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the Tangled Nature model of evolutionary ecology and high dimensional replicator

systems with a stochastic element. A high dimensional stability matrix is derived in the

mean field approximation to the stochastic dynamics. This allows us to determine the

stability spectrum about the observed quasi-stable configurations. From overlap of the

instantaneous configuration vector of the full stochastic system with the eigenvectors

of the unstable directions of the deterministic mean field approximation we are able to

construct a good early-warning indicator of the transitions occurring intermittently.
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1. Introduction

High dimensional complex systems, both physical and biological, exhibit intermittent

dynamics, consisting of stretches of relatively little change interrupted by often sudden

and dramatic transitions to a new meta-stable configuration [1]. Such transitions can

have crucial consequences when they occur in, say, ecosystems or financial markets and it

is therefore important to develop methods that are able to identify precursors, warning

signals and ideally techniques to forecast the transitions before they take place. We

will expect that the mechanisms behind the rapid rearrangement may be different in

different systems.

The literature in this filed is very extensive and it is difficult to produce a

comprehensive review. Here we relate to the literature most relevant to our paper. An

often used approach to forecasting in complex systems was introduced by Scheffer and

collaborators [2, 3]. They suggest that critical slowing down and enhanced fluctuations

can be used as a precursor of approaching systemic change. The method can work when

the high dimensional dynamics of the complex systems can be captured by some few

macroscopic collective degrees of freedom. It is expected to be of particular relevance

when a slow change in some external parameter which drives the system towards

the bifurcation point. In this case transitions are called critical transitions and the

mathematical framework used comes from dynamical systems theory [4, 5, 6]. This

method is pertinent to systems that are dynamically effectively low dimensional in

which the transition takes the form of a bifurcation captured by a robust macroscopic

variable, which emerges from the micro dynamics. This approach has been applied for

many years in many different fields, in climate change [7, 8], in population dynamics

[9], in ecosystems [10] and very recently in financial markets [11] just to mention

some. Furthermore exploiting the same mathematical framework flickering between

two stationary states has been found to be a useful indicator [12, 13].

More recently in [14] the authors describe transitions in a different way. In this new

interpretation transitions are named saddle-escape transitions and metastable states

are interpreted as high dimensional saddle points. Transitions are not induced as

a result of a change in the external parameters, as is the case in the bifurcation

interpretation, but happen due to a rare perturbation which pushes the system towards

an unstable direction. An early warning sign is then captured by inferring the value

of the largest eigenvalue of the Jacobian through the log difference of a conveniently

chosen macroscopic time series.

Here we give the same interpretation of metastable states though we develop a

different approach. As we have suggested recently in [15] transitions are induced by

intrinsic fluctuations at the level of the individual components which propagate to the

macroscopic systemic level and thereby trigger a change in the overall configuration.

Our approach is relevant to systems in which the available configuration space evolves

as a consequence of the dynamics. One may think of a new and more virulent virus

being created through a mutation of an existing strain (e.g. the SARS virus in 2003),
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or a new economic agent arriving in the market (e.g. the dot-com bubble in 1997-2000).

Contrary to [14], to build our indicator we do not make use of a rigid macroscopic

variable to monitor the system; instead we analyse the interactions between the single

microscopic components.

In the current paper we elaborate the method we have presented in [15], we discuss

the mathematical details both of the mean field approximation and of a Linear Stability

Analysis (LSA) and explore in greater detail its forecasting power. As a first test case

we consider the Tangled Nature (TaNa) model of evolutionary ecology [16], which has

had considerable success in reproducing both macro-evolutionary aspects such as the

intermittent mode of extinctions [17] and ecological aspects such as species abundance

distributions [18] and species area laws [19]. A much more succinct and schematic

discussion was given in [15].

Furthermore, as a new test case, we present results for transitions in a model

with a very different type of dynamics, namely a high dimensional replicator with a

stochastic element of mutation [20, 21]. This model is based on the replicator-mutator

equation which has wide application in many different fields like population genetics [22],

evolutionary game theory [23], language evolution [24], etc. Furthermore, it is related

to a few different models with wide applications on their own. First it contains the

mutation element of the quasispecies equation [25, 26] often used to model the spread

of strongly mutating viruses like HIV and Hepatitis C [27] and the frequency dependent

element of the replicator equation [28] used in evolutionary game theory [29]. The Lotka-

Voltera equation [30] otherwise known as predator-pray model, which was originally

developed to describe dynamics in ecological systems and later got wide application in

economics [31], has been shown to be equivalent to replicator equation [32]. The Price

equation [33], which Hamilton used in his work on kin selection [34] and was later used

to describe numerous biological systems, is also equivalent to the replicator equation

and the expanded Price equation is equivalent to the replicator-mutation equation [35].

