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Linear Stability of Stationary Solutions of the

Vlasov-Poisson System in Three Dimensions

Jiirgen Ba,tt.* Philip J. Morrison. t and Gerhard R.ein*

Abstract

Rigorous results on the stM_ility of stationary solutions of the Vlasov-Poisson system

are obtained in both the plasma physics and stellar dynan_ics contexts. It is proven

that stationary solutions in the plasma physics (stellar dynamics) case are linearly

stable if they are decreasing (increasing) functions of the local, i.e. particle, energy.

The main tool in the analysis is the free energy of the system, a conserved quantity.

In addition, an appropriate glob_fl existence result is proven for the linearized Vlasov-

Poisson system and the existence of stationary solutions that satisfy the above stability

condition is established.
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1 Introduction

The evolution considered ilt tllis paper is governed by the Vlasov-Poisson system,

O,.f + v . O_:f - OxU . O,,J"= 0,

&t: = 4rr(p+ + -yp) ,

p(t,.c) "= f f(t.x,t,)d(,,

where t _>0 denotes time, .r E IR:_position, and v E IRa velocity. For 7 = -1 the system

describes a collisionless plasma of electrons, which move in an electrostatic field that arises

self-consistently from the electron spatial charge density p(t, :c) and a fixed ion background

with spatial charge density p+ = p+(a') > O. The case where 7 = 1 and p+ is set to zero

describes a collisionless ensernble of self-gravitating point masses, e.g. stars in a galaxy or

galaxies in a galactic cluster. In this case p(t,x) represents the spatial mass density. The

function f = f(t,.r., t,) denotes the phase space density of either the electrons or stars, while

-U or U denotes the electrostatic or gravitational potential respectively.

The initial value problem for this system, where the initial phase space density f(O,z, v) =
o

f(x, t,) is prescribed, is now well understood, and the existence of global, classical solutions

for C 1 data with appropriate decay at infinity is established [10, 20, 25, 30, 32].

However, the above rigorous results lend limited information about the qualitative behav-

ior of the solutions. The purpose of the present investigation is to clarify the question of sta-

bility of certain stationary solutions. Two main stability concepts have to be distinguished:

A stationary solution is nonlinearly stable if solutions of the nonlinear Vlasov-Poisson system

remain arbitrarily close to the stationary solution in some norm for ali times, provided the

Vlasov-Poisson solutions start sufficiently close to the stationary solution. The stationary

.,
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solution is linearly .stable if ttle solutions of the nonlillear systexn are replaced by the solu-

tions of the corresponding linearized problem in the above "definition." Obviously, a global

existence result -- al, least for initial data close to the steady slal.e llnder coilsideration .....

is a.n integral part of both stabilil.y concepts.

If the solution is written as ./'o + ./'(/), where ./'o is tile distributioll function of tlm steady

state, and the term that is quadratic in f(t) is neglecte_l, one obtains the linearized Vlasov-

Poisson system'

0rf + t,. G-J'- 0_U0./),,.f =/:)_(/S . 0,,lo,

/k[.: S = 47rTp S ,

p/(t,,r) .= j f(t,,r, v)&,

where the steady state (J'o, _-;o)satisfies the stationary Vlasov-Poisson system:

v. 0_.fo- 0_Uo.0_fo= 0,

_Uo = 47r(p + + TPo) ,

p0(,) := f f0(x,v)
dr.

Stability conditions are often expressed in terms of how fo depends on the local or particle

1 u2
energy E(x, v):= _ + Uo(x). Since E and, for sphericM symmetry where U0(x) =/-/'o(Jxl),

also F '= Ix x v 2 are constant along the characteristics of the stationary Vlasov equation,

it is natural to consider f0(x,v) = ¢(E) or fo(x,v) = _(E,F) with some function ¢. The

present work is restricted to the first case.

There exists a large number of investigations of both linear and nonlinear stability, cf. [1,

•-,9 11, 19,- 13, 16, 18, 19, 91.., 33, 34, 35]. The general and long standing opinion seems to be

that -- both in the plasma physics and in the stellar dynamics cases -- a steady state is stable
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if O is a decreasing function of t,he energy. Although these results are physically appealing

and plausible, a distinction must be made between these results and rigorous mathematics.

