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Linear Stability of Stationary Solutions of the
Vlasov-Poisson System in Three Dimensions

Jiirgen Batt,* Philip J. Morrison.! and Gerhard Rein*

Abstract

Rigorous results on the stability of stationary solutions of the Vlasov-Poisson system
are obtained in both the plasma physics and stellar dynamics contexts. It is proven
that stationary solutions in the plasma physics (stellar dynamics) case are linearly
stable if they are decreasing (increasing) functions of the local, i.e. particle, energy.
The main tool in the analysis is the free energy of the system, a conserved quantity.
In addition, an appropriate global existence result is proven for the linearized Vlasov-
Poisson system and the existence of stationary solutions that satisfy the above stability

condition is established.
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1 Introduction

The evolution considered in this paper is governed by the Vlasov-Poisson system,
OWf+v-0cf—0,U-0,f=0,
Al = dr (p+ + 'yp) .
plt )= [ St ,v)do,

where ¢ > 0 denotes time, r € IR? position, and v € IR? velocity. For ¥ = —1 the system
describes a collisionless plasma of electrons, which move in an electrostatic field that arises
self-consistently from the electron spatial charge density p(¢,x) and a fixed ion background
with spatial charge density p* = p*(z) > 0. The case where v = 1 and p* is set to zero
describes a collisionless ensemble of self-gravitating point masses, e.g. stars in a galaxy or
galaxies in a galactic cluster. In this case p(f,x) represents the spatial mass density. The
function f = f(t,x,v) denotes the phase space density of either the electrons or stars, while
—U or U denotes the electrostatic or gravitational potential respectively.

The initial value problem for this system, where the initial phase space density f(0, z,v) =
f(.r, v) is prescribed, is now well understood, and the existence of global, classical solutions
for C'' data with appropriate decay at infinity is established [10, 20, 25, 30, 32].

However, the above rigorous results lend limited information about the qualitative behav-
ior of the solutions. The purpose of the present investigation is to clarify the question of sta-
bility of certain stationary solutions. Two main stability concepts have to be distinguished:
A stationary solution is nonlinearly stable if solutions of the nonlinear Vlasov-Poisson system
remain arbitrarily close to the stationary solution in some norm for all times, provided the

Vlasov-Poisson solutions start sufficiently close to the stationary solution. The stationary
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solution is linearly stable if the solutions of the nonlinear system are replaced by the solu-
tions of the corresponding linearized problem in the above “definition.” Obviously, a global
existence result — at least for initial data close to the steady state under cousideration —
is an integral part of both stability concepts.

If the solution is written as fo + f(1), where [y is the distribution function of the steady
state, and the term that is quadratic in f(f) is neglected, one obtains the linearized Vlasov-

Poisson system:
Of +v-0uf —0Us-0of =0.U;- 0, fo,
Al g = drypy
prt.e) = /f(f,x,v)(lv,
where the steady state ( fo, () satisfies the stationary Vlasov-Poisson system:
vedefo—0:Up 0y fo =0,
AUy = 4m(p™ +7po)

po(z) := /fo(r,v)dv .

Stability conditions are often expressed in terms of how f; depends on the local or particle
energy E(z,v):= v’ 4+ Uy(x). Since E and, for spherical symmetry where Us(z) = Uo(|z]),
also F':= |z| x v? are constant along the characteristics of the stationary Vlasov equation,
it is natural to consider fo(z,v) = ¢(F) or fo(z,v) = ¢(E, F) with some function ¢. The
present work is restricted to the first case.

There exists a large number of investigations of both linear and nonlinear stability, cf. [1,
2, 11,12, 13, 16, 18, 19, 21, 33, 34, 35]. The general and long standing opinion seems to be

that — both in the plasma physics and in the stellar dynamics cases — a steady state is stable




if ¢ is a decreasing function of the energy. Although these results are physically appealing
and plausible, a distinction must be made between these results and rigorous mathematics.
(Note. too, that certain conclusions drawn for anisotropic spherical systems are admittedly
contradictory [13, p. 308].) Concerning nonlinear stability we mention the following rigorous
results: In [9] it is shown, for the plasma physics case with spatial periodicity, that spatially
homogeneous steady states are nonlinearly stable if ¢ is decreasing; the analogous result for
the relativistic Vlasov-Maxwell system is shown in [23]. Both results are based on using the
total energy of the system as a Lyapunov function, cf. also [26]. As for linear stability, we are
not aware of any rigorous results. [t is important to point out that in infinite dimensional
dynamical systems such as the Vlasov-Poisson system, the relationship between the two
concepts of stability is in general not clear.

