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The stability of axisymmetric steady thermocapillary convection of electrically con-
ducting fluids in half-zones under the influence of a static axial magnetic field is
investigated numerically by linear stability theory. In addition, the energy transfer
between the basic state and a disturbance is considered in order to elucidate the me-
chanics of the most unstable mode. Axial magnetic fields cause a concentration of the
thermocapillary flow near the free surface of the liquid bridge. For the low Prandtl
number fluids considered, the most dangerous disturbance is a non-axisymmetric
steady mode. It is found that axial magnetic fields act to stabilize the basic state.
The stabilizing effect increases with the Prandtl number and decreases with the zone
height, the heat transfer rate at the free surface and buoyancy when the heating is
from below. The magnetic field also influences the azimuthal symmetry of the most
unstable mode.

1. Introduction

1.1. Motivation

Flows driven by thermally induced surface tension gradients occur in many different
physical systems and are of paramount importance for certain crystal growth processes
like the floating-zone technique. In the floating-zone configuration a polycrystalline
feed rod is passed through a ring heater, producing a melt zone that is held by
surface tension forces. Thermocapillary-driven flow in the melt strongly influences the
distribution of dopants and impurities in the growing crystal (Eyer & Leiste 1985;
Cröll, Müller-Sebert & Nitsche 1989; Cröll et al. 1991).

Magnetic fields can be used to control the melt convection during the float-zoning
of semiconductor crystals. The motion of the electrically conducting melt under a
magnetic field induces electric currents. Lorentz forces, resulting from the interaction
between the electric currents and the magnetic field, affect the flow. In particular,
convective instabilities can be suppressed to a considerable degree (e.g. Chandrasekhar
1961). Experiments of Herrmann et al. (1992) and Cröll, Dold & Benz (1994) showed
that steady magnetic fields can improve the micro-homogeneity of float-zone grown
semiconductor single crystals by suppressing unsteady thermocapillary convection. A
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basic understanding of thermocapillary flows, their instabilities and their stabilization
by magnetic fields is required in order to optimize crystal growth processes.

1.2. Previous studies

Owing to the complexity of real floating zones (deformability of the free surface,
deformable phase changing surfaces, rotating crystal rods, external flows, intricate
thermal boundary conditions, etc.) most theoretical studies consider highly idealized
models. The most common model is that of a cylindrical liquid bridge between two
rigid planar disks. Keeping the supporting disks at different temperatures induces an
axial surface tension gradient and thus thermocapillary convection. This configuration
is known as the half-zone model and has been used in the numerical studies of Rupp,
Müller & Neumann (1989), Kuhlmann & Rath (1993), Levenstam & Amberg (1995),
Wanschura et al. (1995) and others. As long as the imposed temperature difference
is sufficiently small the flow field consists of a steady axisymmetric vortex. If the
temperature difference exceeds a critical value, the basic flow becomes unstable.

Rupp et al. (1989) and Levenstam & Amberg (1995) carried out three-dimensional
time-dependent simulations and found that the first instability of the axisymmetric
basic state in low Prandtl number fluids (Pr ≪ 1), like liquid metals and semiconduc-
tor melts, is stationary and non-axisymmetric (i.e. three-dimensional). Time-dependent
flow occurred only after a second instability in the simulations. Kuhlmann & Rath
(1993) and Wanschura et al. (1995) investigated the stability of the axisymmetric
basic state by means of linear stability theory and studied wide ranges of parameters.
Their results confirm the stationary and non-axisymmetric first instability found in
the simulations of Rupp et al. (1989) and Levenstam & Amberg (1995) for small
Prandtl numbers. Wanschura et al. (1995) demonstrated the strong dependence of the
three-dimensional flow’s azimuthal symmetry on the aspect ratio (i.e. height/radius)
of the half-zone. The study pointed out that the azimuthal wavenumber increases
almost linearly with the inverse aspect ratio. By means of an energy analysis Wan-
schura et al. (1995) examined the physical instability mechanism and found that the
low Prandtl number instability is due to the large strain rate present in the basic
axial shear flow. For large Prandtl numbers (i.e. Pr > 0.5) the axisymmetric basic
flow becomes linearly unstable to a pair of hydrothermal waves propagating nearly
azimuthally which result from a synchronous coupling of conductive and convective
heat transports. Kuhlmann & Rath (1993) studied the effect of heat loss through
the free surface and showed a destabilizing influence on the axisymmetric flow in
low Prandtl number fluids. Moreover, the inclusion of weak buoyancy forces in their
model acted to stabilize the basic state when the liquid was heated from above and
to destabilize when the heating was from below.

Apart from the work of Baumgartl et al. (1990) who demonstrated the damping
effect of axial magnetic fields on the unsteady convection in a full-zone configura-
tion by means of a time-dependent three-dimensional simulation, there have been no
numerical studies on the influence of magnetic fields on the stability of thermocap-
illary flow in liquid bridges. Baumgartl et al. (1990) considered the thermocapillary
flow driven by an imposed parabolic heat flux profile at the free surface. In their
calculation induced electric fields were neglected. As we shall see in § 4.2, however,
this approximation is not justified. The numerical results for magnetic field effects on
thermocapillary flows in Czochralski configurations (see e.g. Khine & Walker 1994
and references therein) or infinite plane layers (e.g. Priede, Thess & Gerbeth 1994;
Priede & Gerbeth 1995; see also the review in Wilson 1994) cannot be applied to the
floating-zone problem owing to the different geometry.
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Figure 1. Geometry of the half-zone. The liquid bridge is subject to a static axial magnetic field
B0. Cylindrical coordinates are used.

1.3. This study

In the present work we examine the influence of a steady axial magnetic field on
the stability of axisymmetric thermocapillary convection in half-zones by means of
linear stability theory, i.e. we extend the problem studied by Kuhlmann & Rath (1993)
and Wanschura et al. (1995) to include magnetohydrodynamic effects for low Prandtl
number fluids. Several parameter variations are performed to obtain deeper insights
into the nature of the convective instability and its suppression by magnetic fields.
Systematically, we study the influence of geometry (aspect ratio), Prandtl number,
heat exchange with the ambient medium, and buoyancy forces. To this end we
adopt the numerical methods of Wanschura et al. (1995) where the model equations
are discretized by a mixed Chebychev–finite difference scheme. The linear stability
calculations are accompanied by energy analyses which serve a double purpose. They
provide a check of the linear stability analysis and reveal the physical mechanisms
which stabilize or destabilize the basic flow.