(Note, too, that certain conclusions drawn for anisotropic spherical svsl,elllS are admitt.edlv

contradictory [la, p. a08].) CoIlcerniltg nonlinear stability we mention the following rigorous

results: In [9] it is shown, for the plasma physics case with spatial periodicity, that spatially

homogeneous steady states are _lotl]inearly stable ilo is decreasing; the analogous result for

the relativistic Vlasov-Maxwell system is shown in [2;_]. Both results are based on using the

total energy of the system as a Lyapunov function, cf. also [26]. As for linear stability, we are

not aware of any' rigorous results. It is important to point out, that in infinite dimensional

dynamical systems such as the Vlasov-Poisson system, the relationship between the two

concepts of stability is in gener;d not clear.

The present investigation is intended to fill part of the gap between what is done in

more physically motivated papers and what is mathematically est,ablished. We proceed as

follows: In the next, section the basic assumptions on the steady states under consideration

are collected. In the third section we prove a global existence and uniqueness result for the

linearized Vlasov-Poisson system. The problem here is two-fold. First, t,he solution concept

has to be strong enough to yield the existence of a conserved quantity, the free energy of the

system, which is investigated in the fourth section. Second, we have to be able to linearize

around steady states where 4_is discontinuous, since in the stellar dynamics case we obtain

linear stability if ¢' > 0 on its support, and since the steady state has to have finite total

mass this necessitates a jump discontinuity of _. For the plasma physics case we obtain linear

stability if _' < 0 on its support. This stability analysis is carried out in the fifth section.

Finally, we show that there actually exist steady states that satisfy our assumptions. This

is necessary since iri the plasma physics case the existence of steady states in the above

situation has riot yet been demonstrated; however, we refer to [6, 14, 15, al] for related

results. In the stellar dynamics case the polytropes, which are investigated in [7] and [8], are



not examples of stationary' solutions that satisfy our assulnpt ions.

2 Assumptions on the stationary solutions

We consider statioilary solutioIls (fo,/-;o) of tt_e Vlasov-Poisson svstenl such that,

Jo(,r,I')= o + (:0(.r) , .r, _,E IR:_,

where o satisfies the assumptions

(oi) o c Lio_(n_), o _>0,

(o2) Eo:: i,,f{E_ nxIo(z') : 0 _.e.ro,.E' > E} El- _, _[,

(03) o E C'_(]- ec, Eo[) with o' E L_,,_(]- _, Eo]),

and ['o satisfies the assumptions

(U1) /-o_.d'_(IR3),

(U2) /-'o is bounded" (; ', ,,,,_,,= inf_._,,,l-.o(a')< Eo,

' v2 Eo} is bounded, and OB has measure zero.(w3)thes_tB := {(z,v)E _._I._ + Uo(X)<

Here o E Llo_(IR) means that cit ,. E L'_(Ix') for every compact interval K C lR, and L_o_(] -

_, Eo]) is defined analogously.

We write (fo, Uo) E S if (fo, Uo) is a stationary solution of the Vlasov-Poisson system

satisfying the above assumptions. In Sec. 6 we show that stationary solutions of this type

exist both in the plasma physics and in the stellar dynamics cases.

Obviously, for (fo, Uo) E ,5" there exists a radius Ro > 0 such that fo(x,v) = 0 for

]z[ > Ro, and

fo(a:,v)dvd,r <_ vol(B) sup ¢_(E) < _,
E 6[l "nfi n ,Eo]
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i.e. the steady states under consideration always have finite radius and finite total mass or

charge. Also

/,,,_10'(E(x,v))l,zv= 4_ Io'(E)Iv/2(/;- C;o(,r)),z__'0(x)

li0 ,_<4_J2(E0- u,_.) I (E),t_
rain

< _o, z E IRa,

and

: ': (,r, v) E IRs. Throughout the paper constants which depend only on the steady state

under consideration such as the above integrals _ and which may change from line to

line, are denoted by U.