The present investigation is intended to fill part of the gap between what is done in
more physically motivated papers and what is mathematically established. We proceed as
follows: In the next section the basic assumptions on the steady states under consideration
are collected. In the third section we prove a global existence and uniqueness result for the
linearized Vlasov-Poisson system. The problem here is two-fold. First, the solution concept
has to be strong enough to yield the existence of a conserved quantity, the free energy of the
system, which is investigated in the fourth section. Second, we have to be able to linearize
around steady states where ¢ is discontinuous, since in the stellar dynamics case we obtain
linear stability if ¢’ > 0 on its support, and since the steady state has to have finite total
mass this necessitates a jump discontinuity of ¢. For the plasma physics case we obtain linear
stability if ' < 0 on its support. This stability analysis is carried out in the fifth section.
Finally, we show that there actually exist steady states that satisfy our assumptions. This
is necessary since in the plasma physics case the existence of steady states in the above
situation has not yet been demonstrated; however, we refer to [6, 14, 15, 31] for related

results. In the stellar dynamics case the polytropes, which are investigated in [7] and [3], are



not examples of stationary solutions that satisfy our assumptions.

2 Assumptions on the stationary solutions
We consider stationary solutions ( fy, {'g) of the Vlasov-Poisson system such that

{ .
/.U(J', l‘) = Q (31’2 + (U(l)) U E IRJ )

where o satisfies the assumptions
(ol) 0o € Lig.(R) . 020,
(02) Eg:=inf{E € R|o(E')=0ae for £'>E} €]~ >,

(03) 0 € (] — 20, £y[) with o' € LL (] = 20, Eg)),

loc
and [ satisfies the assumptions
(Ul) Uy € C*IR?),
(U2) Uy is bounded; Uiy 1= inf ¢ Uo(x) < Eo,
(U3) the set B := {(x, v) € R® | %v"2 + Up(z) < EO} is bounded, and 9B has measure zero.

Here 0 € Li;.(IR) means that o)y € L>(K) for every compact interval K C R, and L}, (] -
0, Ey]) is defined analogously.

We write (fo,Uy) € S if (fo,0) is a stationary solution of the Vlasov-Poisson system
satisfying the above assumptions. In Sec. 6 we show that stationary solutions of this type
exist both in the plasma physics and in the stellar dynamics cases.

Obviously, for (fo,ly) € S there exists a radius Ry > 0 such that fo(z,v) = 0 for
[z| > Ro, and

/fu(.r, v)dvdr < vol(B) sup oF) < oo,
E€[U i Eo)



i.e. the steady states under consideration always have finite radius and finite total mass or
charge. Also

ko
/ lo"(E(x,v))|dv = 471'/ o' (EV\2(E — Uy(r))dE
R Up(x)

< dm/2(Eo = Unan) / | dE

ITU n

< 20, = € R?,

and

/R6 16/(E(2))]d= < (47)2\/2(E mm/ clE/ r2dr < oo ;

Il’\lll

z:= (z,v) € R®. Throughout the paper constants which depend only on the steady state
under consideration — such as the above integrals — and which may change from line to

line, are denoted by C.

3 Global existence for the linearized Vlasov-Poisson
system

Let (fo,Up) € S and let t — fy+ f(t) be a solution of the Vlasov-Poisson system with initial
condition fo + f If the term which is quadratic in f(t) in the Vlasov equation is neglected,

we arrive at the linearized Vlasov-Poisson system for the (small) perturbation f(t)

Of +v-0.f — 0Uo-0uf = 0uUs - B fo (3.1)
AUy =4rypy , (3.2)
0) = [ flt,zv)do, (33)
together with the initial condition f(0) = fo Assuming that {/; vanishes at infinity, we obtain
Ug(t,x) = —y ps(t,y) dy, r € R®. (3.4)
lz -yl



Consider the system of characteristics corresponding to (3.1)
r=uv, v=—00(x). (3.5)

Due to the regularity of (7, there exists for every + € R and z = (x,¢) € R® a unique
global solution Z(-,t,z) = (X V)(-.t,x,v) of (3.5) with Z(¢,t,z) = z. The mapping Z is
continuously differentiable in all variables and Z(s,4,-) : R® — IR® is a measure preserving

diffeomorphism for all s, ¢ € IR. Using the flow Z, Equ. (3.1) can be written in the form

{ _ 1
= s, Z(s,,2)) = (0:U4(5) - 0ufo)(Z(s,1,2)) s, t € R, = € R,

ds

which upon integration yields
[} [ . -
f(t.2) = f2(0,1,2)) +/ (0:U4(5) - B fo) (Z(s,t,2))ds, £2 0, = € RE.
0

Since for steady states of class S we have fy(r,v) = ¢ (% v? + L"o(x)) and since the energy

E(r,v) = % v? + y(r) is invariant under the characteristic flow, the above relation becomes
0 t

fits2) = R2(0.,2)) + 9(B()) [ (Bes(8) - 0) (ZUs,1,2))ds, 120, = € R (3.6)
0
This motivates the following definition:

Definition 3.1 Let f € L'(IR®). A function f : [0,00[xR® — IR is a solution of the

0

linearized Vlasov-Poisson system with initial value f iff
(i) f € C([0,00], L'(R%)),

(i1) ps € C([0;00[, L= (IR?)).