2. Statement of the problem

We consider a liquid bridge between two parallel concentric rigid disks of radius
R which are separated by a distance d (figure 1). A temperature gradient is imposed
on the fluid volume by keeping the disks at different temperatures T (z = −d/2) =
T0 + ∆T/2 and T (z = d/2) = T0 − ∆T/2, where T0 denotes the mean temperature
and ∆T the temperature difference. Heating the liquid bridge from below corresponds
to a positive sign of ∆T . In the limit of large mean surface tension σ0 static and
dynamic deformations of the free surface can be neglected and, for an appropriate
volume, the fluid takes a cylindrical shape. The aspect ratio is defined by

Γ =
d

R
. (1)
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Since surface tension decreases with increasing temperature a thermocapillary upward
flow (provided that ∆T is positive) is induced at the free surface and a steady
axisymmetric vortex arises. As long as the imposed temperature difference does not
exceed a critical value the toroidal basic flow remains stable. In the present study
the effect of a static uniform axial magnetic field on the stability of the basic flow is
investigated.

For small magnetic Reynolds numbers

Rem = µ0σelUL ≪ 1 (2)

(µ0 magnetic field constant, σel electrical conductivity of the fluid, U characteristic
velocity, L length scale) the magnetic field induced by electric currents in the fluid
is negligible (see e.g. Moreau 1990). In typical melt zones of semiconductor crystal
growth Rem does not exceed 10−3. Thus, we can assume that the magnetic induction
B is that of the applied steady field B0. Consequently, induced electric fields can be
expressed by the negative gradient of an electrical potential φ. Using the scalings d,
ν/d, ρ0ν

2/d2, ∆T , d2/ν and νB0 for length, velocity, pressure, temperature, time and
electric potential, where ν and ρ0 denote the kinematic viscosity and the mean density,
respectively, we obtain the following dimensionless governing equations in Boussinesq
approximation and (dimensionless) cylindrical coordinates (r, ϕ, z):

∇ · u = 0, (3)

∂tu + (u · ∇) u = −∇p+ ∆u + Gr θez +Ha2 (u × ez × ez − ∇φ× ez) , (4)

∂tθ + (u · ∇) θ = w +
1

Pr
∆θ, (5)

∆φ = ∇ · (u × ez) , (6)

where p is the dimensionless pressure. The components of the velocity field u are
(u, v, w) (radial, azimuthal, axial) and θ describes the deviation from the conducting
linear temperature profile

T = T0 + ∆T (θ − z). (7)

The dimensionless parameters arising are known as the Grashof, Hartmann and
Prandtl numbers, defined by

Gr =
βg∆Td3

ν2
, (8)

Ha =

(

σel

ρ0ν

)1/2

dB0, (9)

Pr =
ν

κ
, (10)

where β, g and κ denote the thermal expansion coefficient, the acceleration due to
gravity, and the thermal diffusivity, respectively. The momentum equation (4) contains
the Lorentz force term. Lorentz forces are proportional to the vector product of the
induced (dimensionless) electric currents (Ohm’s law)

j = u × ez − ∇φ (11)

and the applied magnetic field B0 = B0 ez . The Poisson equation (6) for the electric
potential is obtained by taking the divergence of (11) and considering the conservation
of electric charge, i.e. ∇ · j = 0.
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The boundary conditions at the rigid walls (z = − 1
2
, 1

2
) read

u = θ = ∂zφ = 0, (12)

where we demand that no electric currents penetrate into the disks. The thermal
condition at the free surface (r = 1/Γ ) is given by Newton’s heat transfer law,
assuming a linear axial profile for the ambient temperature:

(∂r + Bi) θ = 0, (13)

with the Biot number

Bi =
h d

λ
, (14)

where h and λ denote the heat transfer coefficient and the thermal conductivity,
respectively. The electrical boundary condition at r = 1/Γ reads

v − ∂rφ = 0, (15)

since electric currents may not leave the fluid. The balance of tangential stresses at the
free surface (see e.g. Kuhlmann & Rath 1993) in conjunction with a linear approach
for the temperature-dependence of the surface tension σ

σ(T ) = σ0(T0) − γ (T − T0) , γ = −
∂σ

∂T
(T0), (16)

yields the following thermocapillary boundary conditions:

(∂r − Γ ) v + ReΓ∂ϕθ = 0, (17)

∂rw + Re (∂zθ − 1) = 0. (18)

The thermocapillary Reynolds number Re is defined as

Re =
γ∆Td

ρ0ν2
. (19)

For given fluid and geometry Re is simply proportional to the imposed temperature
difference. The radial velocity vanishes at r = 1/Γ since we do not allow for surface
deformations.

Note that the thermocapillary Reynolds number (19) corresponds to the conven-
tional Reynolds number U d/ν only for weak thermocapillary flow (Re → 0 , P r → 0)
without magnetic field for which the appropriate scaling of velocity is U = γ∆T/(ρ0ν)
(e.g. Kuhlmann 1995). The Marangoni number, also frequently used to characterize
thermocapillary flows, is defined as Ma = RePr.

