+r → Bn = Mn1
1 ×· · ·×Mnm

m be a principal T r-bundle with characteristic classes

βα =
∑m

s=1 bαsπ
∗
sαj, α = 1, · · · , r. Let θ be a principal connection on the T r bundle

with the curvature form ω = dθ = π∗η with η =
∑r

α=1 ηαeα and ηα =
∑m

s=1 bαsπ
∗
sωs.

Recall that {e1, · · · , er} is a basis of the Lie algebra of T r coming from the chosen

decomposition of T r, and ĝαβ = ĝ(eα, eβ) is a left invariant metric on T r.

Then Einstein conditions (4.3.2) and (4.3.3) become

m∑
s=1

bαsbβsns
x2
s

= 4kĝαβ, 1 ≤ α, β ≤ r, (4.5.1)

qs
xs
− 1

2

r∑
α,β=1

ĝαβbαsbβs
x2
s

= k, s = 1, · · · ,m. (4.5.2)

By showing existence of solutions of the system of equations (4.5.1) and (4.5.2),

M. Wang and W. Ziller obtain Einstein metrics on these principal torus bundles,

provided that the matrix (bαs)r×m with r ≤ m has maximal rank.

Proof of Corollary 4.1.6: Assume m ≥ 2. The same as in the proof of Corollary

4.1.4, we take ȟ = x1g1

n1
− x2g2

n2
. Let h = π∗ȟ. Then δgh = 0, trgh = 0, and

〈(∇ǧ)∗∇ǧȟ− 2R̊ǧȟ, ȟ〉 = −2(
q1

x1n1

+
q2

x2n2

)

= −2(
1

n1

+
1

n2

)k

− (
r∑

α,β=1

ĝαβbα1bβ2

n1x2
1

+
r∑

α,β=1

ĝαβbα2bβ2

n2x2
2

).

(4.5.3)

In the last equality, we use equations (4.5.2). And because ηα =
∑m

s=1 bαsωs, and
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‖ωs‖2
xsgs = ns

2x2
s

for s = 1, · · · ,m,

ĝαβ(ηα)ki(ηβ)klȟljȟij = ĝαβ(ηα)ik(ηβ)jlȟklȟij

=
r∑

α,β=1

ĝαβbα1bβ2

2n1x2
1

+
r∑

α,β=1

ĝαβbα2bβ2

2n2x2
2

.
(4.5.4)

Then Proposition 4.1.5 implies

〈∇∗∇h− 2R̊h, h〉 = −2k(
1

n1

+
1

n2

) = −2n1n2(n1 + n2)

n2
1 + n2

2

〈h, h〉, (4.5.5)

and we complete the proof.
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Chapter 5

Perelman’s λ-functional on

manifolds with conical singularities

In this chapter, we prove that on a compact manifold with a single conical singu-

larity the spectrum of the operator −4∆ + R consists of discrete eigenvalues with

finite multiplicities, if the scalar curvature R satisfies a certain condition near the

singularity. Moreover, we obtain an asymptotic behavior for eigenfunctions near the

singularity. As a consequence of these spectrum properties, we extend the theory of

the Perelman’s λ-functional on smooth compact manifolds to compact manifolds with

a single conical singularity. All these work and results also go through on compact

manifolds with isolated conical singularities.

5.1 Overview and main results

As we have seen from (2.5.4), the Perelman’s λ-functional on a smooth compact

manifold is essentially the smallest eigenvalue of the operator −4∆+R. Consequently,

we can also define the λ-functional on a compact smooth manifold as the smallest
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eigenvalue of −4∆+R, which is the definition of the λ-functional that we want to use

on compact manifolds with isolated conical singularities. Therefore, we first study

the spectrum of −4∆ + R on a compact Riemannian manifold with isolated conical

singularities defined as the following.

Definition 5.1.1 We say (Mn, d, g, p1, · · · , pk) is a compact Riemannian manifold

with isolated conical singularities at p1, · · · , pk, if

• (M,d) is a compact metric space,

• (M0, g|M0) is an n-dimensional smooth Riemannian manifold, and the Rieman-

nian metric g induces the given metric d on M0, where M0 = M \ {p1, · · · , pk},

• for each singularity pi, 1 ≤ i ≤ k, their exists a neighborhood Upi ⊂ M of

pi such that Upi ∩ {p1, · · · , pk} = {pi}, (Upi \ {pi}, g|Upi\{pi}) is isometric to

((0, εi) × Ni, dr
2 + r2hr) for some εi > 0 and a compact smooth manifold Ni,

where r is a coordinate on (0, εi) and hr is a smooth family of Riemannian

metrics on Ni satisfying hr = h0 + o(rαi) as r → 0, where αi > 0 and h0 is a

smooth Riemannian metric on Ni.

Moreover, we say a singularity p is a cone-like singularity, if the metric g on a

neighborhood of p is isometric to dr2 + r2h0 for some fixed metric h0 on cross section

N .

Remark 5.1.2 We do analysis on (Mn, d, g, p1, · · · , pk) away from singular points

p1, · · · , pk.

In the rest of this chapter, we will only work on manifolds with a single conical

singularity because there is no essential difference between one single singularity case
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and multiple isolated singularities case. And all work and results on manifolds with a

single conical singularity go through on manifolds with isolated conical singularities.

Recall some basic facts about cones over compact smooth manifolds. Let C(N, h0) =

(R+ ×N, g = dr2 + r2h0) be the Riemannian cone over a compact (n-1)-dimensional

smooth Riemannian manifold (Nn−1, h0). Then we have:

∆g = ∂2
r +

n− 1

r
∂r +

1

r2
∆h0 , (5.1.1)

Rg =
1

r2
[Rh0 − (n− 1)(n− 2)]. (5.1.2)

From (5.1.1) and (5.1.2), we can see that on the cone the operator −4∆ + R is

a Schrödinger operator with singular potential. Actually, the potential function Rg

behaves like O( 1
r2 ) as r → 0, i.e. blows up near the tip of the cone. This type of

operators have been studied in several literatures, for example in [BS87] and [RS2].

Let us first look at the simplest one-dimensional example of singular Schrödinger

operators that is mentioned in [BS87] and also studied in [RS2]. Let La = − d2

dx2 + a
x2 be

an unbounded operator in L2(R+) with the domain D(La) = C∞0 (R+), where a ∈ R

is a constant and R+ = (0,+∞). By Hardy’s inequality, if a ≥ −1
4
, the operator

La is nonnegative on C∞0 (R+), in particular semi-bounded. Actually, by some simple

scaling technique we can see that a ≥ −1
4

is not only a sufficient condition but also

a necessary condition for La to be semi-bounded. Thus, the operator La is either

nonnegative or not semi-bounded.

In [RS2], Michael Read and Barry Simon give the following criterion for essential

self-adjointness of a Schrödinger operator with a spherically symmetric potential:

−∆ + V (r) on Rn, where r = (
∑n

i=1 x
2
i )

1
2 .

Theorem 5.1.3 (Theorem X.11 in [RS2]) Let V (r) be a continuous symmetric po-
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tential on Rn \ {0}. If V (r) satisfies

V (r) +
(n− 1)(n− 3)

4

1

r2
≥ 3

4r2
,

then −∆ + V (r) is essentially self-adjoint on C∞0 (Rn \ {0}). If V (r) satisfies

0 ≤ V (r) +
(n− 1)(n− 3)

4

1

r2
≤ c

r2
, c <

3

4
,

then −∆ + V (r) is not essentially self-adjoint on C∞0 (Rn \ {0}).

From the above one-dimensional and higher dimensional examples we can see that

certain conditions on the potential function Rg, actually on Rh0 , should be necessary,

if we expect that the operator −4∆ +R is semibounded, and its Friedrichs extension

then has nice spectrum. It turns out that Rh0 > (n− 2) is a sufficient condition, and

we have one of main results in this chapter as the following.