(iii) U; € C([0,00[, CHIR?)),

(iv) f satisfies (3.6) fort >0 and = ¢ 0B,

(v) f(0)=f



Here p; and Uy are defined by Eqn. (3.3) and (3.4) respectively, and C'}(IR®) denotes the space

of continuously differentiable functions which are bounded together with their first derivatives.

Note that a solution in the above sense satisfies the linearized Vlasov-Poisson system

classically if fand ', are sufficiently regular.

Theorem 3.2 Let (fy,Uy) € S and let foé L'Y(IR®) be a pointwise defined, R-valued function

such that fo Z(0,-) satisfies conditions (i) and (ii) of Definition 3.1. Then there erists a
unique solution of the linearized Vlasov-Poisson systemn with initial value f
Proof : We shall construct a converging sequence of iterates in the set
M .= {g . [0, o[ xR" — IR | ¢ satisfies (i), (ii). (v) of Definition 3.1}.
Obviously, f; := j?'o Z(0,-) € M. Let g € M. Then (i) implies that
py € C([0,00[, L'(IR?))
and the well-known estimates, cf. (4],
U, (Dlle < 2027) Pllp (D1 (0T (3.7)
10Uy ()1 < 320 llpy (DI Nlpy (DI
yield (iii) for U/,. Define
(To)t,2) = flt ) + $(EE) [ (0.U,(8) - 0)(Z(s,t,2))ds, 120, = ¢ OB
and zero else. The estimate

Je

¢"(E(z))/0t ((),.Ug(s) . v)(Z(s, t,z))ds|dz

t
< [ EEDIdz suplel [10:U;(3)]nds

t
<C / log ()12 [1py ()12 ds

8



shows that (T¢)(t) € LY(IR®) — recall that constants denoted by (' may depend on the

steady state under consideration. Let 0 < 7 < {, then

t
1T} = (TH £ NAD = L+ C 10 (3) el
+/ / lo'(E(=) [! () U(s) )(Z(s,l,:)) — (f)f(«"y(.s)-v)(Z(s,T.,:)).d::l.c
—0forr —t,

since f; satisfies condition (i) and (.0, (s)-v)(Z(s. 7, 2)) is uniformly continuous on [0, t]? x B.

The case 7 > t is analogous. and thus T'¢ satisfies condition (i). Next observe that

P10 S o)+ C [ 1OEENd [ 1025 ds

t
< lps(ta)l + ci'/o 10U, ()]s |

which implies that p,(t) € L>(IR?) for ¢ > 0. Furthermore, for 7 < t,
. i - .
log(t) = py(T)loe < llps(t) = pr (Tl + C /r 10: Uy ()| o ds

+C / sup] () Ug(s) - )(Z(Satw"))— (0rUy(3)'v)(Z(s’T’z))l ds

:eB
—0forr —t,
where the first term converges by the assumption on fg, the second converges by (iii) and the
last by the same argument as above. Since the case 7 > f is analogous, we have (ii), and

(v) being obvious we have shown that Tg € M, i.e. T maps the set M into itself. Now let

J1,92 € M, then the above estimates show that
t
1(Tg1)(t) = (Tg2)(t)Ily < ('/0 19 (3) = poz ()Z2Mlgn(s) — ga(s)1}dls

and

o7 () = P13l < € [ N000(5) = a5 L gr () = gl



Hence. if we define fay; := Tfa, n > 1, it follows that there exist functions f &
([0, 00[, L'(IR®)) and p € C([0,oc[, L*(IR?)) such that fu(t) — f(¢) in L'(IR®), {-locally
uniformly on [0,00[ and p,(t) — p(t) in L=(IR*), t-locally uniformly on [0.0c[. Yince
pr(t) = pp(t) in LYIR®) we have p = p; and py,(t) — pg(t) in LY(IR*) N L=(IR?), t-
locally nniformly on [0, 5o[ . This implies that {7y (1) — U/,(t) in C'}{IR?), t-locally uniformly