3. Numerical methods

3.1. Basic state

The axisymmetric steady basic state is characterized by ∂t = ∂ϕ = v0 = 0 (the
subscript 0 indicates basic-state quantities). To calculate the velocity field we use a
stream function–vorticity formulation, where stream function ψ0 and vorticity Ω0 are
defined as

u0 = ∂zψ0, (20)

w0 = −Dψ0, (21)

Ω0 = −∂rw0 + ∂zu0 (22)
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with D := ∂r + 1/r. The Stokes stream function is given by Ψ = rψ0. Taking the curl
of (4) (and expressing the velocity components through stream function and vorticity)
yields the bulk equations

(

∂rD + ∂2
z

)

ψ0 − Ω0 = 0, (23)

(

∂rD + ∂2
z − ∂zψ0 ∂r + Dψ0∂z +

1

r
∂zψ0

)

Ω0 − Gr ∂rθ0 −Ha2∂2
zψ0 = 0, (24)

(

D∂r + ∂2
z − Pr ∂zψ0 ∂r + PrDψ0 ∂z

)

θ0 − PrDψ0 = 0. (25)

For axisymmetric flow (6) and (15) reduce to ∆φ0 = 0 and ∂rφ0 = 0, respectively. The
solution of the Laplace equation with Neumann boundary conditions (12) and (15)
is trivial and reads

∇φ0 = 0, (26)

meaning that no electric fields are induced. Thus, according to Ohm’s law (11), electric
currents are always perpendicular to the velocity and the magnetic field vectors, i.e.
purely azimuthal. Consequently, Lorentz forces are directed radially and opposite to
u0, resulting in a flow retardation. Using the boundary conditions

ψ0 = ∂zψ0 = θ0 = 0 (27)

at z = − 1
2
, 1

2
,

ψ0 = Ω0 = ∂rθ0 = 0 (28)

at r = 0, and

ψ0 = 0, (29)

−Ω0 + Re (∂zθ0 − 1) = 0, (30)

(∂r + Bi) θ0 = 0 (31)

at the free surface, we solve the basic-state problem with the numerical code of
Wanschura et al. (1995) modified for the magnetic case as follows. The set of differ-
ential equations is discretized by means of a Chebyshev collocation method (Canuto
et al. 1988) in the radial direction and a second-order finite-difference scheme in
the axial direction. The resulting algebraic system is solved implicitly by Newton
iteration (e.g. Schwarz 1993). The discretization grid consists of equidistant points in
the axial direction and non-equidistant Gauss–Lobatto-points in the radial direction.
Gauss–Lobatto-points are defined as

xj = cos

(

π
j

M

)

, j = 0, . . . , M,

where M denotes the number of radial grid points and x = 2Γr − 1. Due to the
non-equidistant distribution of the radial grid points flow structures close to the free
surface are efficiently resolved.

3.2. Linear stability analysis

Having calculated the axisymmetric basic state, its stability is investigated by a linear
analysis. To obtain a sufficient condition for instability infinitesimal perturbations are
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superimposed onto the basic-state solution:

(u, p, θ, φ) = (u0, p0, θ0, φ0) +
(

up, pp, θp, φp

)

(32)

(the subscript p indicates perturbation fields). Substitution into (3)–(6) and lineariza-
tion with respect to the perturbation quantities yields

∇ · up = 0, (33)

∂tup +
(

up · ∇
)

u0 + (u0 · ∇) up = −∇pp + ∆up + Gr θpez

+Ha2
(

up×ez×ez − ∇φp×ez
)

, (34)

∂tθp +
(

up · ∇
)

θ0 + (u0 · ∇) θp = wp +
1

Pr
∆θp, (35)

∆φp = ∇ ·
(

up×ez
)

. (36)

The general solution of this linear system can be expressed by a superposition of
normal modes

Fp(r, ϕ, z, t) = eα̃t eimϕ F′(r, z) + c.c., (37)

where F represents the field quantities and m is an integer azimuthal wavenumber.
Here and in the following primes denote (r, z)-dependent perturbation amplitudes.
Generally α̃ = α+ iω is complex with growth rate α and oscillation frequency ω. For
a mode of neutral stability α = 0, while unstable/stable modes have positive/negative
growth rates.

The further treatment of the stability problem requires the distinction between
axisymmetric (m = 0) and non-axisymmetric (m > 1) perturbations. For the axisym-
metric case we apply the stream function–vorticity approach according to (20)–(22)
similar to the basic-state calculation. As we shall see below, however, axisymmetric
modes are not important for the instability. Therefore, we omit the detailed descrip-
tion of the axisymmetric stability problem (for the non-magnetic case the reader is
refered to Wanschura et al. 1995) and consider only the three-dimensional case. We
express the azimuthal velocity component v′ in terms of u′ and w′ using the continuity
equation

v′ =
ir

m

(

Du′ + ∂zw
′
)

. (38)

Thus, the problem is reduced to five scalar quantities (u′, w′, p′, θ′, φ′). Inserting (38)
and the normal mode approach (37) into (33)–(36), keeping the radial and the axial
momentum equations, and taking the divergence of (34) we obtain the linear system
of partial differential equations given in the Appendix. Using the same discretization
scheme as for the basic-state calculation, we finally have a generalized eigenvalue
problem

A x = α̃B x, (39)

where A and B are the matrix representations of the set of linear volume equations
and boundary conditions and x denotes the eigenvector of field quantities. The flow is
linearly unstable if at least one eigenvalue exists which has a positive real part. Hence,
the linear stability boundary is given by the set of parameters for which the largest real
part of all eigenvalues vanishes. Inverse iteration (Press et al. 1989) is applied to (39)
in order to find this mode for a given set of parameters (Bi, Gr, Ha, P r, Γ , m). The
neutral Reynolds number Re(m)

c for a given azimuthal wavenumber m is determined
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by

α(Bi, Gr,Ha, P r, Γ , Re(m)
c , m) = 0. (40)

The critical Reynolds number is

Rec(Bi, Gr,Ha, P r, Γ ) = min
m

{Re(m)
c (Bi, Gr,Ha, P r, Γ )}. (41)

The corresponding mode of disturbance is called the most dangerous, most unstable,
or critical mode. Stability calculations for the present work were performed with
wavenumbers m ranging from 0 to 6.