Given the broad relevance of replicator-mutation equation (population dynamics, virus

spreading, game theory, financial dynamics, social dynamics etc.), success in forecasting

transitions in this model may indicate that our method may be relevant to a range of

situations. We begin by demonstrating that the high dimensional replicator system with

mutations exhibits intermittent behaviour. Without mutations, the replicator equation

will typically not exhibit intermittent dynamics.

Despite their different general mechanisms, the TaNa model and the replicator-

mutator system share similar properties. Their stochastic dynamics is characterised by

a huge number of metastable states. When the system randomly falls into one of them it

enters a quiescent period of little change. Eventually the intrinsic stochastic fluctuations

lead to the occupancy of hitherto empty parts of the configuration space which may serve

as a random kick able to drive the system away from the metastable configuration and

towards the chaotic regime where the system undergoes a high dimensional adaptive

walk searching for another metastable point. The two systems studied here do not

exhibit the characteristic bifurcation captured by some rigid macrovariable, nor can the
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transitions be forecasted by inferring the largest eigenvalue. They cannot be forecasted

through the observation of systemic properties but require the analysis of microscopic

interactions.

Nevertheless, through a mean field description of the stochastic dynamics we can

infer the Jacobian and interpret the metastable states as high dimensional saddle points

formed of a vast majority of stable directions and typically a few unstable ones. If the

mean field description was accurate, we would be able to make deterministic predictions.

This is not the case, but we demonstrate that we are able, in both models, to understand

which kind of intrinsic stochastic fluctuation will be able to push the system out of its

stable configuration.

As said in this paper we start by elaborating on the procedure presented in [15]

checking the performance of an alarm threshold built on the stability indicator. This

procedure is to be considered a starting point, its weakness consists in the need of full

information on the system (one needs to know the structure of the whole configuration

space). To overcome this problem we have developed a new methodology, described at

the end of the paper, where we have reduced the amount of dynamical details needed

to produce forecasts.

The remaining of the paper is structured as follows: in Section 2 we describe the

procedure which combines observational data (in our case from simulations) with a LSA

of the mean field dynamics, in Section 3 we will go through the details of the models

used as test cases and their mean field description. In Section 4 we analyse the results

coming from the forecasting procedure first introduced in [15] applied to both models.

In Section 5A to study the robustness of the method, we introduce a level of error in

the mean field interaction matrix. Finally in Section 5B we introduce and develop the

methodology to make the method more applicable to real world problems.

In order to facilitate collaboration we have uploaded all the codes (C/C++)

necessary to produce the results of the paper online (both the models and the forecasting

procedure). The interested reader can find and download them from H.J. Jensen’s home

page https://wwwf.imperial.ac.uk/ hjjens/.

2. Linear Stability Analysis Application

In this section we give a general outline of our approach. We will then describe the

application to the two models in detail in the following two sections. The first step

is to establish a mean field approximation of the stochastic dynamics in order to

obtain a set of deterministic equations. In order to do so we define the state vector

n(t) = (n1(t), . . . , nd(t)), where ni(t) represent the occupation of each node (species or

strategy). The mean field time evolution is of the form

n(t+ 1)− n(t) = T(n(t)) · n(t) (1)

where the matrix T is the mean field evolution matrix, which will contain contributions

from the following processes: death, reproduction and mutation. Obviously in this
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framework the fixed point configurations n∗ are given as solutions of

T(n∗) · n∗ = 0 (2)

Because of the high dimensionality of the type of systems we have in mind, Eq.(2) will

typically not be solvable analytically but can be numerically approximated observing the

stochastic dynamics. We now perform a linear stability analysis about n∗ by introducing

a small perturbation n(t) = n∗ + δn(t). By substituting the perturbed vector in Eq.(1)

and expanding the right hand side to first order in δn(t) we get

δn(t+ 1)− δn(t) ≃ (T(n∗) + ∂nT(n
∗) · n∗) δn(t) (3)

= M(n∗) · δn(t)

where we have used Eq.(2). Here the matrix

M(n∗) = (T(n∗) + ∂nT(n
∗)n∗) (4)

is the Jacobian of the system, or the stability matrix. Now exploiting the results

of the LSA, we know that the eigenvectors or generalised eigenvectors (in case

of a non diagonalizable Jacobian) e+ associated with λ with Re(λ) > 0 indicate

unstable directions. These can be identified with dangerous components ni of the

configuration vector towards which the eigenvectors point. What this means is that if the

stochastic fluctuations (mutations) bring the system close to these unstable directions,

by activating the dangerous components, the system will suffer a repulsive force that

will push it away from the fixed (saddle) point n∗. In other words the activation of one

of these components corresponds to a perturbation parallel to an unstable direction of

the saddle fixed point n∗. This implies that a sudden growth of these components would

indicate the arrival of a transition.