Theorem 5.1.4 (Dai, –) Let (Mn, d, g, p) be a compact Riemannian manifold with

a conical singularity at p. If the scalar curvature Rh0 > (n − 2) on N , then the

operator −4∆g +Rg with domain C∞0 (M \ {p}) is semibounded, and the spectrum of

its Friedrichs extension consists of discrete eigenvalues with finite multiplicity λ1 ≤

λ2 ≤ λ3 ≤ · · · , and λk → +∞, as k → +∞.

In [BP03], B. Botvinnik and S. Preston proved that the spectrum of the conformal

Laplacian on a compact Riemannian manifold with isolated tame conical singularities

consists of discrete eigenvalues with finite multiplicities. The conformal Laplacian

−∆ + n−2
4(n−1)

R is also a singular Schrödinger operator. A tame conical singularity

is given as a cone over a product of the standard spheres. Therefore, the scalar

curvature of the cross section of a tame conical singularity satisfies the condition in

Theorem 5.1.4, and our result is more general. Our idea of the proof of Theorem
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5.1.4 is similar to the one in [BP03]. We use certain weighted Sobolev spaces that

can be compactly embedded in L2(M). And by doing some estimates, we show that

the operator −4∆ +R is semi-bounded and the domain of its self-adjoint extension is

in a weighted Sobolev space. Then we can use the spectrum theorem for self-adjoint

compact operators to obtain the property of the spectrum of the operator −4∆ +R.

Theorem 5.1.4 enables us to define the λ-functional as the smallest eigenvalue of

−4∆ + R. However, when we derive variational formulae of the the λ-functional,

it turns out that certain asymptotic behavior of eigenfunctions near singularities is

necessary. We have another main result in this chapter as the following.

Theorem 5.1.5 (Dai, –) Let (Mn, g, p) be a compact Riemannian manifold with a

single conical singularity p with Rh0 > (n− 2) and satisfying

ri|∇i+1(hr − h0)| ≤ Ci < +∞,

for some constant Ci, and each 0 ≤ i ≤ n

2
+ 2,

(5.1.3)

near p. Then eigenfunctions of −4∆g +Rg on satisfy

u = o(r−
n−2

2 ), as r → 0. (5.1.4)

Consequently, the first eigenvalue is simple.

Moreover, if the singularity is cone-like, eigenfunctions have asymptotic expansion

at the conical singularity p as

u ∼
+∞∑
j=1

+∞∑
l=0

pj∑
p=0

rsj+l(ln r)puj,l,p, (5.1.5)

where uj,l,p ∈ C∞(Nn−1), pj = 0 or 1, and sj = −n−2
2
±
√
µj−(n−2)

2
, where µj are
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eigenvalues of −∆h0 +Rh0 on Nn−1.

On a manifold with a cone-like singularity, a small neighborhood of the singularity

is a finite exact cone over a compact smooth manifold. On this neighborhood, we can

separate variable and explicitly solve the eigenfunction equation in term of eigenfunc-

tions on the cross section of the cone and some hypergeometric functions. By using

classical elliptic estimates and some estimates for the hypergeometric functions, we

then obtain the asymptotic expansion (5.1.5) of eigenfunctions on manifold with a

cone-like singularity.

On a manifold with a conical singularity, we cannot do explicit calculations.

Therefore, instead, we do some estimates to obtain an asymptotic order near the

singularity for eigenfunctions in (5.1.4). We first work on small finite cones, on which

we can obtain some weighted Sobelov inequalities and weighted elliptic estimates by

using scaling technique. The asymptotic condition (5.1.3) for the asymptotically con-

ical metric implies weighted Sobelov norms and weighted Ck-norms with respect to

exactly conical metric dr2 + r2hr are equivalent to ones with respect to asymptoti-

cally conical metric dr2 + r2hr. Then these weighted Sobelov inequality and weighted

elliptic estimates still hold on an asymptotic finite cone. This implies the asymptotic

order in (5.1.4) by using elliptic bootstrapping. And further, we can obtain variation

formulae of λ-functional on compact manifolds with a single conical singularity.

5.2 Weighted Sobolev Spaces

In this section, we introduce weighted Sobolev spaces on compact Riemannian mani-

folds with conical singularities and establish the compact embedding property for the

weighted Sobolev spaces.

Let (Mn, g, p) be a compact Riemannian manifold with a single conical singularity
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at p, and Up be a conical neighborhood of p such that (Up \ {p}, g|Up\{p}) is isometric

to ((0, ε)×N, dr2 + r2hr). For each k ∈ N and δ ∈ R, we define the weighted Sobolev

space Hk
δ (Cε(N)) to be the completion of C∞0 (M \ {p}) with respect to the weighted

Sobolev norm

‖u‖2
Hk
δ (M) =

∫
M

(
k∑
i=0

χ2(δ−i)+n|∇iu|2)dvolg, (5.2.1)

where ∇iu denotes the ith covariant derivative, and χ ∈ C∞(M \ {p}) is a positive

weight function satisfying

χ(q) =


1 if q ∈M \ Up,

1
r

if r = dist(q, p) < ε
4
,

(5.2.2)

and 0 < (χ(q))−1 ≤ 1 for all q ∈M \ {p}.

For the simplicity of notations, we set Hk(M) ≡ Hk
k−n

2
(M). The we have the

following compact embedding of Hk(M) into L2(M).

Theorem 5.2.1 (Dai, –) The continuous embedding

i : Hk(M) ↪→ L2(M) (5.2.3)

is compact for each k ∈ N.

Before proving Theorem 5.2.1, we prove the analogous compact embedding theo-

rem on finite cones. Let (Cε(N), g) = ((0, ε)×N, dr2 +r2h) be a finite cone. We define

the weighted Sobolev space Hk
δ (Cε(N)) on the cone (Cε(N), g) to be the completion

of C∞0 (Cε(N)) with respect to the weighted Sobolev norm

‖u‖2
Hk
δ (Cε(N)) =

∫
Cε(N)

(
k∑
i=0

1

r2(δ−i)+n |∇
iu|2)dvolg. (5.2.4)
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We also set Hk(Cε(N)) ≡ Hk
k−n

2
(Cε(N)). Then we have the following compact

embedding on a finite cone.

Lemma 5.2.2 (Dai, –) The continuous embedding

i : Hk(Cε(N)) ↪→ L2(Cε(N))

is compact for each k ∈ N.

Proof: Because ‖u‖Hk
2 (Cε(N)) ≥ ‖u‖Hl

2(Cε(N)), for k ≥ l ∈ N, we have continuous

embedding Hk(Cε(N)) ↪→ H l(Cε(N)), for k ≥ l ∈ N. Therefore, it suffices to show

that the embedding: i : H1(Cε(N)) ↪→ L2(Cε(N)), is compact. Let (C̃ε(N), g̃) =

((0, ε)×N, dr2 +h) be a finite cylinder, and W 1,2
0 (C̃ε(N)) be the usual Sobolev space

on the cylinder C̃ε(N), which is the completion of C∞0 (C̃ε(N)) with respect to the

norm:

‖u‖W 1,2(C̃ε(N)) =

∫
C̃ε(N)

(u2 + |∇̃u|2g̃)dvolg̃,

where ∇̃u is the gradient of u with respect to the metric g̃. It is obvious that the

mapping:

L2(Cε(N), g)→ L2(C̃ε(N), g̃)

u 7→ ũ = r
n−1

2 u

is unitary, where n = dim(N) + 1. We will show that

‖u‖H1(Cε(N)) ≥
3

4
min{1, 1

ε2
}‖ũ‖W 1,2(C̃ε(N)), (5.2.5)

for all u ∈ C∞0 ((0, ε)×N). This then completes the proof, since the embedding

W 1,2
0 (C̃ε(N)) ↪→ L2(C̃ε(N), g̃)
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is compact by the classical Rellich Lemma.