3.3. Energy analysis

Calculating the energy transfer between the basic state and the critical mode of
disturbance provides a check (conservation of energy) of the linear stability analysis
and may reveal the physical mechanisms which tend to stabilize or destabilize the
basic flow. The rate of change of the kinetic energy Ekin is obtained by multiplying
(34) by up and integrating over the entire cylindrical volume V . Taking into account
the boundary conditions the Reynolds–Orr energy equation can be written as

d

dt
Ekin =

1

2

d

dt

∫

V

u2
p dV

= −Dkin +Mz +Mϕ + Ikin − Gr IT −Ha2IL. (42)

Dkin represents the rate of viscous dissipation

Dkin =

∫

V

(

∇ × up

)2
dV − 2

∫

S

(

v2
p

r

)

r=1/Γ

dS, (43)

where S is the free surface of the volume. Mz and Mϕ denote the work done by
thermocapillary forces acting on the cylindrical surface in the axial and azimuthal
directions, respectively:

Mz =

∫

S

(

wp∂rwp

)

r=1/Γ
dS, (44)

Mϕ =

∫

S

vp

(

∂rvp −
vp

r

)

r=1/Γ
dS. (45)

Ikin contains integrals resulting from interactions between basic state and disturbance
flow:

Ikin = Ikin,1 + Ikin,2 + Ikin,3 + Ikin,4 + Ikin,5

= −

∫

V

(

v2
p

u0

r
+ u2

p∂ru0 + upwp∂zu0 + wpup∂rw0 + w2
p∂zw0

)

dV . (46)

IT is the work done by buoyancy forces and reads

IT = −

∫

V

θpwp dV . (47)

Finally, IL denotes the work done by Lorentz forces. In order to elucidate the effect
of the electrical potential φ we split IL into two terms IL = IL,1 + IL,2, where

IL,1 =

∫

V

(

u2
p + v2

p

)

dV , (48)
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IL,2 =

∫

V

(up

r
∂ϕ − vp∂r

)

φp dV . (49)

If α > 0 the rate of change of energy is positive and the basic flow is unstable.
Accordingly, positive/negative terms on the right-hand side of (42) have a net desta-
bilizing/stabilizing effect. Similarly, a balance for the thermal energy transfer can be
obtained by multiplying (35) by θp followed by a volume integration. The thermal
balance is the same as for the corresponding non-magnetic problem (Wanschura et al.
1995) and plays virtually no role for low Prandtl number fluids which are investigated
in the present study. For a detailed description of the thermal energy equations and
the numerical methods applied to compute the integrals we refer to Wanschura et
al. (1995). Since the energy equation (42) must be exactly satisfied by any solution
of the linear stability problem, the relative error in the kinetic energy balance is
defined as the residual normalized by the largest absolute value of the integrals on
the right-hand side of (42):

δkin :=

∣

∣−(d/dt)Ekin − Dkin +Mz +Mϕ + Ikin − Gr IT −Ha2IL
∣

∣

max {Dkin, |Mz|, |Mϕ|, |Ikin,1| · · · |Ikin,5|, |Gr IT|, Ha2IL,1, Ha2|IL,2|}
. (50)

4. Results

4.1. Influence of magnetic fields on the basic flow

The axisymmetric thermocapillary basic flow in half-zones without magnetic fields is
well-known from experimental (e.g. Preisser, Schwabe & Scharmann 1983), numerical
(e.g. Shen et al. 1990; Kuhlmann & Rath 1993; Wanschura et al. 1995) and analytical
(e.g. Kuhlmann 1989) studies. Near the free surface a steady toroidal vortex arises,
the radial extent of which is approximately equal to the half-zone’s height if the
Reynolds number is large and Γ 6 1. For small aspect ratios Γ the flow pattern
includes additional exponentially weak vortex rings inside the bulk. In the limit
Re → 0, P r → 0 the streamlines are symmetric with respect to the midplane z = 0.
This symmetry is lost for increased Reynolds or Prandtl numbers due to nonlinear
processes.

Figure 2 shows streamlines for Bi = Gr = 0, P r = 0.02, Γ = 1, Re = 2061
and various Hartmann numbers (Ha = 0, 15, 30, 50) with a grid resolution of 30
collocation points in radial direction and 80 axial finite-difference steps. The state is
neutrally stable for Ha = 0 as discussed in the next section. Owing to the damping
effect of Lorentz forces axial magnetic fields reduce the volume transport of the
thermocapillary vortex which is given by the maximum value Ψmax of the Stokes
stream function (figure 3). The symmetry with respect to the midplane is partially
restored for increasing Hartmann numbers due to the diminution of convective (i.e.
nonlinear) terms. Since Lorentz forces are purely radial (see § 3.1) the flow tends to
avoid radial momentum. As a result, the radial extent of the thermocapillary vortex
decreases with increasing Hartmann number, leading to the formation of secondary
vortices inside the bulk. These secondary vortices are, however, at least two orders of
magnitude weaker than the primary vortex and can be neglected. Figure 4 reveals that
the width of the thermocapillary vortex δ‖ is approximately proportional to Ha−1/2

for sufficiently large Hartmann numbers (δ‖ is defined as the radial position where

Ψ = 0 on the midplane z = 0). A Ha−1/2-scaling is a typical feature for boundary
layers which develop parallel to magnetic field lines (see e.g. Moreau 1990). We find
that the surface velocity also scales with Ha−1/2 if the Hartmann number exceeds 150
(figure 4).
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Figure 2. Streamlines (lines of constant Ψ ) for the basic state Bi = Gr = 0, Pr = 0.02, Γ = 1,
Re = 2061 and various Hartmann numbers. Dashed lines represent Ψ = 0.
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Figure 3. Dependence of the volume transport (maximum Ψ ) on Ha for Bi = Gr = 0, Pr = 0.02,
Γ = 1, Re = 2061.