on [0, ~o[. Passing to the limit in the relation
t
fasilti2) = Filt,2) +(,>'(E(:))/O (8.Us(5) - ) (Z(s,t,2))ds, £ 20, = ¢ DB,
we obtain
t
flt,z) = f{Z(0.t,2)) + o’(li(:))/ (()IUI(S) : v)(Z(s,t,:))d.s, t>0, ¢ 0B
(0]
after redefining f on a set of measure zero. Since condition (v) is clear, f is a solution in
the sense of Def. 3.1. Uniqueness of the solution is obvious. a
Corollary 3.3 The solution [ obtained in Thm. 3.2 has the following properties for t > 0:
(a) f(t,2) = fD(Z(O,t,:)) for = ¢ B, in particular, zfjg vanishes outside B then so does
f(t).

(b) 5 (1, 2(4,0,)) = (B2 (BU(0) - ) (2(.0,2)), = ¢ 8B,

(c) /f(:)d::/f(t,:)dz.

(d) [ffhas compact support or vanishes sufficiently rapidly at infinity then
/Uf(t,.r)f(t,z)dz = —%/|(()1Uf(t,$)|2da: .

Proof : (a) is obvious, (b) follows from replacing z in (3.6) by Z(¢,0,z) and differentiating
the resulting equation, (¢) follows by integrating (3.6) with respect to z and using the fact
that the flow Z preserves measure and that the term 9,U(s,z) - v is odd in v; note that the

set B is invariant with respect to (z,v) — (z,—v).

10



sl

(d) If ps(t) is, in addition, Holder-continuous, then we have

/Uf(t,x)f(t,z) dz = /Uf(t,a:)pf(t,x)d:c

= lim Us(t,z)py(t,z) dz = L lim Us(t,z) A Ug(t,z) dz

1= Jiz|<r 4y r=0 Jiglgr

r

4 v-+o00

——Z— i T ) -nlx wl(z) — 2 T
= X lim l/lxlw Us(t, 2)0:Us(t,z) - () dw(z) /MST 10,U,(t, z)| d.]

- _T
- Mfla,U,(t,xn dz

if the decay of Us(t,z)d.Us(t,z) at spatial infinity is such that the boundary term vanishes;

if fhas compact support then Us(t,z)d:Us(t,z) = O(|z|~ )

continuous we can use a mollification of p;(t) to get the result.

4 Conservation of free energy

. In case py(t) is not Holder-

a

Theorem 4.1 Let (fo,Us) € S and let | € LY(IR®) be as in Thm. 3.2 with f(z) = 0 for

z¢ B and
f2(2)
d
s [WEE T

Then

/|¢’(E(z dz < o0, 120,
and

2

F(t) = — qu((i~ dz +/c (t,2)f(t,z)dz = F(0), t 2 0.

Here the quotient is defined for every z ¢ 08 by

gz(z) 00 for ¢'(E(z)) =0 and g(2) # 0
¢'(E z)) 0 for ¢'(E(z)) arbitrary and g(z) =0 .

11
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Proof : Assume that

B |¢'(E(2))
for some t > 0, then with Cor. 3.3,

o f2(t,Z( F(t, Z(8,0, 2)) f(t, Z(8,0,2)) , .,
/ & 7// |X(t0,~—\(tOz)| dzdz

Z 2 f
=—B¢' (E(z) // ] SZZ s d: - // |xfx'|

d (s, 20,0, D (5, 20,20
o/ e (e

- _z// f(s )(8:Us(s) - v)(2(s,0,2)) ds dz

+7///|\ :——\’ :(?,z’)a (V(s,0,2) = V(s,0,2))

f(s, Z(s,0,z))f(s, Z(s,0,2"))dsdz dz’'

_27/ / d Us(s )(Z(S,O,Z))

Z(s,0,z
/lx,fs’ 30 )) )Idz'dsdz

t
=]-'(O)—‘2//f(s,:)OxU,(s,m)-vd:ds
r—1 N

+7/ //I r’|3 ) f(s,2)f(s,2")dzd2" ds

+2/ / ¢'(E(2))0:Us(s,x)  vUy(s,z)dzds
= -—2//f 2)0.Us(s,z) -vdzds

+‘2/0 /Bf(s,z)()r(/,(s,.r)-vdzds

t
+2/0 /B¢’(E(:))0,U,(s,.z)-v(f,(s,x)d;ds

12




= F(0) ;

the last integral vanishes because the integrand is odd in v. Retracing all the steps of the
argument, we observe that all the integrals exist by the boundedness of the term 9.Uy(s, ) v