3 Global existence for the linearized Vlasov-Poisson

system

Let (f0, Uo) E 8 and let t _ fo + f(t) be a solution of the Vlasov-Poisson system with initial

condition f0 + ]. If the term which is quadratic in f(*) in the Vlasov equation is neglected,

we arrive at the linearized Vlasov-Poisson system for the (small) perturbation f(*)

O:f + v. O_f - O, Uo. ?)_f = 0_[::. O_fo , (3.1)

A U: = 47rTp,, : (3.2)

pf(t,:r) := f f(t,x,v)dv, (3.3)

together with the initial condition f(0) = ]. Assuming that Uj vanishes at infinity, we obtain

(/i(t ,r)= -7 f Pl(t'u)-- dy, ,r E lRa (3.4)' ,z' 91
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Consider the system of characteristics corresponding to (3, l)

Due to the t'egvllarity of ['0 l ll_,r(, exists for (-,voi'y t E II-1a_lld z -- (a:, t:) E IR6 a Ilni(lue

global solution Z(.,t,z) = (.V, l/)(., t,,.v, v) of (3.5) with Z(t,t,z) = z. The mapping Z is

continuously differentiable in ali variabh_s and Z(,_,/,, .)' lR_s --+ iRS is a measure preserving

diffeomorphism for ali ,s, t E IR. l:sing the flow Z, Eqn. (3. l) can be written in the form

-- , , ,_(,_).a,,fo(z(,_,t :)) ._,te ta, .: e ,
dsf(.s,Z(._ t z))= ?)_I_ _ , , IRs

which upon integration yiehls

o )f(t,z) = .f(Z(O,t,-.))+ O_(;_(s).O,,fo(Z(s,t.,z))ds, t >_O, z _ lR6

Since for steady states of class $ we have fo(x,v)= 0 (½ v2+ Uo(x)) and since the energy

1 _2E(.r, v) = ._ + tr;o(X) is invariant tl,der the characteristic flow, the above relation becomes

JO t _ r
f(t, -) = )(Z(O,t, -))+ o'(E(-:)) (O:r{,.r(.s). v)(Z(s,/.,.:))da, /, >_ O, z e lR6. (3.6)

This motivates the following definition"

Definition a.1 Let ) E L_(IR6). A function f " [0, oc[×IR 6 ---+ lR is a solution of the

linearized Vlasov-Poisson system with initial value f ifr

(i) f E C([O, oo[, L'(IRs)),

(ii) py E C([O;c_[,L_(lRa)),

(iii) U.r e C([O, c_[, C'_(IR s)),

(iv) f satisfies (3.6) for t >_ 0 ,,,,d - q_OB,

(v)f(o)=).



ttere pf and UI arc deft,zed by Eqn. (3.3) and (3.4) respectively, and C_(IR a) denotes the space

of colttiltuously diff_rentiable funclion_' ic,hich arc bounded toge_thcr with their first derivative'.s.

Note that a solutioll in tile alcove sense satisfies lhc linearized Vlasov-Poisson system

classically" if f and [;I are sul[icielltly regular.

Theorem 3.2 Let (.fo, l;o) E ,5"a1_d lct ] C L I(IR '_) be a poirztu,ise defined, [R-valu_:d ]'urlction

such that )o Z(O,.) satisfies conditions (i) and (ii) of Defi',_ition 3.1. Then there e,.r.ists a

unique solution of the lincarized IT_tsov-Poisson system with initial value f.

Proof " We shall construct a converging sequence of iterates in the set

M :- {g' [0, _[×IR" -+ IR [g satisfies (i), (ii), (v)of Definition 3.1}.

Obviously, fx "= ]_oZ(0,.) _ M. Let g E M. Then (i)implies that

p,__ c([0,_o[,L'(__)),

and the well-known estimates, of. [4],

][L,_(t)]l,_ _< 2(2_') _/a ]pg(t)l]_a]]pg(t)]l_/a , (3.7)

_/a
II0_u_(*)I_ < 3(2_) =/3 Ip,j(t)ll_3Ipy(t)ll, ,

yield (iii) for/_,_. Define

/o'(Tg/(t,:/.- k(t,:) + _'(E(:)) (o,u_(_). ,,)(Z(_,t.,_))d._,t >_o, _-_ OB

and zero else. The estimate

I z'
< [O'(E(z))ldzsupIrl IlO_U_,(s)ll_ds

zEB

fot 1ads
<-(: IIp,(.-,)l_311p,_(_)ll,
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shows that (Tg)(t) G LI(IR _) recall that constants denoted by (7 may depend oil the

steady state under consideration. Let 0 <_r < t, then

I'
/0"£

-_ 0 for r --_ t ,

since .ft satisfies condition (i) alld (i)x( 'u(.s)'v )( Z(.s, r, z)) is uniformly continuous on [0, t]2 x/3'.