4.2. Flow stabilization by axial magnetic fields

The basic state for Bi = Gr = 0, P r = 0.02, Γ = 1 at Re = 2061 is neutrally stable
with respect to the most dangerous mode m = 2 if magnetic fields are absent (Ha = 0),
i.e. Rec = Re(m=2)

c = 2061. The bifurcation is stationary, i.e. ω = 0, and the instability
mechanism has been described in detail by Wanschura et al. (1995). By analysing
the energy balance they showed that the integral Ikin,4 increases strongly with Re.
Ikin,4 measures the transfer of axial base-state momentum w0 to the disturbance wp
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Figure 5. Dependence of the critical Reynolds number Rec on Ha for Bi = Gr = 0, Pr = 0.02,
Γ = 1. The azimuthal wavenumber of the critical mode is m = 2. Solid line: (30 × 80)-grid. Dashed
line: (35 × 100)-grid. The curves represent neutral stability of the basic state.

via the radial disturbance up. This process intensifies with an increase of the radial
gradient of base-state axial velocity. Hence, it follows that the low Prandtl number
(Pr ≪ 1) instability is due to the large strain rate present in the basic axial shear
flow. Up to now, the stationary instability in small Prandtl number fluids was only
observed in numerical studies (Rupp et al. 1989; Kuhlmann & Rath 1993; Levenstam
& Amberg 1995; Wanschura et al. 1995). Experimental evidence is still missing since
model experiments are usually carried out with large Prandtl number liquids (e.g.
NaNO3, KCl, silicon oils) where the first instability is oscillatory (e.g. Preisser et
al. 1983; Velten, Schwabe & Scharmann 1991) and due to hydrothermal waves as
discussed by Wanschura et al. (1995).

To study the stabilizing effect of axial magnetic fields we fix the set of parameters
(Bi = Gr = 0, P r = 0.02, Γ = 1) for the moment and calculate the dependence of
Rec on Ha. The results for two different grid resolutions are shown in figure 5
and in table 1. The stationary m = 2 mode remains critical over the range of Ha
considered. The divergence of the two curves in figure 5 for Ha > 15 indicates that
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Ha Rec (35 × 100) Rec (30 × 80) δkin (30 × 80)

0 2060 2061 0.9%
5 2400 2400 1.4%

10 3331 3331 3.3%
15 5167 5141 8.9%
20 8375 7947 20.8%
25 13458 12682 33.3%

Table 1. Dependence of Rec on Ha (Bi = Gr = 0, Pr = 0.02, Γ = 1, m = 2) for two different grid
resolutions. The relative error in the kinetic energy balance is given in the right-hand column for
the (30 × 80)-grid.

Grid Rec (Ha = 10) Rec (Ha = 15) Rec (Ha = 20)

15 × 40 5192 3116 4776
20 × 60 3552 4371 6121
25 × 80 3357 5045 7123
30 × 80 3331 5141 7947
35 × 100 3331 5167 8375
40 × 120 3331 5168 8432

Table 2. Dependence of Rec on the grid resolution for Ha = 10, Ha = 15 and Ha = 20
(Bi = Gr = 0, Pr = 0.02, Γ = 1, m = 2).

the grid resolution must be enhanced with increasing Hartmann number due to the
development of the velocity boundary layer near the free surface. Numerous grid
resolution tests were carried out. Table 2 shows some of the results and gives a feeling
for the effect of grid size on the critical Reynolds number. For Ha = 10 a grid with
30 radial and 80 axial points is sufficient. In this case the relative error in the kinetic
energy balance δkin is about 3% (table 1). The critical Reynolds number for Ha = 15
calculated using the (30×80)-grid differs by only 0.5% compared to the (40×120)-grid
computation. We can deduce, therefore, that the (30 × 80)-grid is also appropriate for
stability analyses with Ha = 15. Additionally, a very high resolution calculation with
50×130 points was performed which confirms the critical Reynolds number obtained
by the (40 × 120)-grid. For Ha > 15 higher grid resolutions are necessary to achieve
grid convergence. With our present computational resources such calculations are not
feasible. For Ha = 20 the values in table 2 suggest that insufficient grid resolutions
result in critical Reynolds numbers which are too low. For the following analyses,
we restrict the calculations to Ha 6 15 using a grid of 30 × 80 points. This ensures
reliable results. Relative errors in the thermal energy balance are always below 0.2%.

In order to understand the stabilizing mechanism of the magnetic field we consider
the kinetic energy balance. Figure 6 shows the relevant integrals from (42) for varying
Hartmann number and fixed parameters Bi = Gr = 0, P r = 0.02, Γ = 1, Re = 3331,
m = 2. For Ha = 10 the basic state is neutrally stable. As Ikin,4 remains the dominant
destabilizing term even for higher Hartmann numbers, we conclude that axial mag-
netic fields do not change the mechanism of instability, namely the instability of the
axial shear flow. Also, it is obvious that the modification of the basic flow described
above is only of minor importance for the magnetic stabilizing effect since Ikin (nor-
malized by Dkin) is almost invariant. Note that Ikin is the only integral in (42) which
includes basic-state quantities. The rise in Ha2IL with increasing Hartmann number
shows that the stabilization is primarily due to the direct action of the magnetic
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Figure 6. The rate of change of kinetic energy as a function of Ha for Bi = Gr = 0, Pr = 0.02,
Γ = 1, Re = 3331 and m = 2. All terms are normalized with respect to Dkin. Dashed-dotted:
(d/dt)Ekin. Dotted: Dkin. The vertical dotted line marks the stability boundary.
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Figure 7. Horizontal cut at z = 0 through the neutral mode Bi = Gr = 0, Pr = 0.02, Γ = 1,
Re = Rec = 3331, Ha = 10, m = 2: Flow field (a) and electrical currents (b).

field on the disturbance flow. Induced electric currents instantly give rise to damping
Lorentz forces. Ha2IL consists of the positive (and thus always stabilizing) IL,1 and
the negative IL,2. The latter includes the effects of induced electric fields and strongly
reduces the stabilizing action of electromagnetic forces. Figure 7 shows a horizontal
cut through the neutral fields of velocity and electric current density. The induced
electric field allows electric currents which are not perpendicular to the perturbation
flow. Accordingly, the damping effect of Lorentz forces is reduced. The induction of
electric fields is necessary to ensure the conservation of electric charge. Therefore,
neglecting electric fields in three-dimensional fluid flow as in Baumgartl et al. (1990)
is not justified and results in an overestimation of magnetic stabilization.