Now we prove the inequality (5.2.5). Let 0 = µ1 < µ2 ≤ µ3 ≤ · · · ↗ +∞ be

eigenvalues of the positive Laplacian, −∆N , on the compact Riemannian manifold

(N, h), and ψ1, ψ2, ψ3, · · · be corresponding eigenfunctions. Let u ∈ C∞0 ((0, ε) × N).

We expand the function u and ũ, respectively, as

u(r, x) =
∞∑
i=1

ui(r)ψi(x),

ũ(r, x) =
∞∑
i=1

ũi(r)ψi(x), (5.2.6)

where ui(r) = r−
n−1

2 ũi(r).

‖u‖2
H1(Cε(N))

=

∫
Cε(N)

(
1

r2
u2 + |∇u|2g)dvolg

=

∫
Cε(N)

(
1

r2
u2 + |∂ru|2 +

1

r2
|∇Nu|2h)dvolg

=

∫ ε

0

∫
N

[
1

r2
(
∞∑
i=1

ui(r)ψi(x))2 + (
∞∑
i=1

u
′

i(r)ψi(x))2

+
1

r2
(
∞∑
i=1

ui(r)∇Nψi(x))2]rn−1dvolhdr

=

∫ ε

0

[
1

r2

∞∑
i=1

(ui(r))
2 +

∞∑
i=1

(u
′

i(r))
2 +

1

r2

∞∑
i=1

µi(ui(r))
2]rn−1dr

=

∫ ε

0

[
1

r2

∞∑
i=1

(ũi(r))
2 +

∞∑
i=1

(−n− 1

2

1

r
ũ(r) + ũ

′

i(r))
2 +

1

r2

∞∑
i=1

µi(ũi(r))
2]dr

=

∫ ε

0

[
1

r2

∞∑
i=1

(1 +
(n− 1)(n− 3)

4
+ µi)(ũi(r))

2 +
∞∑
i=1

(ũ
′

i)
2]dr

≥
∫ ε

0

[
∞∑
i=1

(
3

4
+ µi)(ũi(r))

2 +
∞∑
i=1

(ũ
′

i)
2]dr

=
3

4
min{1, 1

ε2
}‖ũ‖2

W 1,2(C̃(N))

75



Perelman’s λ-functional on manifolds with conical singularities Chapter 5

Proof of Theorem 5.2.1. As in the proof of Lemma 5.2.2, it suffices to show that

H1(M) ↪→ L2(M) is compact. Because (Up \ {p}, g|Up\{p}) is isometric to ((0, ε) ×

N, dr2 + r2hr), where hr = h0 + o(rα), for some α > 0, if we define g0 = dr2 + r2h0

on (0, ε)×N , there exists 0 < ε1 <
ε
4
, such that on (0, ε1)×N ,

1

2
g0 ≤ g ≤ 2g0.

Then for any u ∈ C∞0 ((0, ε)×N), we have

1

21+n
2

‖u‖2
H1(Cε1 (N),g0) ≤ ‖u‖2

H1(Cε1 (N),g) ≤ 21+n
2 ‖u‖2

H1(Cε1 (N),g0), (5.2.7)

1

2
n
2

‖u‖2
L2(Cε1 (N),g0) ≤ ‖u‖2

L2(Cε1 (N),g) ≤ 2
n
2 ‖u‖2

L2(Cε1 (N),g0). (5.2.8)

By Lemma 5.2.2, inequalities (5.2.7) and (5.2.8) imply that the embedding

H1(Cε1(N), g) ↪→ L2(Cε1(N), g) (5.2.9)

is compact. Set M0 = M \ (0, ε1
2

)×N . The compactness of embedding W 1,2
0 (M0) ↪→

L2(M0) and the compactness of the embedding (5.2.9) imply the compactness of the

embedding H1(M) ↪→ L2(M).

5.3 Spectrum of −4∆ + R on a finite cone

In this section we study the spectrum of the operator L = −4∆ +R on a small finite

cone (Cε(N), g) = ((0, ε)×N, dr2 +r2h0) with Dirichlet boundary condition. By using
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the compact embedding results obtained in the previous section and establishing

a semi-boundedness estimate for the operator L, we show that the spectrum the

Friedrichs extension of L on a small finite cone with the Dirichlet boundary condition

consists of discrete eigenvalues with finite multiplicities.

Let

L = −4∆ +R : L2(Cε(N))→ L2(Cε(N))

be a densely defined unbounded operator with the domain Dom(L) = C∞0 (Cε(N)).

Theorem 5.3.1 (Dai, –) If the scalar curvature Rh0 on the cross section (Nn−1, h0)

satisfies Rh0 > (n− 2), then

(Lu, u)L2 ≥ δ0‖u‖H1(Cε(N))

for all u ∈ C∞0 (Cε(N)), and some constant δ0 > 0 that depends on min
x∈N
{Rh0(x)} and

n. In particular, the operator (L,Dom(L) = C∞0 (Cε(N))) is strictly positive.

Proof: Because the manifold (Nn−1, h) is compact, and Rh0 > (n− 2), we have

min
x∈N
{Rh0(x)} > (n− 2).

And because

(n− 1)(n− 2)− 4− δ
4

[(n− 1)(n− 3) + 1] + δ → n− 2, as δ ↘ 0,

there exists δ0 > 0, such that

min
x∈N
{Rh0(x)} > (n− 1)(n− 2)− 4− δ0

4
[(n− 1)(n− 3) + 1] + δ0. (5.3.1)

77



Perelman’s λ-functional on manifolds with conical singularities Chapter 5

Set

Lδ0 = −(4− δ0)∆ +R− 1

r2
δ0.

Then

L = Lδ0 − δ0∆ +
1

r2
δ0,

and for any u ∈ C∞0 (Cε(N)),

(Lu, u)L2 =

∫
Cε(N)

(Lu)udvolg

=

∫
Cε(N)

(Lδ0u)udvolg

+

∫
Cε(N)

[(−δ0∆u)u+
1

r2
δ0u

2]dvolg

=

∫
Cε(N)

(Lδ0u)udvolg

+ δ0

∫
Cε(N)

(|∇u|2 +
1

r2
u2)dvolg

= (Lδ0u, u)L2 + δ0‖u‖H1(Cε(N)).

Thus it suffices to show that (Lδ0u, u)L2 ≥ 0.

Actually, we claim that

(Lδ0u, u)L2 ≥ C‖u‖L2 , (5.3.2)

for all u ∈ C∞0 (Cε(N)), where

C = min{min
x∈N
{Rh0(x)} − [(n− 1)(n− 2)− 4− δ0

4
((n− 1)(n− 3) + 1) + δ0], 1} > 0.
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Now we prove the claim (5.3.2). For any u ∈ C∞0 (Cε(N)), we can expand it as the

following in terms of eigenfunctions ψi(x) of operator −(4 − δ0)∆h0 + Rh0 − δ0 with

eigenvalues µi,

u =
∞∑
i=0

ui(r)ϕi(x). (5.3.3)

Then by using (5.1.1) and (5.1.2),

Lδ0u =
∞∑
i=0

[−(4− δ)u′′i (r)− (4− δ)n− 1

r
u′i(r)−

1

r2
(−µi + (n− 1)(n− 2))]ψi.

Let ũi(r) = r
n−1

2 ui(r), then we have

Lδ0u =
∞∑
i=0

[−(4− δ0)ũ′′i +
1

r2
(µi− (n− 1)(n− 2) +

4− δ0

4
(n− 1)(n− 3))ũi(r)]r

−n−1
2 ψi.