The case r > t is analogous, and thus 7'9 satisfies condition (i). Next observe that

Ip_(t,._.)l< Ips,(_,.,)l+ c" o'(_(-))1,_._, IIO,L..Y(_)Ioo,-z._,_

/o'_<Ips,(t,._,)l+ (;' IO_.l_%(_)ll_.,l.s,

which implies that p_(t) E L_'(IPL:3) for t _>O. Furtherniore, for r < t,

I'IIp.(t.)- p.(_)ll,:.o_<Ips,(t)- ps,(T)II,_,+ c.' I0=:._(_)I_d_

zEB

+0fort+t,

o

where the first term converges by the assumption on f, the second converges by (iii) and the

last by the same argument as above. Since the case r > t is analogous, we have (ii), and

(v) being obvious we have shown that T9 E M, i.e. T maps the set M into itself. Now let

91,92 E M, then the above estimates show that,

j_Ot I13"
[l(Tg,)(t)- (Tg,2)(t)l[_<_C Ilp._,(s)- p_,_(_'_)ll_llg,(_)- g_(_)ll, '_,

and

IlPT_,.(t)-pr,_(t)lloo_<6' Ilp,.(s)- p,_(.s)ll_Jallg.(._)-._j_(_)lll/_d_.

9



ttence, if we define f,_+l '= Tf,, n _>. 1, it follows that there exist functions f E

C([O,_[,L'(IR(_)) and p E C'([O,oc[,L'_'(IR:'))such that J_(/) --, f(t)in LI(Ill6), /-locally

uniformly on [O,c<)[ and p,,(t) ---+p(t)ira L"_'(Ill3), /-locally uniformly (,ii [O,..",c[. Since

pf,,(/) --+ pf(/,)ira Li(lR a) we have p = Pl and p/.,(t) ---+,W(/,)in LI(IR :_)7)L'_(IRa), /-

locally ,_niformly on [0, :x_[ . This implies that ['..],,(t) ---+bl; 't)in C_,(III.:'),/-locally" uniformly.

on [0, c_[. Passing to the limit in the relation

f_+l(l,z) = f,(/,,z) + O'(b2(z)) (O_Uf_(._). v)(Z(s,t,z))d.s, t > O, z q_OB,

we obtain

/o'.f(t,z) = J°'(z(0,t,z))+ o'(/;'(-)) (o, uj(,), v)(Z(_,t,z)lds, t >__0, z _ aB

after redefining f on a set of n_('asure zero. Since condition (v) is clear, f is a solution in

the sense of Def. 3.1. Uniqueness of the solution is obvious, f::l

Corollary 3.3 The solution f obtained in Thin. 3.2 has the following properties for t > O"

(tr) f(t,z) = f(Z(O,t,z)) for z c_ B, in particular, if f vanishes outside B then so does

f(t).

(b) _f(t,Z(t,O,z))= (E(z)) ). ( 0, z)), z .

i :Ji(,,:><,..
(d) If ] has compact support or vanishes sufficiently rapidly at infinity then

/U:(t, z)f(t, z)& = 4rr'rf IO_Uj(t,z)l=dz.

Proof'(a) is obvious, (b) follows from replacing z in (3.6) by Z(t,O,z) und differentia.ting

the resulting equation, (c) follows by integrating (3.6) with respect to z and using the fact

that the flow Z preserves measure and that the term 0_UI(s,z) •v is odd in v; note that the

set B is invariant with respect to (a:, v) _-+(z,-v).