4.3. Variation of the aspect ratio

Both experimental (Preisser et al. 1983) and numerical studies (Wanschura et al.
1995) pointed out that the critical wavenumber m is roughly proportional to the
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Figure 8. Dependence of critical Reynolds numbers and wavenumbers on 1/Γ for Bi = Gr = 0,
Pr = 0.02. Dashed lines: Ha = 0. Solid lines: Ha = 10. Dashed-dotted lines: Ha = 15. The vertical
dotted lines mark the changes of the critical mode for Ha = 0.
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Figure 9. Disturbance flow (a) and temperature field (b) of the critical mode in a horizontal
cross-section at z = 0 for Bi = Gr = 0, Pr = 0.02, 1/Γ = 0.5, Ha = 15, Re = Rec = 3221 and
m = 1. Solid contour lines indicate positive values (warm), dashed contours indicate negative
values (cold). (Note that the waviness of the isolines close to the free surface is an artefact of the
visualization software.)

inverse aspect ratio 1/Γ of the half-zone since the azimuthal wavelength scales with
the characteristic length d. As described in § 4.1 axial magnetic fields introduce a
new, smaller length scale by reducing the radial extent of the thermocapillary flow.
Thus, we would expect a tendency toward larger critical wavenumbers with increasing
Hartmann number. Figure 8 shows the dependence of critical Reynolds numbers and
wavenumbers on 1/Γ for Bi = Gr = 0, P r = 0.02 and various Hartmann num-
bers. The stabilizing influence of Lorentz forces strengthens with increasing 1/Γ .
Concerning the azimuthal symmetry of the critical modes, magnetic fields actually
favour modes with larger wavenumbers if 1/Γ > 1 as can be seen by the shift
of the intersection of curves for different wavenumbers. However, for 1/Γ < 1 we
observe an opposite effect, i.e. axial magnetic fields favour m = 1 above m = 2.
This can be attributed to a stabilizing effect of azimuthal thermocapillary forces.
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Figure 10. Dependence of critical Reynolds numbers and wavenumbers on 1/Γ for Bi = Gr = 0,
Pr = 10−5. Dashed lines: Ha = 0. Dashed-dotted lines: Ha = 15. The vertical dotted line marks the
change of the critical mode for Ha = 0 and Pr = 0.02 at 1/Γ = 0.61.

To illustrate this effect figure 9 shows horizontal cross-sections of the neutral fields
of velocity and temperature for Bi = Gr = 0, P r = 0.02, 1/Γ = 0.5, Ha = 15,
Re = Rec = 3221, m = 1. The temperature distribution arises mainly due to ax-
ial convection of the conductive temperature profile induced by the disturbance
flow (see Wanschura et al. 1995). The azimuthal temperature gradients at the free
surface cause thermocapillary forces which counteract the surface flow, thus damp-
ing the perturbation. Although this effect occurs for any mode of disturbance, its
efficiency depends on the wavenumber. Short-wave modes are damped more effec-
tively than modes with larger wavelengths since thermocapillary forces are propor-
tional to azimuthal surface temperature gradients which scale with m according to
(37). Also, the strength of thermocapillary forces increases with Re. Due to mag-
netic stabilization the critical Reynolds numbers increase such that thermocapillary
stabilization intensifies. This in turn causes a further increase of Rec. Therefore,
azimuthal thermocapillary forces amplify magnetic stabilization and favour small
wavenumbers.

For Pr → 0 azimuthal thermocapillary forces vanish, since heat diffusion prevents
the occurrence of temperature perturbations. Consequently, we observe a general
tendency toward larger critical wavenumbers with increasing Ha (figure 10). The
effect of Pr is studied in detail in the following.

4.4. Variation of the Prandtl number

Prandtl numbers of semiconductor melts are of the same order of magnitude as
those of liquid metals (e.g. Si: Pr = 0.02; Ga: Pr = 0.02; GaAs: Pr = 0.07).
Figure 11 shows the dependence of critical Reynolds numbers and wavenumbers on
Pr for Bi = Gr = 0, Γ = 1 and various Hartmann numbers. Our value of Rec = 1899
for Pr = 0.01 without magnetic field is in excellent agreement with the result of
Levenstam & Amberg (1995) who found Rec = 1960.

In the limit Pr → 0 the critical wavenumber increases with the Hartmann number
as described in the previous section. With growing Prandtl number convective heat
transport increases, resulting in intensified azimuthal temperature gradients leading to
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Figure 11. Dependence of critical Reynolds numbers on Pr for Bi = Gr = 0, Γ = 1 and various
Ha. Dashed line: Re(m=2)

c = Rec for Ha = 0. Solid line: Re(m=2)
c = Rec for Ha = 10. Dashed-dotted

lines: Re(m=3)
c and Re(m=2)

c for Ha = 15.
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Figure 12. Dependence of Re(m)
c on Pr for Bi = Gr = 0, Γ = 1, Ha = 10 and m = 2, 3. Solid lines:

with conventional disturbance thermocapillary boundary conditions (A 8) and (A 9). Dashed lines:
without azimuthal thermocapillary forces, i.e. Re = 0 in (A 9).

thermocapillary forces which counteract the disturbance surface flow. As a result, the
flow is stabilized and the critical Reynolds number increases accordingly. Since the
damping effect of azimuthal thermocapillary forces on the disturbance flow increases
with m, the most dangerous mode for Ha = 15 changes as Pr increases. Figure 12
illustrates this effect for Bi = Gr = 0, Γ = 1, Ha = 10. The dashed lines represent
the dependence of critical Reynolds numbers on Pr when azimuthal thermocapillary
forces are neglected by artificially setting Re = 0 in the azimuthal thermocapillary
boundary condition (A 9). In this case there is only a small stabilization with increasing
Prandtl number. The solid lines take account of azimuthal thermocapillary forces and
we observe a considerable stabilization whose effectiveness increases with m. Figure 12
clearly shows that the main reason for the critical Reynolds number dependence on
Pr is the stabilizing effect of azimuthal thermocapillary forces rather than a modified
basic flow as suggested by Wanschura et al. (1995).
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c on Bi for Gr = 0, Pr = 0.02, Γ = 1 and various Ha. Dashed line:

Re(m=2)
c = Rec for Ha = 0. Solid line: Re(m=2)

c = Rec for Ha = 10. Dashed-dotted lines: Re(m=2)
c and

Re(m=3)
c for Ha = 15. The dotted lines mark the critical Reynolds numbers Rec for Bi = Gr = 0,

Γ = 1 and Pr → 0 for the corresponding Hartmann numbers Ha = 0, 10, 15.