This observation allows us to identify a stability indicator, whose non-zero values are

early warning signalling of an approaching transition caused by the system leaving the

vicinity of a current fixed point. The details of this indicator will depend on the specific

case we are dealing with but will be based on the same general idea. In the following

sections we will present the two test case models analysing their basic mechanisms and

results, and developing our mean-field stability indicator in both cases.

3. The models

3.1. A. The Tangled Nature Model

In the TaNa, an agent is represented by a sequence of binary variables with fixed length

L [?], denoted as Sa = (Sa
1 , . . . , S

a
L), where Sa

i = ±1. Thus, there are 2L different

sequences, each one represented by a vector in the genotype space: S = {−1, 1}L. In

a simplistic picture, each of these sequences represents a genome uniquely determining

the phenotype of all individuals of this genotype. We denote by n(Sa, t) the number

of individuals of type Sa at time t and the total population is N(t) =
∑2L

a=1 n(S
a, t).

We define the distance between different genomes Sa and Sb as the Hamming distance:
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dab =
1
2L

∑L

i=1 |Sa
i −Sb

i |. A time step is defined as a succession of one annihilation and of

one reproduction attempt. During the killing attempt, an individual is chosen randomly

from the population and killed with a probability pkill constant in time and independent

of the type. During the reproduction process, a different randomly chosen individual Sa

successfully reproduces with probability poff (S
a, t) = exp (H(Sa,t))

1+exp (H(Sa,t))
, which depends on

the occupancy distribution of all the types at time t via the weight function:

H(Sa, t) =
k

N(t)

∑

Sb∈S

J(Sa,Sb)n(Sb, t)− µN(t). (5)

In Eq. (5), the first term couples the agent Sa to one of type Sb by introducing the

interaction strength J(Sa,Sb), whose values are randomly distributed in the interval

[−1,+1]. For simplicity, and to emphasise interactions, we here assume: J(Sa,Sa) = 0.

The parameter k scales the interaction strengths and µ can be thought of as the carrying

capacity of the environment. An increase (decrease) in µ corresponds to harsher (more

favourable) external conditions. The reproduction is asexual: the reproducing agent

is removed from the population and substituted by two copies Sa
1 and Sa

2, which are

subject to mutations. A single mutation changes the sign of one of the genes: Sa
i → −Sa

i

with probability pmut. Similarly to a Monte Carlo sweep in statistical mechanics, the

unit of time of our simulations is a generation consisting of N(t)/pkill time steps, i.e.

the average time needed to kill all the individuals at time t. These microscopic rules

generate intermittent macro dynamics. The system is persistently switching between two

different modes: the meta-stable states (denoted quasi-Evolutionary Stable Strategies

or qESS) and the transitions separating them. The qESS states are characterised by

small amplitude fluctuations of N(t) and stable patterns of occupancies of the types

(Fig. 1, respectively left and right panel). However, these states are not perfectly stable

and configurational fluctuations may trigger an abrupt transition to a different qESS

state. The transitions consist of collective adaptive random walks in configuration space

while searching for a new metastable configuration and are related to high amplitude

fluctuations of N(t). All the results we will present for this model have been obtained

fixing the parameters to L = 8, pmut = 0.2, pkill = 0.4, K = 40 and µ = 0.07 and have

been chosen for computational reasons. Furthermore one can see from the occupancy

plot in the right panel how a qESS configuration only occupies a small portion of the

total available genome space (blue dots). With this parameter set typically 20-50 nodes

of the genome space are active, 5-10 of which being heavily occupied (wild types) out

of the 256 available.

3.2. Mean Field Description

In the TaNa model there are multiple sources of stochasticity, namely reproduction,

mutations and deaths. Following the procedure outlined above we average over these

sources in order to derive a deterministic mean field equation. At each time step with

probability pkill a randomly chosen individual is removed from the system, which implies

that the occupation number of the species it belongs to decreases by one (∆ni = −1).
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Figure 1: Left panel: total population as a function of time (in generations) for a

single realization of the TaNa. The punctuated dynamics is clearly visible: quasi-stable

periods alternate with brief periods of hectic transitions, during which N(t) exhibits

large amplitude fluctuations. Right panel: occupancy distribution of the types. The

genotypes are labelled arbitrarily and a dot indicates a type which is occupied at the

time t. These figures are obtained with parameters L = 8, pmut = 0.2, pkill = 0.4,

K = 40 and µ = 0.007.