Because µi → +∞ as i → +∞, we can take large enough i0 ∈ N such that for all

i ≥ i0, µi − (n− 1)(n− 2) + 4−δ0
4

(n− 1)(n− 3) > 1.
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(Lδ0u, u)L2

=

∫
Cε(N)

(Lδ0u)udvolg

=

∫ ε

0

∫
N

{
∞∑
i=0

[−(4− δ0)ũ′′i (r) +
1

r2
(µi − (n− 1)(n− 2)

+
4− δ0

4
(n− 1)(n− 3))ũi(r)]r

−n−1
2 ψi}{

∞∑
j=0

ũj(r)r
−n−1

2 ψi}rn−1dvolh0dr

=

∫ ε

0

∞∑
i=0

[−(4− δ0)]ũ′′i (r)ũidr

+

∫ ε

0

∞∑
i=0

{ 1

r2
[µi − (n− 1)(n− 2) +

4− δ0

4
(n− 1)(n− 3)](ũi(r))

2}dr

=

∫ ε

0

∞∑
i=0

(4− δ0)(ũ′i(r))
2dr

+

∫ ε

0

∞∑
i=0

{ 1

r2
[µi − (n− 1)(n− 2) +

4− δ0

4
(n− 1)(n− 3)](ũi(r))

2}dr

=

∫ ε

0

i0∑
i=0

(4− δ0)(ũ′i(r))
2dr

+

∫ ε

0

i0∑
i=0

{ 1

r2
[µi − (n− 1)(n− 2) +

4− δ0

4
(n− 1)(n− 3)](ũi(r))

2}dr∫ ε

0

∞∑
i=i0+1

(4− δ0)(ũ′i(r))
2dr

+

∫ ε

0

∞∑
i=i0+1

{ 1

r2
[µi − (n− 1)(n− 2) +

4− δ0

4
(n− 1)(n− 3)](ũi(r))

2}dr

= I + II.
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By using Hardy’s inequality,

I =

∫ ε

0

i0∑
i=0

(4− δ0)(ũ′i(r))
2dr

+

∫ ε

0

i0∑
i=0

{ 1

r2
[µi − (n− 1)(n− 2) +

4− δ0

4
(n− 1)(n− 3)](ũi(r))

2}dr

≥
∫ ε

0

i0∑
i=0

4− δ0

4

1

r2
(ũi(r))

2dr

+

∫ ε

0

i0∑
i=0

{ 1

r2
[µi − (n− 1)(n− 2) +

4− δ0

4
(n− 1)(n− 3)](ũi(r))

2}dr

≥ {min
x∈N
{Rh0(x)} − [(n− 1)(n− 2)

− 4− δ0

4
((n− 1)(n− 3) + 1) + δ0]}

∫ ε

0

1

r2

i0∑
i=0

(ũi(r))
2dr

≥ C

∫ ε

0

i0∑
i=0

(ũi(r))
2dr,

and since µi − (n− 1)(n− 2) + 4−δ0
4

(n− 1)(n− 3) > 1 for all i > i0,

II =

∫ ε

0

∞∑
i=i0+1

(4− δ0)(ũ′i(r))
2dr

+

∫ ε

0

∞∑
i=i0+1

{ 1

r2
[µi − (n− 1)(n− 2) +

4− δ0

4
(n− 1)(n− 3)](ũi(r))

2}dr

≥
∫ ε

0

∞∑
i=i0

(ũi(r))
2dr

≥ C

∫ ε

0

∞∑
i=i0

(ũi(r))
2dr.

This proves (5.3.2). So we complete the proof.

Corollary 5.3.2 (Dai, –) If the scalar curvature Rh0 on (Nn−1, h0) satisfies Rh0 >

(n− 2), then the operator (L,Dom(L) = C∞0 (Cε(N))) has a self-adjoint strictly pos-
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itive Friedrichs extension (L̃,Dom(L̃)). Moreover, Dom(L̃) ⊂ H1(Cε(N)), and the

image Ran(L̃) = L2(Cε(N)).

Proof: The existence of the self-adjoint strictly positive and surjective extension

follows from the Neumann Theorem in [EK], because the operator (L,Dom(L)) is

strictly positive by Theorem 5.3.1. Moreover, from Theorem 5.3.1, we can obtain

that the completion of C∞0 (Cε(N)) with respect to the norm ‖u‖L = (Lu, u)L2 is a

subspace of H1(Cε(N)). Thus from the construction of the Friedrichs extension in the

proof of the Neumann theorem in [EK], we can easily see that Dom(L̃) ⊂ H1(Cε(N)).

Theorem 5.3.3 (Dai, –) If the scalar curvature of (Nn−1, h0), Rh0 > (n − 2), then

the spectrum of the Friedrichs extension of the operator −4∆ + R on (Cε(N), g =

dr2 + r2h0) consists of discrete eigenvalues with finite multiplicities

λ1 ≤ λ2 ≤ λ3 ≤ · · · ,

and λk → +∞ as k → +∞.

Moreover, eigenfunctions {ϕi}∞i=1 form a basis of L2(Cε(N)).

Proof: By the Corollary 5.3.2, the Friedrichs extension L̃ : Dom(L̃)→ L2(Cε(N))

is one-to-one and onto. And its inverse

L̃−1 : L2(Cε(N))→ Dom(L̃) ↪→ H1(Cε(N)) ↪→ L2(Cε(N))

is a self-adjoint compact operator, because the embeddding H1(Cε(N)) ↪→ L2(Cε(N))

is compact. Then the spectrum theorem of self-adjoint compact operators completes

the proof.
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5.4 Spectrum of −4∆ + R on compact manifolds

with a single conical singularity

In this section, we study the spectrum of the operator −4∆ + R on compact Rie-

mannian manifolds with a single conical singularity. By using the semi-boundedness

estimate for the operator −4∆ + R on a small finite cone, we establishing the same

estimate for the operator −4∆ + R on compact Riemannian manifolds with a single

conical singularities. And then, we prove that the spectrum of the operator −4∆ +R

on compact Riemannian manifolds with a single conical singularity consists of discrete

eigenvalues with finite multiplicities.

Theorem 5.4.1 (Dai, –) Let (Mn, g, p) be a compact Riemannian manifold with a

single conical singularity at p. If the scalar curvature Rh0 on (Nn−1, h0) satisfies

Rh0 > (n − 2), then there exists a large enough constant A, such that the operator

LA = L+ A satisfies:

(LAu, u)L2(M) ≥ C‖u‖H1(M)

for all u ∈ C∞0 (M \ {p}) and some constant C > 0. In particular, the operator

(LA, Dom(LA) = C∞0 (M \ {p})) is strictly positive.

Proof: The conical neighborhood (Up \ {p}, g|Up\{p}) of conical singularity p is

isometric to ((0, ε)×N, dr2 + r2hr), where hr = h0 + o(rα), for some α > 0. Then the

scalar curvature on the conical neighborhood is given by

Rg =
1

r2
(Rhr − (n− 1)(n− 2) + o(rα))

=
1

r2
(Rh0 − (n− 1)(n− 2) + o(rα)).

(5.4.1)
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Because Rh0 > (n− 2), there exists β(n) ∈ (0, 1) such that

Rh0 > (n− 1)[
1

β(n)2n
(n− 2)− (n− 3)]− 1.

Then there exists ε(n) > 0, such that on (0, ε(n))×N ,

β(n)2g0 ≤ g ≤ 1

β(n)2
g0,

β(n)Rh0 ≤ r2Rg + (n− 1)(n− 2) ≤ 1

β(n)
Rh0 .

For any u ∈ C∞0 ((0, ε(n))×N), we have

(Lu, u)L2(Cε(n)(N)) =

∫
Cε(n)(N)

(−4∆u+Ru)udvolg

=

∫
Cε(n)(N)

(4|∇u|2 +Ru2)dvolg

≥
∫
Cε(n)(N)

[4β(n)n|∇u|2g0
+

1

r2
β(n)nRh0u

2

+
1

r2
(−(n− 1)(n− 2))

1

β(n)n
]dvolg0

= β(n)n
∫
Cε(n)(N)

[−4∆g0u

+
1

r2
(Rg0 − β(n)−2n(n− 1)(n− 2))u]udvolg0

≥ β(n)nC1‖u‖H1(Cε(n)(N))

The last inequality follows the same argument as in theorem 5.3.1, i.e. for any u ∈

C∞0 ((0, ε(n))×N),

(Lu, u)L2(Cε(n)(N)) ≥ β(n)nC1‖u‖H1(Cε(n)(N)) (5.4.2)
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We cover the manifold M by the conical neighborhood (0, ε(n))×N of singularity

p and the interior part M0 = M\C(0, 1
8
ε(n))(N). We construct a partition of unity

subordinate to this covering as following. Let ρ1 a function on Cε(N) satisfying

ρ1(r, x) =


1, 0 < r < ε(n)

4

0, r > ε(n)
2
,

with 0 ≤ ρ1(r, x) ≤ 1. We extend ρ1 trivially to the whole M , and we still use ρ1 to

denote the extended function. Let ρ2 = 1− ρ1. Then {ρ1, ρ2} is a partition of unity

subordinate to the covering.