10



(d) If p:(t) is, in addition, HSlder-continuous, then we have

f U:(t,x)f(t,z)dz = fU:(t,x)p/(t,z)dx

= lim fl_l<r U](t,x)p/(t,z)dx = 47r'yl_-_oolim_=l<r U:(t, x)A U:(t,x)dx

= --7- lim [f U/(t,x)O=U:(t,x). n(x)dw(x)- IO,_U:(t,z)l 2 dx
4_r_-.o_ I=_ I<_

= _ f IO_U:(t x)l _dx47r

if the decay of Uf(t,x)a_:U:(t,x) at spatial infinity is such that the boundary term vanishes;

if ]h_ compacts_ppo_tth_nU:(t,_)a_U:(t,_)= O(Ixl-_).In ¢_sep:(t)is not Hader-

continuous we can use a mollification of pl(t) to get the result. O

4 Conservation of free energy

Theorem 4.1 Let (fo, Uo) E S and let ] e L_(IR6) be as in Thin. 3.2 with ](z) = 0 for

z q_B and

f ]_(z) dz< o_. (4.1)
JB I¢'(E(z))l

Then

JB ff(t,z) dz t > OI,'(g(z))l < o_, _ ,

and

.T(t):=-/s ¢'(Eiz))ff(t'z)dz + f Ul(t,x)f(t,z)dz = _'(0), t >_0. (4.2)

Here the quotient is defined for every z q_O_ bg

g2(z) _ _._ for ¢'(E(z)) = 0 and g(z) # 0

¢'(E(z)) ], 0 for ¢'(E(z))arbitrary and g(z)= O.

ll

....... i,¸ ,, :-_'_.... i., ,(viIr.........



Proof" Assume tha.t

--[ f2(t'z) dz < ec
]s I¢'(E(z))

for some t > 0, then with Cor. 3.3,

iB f2(t'Z(t_) z)) dz-Tis f(t'Z(t'O'z))f(t'Z(t'O'z')) dzdz's(t)=- _"i_ Fx--(;,o]_7::_-(7,_:z,)l

?(_) <__ ](z)](z,)dzdz,
:- ,'(E(z)) 7(_(;7) ix-,

ii /o_c_s(_.;!!._:°,z2Y(::z(_,°,_')).. . ,_,dzdz'

- F(O)- 2 f(.s,Z(s,O,z))(c)_Uf(s), v)(Z(s,O,z))dsdz

t X (._,O,z) - X (s,O,z') z'
+_ff foi.v(.;;_,-=i- ._(;;_,_;i_(v(_'°'z)- v(_,o, ))

f(s, Z(s, O,z))f(s, Z(s, O,z'))ds dz dz'

J.L' ..)(.(.,o,.ii

i f(s,Z(s,O,z')) dz'dsdzIX(_,o,._)-x(_,O,z')l

= _'(0)- 2 f(s,z)O_Us(s,.r ) •vdzds

Lt JS :r, -- Z t
+7

ix _ ,:,,_(v-,
v')f (_,z)f(s,z')dz<lz'<l_

io'£+2 ¢'(E(z))O_Ul(s,z). vUs(s,z)dzds

= i_'(O)- 2 f(.s,z)O, Us(s,x). vdzds

+2 f(s,z)O_US(S,X) . t, dzds

/o'£°,+2 (E(z))O_.US(s,z) . vUs(s,x)dzds

12



= _(0);

the last integral vanishes because the integrand is odd in v. Retracing ali the steps of the

argument, we observe that ali the integrals exist by the boundedness of the term c),U/(s, x).v

on B and the integrability of ¢' o E, and Fubini's Theorem applies. O

Remark: The energy expression of (4.2), restricted to monotonically decreasing (nonvan-

ishing) stationary phase space densities, was first obtained in [24] in a more general plasma

physics model than that of the Vlasov-Poisson system. Imposing condition (4.1) allows one

to consider stationary solutions of compact support by restricting the class of initial con-

ditions. If one supposes dynamically accessible [3, 17, 22, 27, 28, 29] perturbations of the

stationary state, i.e., that ]arises from perturbations of the underlying characteristics (par-

ticle orbits), where the perturbations are caused by electrostatic or gravitational forces, then

] = [g, fo] for some function g, where [.,.] denotes the usual Poisson bracket. In this case

condition (4.1) turns into the following condition on g

and the singularity in (4.[) due to the vanishing of ¢' outside B disappears.