Given that the probability of choosing an individual belonging to the ith species is

ρi =
ni

N
, the probability that an individual of type i is removed is given by

ρi · pkill · (−1) (6)

The reproduction term is slightly more complicated because mutations need to be

treated with some care. A randomly chosen individual is selected for asexual

reproduction, which means it is removed from the system while creating two new

individuals of the same species. Offsprings can both mutate (∆ni = −1 ), only one can

mutate (∆n = 0), or none mutate (∆n = +1). Keeping in mind that the probability

of reproducing is given by poffi the average contribution from reproduction of type i

including mutations is

ρi · poffi (t) [2po − 1] = α · ρi · poffi (t) (7)

here po = (1− pmut)L is the probability of no mutations and α = (2po− 1) is a constant.

The third term we have to consider is the backflow effect, which describes the event of

begin populated by mutations occurring during the reproduction happening elsewhere.

This term has the form
∑

j

ρj(t)p
off
j pmut

j→i (8)

Type j will have to mutate a number of genes corresponding to its hamming distance

dij between j and i in order to increase ni. This will happen with probability

pmut
i→j = p

dij
mut · (1− pmut)

L−dij (9)
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Putting together all these effects we find the expression for Eq.(1) for this model to be

ni(t+ 1)− ni(t) =
1

N

∑

j

{(

poffj (t) (2po − 1)− pkill
)

· δij + poffj · pmut
j→i · (1− δij)

}

nj(t) (10)

where

Tij =
(

poffj (t) (2po − 1)− pkill
)

· δij + poffj · pmut
j→i · (1− δij) (11)

is the mean-field evolution matrix of the system. By substituting Eq. (11) into Eq. (4)

we get the specific form of the stability matrix for the Tangled Nature Model

Mij = (αpoffj − pkill)δij + 2(1− δij)p
off
j pmut

j→i

+
∑

k

[

αδik + (1− δik) · pmut
k→i

] ∂poffk

∂nj

n∗

k (12)

This is the mean field matrix we will use for our linear stability analysis of the stochastic

fixed points.

3.3. B. The Replicator Model with Mutations

The replicator equation [28] was introduced in evolutionary game theory in order to

capture the frequency dependent nature of the evolution process. Namely, in this

model the fitness, or the evolutionary success, of a strategy depends on the frequency

of the other strategies in the system. By combining the replicator equation with the

quasispecies equation we obtain the replicator-mutation equation, where, apart from

the frequency dependence, we also allow for new strategies to enter the system through

mutations. As mentioned in the introduction, this model is used to describe numerous

high dimensional socio-economic or biological systems.

We are interested in the limit of many strategies. Players may leave the system

(say go bankrupt or extinct) or may change their strategy (mutate). This means that

the number of players choosing a given strategy and the number of available strategies

are in constant evolution. This version of the replicator dynamics set-up was studied by

Tokita and Yasutomi in [21]. The authors focused on the emerging network properties.

Here we continue this study but with an emphasis on the intermittent nature of the

macro-dynamics.

For this model the configuration vector n(t) contains the relative frequencies of all

the allowed d different strategies, so the components ni(t) ∈ [0, 1] for all i = 1, 2, ..., d.

Not all strategies need to be active at a given moment, i.e. we can have ni(t) = 0 for

some strategy i. We start the simulations by generating the d×d payoff matrix J of the

game that will tell us the payoffs of every pairwise combination. Like for the Tangled

Nature model above, the matrix J is a random and fixed interaction network on top of

which the replicator dynamics will evolve. Each strategy distinguishes itself from the

others in its payoffs or interactions with the rest of the strategy space.

In this chapter we used the same type of uncorrelated interaction matrix as used in

the study above of Tangled Nature model. The dimension of the matrix is large, namely
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d ∈ (102, 104). The qualitative aspects of the behaviour remain the same for other

types of payoff matrices. We found that matrices with payoffs uniformly distributed

on the interval (−1, 1) or on the set {0, 1} exhibit the same behaviour as matrices of

the form used for the Tangled Nature model. However, if the payoffs are drawn from

a power law distribution with no second moment, the dynamics becomes different and

the intermittent behaviour is not so distinct any more.

In the initial configuration, No < d strategies start with the same frequency ni =
1
No

.

All the other possible strategies are non active, i.e. the corresponding d−No components

in n(0) are ni(0) = 0. The empty strategies can only become populated by one of the

active strategies mutating into them. Once this happens their frequency will evolve

according to the replicator equation in which these newly occupied strategies interact

with the active strategies which they are linked to through the matrix J .