For any u ∈ C∞0 (M),

(LBu, u) =

∫
M

(LBu1 + LBu2)(u1 + u2)dvolg

=

∫
M

(LBu1)u1dvolg +

∫
M

(LBu1)u2dvolg

+

∫
M

(LBu2)u1dvolg +

∫
M

(LBu2)u2dvolg,

where u1 = ρ1u, u2 = ρ2u, and LB = L+B for some B > 0.

By (5.4.2), we have

∫
M

(LBu1)u1dvolg ≥ β(n)nC1

∫
M

(χ2|u1|2 + |∇u1|2)dvolg,

where C1 is a positive constant.
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Because u2 is compactly supported in M0 and R is bounded on M0, i.e. there

exists C2 < 0 such that R > C2 on M0, we have

∫
M

(LBu2)u2dvolg =

∫
M0

(−4∆u2 + (R +B)u2)u2dvolg

=

∫
M0

(4|∇u2|2 + (R +B)|u2|2)dvolg

≥ C2

∫
M0

(|∇u2|2 + χ2|u2|2)dvolg

By integration by parts,

∫
M

(LBu1)u2dvolg =

∫
M

(LBu2)u1dvolg

=

∫
M

〈∇u1,∇u2〉dvolg +

∫
M

(R +B)u1u2dvolg

=

∫
M

〈u∇ρ1 + ρ1∇u, u∇ρ2 + ρ2∇u〉dvolg

+

∫
M

(R +B)u1u2dvolg

=

∫
M

u2(∂rρ1)(∂rρ2)dvolg +

∫
Cε(N)

uρ2(∂rρ1)(∂ru)dvolg

+

∫
Cε(N)

uρ1(∂rρ2)(∂ru)dvolg +

∫
Cε(N)

ρ1ρ2|∇u|2dvolg

+

∫
M

(R +B)u1u2dvolg.

Then we have ∫
M

u2(∂rρ1)(∂rρ2)dvolg > C3

∫
M

u2dvolg,
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∫
Cε(N)

uρ2(∂rρ1)(∂ru)dvolg =

∫ ε

0

∫
N

uρ2(∂rρ1)(∂ru)rn−1dvolhrdr

= −1

2

∫ ε

0

∫
N

(∂rρ2)(∂rρ1)u2rn−1dvolhrdr

− 1

2

∫ ε

0

∫
N

ρ2(∂2
rρ1)u2rn−1dvolhrdr

− 1

2

∫ ε

0

∫
N

u2ρ2(∂rρ1)

r
(n− 1)rn−1dvolhrdr

− 1

2

∫ ε

0

∫
N

u2ρ2(∂rρ1)tr(h−1
r

∂

∂r
hr)r

n−1dvolhrdr

> C4

∫
M

u2dvolg,

for some negative constant C3 and C4.

Similarly, we have

∫
Cε(N)

uρ1(∂rρ2)(∂ru)dvolg > C5

∫
M

u2dvolg,

for some constant C5.

Thus

∫
M

(LBu1)u2dvolg >

∫
M

(ρ1ρ2|∇u|2 + (R +B)u1u2)dvolg

+ (C3 + C4 + C5)

∫
M

u2dvolg

>

∫
M

(ρ1ρ2|∇u|2 + u1u2)dvolg

+ C6

∫
M

u2dvolg,

where, C6 = C3 + C4 + C5
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Similarly, we can show

(u1, u2)H1
2 (M) < C7

∫
M

(ρ1ρ2|∇u|2 + u1u2)dvol + C8

∫
M

u2dvolg,

for some C7 > 0, such that 1
C7
< β(n)nC1, C2, and C8 > 0

Thus

∫
M

(LBu1)u2dvolg >
1

C7

(u1, u2)H1
2 (M) + (C6 −

C8

C7

)

∫
M

u2dvolg,

and therefore,

∫
M

(LBu)udvolg >
1

C7

(u, u)H1
2 (M) + 2(C6 −

C8

C7

)

∫
M

u2dvolg.

Let A = B + 2(C8

C7
− C6), then we have

∫
M

(LAu)udvolg >
1

C7

(u, u)H1
2 (M),

in particular,

(LAu, u)L2 >
1

C7

‖u‖2
L2 ,

i.e. (L = −4∆ +R,Dom(L) = C∞0 (M)) is strictly positive.

Theorem 5.4.2 (Dai, –) Let (M, g, p) be a compact Riemannian manifold with a

single conical singularity p. If the scalar curvature Rh0 on (Nn−1, h0) satisfies Rh0 >

(n − 2), then the spectrum of the Friedrichs extension of the operator −4∆ + R on

(M, g, p) consists of discrete eigenvalues with finite multiplicity

λ1 ≤ λ2 ≤ λ3 ≤ · · · ,
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and λk → +∞.

Moreover, eigenfunctions {ϕi}∞i=1 form a basis of L2(M).

Proof: The proof is the same as the proof of the Theorem 5.3.3

5.5 Asymptotic behavior of eigenfunctions of −4∆+

R on compact manifolds with a single cone-like

singularity

In this section, we obtain an asymptotic expansion for eigenfunctions of −4∆ + R

near a singularity on manifolds with cone-like singularities, on which we can explicitly

express eigenfunction in terms of some hpyergeometric functions, and eigenvalues and

eigenfunctions on the cross section.

Let (Mn, g, p) be a compact Riemannian manifold with cone-like singularity p,

and Up be a neighborhood of p so that Up\{p} is diffeomorphic to (0, ε) × N , and

on Up\{p}, g = dr2 + r2h0. Let µ1 ≤ µ2 ≤ µ3 ≤ · · · be eigenvalues of the operator

−4∆h0 +Rh0 on the Riemannian manifold (N, h0), which is the cross section of conical

part of (Mn, g, p), and ψ1, ψ2, ψ3, · · · be corresponding normalized eigenfunctions, i.e.

‖ψi‖L2 = 1.

By using the classical Sobolev embedding theorem and elliptic regularity, let s =
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2n, we have

‖ψi‖L∞ ≤ Ks‖ψi‖W s,2

≤ KsCs(‖ψi‖W s−2,2 + ‖(−4∆h0 +Rh0)ψi‖W s−2,2)

= KsCs(1 + |µi|)‖ψi‖W s−2,2

· · ·

≤ C(1 + |µi|)n‖ψi‖W 0,2

= C(1 + |µi|)n.

Let u be an eigenfunction of the operator −4∆g +R(g) with eigenvalue λ, i.e.

−4∆gu+R(g)u = λu. (5.5.1)

On the conical neighborhood Up\{p}, we do the the following expansion for the eigen-

function u:

u =
+∞∑
i=1

ui(r)ψi(x), (5.5.2)

where x is the coordinate on N .
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By plugging (5.1.1), (5.1.2), and (5.5.2) in the equation (5.5.1), we have

−4∆gu+R(g)u = −4(∂2
r +

n− 1

r
∂r +

1

r2
∆g0)

+∞∑
i=1

(uiψi)

+
1

r2
(R(g0)− (n− 1)(n− 2))

+∞∑
i=1

(uiψi)

=
+∞∑
i=1

(−4u
′′

i ψi − 4
n− 1

r
u
′

iψi − 4
1

r2
ui∆g0ψi)

+
+∞∑
i=1

(
1

r2
R(g0)uiψi − (n− 1)(n− 2)

1

r2
uiψi)

=
+∞∑
i=1

[−4u
′′

i ψi − 4
n− 1

r
u
′

iψi +
1

r2
µiψi − (n− 1)(n− 2)

1

r2
uiψi]

=
+∞∑
i=1

[−4u
′′

i − 4
n− 1

r
u
′

i −
1

r2
(−µi + (n− 1)(n− 2))ui]ψi

=
+∞∑
i=1

λuiϕi.