5 Linear stability

Theorem 5.1 Let (lo, Uo) C ,3, assume that 7¢'(E) > 0 for Umi. < E < Eo, and define the

weighted L2-norm

g2(z)

fs dz .II_IIZ,_:- _ _'(E(z))

Then (lo, Uo) is linearly stable in the following sense: For every ] as in Thin. 4.1 with

i1_1_/_ ,/_IIp]ll_ < 1 the corresponding solution f of the linearized Vlasov-Poisson system sat-

isfies the estimate
o o 2

IIf(t) '_ < c01[fll_,_+ IJ]12._t,> 02,_-- _ --

where the constant Co depends only on the stationary solution (fo, Uo).

13



Proof "

iB f2(t'z) dzIIf(t)l122'_= "Y ¢'(E(z))

= -_7(t) - _ f O_Vs(t,z)l_dx

i. z).z_i
0

f(z) qT¢,(E(z))Uf(x)d z< IJTl' i.

< 1171_,<,+ 14(E(z))lUs(x)dz II]]_,_

(i.)'"o 2 1/3 o

<_Isll,,++ 2(2_) 1111',/'llpell_' I¢'(E(z))Iaz II7]1.,+,

where the last estimate follows from (3.7). Thus, the proof is complete, with

_o:= 2(2;),l:'(iBl,'(E(z)) dz) 112

0

Remarks:

1. Using [35, Lemma 2] to estimate the potential energy corresponding to f in the above

proof we obtain the alternative stability estimate

° 2
f(t)ll_,_>_<_,11]]1_+ II711,,+,t >_o,

for ali initial data as iri Thm. 4.1, where cl again depends on the stationary solution

(fo,Uo).

2. If 0 < c_ _<[¢'(E)[ _<c+ < oz on ]- _,E0[ then the norm [1' ][2.¢is equivalent to the

usual L 2 norm, and we obtain the stability estimate
O

f(t)l 2_<c_ll]ll_,t >__o

for ali initial data as in Thin. 4.1.

14



3. The stellar dynamics case where 4t(E) > 0 is of particular interest. This result requires
0

the jump discontinuity in (b and the restricted class of initial conditions, f, described

in See. 4. It is natural to question the physical relevance of and the sensitivity to these

assumptions. One would expect collisions, i.e. the effect of short range interactions,

to smooth out the jump discontinuity in _band produce a transition region where

_b'(E) > 0 (and large). In this way collisions can provide a mechanism for the onset of

instability. Tile assumption that ] vanish outside the set B is of physical importance,

since, as noted in See. 4, perturbations caused by electrostatic or gravitational forces

acting on the point mass orbits are naturally of this form [3, 28].

6 Examples

In this section we establish the existence of a large class of stationary solutions (f0, U0) E

8. Among these there are steady states satisfying the stability condition of Thin. 5.1, i.e.

O'(E) < 0 in the plasma physics case and O'(E) > 0 in the stellar dynamics case.

Any f0 of the form

fo(x, v) = o( E) = ¢ (l v2 + Uo(x)) (6.1)

automatically satisfies Vlasov's equation, since the energy E is constant along characteris-

tics. Therefore, the stationary Vlasov-Poisson system is reduced to the semilinear Poisson

equation

AUo(z)= 4_(p+(x)+-lh_(Uo(X)),x _ Ra ,

where

7o
Here we investigate spherically s.ymnletric solutions of this problem, i.e. solutions of

( )'
,#

1 r_to(r ) =4_r(p+(r )+-_ht(/Io(r)) r >0 (6.2)
F2 ' ,

15



where

h_(u) "= -_ (h w 2 + _ + u dF dw ; (6.3)

r := Ixl, w'= i_'-_1, F'= Ix × vi 2 = x2v 2-(x.v) 2. The distribution function f0is then a

function of r,w,F, and po(r) = h_(Uo(r)) is a function of r, i.e. the whole steady state is

spherically symmetric.

For the rest of this section let (h satisfy the conditions (q_l) and ((h2) from Sec. 2 and

assume in addition

(¢4) Case (S) (stellar dynamics case)' (h(E0):= limE/Eo qJ(E) exists and ¢(Eo) > 0,

Case (P) (plasma physics case): p+ E C([0,,_[), p+ >_ 0, r2p + E L_([0, cx_[), and there

exist constants ro > 0 and p+ > 0 such that p+(r) > p+, r __ [0, ro].