A time step of the replicator dynamics consists of calculating the fitness, hi(t) =
∑

j Jijnj(t) of each active strategy and compare it with the average fitness h̄(t) =
∑

ij Jijni(t)nj(t), exactly as expected in a replicator dynamics. Each frequency is then

updated according to

ni(t+ 1) = ni(t) +

(

∑

j

Jijnj(t)−
∑

kj

Jkjnk(t)nj(t)

)

ni(t) (13)

The stochastic element, of the otherwise deterministic dynamics, consists in the following

updates. With probability pmut each strategy mutates into another one, this is done by

transferring a fraction αmut of the frequency from the considered strategy to another

strategy. The label of the latter strategy is chosen in the vicinity of the first by use

of a normal distribution N(i,∆) centred on label i ∈ {1, 2, ..., d} with variance ∆ with

periodic boundary conditions, i.e. label d+1 = 1. The closer the labels of two strategies

are the more likely it is for one to mutate into the other.

It should be noted that as long as the payoff matrix is random and uncorrelated in

its indices, strategies having a small difference between their indices are not necessarily

similar since the two strategies may interact with the other strategies in completely

different ways. The ∆ parameter is introduced to control the level of stochasticity in

the system. The higher the values of ∆ the greater the range of nodes j that can be

activated from a mutation happening in i.

When the frequency of a strategy i goes below a preset extinction threshold

ni(t) < next, the strategy is considered extinct and its frequency is set to zero

ni(t + 1) = 0. Right after an extinction event the system is immediately renormalised

in order to maintain the condition
∑

i ni(t) = 1.

The dynamics at the systemic level is captured by the time evolution of the

occupancy vector n(t) and is showen in fig.(2), where we present the occupancy plot

(left panel) and the evolution of the frequencies of the single strategies (right panel).

All the results for this model have been obtained with the same parameter set,

namely: d = 256, next = 0.001, αmut = 0.01, pmut = 0.2 and ∆ = 15 that once again

have been chosen for reasons of computational performance. In this model the qESS



Forecasting transitions in systems with high dimensional stochastic complex dynamics10

Figure 2: Left panel: occupancy distribution of the types. The genotypes are labelled

arbitrarily and a dot indicates a type which is occupied at the time t. The punctuated

dynamics is clearly visible: quasi-stable periods alternate with brief periods of hectic

transitions. Right panel: the frequencies of the strategies. Each colour belongs to

a different strategy. Once again the transitions from one meta stable configuration

(approximate fixed point) to another is clear.

are typically characterised by two strongly occupied strategies which are surrounded by

7 to 8 cloud strategies that are populated by mutations and quickly die out. So once

again the stable configurations occupied only a small part of the entire strategy space.

3.4. Mean Field Description

The random mutations are the only source of stochasticity in the model’s dynamics. To

account for these stochastic events one has to consider the possibility that a strategy

looses part of its frequency by mutating into other strategies or gains frequency as

a result of mutations happening elsewhere. As a result a given strategy may loose a

fraction of players αmut, which happens with probability pmut or gain αmut·nj(t+1) which

happens with probability pmut

∑

j∈Na
pj→i, where Na is the number of active strategies

and

pj→i =
e

−|i−j|2

2∆2

√
2π∆2

(14)

is the probability of i mutating into j (or viceversa). This second effect describes

the probability of being populated by a mutation. We therefore get the mean field

description as

ni(t+ 1) ≃ ni(t) +

(

∑

j

Jijnj(t)−
∑

jk

Jikni(t)nk(t)

)

· ni(t)

+pmutαmut

(

∑

j

nj(t)pj→i − ni(t)

)

(15)
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which can be expressed, in compact form as

ni(t+ 1)− ni(t) ≃
∑

j

Tijnj(t) (16)

where

Tij =

(

∑

j

Jijnj(t)−
∑

jk

Jjknk(t)nj(t)− pmutαmut

)

· δij

+pmutαmutpj→i · (1− δij) (17)

The stability matrix is obtained by substituting Eq.(17) in Eq.(4)

Mij = Tij(n
∗) +

[

Jij −
∑

k

(Jik + Jki)n
∗

k

]

n∗

i (18)

4. Procedure and Results

We described in the previous sections how the dynamics of the two models consists

in intermittent swift transitions between quasi-metastable configurations. As already

stated it is not possible to analytically solve Eq. (2) but we can approximate the fixed

points of the mean field dynamics by local time averages over successive configurations

in the quasi-stable phases of the full stochastic dynamics, namely: n̄stoc = 1
T

∑T

t=0 n(t).

If the mean field description of the dynamics describes sufficiently well the underlying

stochastic dynamics, by substituting the averaged configuration in Eq. (2) we should

get T(n̄stoc) · n̄stoc ≃ 0. We find this to be the case for both models. We have therefore

treated n̄stoc as our fixed points.