on B and the integrability of ¢' o F, and Fubini’s Theorem applies. a

Remark: The energy expression of (4.2), restricted to monotonically decreasing (nonvan-
ishing) stationary phase space densities, was first obtained in [24] in a more general plasma
physics model than that of the Vlasov-Poisson system. Imposing condition (4.1) allows one
to consider stationary solutions of compact support by restricting the class of initial con-
ditions. If one supposes dynamically accessible [3, 17, 22, 27, 28, 29] perturbations of the
stationary state, i.e., that jo’arises from perturbations of the underlying characteristics (par-
ticle orbits), where the perturbations are caused by electrostatic or gravitational forces, then

f = [g, fo] for some function g, where [-,:] denotes the usual Poisson bracket. In this case

condition (4.1) turns into the following condition on ¢

/[g, E)(z)|¢'(E(z))|dz < 0o,

and the singularity in (4.1) due to the vanishing of ¢’ outside B disappears.

5 Linear stability

Theorem 5.1 Let (fy,Uy) € S, assume that v¢'(E) > 0 for Unin < E < Ey, and define the

weighted L*-norm

[ L)
lgll3.6 = B ¢'(E(z))

Then (fo,Us) is linearly stable in the following sense: For every f as in Thm. 4.1 with

dz .

llﬂlf“llp;lli!,“ < 1 the corresponding solution f of the linearized Vlasov-Poisson system sat-

isfies the estimate
1712, < collHlas + 1120, £ 20,

where the constant ¢y depends only on the stationary solution ( fo, Up).

13



Proof :

IS0 =7 [, 2oarh

- _jﬁ - 2
= —9F(t) - - / 0:Uy(t, ) d

< —vF0) =7 [, 57 () dz — / fe)

<IMe-7 [, \/98'__‘/
<A+ ([ 1eEEIUleE )lz)”znﬂrz.cb

1/2
< 170 + 200 SRRl ([ 16 EEDIdz) 1 s

where the last estimate follows from (3.7). Thus, the proof is complete, with

o = 2(2m) ( |¢’(E(z))ldz)1/2 .

Remarks:

1. Using [35, Lemma 2] to estimate the potential energy corresponding to fin the above

proof we obtain the alternative stability estimate
“f(t)”gd: < Cl”f”% + ”m%,q’n t20,
for all initial data as in Thm. 4.1, where ¢; again depends on the stationary solution

(fo, Uo).

2. If0 < c_ < |¢'(E)| < cqy < 00 on ] — 00, Eg[ then the norm || - ||24 is equivalent to the

usual L? norm, and we obtain the stability estimate

1Oz < esll flas 20

for all initial data as in Thm. 4.1.

14



3. The stellar dynamics case where ¢'( E') > 0 is of particular interest. This result requires
the jump discontinuity in ¢ and the restricted class of initial conditions, f, described
in Sec. 4. It is natural to question the physical relevance of and the sensitivity to these
assumptions. One would expect collisions, i.e. the effect of short range interactions,
to smooth out the jump discontinuity in ¢ and produce a transition region where
¢'(E) > 0 (and large). In this way collisions can provide a mechanism for the onset of
instability. The assumption that fovanish outside the set B is of physical importance,
since, as noted in Sec. 4, perturbations caused by electrostatic or gravitational forces

acting on the point mass orbits are naturally of this form [3, 28].

6 Examples

In this section we establish the existence of a large class of stationary solutions (fo, ls) €
S. Among these there are steady states satisfying the stability condition of Thm. 5.1, i.e.
#'(E) < 0 in the plasma physics case and ¢'(E) > 0 in the stellar dynamics case.
Any fo of the form
folz,v) = o(E) = ¢ G v+ Up(z) ) (6.1)
automatically satisfies Vlasov's equation, since the energy F is constant along characteris-
tics. Therefore, the stationary Vlasov-Poisson system is reduced to the semilinear Poisson

equation

AUo(x) = 4m(p*(z) + 1he(Uo(z)), v € R?

where

hg(u) := /q’) (%v2 + u) dv .

Here we investigate spherically symmetric solutions of this problem, i.e. solutions of

1 . '
- (r2Us(r)) = 4m(p* (1) + yho(Uo(r)) ;7 > 0, (6.2)



where

i = 5 [ 74 (5

ro= 2|, wi= 5, F =z x vl2 = z%v? — (z - v)?. The distribution function f, is then a

) dF dw ; (6.3)

function of r,w, F', and po(r) = hg(Uo(r)) is a function of r, i.e. the whole steady state is
spherically symmetric.
For the rest of this section let ¢ satisfy the conditions (¢1) and (¢2) from Sec. 2 and

assume in addition
(¢4) Case (S) (stellar dynamics case): ¢(Ey) := limg »g, ¢(E£) exists and ¢(Ep) > 0,

Case (P) (plasma physics case): p* € C([0,00[), p* > 0,r%p* € L'([0, 00]), and there

exist constants 7o > 0 and pd > 0 such that p*(r) > pt, r € [0, ).