We emphasize that the increase of Rec shown in figure 11 is limited. For sufficiently
large Prandtl numbers (Pr > 0.5) the basic flow becomes linearly unstable to a pair of
hydrothermal waves propagating nearly azimuthally which result from a synchronous
coupling of conductive and convective heat transport (Kuhlmann & Rath 1993;
Wanschura et al. 1995). For semiconductor melts (Pr ≪ 1) the hydrothermal wave
instability mechanism plays no role.

4.5. Variation of the Biot number

The Biot number determines the heat transfer rate from the free surface to the sur-
roundings according to (13). Figure 13 presents critical Reynolds numbers as a func-
tion of Bi for Gr = 0, P r = 0.02, Γ = 1 and various Hartmann numbers. In the limit
Bi → ∞ no surface temperature perturbations can arise and the stability boundaries
coincide with the case Pr → 0. With decreasing Bi azimuthal thermocapillary forces
stabilize the basic flow and cause a change of the most dangerous mode for Ha = 15.

4.6. The effect of buoyancy

Within the Boussinesq approximation the ratio Gr/Re is a constant with regard to a
given geometry:

Gr

Re
=
βgρ0d

2

γ
. (51)

As an example, we consider a Si liquid bridge with d = 10−2 m. Under terrestrial
gravity conditions the corresponding ratio Gr/Re is approximately 1.25. Figure 14
shows the dependence of Rec on Ha considering the influence of buoyancy forces.
If the liquid bridge is heated from below (Gr = 1.25Re) the effect of buoyancy is
destabilizing. Heating from above (Gr = −1.25Re) stabilizes the basic state. Since
Gr ∼ Re the effect of buoyancy on stability increases with the critical Reynolds
number and thus with Ha.

The destabilizing action of buoyancy when heating the liquid bridge from below is
due to radial temperature gradients in both the basic state and the disturbance. The
basic flow vortex (figure 2) transports warm liquid from the bottom to the free surface
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Figure 14. Dependence of Rec on Ha for Bi = 0, Pr = 0.02, Γ = 1 in the presence of buoyancy
forces. Dashed line: Gr = −1.25Re (heating from above). Solid line: Gr = 1.25Re (heating from
below). Dotted line: Gr = 0. The critical wavenumber is m = 2 in all cases.

and cold liquid into the interior. The resulting radial temperature gradients cause
buoyancy forces which strengthen the basic vortex and thus favour instability. When
heating from above the presence of radial temperature gradients has a stabilizing
effect. The influence of buoyancy on stability increases with Pr owing to increased
temperature gradients caused by intensified convective heat transport.

In this study buoyancy is considered only as a disturbing effect for the thermocapil-
lary flow. We investigated the instability of a unique basic state which is dominated by
thermocapillary forces. However, if Gr exceeded a critical value, the onset of Rayleigh–
Bénard convection would give rise to multiple basic states where the various flow pat-
terns were characterized by the mutual orientation of buoyancy- and thermocapillary-
induced vortices. For the stability of combined buoyant–thermocapillary flow in liquid
bridges the reader is refered to Wanschura, Kuhlmann & Rath (1997).

5. Discussion

The stabilizing effect of steady axial magnetic fields on the two-dimensional ther-
mocapillary flow in half-zones has been investigated for a wide range of parameters.
The half-zone model represents a simplification of the floating-zone configuration
used for crystal growth.

Axial magnetic fields cause a concentration of the thermocapillary convection
near the free surface. This was also observed in the floating-zone simulation of
Morthland & Walker (1996) and confirmed experimentally by Cröll et al. (1994). The
latter authors examined doped Si crystals grown with the floating-zone technique
(Re ≈ 2 × 105) under the influence of a steady axial magnetic field (Ha ≈ 185) and
found a strong radial variation of the dopant concentration. They attributed the radial
macro-segregation to a flow pattern which is characterized by intense convection near
the free surface and fluid nearly at rest in the interior of the melt zone.

If the thermocapillary Reynolds number exceeds a critical value, the two-
dimensional basic state becomes unstable and a transition to three-dimensional flow
takes place. For the low Prandtl number fluids considered in this study (liquid metals
and semiconductor melts) this bifurcation is stationary and due to a shear flow
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instability. As discussed by Wanschura et al. (1995) the confinement of the flow by
boundaries is essential for the instability to occur. Thus, model studies with infinite
geometries, like e.g. Priede & Gerbeth (1995) and Priede et al. (1994), are not appli-
cable to the float-zone geometry. Experimental evidence for the stationary instability
in low Prandtl number liquid bridges is still missing. Results of model experiments
carried out with large Prandtl number fluids are not applicable to low Prandtl number
fluids due to completely different instability mechanisms.

By an energy analysis we have shown that the stabilizing effect of magnetic fields on
thermocapillary flows in liquid bridges is mainly due to the direct action of Lorentz
forces on the disturbance flow. The modification of the basic flow by magnetic fields is
of minor importance. Induced electric fields, however, reduce the magnetic stabilizing
effect considerably.

Azimuthal thermocapillary forces have an additional stabilizing influence by damp-
ing the disturbance flow. This effect increases with Re and thus with Ha since magnetic
fields enhance the critical Reynolds number. The stabilizing effects of azimuthal ther-
mocapillary forces and magnetic fields amplify each other. Moreover, the azimuthal
thermocapillary stabilization depends on the wavenumber m such that short-wave
modes are damped more strongly than those with larger wavelengths.