Through our procedure we want to study the stability in the neighbourhood of

n̄stoc, in order to predict the system’s reaction to stochastic perturbations. To the

extent that the mean field matrix correctly describes the system the metastable states

will become unstable along directions in configuration space given by the eigenvectors

e+ corresponding to eigenvalues with a positive real part Re(λ) > 0.

Once we know the form of the eigenspace we can monitor two important scalar

quantities: the instantaneous distance from the fixed point

δn(t) = ‖δn(t)‖ = ‖n(t)− n̄stoc‖ (19)

and the maximum overlap between the perturbation and the eigenvectors {e+} of the

unstable subspace

Q(t) = max‖δn(t) · ei‖ ∀ei ∈ { e+} (20)

The quantity in Eq.(19) tells us how far away the system is from the fixed point

while the overlap in Eq.(20) tells us to what extent a deviation n(t)− n̄stoc is within an

unstable sub space. We expect δn(t) to fluctuate around a low constant while Q(t) is

zero, since this would mean that the perturbations happen in the stable subspace, while

a transition would induce a sudden increase in both δn(t) and Q(t).
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!|δn(t)|!

Q(t)!

!|δn(t)|!

Q(t)!

Figure 3: In the bottom panel of both figures we show the behaviour of δn(t) (blue curve)

and Q(t) (red curve) while approaching the transition in the Tangled Nature (left) and

the Replicator Model with Stochasticity (right). In the top panel, a weighted occupation

plot is presented. We can see how the beginning of the transitions (dashed vertical black

line) is triggered by a new mutant (black arrow) that quickly gains population. The

arrival of the new dangerous mutant is singled by a peak in the Q(t).

Another way of picturing Q(t) is as a measure of the activity of the occupancy on

dangerous nodes. Indeed every non zero component of the unstable eigenvectors {e+}
will tell us which nodes of the interaction network are capable of pushing the system out

of its metastable configuration. Namely if ej+ 6= 0, where j indicates the component of

the unstable eigenvector, this means the jth node is dangerous. The Q(t) monitors the

activity of such nodes. If one of these nodes were to become activated by mutations this

would result in a rapid growth of Q(t) and can be considered as a warning of a successive

transition. In Fig.(3) of [15] it was discussed how these two quantities behave in the

TaNa model and we demonstrated the forecasting power of the indicator Q(t) and we

gave an explanation on why we missed some of the transitions. Here we illustrate in

Fig.(3) the temporal behaviour of Q(t) and δn(t) for both the Tangled Nature Model

and the stochastic replicator system. The top panels contain weighted occupation plots

while the bottom figures show the behaviour of the two quantities in Q(t) and δn(t).

The arrow points at the new dangerous mutant that has entered the system, while the

dashed vertical line indicates the moment it happens. Before the dashed line we can see

how fluctuations in δn(t) are bounded and Q(t) is essentially equal to zero. After the

dashed line, when the new mutant has entered the system, we see an explosion of both

quantities.

We denote t∗ the time at which the transition begins, which is set by the δn(t)

crossing a reasonably chosen threshold Tδ and staying consistently above this threshold

(we have used Tδ = 150 for the TaNa and Tδ = 0.05 for the Replicator model). Given the
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sharp increase of δn(t) when approaching the transition, t∗ does not depend strongly on

the precise choice of the threshold as long as its is chosen larger than the characteristic

fluctuations of δn(t) during the metastable configurations.
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Figure 4: The behaviour of the fraction of false alarms and missed transitions for

different values of alarm threshold AQ in the Replicator Model (Left Panel) and the

Tangled Nature (Right Panel). One can see how the procedure produced no false

alarms in the Replicator Model which is consistent with what one might expect given

the Langevin nature of the model.

To define an alarm we determine an appropriate threshold AQ on Q(t). To do so

we compare the number of false alarms with the number of missed transitions generated

by different values of the chosen threshold AQ. We define a false alarm when the Q(t)

crosses AQ but then goes back under it before any transition occurs. On the other hand a

missed transition corresponds to situations where Q(t) remained below AQ even though

the given metastable configuration did become unstable and therefore a transition did

occur.

In Fig.(4) we show these two quantities for different AQ. The red curve is the

fraction of missed transitions while the blue is the fraction of transitions that have

produced false alarms. In the Tangled Nature model, when increasing AQ the fraction

of false alarms decreases, as expected, while the fraction of missed transitions increases.

The same figure for the replicator model shows how the procedure, although missing an

increasing number of transitions, produce no false alarms at all.