Theorem 6.1 Let the assumptions (¢l), (¢2), and (¢4) be satisfied. Then there exists a
constant ap < Eqy such that for a €lag, Eo[ the problem (6.2) has a unique solution Uy €
C?%([0, 00[) with Up(0) = «, where hy is defined by (6.3). Uy is strictly increasing, Uy(0) = 0,
Ey < lim,_o Up(r) < 00, and there exists Ry > 0 such that Us(Ry) = E¢ and Uy(Ro) > 0.
Consequently, if ¢ in addition satisfies (¢3) and if we define fo by Eq. (6.1) and po := hyoUy,
then (fo,Us) € S, po € CY([0,0]), and po(r) = 0 for v > Ry, po(r) > 0 for r < Ry. Under
the further assumption that v¢'(E) > 0 for E < Ey, the steady state (fo,Up) is stable in the

sense of Thm, 5.1.

For the proof of this result the following lemma is useful:

Lemma 6.2 Let ¢ satisfy the assumptions (¢1) and (¢#2). Then (6.3) defines a function
hs € C'(R), hg(u) = 0 for u > Ey, and

ho(u) = drm \/‘E/% HEWE —udFE,

, dr oo dE
hqs(“):—v—?% ) ¢(E)\/—E——_;;



The proof of this lemma is an easy application of Lebesgue’s theorem on dominated
convergence and therefore omitted.
Proof of Thm. 6.1: Local existence and uniqueness of the solution for arbitrary a € IR follow
by the contraction mapping principle, applied to the following reformulation of the problem:

_471' r

Ul(r) = 5? <p+(3) + yhy(a + /O U(')(T)dr)) ds .

2 Jo
Let Uy € C'([0, R[) be the solution, extended to its maximal interval of existence [0, R[, and
po(r) = ho(Us(r)). Then Uy € C*(J0, R]), UZ(r) has a limit for r — 0, U4(0) = 0, and this
implies the regularity assertions for [y and pg. For the rest of the proof, we have to treat

the two cases (P) and (S) separately.

Case (P): Take oy < Ey such that
(i) ka(u) < pF /2 for u €)ay, Eo,
(i1) Eo - ao < £ pirt,

and let a €]ag, Eo[. Then by (i) {)(r) > 0, and Uy is strictly increasing on [0,r¢] N [0, R[, in
fact, because hy is decreasing,

47'r T

s (p*(s) = hs(Uo(s))ds

/II r ———
==/

Since hy(u) = 0 for u > Ey this implies that £ > ro, and by condition (ii)
. T+ 2
Lo(ro) > a+ 3P0 To > Ep .

Thus there exists Ry €]0, ry[ with Uy(Ry) = Eo and Us(r) > Eo(< Ep) for r > Ry (< Ro)

which implies the assertions on pg.
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Case (S): First of all we note that for any a < Ey the potential Uy is strictly increasing on
[0, R[. Either Uy(r) < E, for r € [0, R[ in which case Uy is bounded and thus exists globally,
or Up(r) 2 Eo for r > Ry and some Ky in which case pp vanishes for r > Ry, and Uy again
exists globally. To prove that actually the latter case holds, we rely on the analysis in [5].

The existence of R follows if we show that the (possibly infinite) limit
L= rlLrglo Ug(r) > EU .

Assume L < FEy. Then the monotonicity of Uy and Ay implies that hy(Us(r)) > hy(L) for

r 2 0, and thus,

4 T 4
U('J(,.) > l SZIM(L)([S = _43_7!’ he(L)r, r>0.
ré Jo :

But this means that Uy(r) — oo for r — oo, a contradiction. Thus it remains to show

that the assumption L = Ej, leads to a contradiction as well. To this end, define y(r) :=

Eq — Uy(r), r > 0, then

(1) y(r) > 0 and y'(r) < 0 for r > 0,

- : . y'(r)
(i) lim y(r) =0, limry(r) > 0, and lma — <0,
T—00 T—00 T r

(l”) (r2yl(r))’ = —H(T, 7/(7))1 r >0, where H(r,y) = 47“’7‘2}1"J5(EO - y)

Here the assertions in (i) follow from the strict monotonicity of Uy, and the first assertion in