The results clearly show that the degree of magnetic stabilization depends on Γ ,
Pr, Bi and Gr. The stabilization intensifies with decreasing aspect ratio, increasing
Prandtl number, decreasing Biot number and/or decreasing Grashof number.

As in previous studies without magnetic field (Rupp et al. 1989; Kuhlmann & Rath
1993; Levenstam & Amberg 1995) no critical axisymmetric (i.e. m = 0) mode was
found despite extensive parameter variations. The application of an axial magnetic
field does not alter the fact that the first instability of thermocapillary flow in half-
zones is axisymmetry-breaking. For instance, with the parameters Bi = Gr = 0, Pr =
0.02, Γ = 1 and Ha = 20 we carried out stability calculations for the axisymmetric
mode and found no positive growth rate for Reynolds numbers up to 40 000 where
we finally terminated the computations. Thus, stability analyses of thermocapillary
convection in liquid bridges which consider axisymmetric perturbations solely, with or
without magnetic fields (e.g. Shen et al. 1990; Chen & Chin 1995), must be interpreted
with the utmost caution.

The onset of time-dependent flow in floating zones is of particular practical interest
since unsteady convection can cause undesirable spatial fluctuations of the dopant
concentration (dopant striations) in growing crystals (Eyer & Leiste 1985; Cröll et al.
1989, 1991). Time-dependent flow, however, occurs only after a second bifurcation (i.e.
the instability of the non-axisymmetric steady state) and was not considered in the
present study. Levenstam & Amberg (1995) found the transition to the unsteady state
to take place at Re = 6250 for Pr = 0.01 and unit aspect ratio. Values given by Rupp
et al. (1989) for aspect ratio Γ = 1.2 are higher. They range from 14 286 for Pr = 0.007
to 26 471 for Pr = 0.068. The order of magnitude was confirmed by experiments of
Cröll et al. (1989). It is interesting to note that not only is the stationary first instability
suppressed with increasing Prandtl number, but also the onset of time-dependent flow.
In the full-zone simulation of Baumgartl et al. (1990) the transition to unsteady ther-
mocapillary convection occurs at much lower values, namely Re = 5750 for Pr = 0.02
and Re = 8824 for Pr = 0.068. These results indicate that the effect of Pr on the
flow stability in full-zones is not as strong as in half-zones owing to different thermal
boundary conditions. Unfortunately, Baumgartl et al. (1990) investigated the effect of
static magnetic fields only for a relatively large Prandtl number of Pr = 0.068. There-
fore, a quantitative comparison of their results with our half-zone study is not possible.
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6. Outlook

Numerical investigations using relatively simple models like the half-zone can be
used to get insight into the basic physical mechanisms which arise in floating zones. A
thorough understanding of these phenomena is required in order to develop efficient
strategies to optimize the melt convection in real crystal growth configurations.
Magnetic fields play a pivotal role in semiconductor crystal growth since they allow
a contactless control of the melt flow due to the high electrical conductivity of the
molten material. Improved dopant and defect distributions can thus be achieved.

Numerous applications of magnetic fields in floating-zone crystal growth are con-
ceivable and must be examined in future investigations. The effects of cusped (see
e.g. Baumgartl et al. 1990) and transverse (Kimura et al. 1983) magnetic fields are
still rather unexplored. Also, the use of rotating magnetic fields appears to be a very
promising method to suppress convective instabilities in semiconductor melt flow (e.g.
Gelfgat 1995). The simultaneous application of static and rotating fields allows the
benefits of both kinds of magnetic fields and will probably be the subject of many
future experimental and numerical studies.

We are indebted to V. M. Shevtsova for providing the code for the energy balance
computations.

Appendix. Linear stability equations

The linear system of partial differential equations for the three-dimensional stability
problem reads:
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′ −

(

u′∂r + w′∂z
)

u0 − ∂rp
′ +

(

D∂r −
m2

r2
+ ∂2

z

)

u′

−
u′

r2
+

2

r

(

Du′ + ∂zw
′
)

+Ha2
(

−u′ −
m

r
iφ′

)

= α̃u′, (A 1)

− (u0∂r + w0∂z)w
′ −

(

u′∂r + w′∂z
)

w0−∂zp
′+

(

D∂r −
m2

r2
+ ∂2

z

)

w′+Gr θ′ = α̃w′, (A 2)

2

{[(

∂r −
1

r

)

u0∂r + ∂rw0∂z

]

u′ +

[

∂zu0∂r +

(

∂zw0 −
1

r
u0

)

∂z

]

w′

}

+

(

D∂r −
m2

r2
+ ∂2

z

)

p′ − Gr ∂zθ
′ −Ha2∂zw

′ = 0, (A 3)

− (u0∂r + w0∂z) θ
′ −

(

u′∂r + w′∂z
)

θ0 + w′ +
1

Pr

(

D∂r −
m2

r2
+ ∂2

z

)

θ′ = α̃θ′, (A 4)

(

D∂r −
m2

r2
+ ∂2

z

)

iφ′ +
1

m
(r∂r + 2)

(

Du′ + ∂zw
′
)

−
m

r
u′ = 0. (A 5)

The boundary conditions are

u′ = w′ = ∂zw
′ = θ′ = ∂zφ

′ = 0 (A 6)

at z = − 1
2
, 1

2
, and

u′ = 0, (A 7)

∂rw
′ + Re ∂zθ

′ = 0, (A 8)



Thermocapillary convection in cylindrical liquid bridges 301

1

Γ 2

(

∂rDu
′ + ∂r∂zw

′
)

+ Rem2θ′ = 0, (A 9)

(∂r + Bi) θ′ = 0, (A 10)
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(

Du′ + ∂zw
′
)
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at r = 1/Γ . In addition, the solution must satisfy conditions of symmetry and
regularity on the axis at r = 0 (see e.g. Batchelor & Gill 1962; Xu & Davis 1984;
Kuhlmann & Rath 1993):

∂ru
′ = w′ = p′ = θ′ = φ′ = 0 for m = 1, (A 12)

u′ = w′ = p′ = θ′ = φ′ = 0 for m > 1. (A 13)
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