Thus we obtain the following equations.

−4u
′′

i − 4
n− 1

r
u
′

i −
1

r2
(−µi + (n− 1)(n− 2))ui = λui.

We rearrange it to get the equation

u
′′

i +
n− 1

r
u
′

i +
1

4
(µ− 1

r2
(λi − (n− 1)(n− 2)))ui = 0. (5.5.3)

Now let’s solve the equation (5.5.3) in three cases for different signs of λ.

Case 1: λ = 0. Then equation (5.5.3) becomes the following Euler equation.

u
′′

i +
n− 1

r
u
′

i −
1

4

1

r2
[µi − (n− 1)(n− 2)]ui = 0 (5.5.4)
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By directly solving equation (5.5.4), we obtain

ui(r) = Air
−n−2

2
+

√
µi−(n−2)

2 +Bir
−n−2

2
−
√
µi−(n−2)

2 , (5.5.5)

where Ai and Bi are some constants. And because u =
+∞∑
i=0

uiψi(x) ∈ L2(M, g),

obviously for large i, ui(r) = Air
−n−2

2
+

√
µi−(n−2)

2 , i.e. Bi = 0 for large i.

Case 2: λ > 0. In this case, we will make a transformation for our function to get

a Bessel equation.

Let

hi(r) = (

√
λ

2
)−

n−2
2 r

n−2
2 ui(

2r√
λ

).

Then

ui(r) = r−
n−2

2 hi(

√
λ

2
r),

u
′

i(r) = (−n− 2

2
)r−

n−2
2
−1hi(

√
λr

2
) +

√
λ

2
r−

n−2
2 h

′

i(

√
λr

2
),

u
′′

i (r) = (−n− 2

2
)(−n− 2

2
− 1)r−

n−2
2
−2hi(

√
λr

2
)

+
√
λ(−n− 2

2
)r−

n−2
2
−1h

′

i(

√
λr

2
) +

λ

4
r−

n−2
2 h

′′

i (

√
λr

2
).

Plugging them in the equation (5.5.3), we obtain the following Bessel equation.

h
′′

i (

√
λr

2
) +

1
√
λr
2

h
′

i(

√
λr

2
) + [1− 1

λr2

4

1

4
(µi − (n− 2))]hi(

√
λr

2
) = 0.

Thus

hi(

√
λr

2
) = AiJ 1

2

√
µi−(n−2)

(

√
λr

2
) +BiY 1

2

√
µi−(n−2)

(

√
λr

2
),

where Ai and Bi are some constants, and Jν(z) and Yν(z) Bessel functions of first
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and second kind respectively. Hence we obtain

ui(r) = Air
−n−2

2 J 1
2

√
µi−(n−2)

(

√
λr

2
) +Bir

−n−2
2 Y 1

2

√
µi−(n−2)

(

√
λr

2
). (5.5.6)

Bessel functions have the following asymptotic behavior. If ν → +∞ through real

values, with z 6= 0 fixed, then

Jν(z) ∼ 1√
2πν

(
ez

2ν
)ν ,

Yν(z) ∼ −
√

2

πν
(
ez

2ν
)−ν .

Thus as in Case 1, for large i, ui(r) = Air
−n−2

2 J 1
2

√
µi−(n−2)

(
√
λr
2

), i.e. Bi = 0.

Case 3: λ < 0. We use the results in [Bat53]. If 1 +
√
µi − (n− 2) is not an

integer, then

ui =Air
−n−1

2 (
√
−λr)

1+
√
µi−(n−2)

2 e−
√
−λr
2

+∞∑
k=0

(
1+
√
µi−(n−2)

2
)k

(1 +
√
µi − (n− 2))k

(
√
−λr)k

k!
(5.5.7)

+Bir
−n−1

2 (
√
−λr)

1−
√
µi−(n−2)

2 e−
√
−λr
2

+∞∑
k=0

(
1−
√
µi−(n−2)

2
)k

(1−
√
µi − (n− 2))k

(
√
−λr)k

k!
,

where Ai and Bi are some constants, and (x)k = x(x+ 1) · · · (x+ n− 1).
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If 1 +
√
µi − (n− 2) = 1 +m is a positive integer, then

ui =Air
−n−1

2 (
√
−λr)

m+1
2 e−

√
−λr
2

+∞∑
k=0

(1+m
2

)k

(1 +m)k

(
√
−λr)k

k!
(5.5.8)

+Bir
−n−1

2 (
√
−λr)

1+m
2 e−

√
−λr
2

(−1)m−1

m!Γ(1−m
2

)
{(

+∞∑
k=0

(1+m
2

)k

(1 +m)k

(
√
−λr)k

k!
) log(

√
−λr)

+
+∞∑
k=0

(1+m
2

)k

(1 +m)k
(ψ(

1 +m

2
+ k)− ψ(1 + k)− ψ(1 +m+ k))

(
√
−λr)k

k!

+
(m− 1)!

Γ(1+m
2

)

m−1∑
k=0

(1−m
2

)k

(1−m)k

(
√
−λr)k−m

k!
},

where Ai and Bi are some constants, and ψ(x) is the logarithmic derivative of the

Gamma function Γ(x). And as in the previous cases, for the large i, Bi = 0.

Combining the above explicit computations and estimates for eigenfunctions ϕi,

we obtain the following asymptotic behavior for eigenfunction u.

Theorem 5.5.1 (Dai, –) Let (Mn, g, p) be a compact Riemannian manifold with a

single cone-like singularity p with Rh0 > (n − 2), and u be an eigenfunction of the

operator −4∆g + Rg on M . Then u has an asymptotic expansion at the conical

singularity p as

u ∼
+∞∑
j=1

+∞∑
l=0

pj∑
p=0

rsj+l(lnr)puj,l,p,

where uj,l,p ∈ C∞(Nn−1), pj = 0 or 1, and sj = −n−2
2
±
√
µj−(n−2)

2
, where µj are

eigenvalues of −∆h0 +Rh0 on Nn−1.

Proof: On the conical part Up \ {p}, as above we expand an eigenfunction with

eigenvalue λ as

u(r, x) =
∞∑
i=1

ui(r)ψi(x).
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In the rest of the proof, we set

νi =
√
µi − (n− 2)

.

If λ = 0, by the solution (5.5.5), there exists i0 ∈ N such that for all i ≥ i0,

ui(r) = Air
−n−2

2
+
νi
2 .

For a fixed r0, u(r0, x) ∈ L2(N), and

+∞ > ‖u(r0, x)‖L2(N) =
∞∑
i

|ui(r0)|2 ≥
∞∑
i=i0

|Ai|2r−(n−2)+νi
0 .

Then for all r < r0,

∞∑
i=i0

|ui(r)ψi(x)| ≤ C
∞∑
i=i0

|Ai|r−
n−2

2
+
νi
2 (1 + |µi|)n

= C
∞∑
i=i0

|Ai|r
−n−2

2
+
νi
2

0 (1 + |µi|)n(
r

r0

)−
n−2

2
+
νi
2

≤ C(
∞∑
i=i0

|Ai|2r−(n−2)+νi
0 )

1
2 (
∞∑
i=i0

(1 + |µi|)2n(
r

r0

)−(n−2)+νi)
1
2

< +∞

If λ > 0, by the solution (5.5.6), there exists i1 ∈ N such that for all i ≥ i1,

ui(r) = Air
−n−2

2 J 1
2
νi

(

√
λr

2
) = Air

−n−2
2 (

√
λr

4
)
νi
2

∞∑
m=0

(
√
λr
4

)2m

m!Γ(1
2
νi +m+ 1)

.