(1) is our assumption L = Ey. The second assertion in (ii) follows by I'Hospital’s rule:

lim r(L — Up(r)) = lim 2200} _ g Lol0)

r—o0 r—00 __1—]-7_‘——— =00 1/1'2

= lim 47r/r sipo(s)ds = 4w /oo s%po(s)ds > 0.
0 0

T+ 00

Finally,

y(r) _ _Uglr) _ 4w il i
= A spo(s)ds — —3——,00(0) =7 hs(a) <0

for r — 0. Condition (iii) is Eq. (6.2), rewritten for y. Obviously, A satisfies the relation
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(iv) 8. H(r,y) = 2H(r,y), r 20, y € R,

The assumption (¢4) in case (S) implies the existence of constants ap < Ep and 0 < ¢y < ¢2
such that

1 < HE) < cyfor E € [, Eof .

Take a €lag, Eo[, then 0 < y(r) < Eg—a < Ey—ap or ap < Ey—y(r) < Eg for 7 > 0. Thus,
8, H(r,y(r)) = —47r*hy(Eo — y(r))

Eo dE
4 )2r? E
o /Eo-y(r) " )\/E—Eo+'!/(r)

<UL ez i

= (4m): V2ear? \Jy(r)

S
o

and

H(r,y(r)) 2 (47r)2\/§c1r2 /Eo \/E — Eo+ y(r)dE

Eo—y(r)
. 2\/32 2 3/2
= (@n) V2 ety

For aq sufficiently close to Ey we can assume that

Co 10
— < =
Cy 3
Then there exists a constant m €]1,5[ such that c;/c; < 2m/3 ie. ¢ < 2 ¢, m, which in

view of the above estimates for H(r,y(r)) and 0,H(r,y(r)) implies that
(v) y(r)0yH(r,y(r)) < mH(r,y(r)), r 20,

Conditions (i) to (v) now lead to the desired contradiction in the following way; cf. also [5]:

Define



and

then

2

by (iv) and (v), and

limQ(r)=0.

r—0

Thus

1—-m

Y)Y () = Q) = [ @(s)ds >0,

which implies that ¢/(r) > 0 for r > 0, and we have shown that ¢ is strictly increasing. The

third assertion in (ii) yields

and we conclude that

Therefore,




which implies that

m=5%

ry(r) < Crm=1 , r >0
for some constant ' > 0. But this contradicts the second assertion in (ii). Thus, the only
remaining possibility is L > Ey which implies that Uy(Ry) = Eo for some Ry > 0 also in the
stellar dynamics case. In both cases U/ is strictly increasing and Uj(r) ~ r=% for r > Ry so
that Ey < lim,_o Up(r) < co. Furthermore, U'(Ro) > 0 so that 9, E(z) = (£Ugy(r),v) # 0
for z = (x,v) € OB. This shows that B is a C''-submanifold of IR® and is of measure zero.
Since Uy € C?([0,00[) and U4(0) = 0, Up is C? when interpreted as a function on R®, and

the proof is complete. a

Ackaowledgements

PJM was supported by the U.S. Department of Energy under Contract No. DE-FGO05-80ET-
53088.



References

(1]

3]

[4]

(7]

8]

Antonov, V.A.: Solution of the problem of stability of a stellar system with the Emden
density law and spherical distribution. J. of Leningrad Univ. no. 7 Ser. Math., Mekh.

Astro. no. 2, 135-146 (1962).

Barnes, J., Goodman, J., Hut, P.: Dynamical instabilities in spherical stellar systems.

The Astrophys. J. 300, 112-131 (1986).

Bartholomew, P.: On the theory of stability of galaxies. Mon. Not. R. Astr. Soc. 151,

333-350 (1971).

Batt, J.: Global symmetric solutions of the initial value problem in stellar dynamics. J.

Diff. Eqns. 25, 342-364 (1977).

Batt, J.: Steady state solutions of the relativistic Vlasov-Poisson system. Proceedings of
the Fifth Marcel Grossmann Meeting on General Relativity, R. Ruffini (ed.), 1235-1247
(1988).

Batt, J., Fabian, K.: Stationary solutions of the relativistic Vlasov-Maxwell system of

plasma physics. Chinese Annals of Mathematics, Series B, to appear.

Batt, J., Faltenbacher, W., Horst, E.: Stationary spherically symmetric models in stellar

dynamics. Arch. Rational Mech. Anal. 93, 159-183 (1986).

Batt, J., Pfaffelmoser, K.: On the radius continuity of the models of polytropic gas
spheres which correspond to the positive solutions of the generalized Emden-Fowler

equation. Math. Meth. in the Appl. Sci. 10, 499-516 (1988).

o
o



(9]

Batt, J., Rein, G.: A rigorous stability result for the Vlasov-Poisson system in three

dimensions. To appear in Anal. di Mat. Pura ed Appl.