Theorem 6.1 Let the assumptions (¢1), (¢2), and (¢4) be satisfied. Then there exists a

constant ao < Eo such that for c, E]ao, Eo[ the problem (6.2) has a unique solution Uo E

C2([0, _[) with Uo(0) -- a, u,here h_ is defined by (6.3). Uo is strictly increasing, U[_(O)= O,

Eo < lim__oo Uo(r) < oo, and there exists Ro > 0 such that Uo(Ro) = Eo and U_(Ro) > O.

Consequently, if (h in addition sati_fies (¢3) and if we define fo by Eq. (6.1) and po := h¢oUo,

then (fo, Uo) E,.,c, Po E C'([O, cx_[), and po(r) =O fort >_ Ro, po(r) > O fort < Ro. Under

the further assumption that 7(h'( E) > 0 for E < E0, the steady state (lo, Uo) is stable in the

sense of ?hre. 5.1.

For the proof of this result the following lemma is useful:

Lemma 6.2 Let q_satisfy the assumptions ((hl) and (_2). Then (6.3) defines a function

h, E CI(IR), h,(u) = 0 for u _> Eo, and

/5h_(u) = 4_ _ ¢(E)v/E - udE,

41r f_ dE
' , uEIR.

: v/E _
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The proof of this lemma is an easy application of Lebesgue's theorem on dominated

convergence and therefore omitted.

Proof of Thin. 6. I" Local existence and uniqueness of the solution for arbitrary ct E lR follow

by the contraction mapping principle, applied to the following reformulation of the problem:

/;( //_;;(r)= 74_ .," p+(_)+_h_(,+ U;(.)d, d_

Let Uo E C_([O, R[) be the solution, extended to its maximal interval of existence [0, R[, and

po(r) "= h,(Uo(r)). Then Uo E C2(]0, R D, U_'(r) has a limit for r _ O, U_(O) = O, and this

implies the regularity assertions for /['roand Po. For the rest of the proof, we have to treat

the two cases (P) and (S) separately.

Casc (P): Take ao < E0 such that

(i) hs(u)< p+o/2 for u E](to, Eo[,

r + '2

(ii) Eo - ao < 5 Poro,

and let. E]ao, Eo[. Then by (i) U;(r) > 0, and Uo is strictly increasing on [0,ro] N [0, R[, in

fact, because h_ is decreasing,

//u0(,')= 4_- _(p+(s)-h_>(go(_))ds
/.2

> 7 P°+ 7 d_

= 2.@p3r.

Since h_(u) = 0 for u _>Eo this implies that R > ro, and by condition (ii)

lr +

l,'o(ro)> c_+ ._poro2 > Eo.

Thus there exists Ro E]0, ro[ with l ro(Ro) = Eo and (;o(r) > Eo(< Eo)for r > Ro(< Ro)

which implies the assertions on po.
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Case (S)" First of ali we note that for any a < Eo the potential Uo is strictly increasing on

[0, R[. Either Uo(r) < Eo for r E [0, R[ in which case Uo is bounded and thus exists globally,

or U0(r) > Eo for r >_Ro and some Ro in which case po vanishes for r >_Ro, and Uo again

exists globally. To prove that actually the latter case holds, we rely on the analysis in [5].

The existence of Ro follows if we show that the (possibly infinite) limit

L :- lira Uo(r) > Eo.
le ---*OO

Assume L < Eo. Then the monotonicity of Uo and ho implies that h_(Uo(r)) >_h_(L) for

r > 0, and thus,

4rc s.2h._(L)d s = 47r h¢(L)r, r > 0t_o(")>-7 Y - "

But this means that Uo(p) _ OGfor r _ _, a contradiction. Thus it remains to show

that the assumption L = Eo leads to a contradiction as weil. To this end, define y(r) :=

Eo- U0(r), r _>0, then

(i) y(r) > 0 and g'(r) < 0 for r > 0,

(ii) limooy(r) = 0 lira r g(r) > 0, and lira y'(r) < 0----* ' r--* oo r ---*0 7"

(iii) (r2y'(r))' = -g(r,y(r)), r > 0, where g(r,y):= 47rr2h¢(Eo- y).