The reason for this, we believe has to do with the Langevin nature of the dynamics

in the Replicator Model, i.e. deterministic dynamics + stochastic noise. Within this

approach we expand the configuration vector n(t) in the M’ s eigenspace or generalised

eigenspace plus noise. One gets

n(t) =
∑

k

[ck(0)exp(λkt) · ek + ǫk] (21)
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Figure 5: The fraction of missed transitions as a function of the noise in the system for

both models. As the stochasticity is increased it becomes harder to forecast transitions

in both models. The blue curve is the Replicator Model and it refers to the top x-axis,

while the red curve is the Tangled Nature and refers to the bottom x-axis.

where ck(0) are the coefficients of the expansion and ǫk is the noise. This dynamics is

clearly dominated by those components for which Re(λk) > 0, but this is true only if

ck(0) 6= 0. When a node is populated by a mutation, in our framework this corresponds

to setting ck(t) > 0. From then on the term is suppressed if and only if the ǫk points

in the opposite direction at all times which is highly unlikely. The same picture is

less applicable to the Tangled Nature where all updates are stochastic and hence the

separation into a robust deterministic part perturbed by a weak stochastic part is less

applicable.

The way to interpret the missed transitions is to think of the fixed points as saddle

points of a heterogeneous high dimensional energy landscape. The eigenspace of the

mean field matrix tells where the downhill slopes and uphill barriers are. Although

it is far more likely for the system to leave the saddle point through a downhill

slope, a stochastic perturbation may be able to push the system over a barrier. This

interpretation is confirmed by Fig.(5) where we show that the fraction of missed

transitions increases in both models as the degree of stochasticity is increased.

Once the threshold AQ is fixed, we can determine the time tcross at which Q(t)

goes above AQ and determine the number of time steps ∆T = ‖t∗ − tcross‖ between

the passing of the threshold and the transition as given by the time t∗ at which the

configuration starts to change significantly. In this way we can check the forecasting

power of the indicator. In Fig.(6) we present the distribution of ∆T for AQ = 0.01 and

AQ = 20 respectively for the Replicator and the Tangled Nature model. We can see that

in the replicator model the crossing times are tenths of time steps before the transition

time. This means that the system will go through many cycles of updates before the
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transition occurs. In the Tangled Nature in more than 50% of cases ∆T ∈ [2, 5]. As

explained above when introducing the model, one generation corresponds to average

number of time steps necessary to remove everyone from the system, i.e. N(t)
pkill

individual

updates. So even low values of ∆T will involve many individual updates and hence can

be considered to correspond to a strong forecasting power.
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Figure 6: Distribution of the respite of the alarms for a given threshold. The left panel

refers to the Replicator model, for which AQ = 0.01 and the right panel to the Tangled

Nature model, for which AQ = 20.

5. Incomplete Knowledge

An obvious short coming concerning the real-life application of the forecasting procedure

described so far is that we make use of complete knowledge of the entire space of agents

and their interactions, i.e we use both the actually realised and the potential part of

the space of agents. In this section we first consider how the lack of full knowledge

of the interaction strength between agents influences our ability to detect approaching

transitions. We next consider a much simpler measure than the overlap function Q(t).

This new measure is inspired by the analysis presented above and leading to Q(t) but

avoids access to information about the adjacent possible, i.e. information about agents

that are not extant in the system at the time of forecasting. Our new measure only

makes use of the time evolution of directly observable quantities.

5.1. Error in Interactions

We investigate the effect of lack of complete information concerning the iterations

between agents by introducing an error in the interaction matrix used for the mean

field treatment. We do this in the following way

Je
ij = Jsim

ij + χ (22)
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where χ is N(0, σ), i.e. a normally distributed random variable, of mean 0 and variance

σ. We then repeat the exact same procedure outlined in the previous section but using

Je in the forecasting calculations while the simulations evolves according to Jsim.
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Figure 7: The fraction of the missed transitions and the fractions of false positive as

function of the σ of the distribution of the random error in the interactions. Once again

we have used AQ = 30 for the Tangled Nature (right panel) and AQ = 0.01 of the

Replicator Model (left panel).

In Fig.(7) we present the fractions of transitions we are not able to forecast (missed

transition) and the fractions of false alarms we generate as function of the variance σ,

i.e. as function of how much the interaction matrix used for the stability analysis differs

from the correct set of interactions. For the Tangled Nature (see the right panel) we can

notice that for σ < 0.2 we are still able to forecast around 70% of the transitions and

we generate less than 20% of false alarms. This is an encouraging result since a σ = 0.2

is clearly a significant error given that Jij ∈ (−1, 1). A very similar result holds for the

Replicator Model.