95



Perelman’s λ-functional on manifolds with conical singularities Chapter 5

Fix r0 > 0. Then for r ≤ r0 and i > i1,

|Ai|r−
n−2

2
1

Γ(1
2
νi + 1)

(

√
λr

4
)
νi
2 < |ui(r)| < |Ai|r−

n−2
2

C(r0)

Γ(1
2
νi + 1)

(

√
λr

4
)
νi
2 ,

where C(r0) = e
λr20
16 . Then

+∞ > ‖u(r0, x)‖L2(N) =
∞∑
i=0

|ui(r0)|2 ≥
∞∑
i=i1

|Ai|2r−(n−2)
0

1

(Γ(1
2
νi + 1))2

(

√
λr0

4
)νi .

Thus for all r < r0,

∞∑
i=i1

|ui(r)ϕi(x)| ≤ C(r0)C
∞∑
i=i1

|Ai|r−
n−2

2
1

Γ(1
2
νi + 1)

(

√
λr

4
)
νi
2 (1 + |µi|)n < +∞.

If λ < 0, by the solutions (5.5.7) and (5.5.8) there exists i2 ∈ N such that for all

i ≥ i2

ui = Air
−n−1

2 (
√
−λr)

1+νi
2 e−

√
−λr
2

∞∑
k=0

(1+νi
2

)k

(1 + νi)k

(
√
−λr)k

k!
.

Then for r < r0 and i > i2

|Ai|r−
n−1

2 (
√
−λr)

1+νi
2 ≤ |ui(r)| ≤ e

√
−λr0
2 |Ai|r−

n−1
2 (
√
−λr)

1+νi
2 .

Thus as above,

∞∑
i=i2

|ui(r)ψi(x)| ≤ e
√
−λr0
2 C

∞∑
i=i2

|Ai|r−
n−1

2 (
√
−λr)

1+νi
2 (1 + |µi|)n < +∞.

Hence in all three cases,
∑∞

i=1 ui(r)ψi(x) absolutely converges to u(r, x) for all

r < r0 uniformly about x ∈ N . By plugging (5.5.5), (5.5.6), (5.5.7) or (5.5.8) in

u(r, x) =
∑∞

i=1 ui(r)ψi(x), we obtain the asymptotic expansion.
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Similarly, we can show that derivatives of the expansion series with respect to r

variable also absolutely converge. And then we complete the proof.

Corollary 5.5.2 (Dai, –) Let (Mn, g, p) be a compact Riemannian manifold with a

single cone-like singularity p with Rh0 > (n − 2). The eigenfunctions of −4∆g + Rg

on satisfy

u = o(r−
n−2

2 ), as r → 0.

Consequently, the first eigenvalue is simple.

Proof: By combining the fact that eigenfunctions in H1(M) and the asymptotic

expansion in Theorem 5.5.1, we obtain the asymptotic order in the Corollary. And

this asymptotic order enable the proof of Courant’s nodal domain theorem in [Cha]

work on manifolds with a single cone-like singularity with Rh0 > n − 2. Thus, the

first eigenvalue is simple.

5.6 Asymptotic behavior of eigenfunctions of −4∆+

R on compact manifolds with a single conical

singularity

In this section, we obtain an asymptotic order for eigenfunctions near the singularity

on manifolds with a single conical singularity. For this purpose, we first establish

Sobolev inequality and elliptic estimate for weighted norms on a finite cone analogous

to that on Rn in [Bar86].

We first work on a finite cone (Cε(N) = (0, ε) × N, g = dr2 + r2h0). We define
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weighted uniform Ck-norms on a finite cone Cε(N) as

‖u‖Ckδ = sup
Cε(N)

(
k∑
i=0

ri−δ|∇iu|), (5.6.1)

for k ∈ N and δ ∈ R. When k = 0, we use Cδ to denote C0
δ . Then similar to (iv)

of Theorem 1.2 in [Bar86], we use scaling technique to obtain the following weighted

Sobolev inequality.

Lemma 5.6.1 (Dai, –) If u ∈ Hk
δ (Cε(N)), and k > n

2
+ l, then

‖u‖Clδ(Cε(N)) ≤ C‖u‖Hk
δ (Cε(N)), (5.6.2)

for some constant C = C(n, k, δ, ε).

Moreover,

|∇lu(r, x)| = o(r−l+δ) as r → 0.

Proof: Let u(r, x) be a function on the finite cone Cε(N), where x is a coordinate

on N , and set

ua(r, x) = u(ar, x), (5.6.3)

for a positive constant a. And let Cr1,r2 = (r1, r2)×N be a annulus on the finite cone

Cε(N), for r1 < r2 ≤ ε. Then by a simple change of variables, we have

‖u‖Hk
δ (Car1,ar2 ) = a−δ‖ua‖Hk

δ (Cr1,r2 ), (5.6.4)

and

‖u‖Clδ(Car1,ar2 ) = a−δ‖ua‖Clδ(Cr1,r2 ). (5.6.5)

Let Cj = ((1
2
)j+1ε, (1

2
)jε) × N be an annulus on the cone Cε(N). For any fixed

98



Perelman’s λ-functional on manifolds with conical singularities Chapter 5

j ∈ N, by choosing a = (1
2
)j, r1 = (1

2
)ε, and r2 = ε in (5.6.4) and (5.6.5), and using

the usual Sobolev inequality, we have

‖u‖Clδ(Cj) = (
1

2
)−jδ‖u( 1

2
)j‖Clδ(C0)

≤ (
1

2
)−jδC‖u( 1

2
)j‖Hk

δ (C0)

= C‖u‖Hk
δ (Cj)

≤ C‖u‖Hk
δ (Cε(N)),

where the constant C is independent of j. Therefore, we obtain the Sobolev inequality

‖u‖Cδ(Cε(N)) ≤ C‖u‖Hk
δ (Cε(N)).

Because ‖u‖Hk
δ (Cε((N)) < ∞ we have ‖u‖Hk

δ (Cj)
= o(1) as j → ∞. Therefore, we

have |∇lu(r, x)| = o(r−l+δ) as r → 0, since sup
( 1

2
)j+1ε<r<( 1

2
)jε

rl−δ|∇lu(r, x)| ≤ ‖u‖Clδ(Cj) ≤

C‖u‖Hk
δ (Cj)

.

Similar to Proposition 1.6 in [Bar86], we also have the following elliptic estimate.

Lemma 5.6.2 (Dai, –) If u ∈ Hk−2
δ (Cε(N)), and Lu ∈ Hk−2

δ−2 (Cε(N)), then

‖u‖Hk
δ (Cε(N)) ≤ C(‖Lu‖Hk−2

δ−2 (Cε(N)) + ‖u‖Hk−2
δ (Cε(N))),

for some constant C = C(n, k, δ, ε).

Proof: The inequality follows from the usual interior elliptic estimates and the

scaling technique as in the proof of Lemma 5.6.1.

Now we consider finite asymptotic cones. Let (Cε(N) = (0, ε)×N, g = dr2 +r2hr)

be a finite asymptotic cone, where hr is a family of Riemannian metrics onN satisfying
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hr = h0 + o(rα) as r → 0 for some α > 0 and a Riemannian metric h0 on N . On

the finite asymptotic cone, we can also define weighted Sobolev norms and weighted

uniform Ck-norms the same as ones on a finite cone. We use ‖ · ‖H̃k
δ (Cε(N)) and

‖ · ‖C̃kδ (Cε(N)) to denote weighted norms on the finite asymptotic cone.