Here the assertions in (i) follow from the strict monotouicity of br, and the first assertion in

(ii) is our assumption L = E0. The second assertion in (ii) follows by l'Hospital's rule:

lira r(n - Uo(r))= lim L - Uo(r) U_(r)

/o /J= li2n4_r s2p0(s) ds = 47r S2po(s)ds > O.

Finally,

u'(_)_ u_(_)_ 4_ _ 4_ 4_- _ -- _,__ .,_p0(_),u_ ,5-,0(0)- 3 h_(_)< 0

for r _ 0. Condition (iii) is Eq. (6.2), rewritten for y. Obviously, H satisfies the relation

18



(iv) rOrH(r,y) = 2H(r,y), r >_ 0, y e lR.

The assumption (¢4) in case (S) implies the existence of constants C_o< Eo and 0 < ct < c2

such that

_ < ¢(E) < _ forE _ [_o,Ro[.

Takea E]ao, Eo[, then 0 < y(r) _< Eo-c_ < Eo-c_o or C_o< Eo-y(r) < Eofor r > 0. Thus,

oyg(r,y(r)) = -47rr2h_(Eo- y(r))

1 r_o dE

(4_)_ JE ¢(E)JR - Ro+y(r)

< (47r)_ I,2

_ _ c_2v_(_)

and

/?H(r, y(r)) >_ (47r)2v/'2_c,r 2 _/E- Eo + y(r)dE
o-.u(r)

2 r2 y(r)3/2
= (4'_)s v/225 cl ,

= For C_osufficiently close to Eo we can assume that

cs 10

Cl 3

2
Then there exists a constant rn e]l,5[ such that cs/cx <_ 2m/3 i.e. cs <_ gcr m, which in

view of the above estimates for H(r, y(r)) and OyH(r, y(r)) implies that.

(v) y(r)c)_H(r,y(r)) <_ mH(r,y(r)), r :> 0.

1 * " SCondition (i) to (v) now lead to the desired contradiction in the following way; cf. also [5]:

Define

'_--_(_)ry 2

q(_)= y'(r) ' '>- 0
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and

Q(_):= ,._y(,.)Lv__'(_)_q'(_)

m +_lr3y,(r)_+ ,'y(,')H(,',y(,')) r >_0
= 3r2y(r)y'(r)4- 2 ' '

then

5- ,, _y,(,.)_+ (rO.H- 2U)_(,.)+ (yGH- _H)_y'(,.)Q'(_)- 2

5 -- m r2!/(.r) 2 r > 0

by (ix') and (v), and

lira Q(I') = 0 .
r--,O

Thus

r2y(,.)G__ , _ _r!l (") q'(r) -- Q(r) -- Q'(s)ds > 0,

which implies that q'(r) > 0 for r > O, and we have shown that q is strictly increasing. The

third assertion in (ii) yields

limq(r)---A, A > O ,
r--*O

and we conclude that

-A < q(r) = y'(r) , r > O .

Therefore,

_-' r m-' )-_)_ --r- ,,(_) _ -(A)y(,.) < (-A' y(O

=(-A)£ ( "_- l) ''(_)-_'y'(s)ds2

I-m [" 1-mr2
< 2 Jo _ds= r>O4 ' '

20



which implies that
na--.$

ry(r) < Cr-_-zv-,, r > 0

for some constant C > 0. But this contradicts tile second assertion in (ii). Thus, the only

remaining possibility is L > E0 which implies that U0(Ro) = Eo for some Ro > 0 also in the

stellar dynamics case. In both cases U0 is strictly increasing and _(r),-, r -2 for 7' > Ro so

that E0 < lim__,_ Uo(r) < oc. Furthermore, U'(Ro) > 0 so that OzE(z) = (_ U_(r),v) ¢ 0

for z = (x, v) E OB. This shows that OB is a Cl-submanifold of IR6 and is of measure zero.

Since Uo 6 C2([0, oc[) and U_(0) = 0, Uo is C 2 when interpreted as a function on IR3, and

the proof is complete. C]
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