(10] Batt, J., Rein, G.: Global classical solutions of the periodic Vlasov-Poisson system in

[11]

(12]

13)

(14]

[15]

(17]

[18]

[19]

three dimensions. C. R. Acad. Sc. Paris t 313, 411-416 (1991).

Baumann, G., Doremus, J.P., Feix, M.F.: Stability of encounterless spherical systems.

Phys. Rev. Lett. 26, 725-728 (1971).
Bernstein, I.: Waves in a plasma in a magnetic field. Phys. Rev. 109, 10-21 (1958).

Binney, J., Tremaine, S.: GGalactic Dynamics. Princeton Series in Astrophysics, Prince-
)

ton University Press 1987.

Degond, P.: Solutions stationnaires explicites du systeme de Vlasov-Maxwell relativiste.

C. R. Acad. Sri. Paris, Série [ 310, 607-612 (1990).

Dolbeaut, J.: Analyse de modeles de la physique mathématique. These, Université Paris

IX Dauphine, 1991.

Fridman, A.M., Polyachenko, V.L.: Physics of Gravitating Systems, Vol. I+11. Springer
Verlag 1984.

Gardner, C'.S.: Bound on the energy available from a plasma. Phys. Fluids 6, 839-840

(1963).

Hénon, M.: Numerical experiments on the stability of spherical stellar systems. Astron.
and Astrophys. 24, 229-238 (1973).

Holm, D.D., Marsden, J.E., Ratiu, T., Weinstein, A.: Nonlinear stability of fluid and

plasma equilibria. Physics Reports 123, Nos. 1 and 2, 1-116 (1985).



[20] Horst, E.: On the asymptotic growth of the solutions of the Vlasov-Poisson system.

Math. Meth. in the Appl. Sci. 16, 75-85 (1993).

[21] Kandrup, H. E.: Geometric approach to secular and nonlinear stability for spherical

star clusters. Astrophys. J. 351, 104-113 (1991).

[22] Kandrup, H.E.: A stability criterion for any collisionless stellar dynamical equilibrium

and some concrete applications thereof. Astrophys. J. 370, 312-317 (1991).

[23] Kruse, K.-O., Rein, G.: A stability result for the relativistic Vlasov-Maxwell system.

Arch. Rational Mech. Anal. 121, 187-203 (1992).

[24] Kruskal, M. D., Oberman, ('.: On the stability of plasma in static equilibrium. Phys.
Fluids 1, 275-280 (1958).

(25] Lions, P.-L., Perthame, B.: Propagation of moments and regularity for the 3-

dimensional Vlasov-Poisson system. Invent. math. 105, 415-430 (1991).

[26] Marchioro, C., Pulvirenti, M.: A note on the nonlinear stability of a spatially symmetric

Vlasov-Poisson flow. Math. Meth. in the Appl. Sci. 8, 284-288 (1986).

[27] Morrison, P.J., Pfirsch, D.: Free energy expressions for Maxwell-Vlasov equilibria. Phys.
Rev. A 40, 3898-3910 (1989).

(28] Morrison, P.J., Pfirsch, D.: The free energy of Maxwell-Vlasov equilibria. Phys. Fluids B
2, 1105-1113 (1990).

[29] Morrison, P. J., Pfirsch, D.: Dielectric energy versus plasma energy, and Hamiltonian

action-angle variables for the Vlasov equation. Phys. Fluids B 4, 3038-3057 (1992).

(30] Pfaffelmoser, K.: Global classical solutions of the Vlasov-Poisson system in three di-

mensions for general initial data. J. Diff. Eqns. 95, 281-303 (1992).

24



Vool

[31] Rein, G.: Existence of stationary, collisionless plasmas on bounded domains. Math.

Meth. in the Appl. Sci. 15, 365-374 (1992).

[32] Schaeffer, J.: Global existence of smooth solutions tu the Vlasov-Poisson system in three

dimensions. Commun. Part. Diff. Eqns. 16, 1313-1335 (1991).

[33] Sobouti, Y.: Linear oscillations of isotropic stellar systems. Astron. and Astrophys. 140,
82-90 (1984).

[34] Sygnet, J. F., Des Forets, G., Lachizze-Rey, M., and Pellat, R.: Stability of gravitational

systems and gravothermal catastrophies in astrophysics. Astrophys. J. 276, 737-745
(1984).

(35] Wan, Y.-H.: Nonlinear stability of stationary spherically symmetric models in stellar

dynamics. Arch. Rational Mech. Anal. 112, 83-85 (1990).



| DATE