We make an extra assumption for the asymptotically conical metric g = dr2 +r2hr

as

|∇i+1(hr − h0)| ∈ C−i(Cε(N)), for 0 ≤ i ≤ n

2
+ 2, (5.6.6)

where the covariant derivative ∇ and the norm | · | of tensors are with respect to the

exactly conical metric dr2 + r2h0. Then asymptotic condition (5.6.6) of the metric

implies that ri|∇iω| is bounded for all 0 ≤ i ≤ n
2

+ 2, where ω if the difference tensor

between the Levi-Civita connection for the asymptotically conical metric and the

one for the exactly conical metric. And then as arguments in the proof of Theorem

5.2.1, for sufficiently small ε, these weighted norms with respect to the asymptotically

conical metric on Cε(N) are equivalent to corresponding weighted norms with respect

to the exact cone metric on Cε(N). Therefore, by Lemma 5.6.1 and Lemma 5.6.2,

we have the following Sobolev inequality and elliptic estimates on a sufficiently small

finite asymptotic cone.

Lemma 5.6.3 (Dai, –) If ε is sufficiently small, u ∈ H̃k
δ (Cε(N)), and k > n

2
+ 1,

then

‖u‖C̃lδ(Cε(N)) ≤ C‖u‖H̃k
δ (Cε(N)), (5.6.7)

for l = 0, and 1, and some constant C = C(n, k, δ, ε).

Lemma 5.6.4 (Dai, –) If ε is sufficiently small, u ∈ H̃k−2
δ (Cε(N)), and Lu ∈
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H̃k−2
δ−2 (Cε(N)), then

‖u‖H̃k
δ (Cε(N)) ≤ C(‖Lu‖H̃k−2

δ−2 (Cε(N)) + ‖u‖H̃k−2
δ (Cε(N))),

for 2 ≤ k ≤ n
2

+ 2, and some constant C = C(n, δ, ε), where L is also the operator

−4∆ +R with respect to the asymptotically conical metric.

These Sobolev inequality and elliptic estimates imply the following asymptotic

order for eigenfunctions of −4∆ +R near the tip of a finite asymptotic cone.

Theorem 5.6.5 (Dai, –) Let u be an eigenfunction of L = −4∆ + R on a finite

asymptotic cone (Cε(N), dr2 + r2hr) with Rh0 > (n− 2) and (5.6.6). Then

|∇iu| = o(r−
n−2

2
−i), as r → 0,

for i = 0 and 1.

Proof: Because we only consider the asymptotic behavior of the eigenfunction

near the tip of the cone, without loose of generality, we can assume ε is sufficiently

small so that Lemma 5.6.3 and Lemma 5.6.4 hold on Cε(N). In the proof of Theorem

5.3.3, we have obtained that the eigenfunction u ∈ H̃1(Cε) = H̃1
1−n

2
(Cε(N)). Then

Lu ∈ H̃1
1−n

2
(Cε(N)) ⊂ H̃1

1−2−n
2
(Cε(N)), since Lu is a scale multiple of u. Then

by Lemma 5.6.4, u ∈ H̃3
1−n

2
(Cε(N)). By applying this elliptic bootstrapping, we

obtain that u ∈ H̃
[n
2

]+2

1−n
2

(Cε(N)). Therefore, by Lemma 5.6.3, u = o(r−
n−2

2 ), and

|∇u| = o(r−
n−2

2
−1), as r → 0.

As a direct consequence of Theorem 5.6.5, eigenfunctions of−4∆+R on a manifold

with a single conical singularity have an asymptotic behavior near the singularity.

Corollary 5.6.6 (Dai, –) Let (Mn, g, p) be a compact Riemannian manifold with a

single conical singularity p with Rh0 > (n− 2) and (5.6.6) near the singularity p. The
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eigenfunctions of −4∆g +Rg on satisfy

|∇iu| = o(r−
n−2

2
−i), as r → 0,

for i = 0 and 1. Consequently, the first eigenvalue is simple.

5.7 λ-functional on manifolds with a single conical

singularity

In this section, we define the Perelman’s λ-functional on manifolds with a single

conical singularity and obtain its first and second variation formulae as an application

of spectrum properties of the operator −4∆ +R we obtained in previous sections.

Let (Mn, g, p) be a compact Riemannian manifold with a single conical singularity

at p with Rh0 > (n − 2) and (5.6.6) near p. We define the λ-functional as the first

eigenvalue of −4∆+R. Let u be the corresponding normalized positive eigenfunction,

i.e.
∫
M
u2dvolg = 1 and

−4∆u+Ru = λu. (5.7.1)

Let u = e−
f
2 , then (5.7.1) becomes

λ = 2∆f − |∇f |2 +R. (5.7.2)

Let g(t) for t ∈ (−τ, τ) be a smooth family of metrics on Mn with a single conical

singularity at p satisfying Rh0(t) > (n−2), and (5.6.6) near p for all g(t), and g(0) = g.

Differentiating (5.7.2) in t gives

λ̇ = 2∆̇f + 2∆ḟ + Ṙ− ˙(|∇f |2), (5.7.3)
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where “upperdot” denotes the derivative with respect to t at t = 0. Multiplying the

equation (5.7.3) by e−f and then integrating over Mn, we have

λ̇ =

∫
M

(2∆̇f + 2∆ḟ + Ṙ− ˙(|∇f |2))e−fdvolg. (5.7.4)

Let’s look at the second term in the integral in (5.7.4).

∫
M\Cε(N)

2∆ḟ e−fdvolg =

∫
∂Cε(N)

(∂rḟ)e−frn−1dvolhε

−
∫
M\Cε(N)

2〈∇ḟ ,∇f〉e−fdvolg

= o(ε−(n−2)+(n−1)−1)

−
∫
M\Cε(N)

2〈∇ḟ ,∇f〉e−fdvolg

→ −
∫
M

2〈∇ḟ ,∇f〉e−fdvolg as ε→ 0,

where the boundary goes away along the limit because of the asymptotic behavior of

the eigenfunction in Theorem 5.6.6.

For other terms, plug the standard variation formulae for the scale curvature R

and the Laplacian ∆ (see [Bes87] or [DWW05]) into (5.7.4). Then similar to the

second term when we do integration by parts all boundary terms go away. Therefore,

we obtain the same first variation formula as that on the smooth compact manifolds.

Proposition 5.7.1 (Dai, –)

λ̇ =

∫
M

〈−Ricg −Hessgf, h〉ge−fdvolg, (5.7.5)

where h = ġ.
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Corollary 5.7.2 (Dai, –) The critical points of λ-functional are Ricci-flat metrics

with a single conical singularity at p.

Proof: By Proposition 5.7.1, a critical point is a metric g with a single conical

singularity at p satisfying

−Ricg −Hessgf = 0.

∫
M\Cε(N)

∆(e−f )dvolg =

∫
∂Cε(N)

∂r(e
−f )rn−1dvolhε

= o(r−(n−2)−1+(n−1))

= o(1)→ 0 as r → 0,

i.e.
∫
M

∆(e−f )dvolg = 0. Therefore, the proof of Proposition 1.1.1 in [CZ06] applies

here and completes the proof.

Proposition 5.7.3 (Dai, –) At a critical point, i.e. a Ricci-flat metric g with a single

conical singularity, the second variation formula is given by

λ̈ =

∫
M

〈−1

2
∆L,gh+ δ∗gδgh+

1

2
∇2
g(νh), h〉ge−fdvolg, (5.7.6)

where ∆gνh = −δg(δgh).
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[BFGK91] Baum, H., Friedrich, Th., Grunewald, R., Kath, I.: Twistors and Killing
Spinors on Riemannian Manifolds. Teubner-Verlag Leipzig / Stuttgart
(1991)

[BP03] Botvinnik, B., Preston, B.: Conformal Laplacian and Conical Singu-
larities. Proceeding of the School on High-Dimensional Manifold Topol-
ogy, ICTP, Trieste, Italy, World Scientific (2003), also arXiv: math.
DG/0201058 v.2 8 (2002)
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