5.2. New Procedure

We now discuss a forecasting procedure that does not need any knowledge about ”in

potentia” agents. We only need to focus on the highly occupied nodes present in the

system. We only know what we see without making any use of the non active part of

the interaction network, nor of the poorly occupied nodes. By applying the LSA to the

occupied network we can check that, during a stable phase, the configuration corresponds

to a situation where the spectrum of the stability matrix M consists of eigenvalues that

all have negative real parts. As the system evolves new mutants appear. As an indicator

of approaching transitions we track the growths of the occupancy of these new agents,

if their occupancy exceeds a certain threshold we check the spectrum of the updated

M, in which the new agents are included. In case the spectrum now includes positive
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eigenvalue we take this as an indicator of, an approaching transition out of the present

metastable configuration. This will be our new alarm. That rapidly growing new types

may destabilise the configurations of the Tangled Nature Model was also discussed by

Becker and Sibani [36]

Figure 8: Top left and bottom left respectively occupation plot and total numbers

of individual
∑

j nj(t) = N(t) in the Tangled Nature Model. The vertical red lines

represent the alarm times. In the top and bottom right we compare the behaviour of

the occupation plot and the frequencies of the most occupied strategies (blue curves) in

the Replicator model with the alarms given by our new procedure . One can clearly see

how after every alarm the system changes its configuration.

In Fig.(8) we show the results of an application of this new procedure. In both

panels the red vertical lines indicate the times of appearance of a species able to change

the stability of the system. We can qualitatively see from the figure that just after the

alarms the system actually undergoes a transition. In the left panel of the Fig.(8) the

blue curves represent the frequencies of the most occupied strategies in the Replicator

model. We can see how right after the red lines, the alarm times, a new strategy starts
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gaining frequency and eventually puts an end to the stable configuration. It should be

stressed that using the growth in the population of the new mutant alone as an early

warning signal will not work since it would produce a very high and continuous rate of

false alarms. It is the combination of the spectral analysis with the monitoring of the

arrival of new mutants that makes the method very powerful.

In the bottom left panel we show the total number of individuals present in the

Tangle Nature Model: N(t) =
∑

j nj(t). A transition to a new metastable configuration

is associated with a sudden change of this quantity. We notice that after each alarm

N(t) exhibit a significant change induced by the arrival of the new fast growing type.

Preliminary analysis indicates that this procedure is able to forecast transitions with an

accuracy similar the Q(t) indicator. Further investigation of the efficiency and reliability

of using the grows of newcomers as indicators of approaching transitions is underway.

Obviously this can make our procedure more readily applicable to real systems since we

would then only need directly observable information.

6. Summary and Conclusion

We have describe a new procedure for forecasting transitions in high dimensional systems

with stochastic dynamics. Our method is of relevance to systems where the macroscopic

dynamics at the systemic level is not adequately captured by a well defined set of

essentially deterministic collective variables (e.g. as handled by Langevin equations).

Hence we are dealing with situations that are not captured by the application of

bifurcation theory such as considered by Scheffer and collaborators [6, 2, 3]. We have

in mind complex systems in which the dynamics involves some evolutionary aspects,

in particular situations where the dynamics generates new degrees of freedom. E.g.

biological evolution, or economical and financial systems, where new agents (organisms,

strategies or companies, say) are produced as an intrinsic part of the dynamics. We

have demonstrated by use of two models of varying degree of stochasticity (the Tangled

Nature Model and the stochastic Replicator Model) that a combination of analytic linear

stability analysis and simulation allows one to construct a signal (overlap with unstable

directions) which can be used to forecast a very high percentage of all transitons.

The weakness of the procedure is that for real situations of interest (e.g. an

ecosystem or a financial market) one may obviously not possess complete information.

One will typically not have access to all the information about the interaction amongst

the agents. This turns out to be less of a problem, since we can show that even with

a 10% inaccuracy in interaction strengths, we are still able to forecast a substantial

percentage of transitions. Another short coming is that in real situations it can also

be very difficult to know the nature of the new agents that may arrive as the system

evolve. Our full mathematical procedure suggests a way to overcome this problem.

Namely, the eigenvector analysis showed that transitions are often accompanied by the

arrival of new agents, which exhibit a rapid growth in their relative systemic weight.

We found that simply monitoring the rapidly growing new agents can enable prediction
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of major systemic upheavals. I.e. approaching transitions might not be apparent by

focusing on the systemic heavyweights, but rather one should keep a keen eye on the

tiny components to monitor whether they suddenly start to flourish. This can often be

the signal of upcoming systemic changes.

To address on a real system how crucial incomplete data and limited model accuracy

is, our next step is to test our approach on real data streams including high frequency

financial time series.
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